
Heuristics for the Mixed
Swapping Problem

Charles Bordenave
Michel Gendreau
Gilbert Laporte

June 2008

CIRRELT-2008-24

Heuristics for the Mixed Swapping Problem

Charles Bordenave1,2,* , Michel Gendreau1,2 , Gilbert Laporte1,3

1. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT)
2. Department of Computer Science and Operations Research, Université de Montréal, P.O. Box

6128, Station Centre-ville, Montréal, Canada H3C 3J7
3. Canada Research Chair in Distribution Management, HEC Montréal, 3000 Côte-Sainte-

Catherine, Montréal, Canada H3T 2A7

Abstract. In the Swapping Problem, to each vertex of a complete directed graph are

associated at most two object types representing its supply and demand. It is assumed

that for each object type the total supply equals the total demand. A vehicle of unit

capacity, starting and ending its route at an arbitrary vertex, is available to carry the

objects along the arcs of the graph. The aim is to determine a minimum cost route such

that each supply and demand is satisfied. When some of the object types are allowed to

be temporarily unloaded at some intermediate vertices before being carried to their final

destination, the problem is called the Mixed Swapping Problem. In this paper we describe

constructive and improvement heuristics which were successfully applied to randomly

generated instances with up to 10,000 vertices, with an average optimality gap not

exceeding 1%.

Keywords. Transportation problem, vehicle routing, heuristic.

Acknowledgements. This research was partially supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) under grants 338816-05 and 39682-

05.This support is gratefully acknowledged.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Charles.Bordenave@cirrelt.ca

This document is also published as Publication #1322 by the Department of Computer Science
and Operations Research of the Université de Montréal.

Dépôt légal – Bibliothèque et Archives nationales du Québec,
 Bibliothèque et Archives Canada, 2008

© Copyright Bordenave, Gendreau, Laporte and CIRRELT, 2008

1 Introduction

Let G = (V,A) be a complete directed graph, where V = {1, . . . , n} is the vertex
set and A = {(i, j) | i ∈ V, j ∈ V, i 6= j} the arc set. Without loss of generality,
vertex 1 is arbitrarily designated as a depot. To each vertex i ∈ V is associated a
pair of unit weight object types (ai, bi), where ai is the type initially located at i
(its supply), and bi is the type required by i (its demand). The object types belong
to a set O ∪ {0}, where O = {1, . . . ,m} is the set of real object types, and 0 is an
additional null object type allowing the vertices to have only a demand or only a
supply (or none). A cost matrix (cij) satisfying the triangular inequality is defined
on A. A unit capacity vehicle, starting and ending its route at the depot, is available
to carry the objects between the vertices of V . A route segment along which the
vehicle carries the null object type (i.e., it is not loaded) is called a deadheading.
The set O is partitioned into two subsets On and Od, where On represents the set
of non-droppable object types, i.e., objects that must be shipped directly from their
origin to their destination, and Od denotes the set of droppable object types, i.e.,
objects that are allowed to be temporarily dropped at some intermediate vertices on
the way to their final destination. The Mixed Swapping Problem (MSP) consists of
determining a minimum cost route allowing the vehicle to reposition the objects in
such a way that all demands are satisfied.

Figures 1 and 2 represent optimal MSP solutions for two different instances
defined on the unit square. The object types belonging to On are printed in bold-
face and the object type carried along an arc is shown on the arc. The depot is
represented as a square. Note that the first solution of cost 6 does not use any drop
because object types 1 and 2 are non-droppable, whereas in the solution of the sec-
ond instance, the object of type 1 is dropped at the bottom left vertex before being
carried to the upper left vertex, yielding a cost of 5.4.

� �

� �

(1,2) (2,1)

(3,4) (4,3)

1

2

00

3

4

Figure 1: Optimal solution without drop

� �

� �

(1,2) (2,1)

(3,4) (4,3)

1

3

4

1

2

Figure 2: Optimal solution with drop

The MSP was introduced by Anily and Hassin [4], who defined its main termi-

1

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

nology and identified interesting structural properties of optimal solutions. These
authors showed the problem is NP-hard by reduction to the Traveling Salesman
Problem (TSP) and designed a 2.5-approximation algorithm for it. Anily et al. [2]
have studied the MSP on a line and proved that this particular case can be solved
in polynomial time. More recently, Anily et al. [3] have shown that the SP de-
fined on a tree is NP-hard and have provided a 1.5-approximation algorithm for
this structure. They have also shown that the case where m = 2 can be solved in
polynomial time. Bordenave et al. [7, 8] have proposed branch-and-cut algorithms
for the non-preemptive and preemptive SP on a general graph. These authors were
able to optimally solve instances with up to 200 vertices for the non-preemptive
version, and 100 vertices for the preemptive version.

Many known routing problems are special cases of the MSP, like the Stacker
Crane Problem (SCP) or the Bipartite Traveling Salesman Problem (BTSP). In the
SCP, a set of arcs to be traversed by the solution is given, and the aim is to de-
termine a minimum cost tour including these arcs. The SCP has been extensively
studied. Frederickson et al. [14] have shown that the SCP on a complete graph
is NP-hard and have proposed a 1.8-approximation heuristic for it. Atallah and
Kosaraju [6] have considered two particular cases of the SCP where vertices are
distributed along a line or along a circular shape. They have shown that these prob-
lems can be solved in polynomial time. Frederickson and Guan [12] have shown
that the preemptive SCP on a tree is polynomial, but the non-preemptive SCP on
a tree is NP-hard [13]. They have proposed two algorithms having worst-case
performance ratios of 1.5 and 1.25. The SCP is a swapping problem (in general
non-preemptive) where there exists exactly one object for each type, which means
that the destination of each object is known a priori.

In the BTSP, n is even, half the vertices are black and half are white. The aim
is to determine a minimum cost Hamiltonian cycle that does not visit two vertices
of the same color in succession. This problem is NP-hard. Chalasani and Motwani
[9] have proposed a 2-approximation algorithm for it, based on the intersection
of two specific matroids. One can easily show that this problem corresponds to a
swapping problem with two object types (for this particular case, the preemptive
and non-preemptive swapping problem yield the same optimal solution, which is
also an optimal BTSP solution).

Our purpose is to develop heuristics for the MSP, consisting of a constructive
phase followed by an improvement phase. The remainder of the paper is organized
as follows. The constructive phase of the heuristics is covered in Section 2, while
the improvement phase is presented in Section 3. Implementation details are dis-
cussed in Section 4. Computational results are reported in Section 5, followed by
conclusions in Section 6.

2

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

2 Constructive heuristic

The purpose of this section is to describe an algorithm to construct a feasible MSP
solution. It is our implementation of Algorithm 3.7 described in [4], except for
Step 3.7.4 which cannot be applied if an Eulerian circuit is not available. This
step has been replaced with Step 4 of our heuristic. Any feasible MSP solution is
characterized by a subset of arcs, the object type carried along each arc, and the
order of arc visits. If there is no drop in the solution, then the order of arc visits
can be obtained by determining an Eulerian circuit, by means of the end-pairing
algorithm [15], for example. The constructive heuristic described by Algorithm 1
consists of four main steps: assignment, patching, matching, and construction of
an Eulerian circuit.

Definition 1. A vertex i with ai = bi is called a transshipment vertex.

Since for every transshipment vertex the demand is already satisfied by its sup-
ply, our heuristic ignores all transshipment vertices, except possibly the depot,
which is necessarily visited in any feasible solution even if it is a transshipment
vertex.

Definition 2. The set of non-transshipment vertices (in addition to one possible
transshipment vertex i if i = 1) supplying an object of type k is denoted by Ak,
i.e., Ak =

{
i ∈ V

∣∣ ai = k and bi 6= k
}
∪

{
1
∣∣ a1 = b1 = k

}
. The set of non-

transshipment vertices (in addition to one possible transshipment vertex i if i =
1) demanding an object of type k is denoted by Bk, i.e., Bk =

{
i ∈ V

∣∣ bi =
k and ai 6= k

}
∪

{
1
∣∣ a1 = b1 = k

}
.

2.1 Assignment solution

By definition the demand and the supply of each vertex must be satisfied. If a
solution with no drop is considered, then it consists of a set of service paths, i.e., a
set of arcs along which the vehicle is repositioning an object from a vertex i ∈ Aai

to a vertex j ∈ Bbj
. Therefore the service paths define a set of assignment arcs.

This yields the first step of Algorithm 1, which consists of determining for each
object type k ∈ O∪{0} a minimum assignment in a complete bipartite graph with
vertex bipartition {Ak, Bk}. The assignment problem solution (connecting each
supply to a demand), consists of a set of p simple circuits constituting connected
components (Figure 3). If there is only one simple circuit, then it constitutes a
feasible and optimal solution (see Proposition 1). Otherwise, additional arcs must
be added to the current set of arcs in order to construct a feasible solution.

3

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

Algorithm 1. Constructive heuristic

Input: G = (V, A) and (ai, bi), ∀ i ∈ V .
Output: A feasible MSP solution S and the order of arc visits.

Step 1 Assignment
a) Determine a minimum assignment problem in a complete bipartite graph

with vertex bipartition {Ak, Bk}, ∀ k ∈ O ∪ {0}.
b) Superpose all assignment arcs to create the graph G0 = (V 0, A0), where

V 0 = V .
c) Identify the connected components {Ct}t≥1 of G0.
d) If t = 1, let S be the simple circuit formed by A0. The order of arc visits

is trivial since S is a simple circuit. Output S and stop.
Step 2 Patching

a) Select a vertex in each Ct and create the undirected graph G1 = (V 1, E1),
where each entry c1

ij of the cost matrix defined on E1 represents the mini-
mum cost between Ci and Cj (the components containing i and j, respec-
tively).

b) Determine a minimum spanning tree in G1. Let G2 = (V 2, E2) be the
resulting tree, where V 2 = V 1.

Step 3 Matching
a) Identify the odd degree vertices V 3 in G2, and create the complete undi-

rected graph G3 = (V 3, E3).
b) Determine a minimum perfect matching in G3. Let G4 = (V 4, E4) be the

resulting graph, where V 4 = V 3 and E4 is the set of matching edges.
Step 4 Construction of an Eulerian circuit

a) Direct the edges of E2 ∪ E4 in such a way that δ+(i) = δ−(i), ∀ i ∈
V 2 ∪ V 4. Let G5 = (V 5, A5) be the resulting graph.

b) Assign object type 0 to each arc of G5.
c) Combine A0 and A5 to create the graph G6 = (V 6, A6), where V 6 = V .
d) Determine an Eulerian circuit in G6 to obtain the order of arc visits, and

output S = A6.

Proposition 1. The assignment solution value provides a lower bound on the opti-
mal MSP solution value.

Proof. Let z∗ be the optimal solution value. Let {Ct}t≥1 be the collection of
simple circuits obtained by solving the m+1 minimum assignment problems (Step
1c), and denote by c(U) the sum of the arc costs of U ⊆ A. In any feasible solution,
an object of type k initially at vertex i (with ai 6= bi or i = 1) is carried to its final
destination j (bj = k) either via a single arc (i, j) or via a sequence of drops at
intermediate vertices between i and j. In both cases, from the triangular inequality,
the total cost of this route segment is greater than or equal to cij . Therefore, the sum
of the cost of each assignment circuit represents a lower bound for the problem, i.e.
z∗ ≥

∑
t≥1

c(Ct).

4

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

�

�

�

�

�

�

�

�

�

	

�

�

�

Figure 3: Assignment solution

2.2 Patching solution

After the p connected components in the current solution have been identified,
an undirected complete graph whose vertices represent the p components is con-
structed. The cost of an edge linking two components Ci and Cj can be defined
in several ways, for example the minimum arc cost between Ci and Cj . A mini-
mum weight spanning tree is then determined in this graph. The arcs of the current
solution and the edges of the spanning tree yield a mixed graph (Figure 4).

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

Figure 4: Patching circuits

2.3 Matching solution

Since any tree has at least two leaves, there exist at least two odd degree vertices
in the current solution. An undirected complete graph is created on the set of odd
degree vertices. It is well known that any graph has an even number of odd degree
vertices, and therefore a minimum weight perfect matching can be computed on
this graph (Figure 5).

5

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

�

�

�

�

�

�

�

�

�

	

�

�

�

Figure 5: Matching odd degree vertices

2.4 Construction of an Eulerian circuit

Any feasible MSP solution is described by a set of directed arcs where each vertex
has the same flow entering it and exiting it. Therefore the patching and matching
edges must be directed so that for each vertex the in-degree equals the out-degree.
To this end, an Eulerian cycle starting at one of the vertices incident to the patching
and matching edges (arbitrarily selected) is determined. The order of edge visits in
the Eulerian cycle indicates how the edges can be directed so that the degrees are
balanced (Figure 6). Then, the null object is assigned to each of the newly created
arcs, which is feasible because the vehicle can always carry the null object from
any vertex to any other one.

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

Figure 6: Directing edges

The final step consists of determining the order in which the vehicle must visit
the vertices. Indeed, as shown in Figure 7, in which the bold arcs indicate the
vehicle circuit, a poor choice of an outgoing arc at some vertices may lead to a
partial solution because some non-transshipment vertices will not be visited by the
vehicle (the remaining circuit on the right-hand side is isolated). This problem
is not mentioned in [4], and the proof of Theorem 3.8 of [4] cannot be based on

6

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

Theorem 3.4 as claimed. In addition, in Step 3.7.4 of [4], because the order of
arc visits is not specified, it may not be possible to implement the improvement
steps suggested in that paper. To avoid this, an Eulerian circuit is determined in
the current solution. The sequence of arcs in the circuit indicates the order of arc
visits that must be followed by the vehicle in order to visit all non-transshipment
vertices (or one possible transshipment vertex if it is the depot). Note that if the
cost matrix is asymmetric, then the arcs linking the connected components in the
Eulerian circuit may have a cost that is different from that used to compute the
minimum spanning tree in Step 2b.

�

�

�

�

�

�

�

�

�

	

�

�

�

Figure 7: Partial solution with an isolated circuit

Proposition 2. Algorithm 1 produces a feasible MSP solution with a worst-case
ratio of 2.5, and this bound is tight.

Proof. The proof given [4] applies because the validity of this proposition depends
on Steps 1, 2 and 3 only.

3 Improvement heuristics

The current solution represents a feasible MSP solution. This section described
several ways to shorten the solution. These are summarized in Algorithm 2.

Proposition 3. There exists a feasible solution that does not contain two consecu-
tive arcs associated with the same object type.

Proof. Follows from the triangular inequality of the cost matrix.

7

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

Algorithm 2. Improvement heuristics

Input: A feasible MSP solution S and the order of arc visits.
Output: A feasible MSP solution S′ of lower or equal cost and the order of arc

visits.

Step 1 Shortcutting
a) Replace each pair of consecutive arcs carrying the same object type by a

single arc until no such a shortcut can be made, while updating the order
of arc visits. Let S′ be the new solution.

Step 2 Exchanging arcs
a) Perform r-opt or r-r′-opt (r′ 6= r) in S′, while updating the order of arc

visits.
Step 3 Using drops

a) Identify simple circuits of deadheadings {Ct}t≥0 in S′.
b) If t ≥ 1, let (u, v) be the arc carrying object type k, that the vehicle uses

to reach Ct (for a given t), and let (v, w) be the first arc of Ct. If k ∈ Od,
replace (u, v) and (v, w) with the arc (u, w) carrying k. Assign k to every
other arcs of Ct.

c) Perform Step 1 in S′.
d) Output S′ and the order of arc visits.

3.1 Shortcutting

At this stage of the heuristic, since we have assigned the null object to the patching
and matching arcs, shortcutting two consecutive arcs carrying the same type can be
possible only with the null object and among incident arcs to vertices that belong
to at least two simple circuits in the current solution (Figure 8). The process of
shortcutting two arcs must be repeated until no more shortcut of this type can be
found, since it may create two new consecutive arcs carrying the same object type.

�

�

�

�

�

0 0

0

Figure 8: Shortcutting two consecutive arcs carrying the same object type

8

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

3.2 Exchanging arcs

A local search method can be used to improve the quality of the solution at the
expense of extra computation time. Since the current solution does not contain any
drop, an r-opt technique can be applied without worrying about precedence rela-
tionships. Three arc exchange techniques have been considered: 3-opt, 4-opt and
3-4-opt, which consists of repeatedly applying 3-opt and 4-opt until no improve-
ment is possible. Similar to what happens for the directed TSP, in the MSP there is
only one way, in our 3-opt and 4-opt heuristics, of reconstructing a feasible circuit
when three or four arcs have been removed. This can readily be checked by enu-
meration. For each object type k ∈ O∪{0}, r arcs carrying k are selected, and then
interchanged to test whether this improves the quality of the current solution. For
example, in 3-opt, three arcs a1 = (i1, j1), a2 = (i2, j2) and a3 = (i3, j3) carrying
k are selected. If ci1j2+ci3j1 +ci2j3 < ci1j1+ci2j2 +ci3j3 , then a1, a2 and a3 are re-
placed with a′

1
= (i1, j2), a′

2
= (i3, j1) and a′

3
= (i2, j3), yielding a shorter feasi-

ble solution. Similarly, in 4-opt, four arcs a1 = (i1, j1), a2 = (i2, j2), a3 = (i3, j3)
and a4 = (i4, j4) carrying k are selected. If ci1j3 + ci4j2 + ci3j1 + ci2j4 <
ci1j1 + ci2j2 + ci3j3 + ci4j4 , then a1, a2, a3 and a4 are replaced with a′

1
= (i1, j3),

a′
2

= (i4, j2), a′
3

= (i3, j1) and a′
4

= (i2, j4), yielding a shorter feasible solution.
This process is repeated iteratively until no further improvement can be identified.
Figures 9 and 10 illustrate a 3-opt exchange and a 4-opt exchange, respectively.

�

� �

�

��

k

k

k

i1 j1

i2

j2 i3

j3

�

� �

	

�

k k

k

i1 j1

i2

j2 i3

j3

Figure 9: A 3-opt exchange

3.3 Using drops

So far the solution does not contain drops. Suppose there exists a simple circuit
C of deadheadings in the current solution. The vehicle reaches C by an arc (u, v)
carrying an object of type k, and then travels along the first arc (v, w) of C . If

9

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

�

�

� �

�

�

��

k
k

k

k

i1 j1

i2

j2

i3j3

i4

j4

�

	

 �

�

��

k

k

k

k

i1 j1

i2

j2

i3j3

i4

j4

Figure 10: A 4-opt exchange

k ∈ Od, then arcs (u, v) and (v, w) can be replaced with a new arc (u,w) carrying
k. Assigning k to every other arcs in C clearly leads to a new feasible solution
no worse than the previous one (Figure 11). After doing this optimization, some
consecutive arcs can possibly carry the same object type. Therefore the solution is
scanned again to determine whether it can be further shortened by shortcutting two
consecutive arcs carrying the same object type, as described in Section 3.1.

�

�

�

�

�

�

�

�

� 0

0
0

k k

k

k

Figure 11: Shortcutting using drop (k ∈ Od)

4 Implementation

The heuristics just described were implemented in C++. In this section, we discuss
the various procedures contained in the heuristic, and their respective time com-
plexity. In what follows, we call basic the version of the heuristic that does not
incorporate the r-opt and r-r′-opt heuristics, and full the version that applies them.

The minimum assignment problems are solved by using the Kuhn-Munkres al-

10

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

gorithm ([17], [18]), sometimes referred to as the Hungarian algorithm, which runs
in O(n3) time. This leads to an O(n3m) time complexity for the first step of the
heuristic. This complexity order dominates all other steps of the basic heuristic.
For comparison purposes we also conducted experiments in which CPLEX was
used to solve the assignment problems instead of the Kuhn-Munkres algorithm.
The advantage of using CPLEX is that it can solve all assignment problems si-
multaneously. However, memory requirement and running times are higher with
CPLEX. For many operations on graphs we used Boost ([1]), which is a publicly
available C++ library focussed on data structures and graph algorithms. This pack-
age provides many routines that are both fast and easy to use. Retrieving the con-
nected components created by the first step of the heuristic takes O(n + nα(n))
time, where α is the inverse of Ackermann’s function. Computing the minimum
spanning tree over these p ≤ n/2 components using the Kruskal algorithm ([16])
requires O(|E| log |E|) time, where E is the edge set of the complete graph defined
on the p components. To solve the minimum weight perfect matching we used the
Blossom IV code developed by Cook and Rohe [10] for Concorde ([5]). This code
implements an optimized version of Edmonds algorithm ([11]) running in O(|Ṽ |4)
time, where Ṽ is the set of odd degree vertices (|Ṽ | ≤ p− 1). For the computation
of Eulerian circuits, we used the Hierholzer algorithm ([15]) which runs in linear
time. Shortcutting arcs or using drops can also be performed in linear time. The
r-opt and r-r′-opt heuristics are pseudo-polynomial. Since this process is time
consuming (each step of r-opt requires O(nr) time and the number of steps can
be high), we have applied these improvement steps only on instances containing
fewer than 1000 vertices.

5 Computational results

Three sets of instances were generated as follows. Each set contains random ge-
ometric instances in which n vertices are located in a 500×500 square according
to a uniform discrete distribution. Each vertex is associated with a random supply
and demand such that for each object type the total supply equals the total demand.
The number |Od| of droppable object types was randomly selected between 0 and
|O|. We have tested the heuristic on values of n ranging from 100 to 10,000 and
on values of m ranging from 3 to 8. The reported results correspond to the average
over these three sets. Tests were performed on an AMD Opteron Dual Core 285
2.6GHz (1 GB RAM was required for solving the large instances).

Tables 1 and 2 report computation times (in seconds) and optimality gaps with
respect to the assignment lower bound (in percentage) for different values of n
and m, for the basic heuristic. Instances with few object types are more difficult

11

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

n \ m 3 4 5 6 7 8 Average

100 0.0 0.0 0.0 0.0 0.0 0.0 0.0
200 0.2 0.1 0.1 0.1 0.1 0.0 0.1
500 3.8 2.2 1.5 1.1 0.8 0.6 1.7

1000 48.0 23.5 16.0 11.0 8.4 5.8 18.8
2000 434.0 290.4 175.6 130.4 81.7 67.2 196.5
5000 14041.6 7990.2 4940.9 3302.2 2238.6 1534.6 5674.7

10,000 161343.2 101560.0 73437.0 44575.1 31084.9 20461.3 72076.9
Average 25124.4 15695.2 11224.4 6860.0 4773.5 3152.8

Table 1: Computation times for the basic heuristic (in seconds)

to solve. This can be explained by the fact that the assignment problems, which
represent the most time consuming part of the basic heuristic, are harder to solve.
Indeed, for a fixed number of vertices, decreasing the number of object types in-
creases the number of possible assignments for a given object.

As shown in Table 2 the optimality gap is remarkably small. It represents on
average only 0.9% with respect to the lower bound provided by the assignment
solution value. It tends to become smaller as the instance size become larger. The
number of object types also influences the size of the optimality gap. If we consider
small values of m, the assignment solution is typically formed by a large collection
of simple circuits, each containing very few vertices. Since a solution generated
by the heuristic is based on the assignment solution, the application of the patching
and matching procedures produces solutions for which the optimality gap is larger.

n \ m 3 4 5 6 7 8 Average

100 2.922 2.338 0.937 1.690 0.671 0.633 1.532
200 2.286 1.923 1.047 1.149 0.470 0.721 1.266
500 2.116 1.317 0.425 0.613 0.638 0.414 0.921

1000 1.855 1.275 0.576 0.689 0.650 0.331 0.896
2000 1.712 0.684 0.820 0.397 0.389 0.267 0.712
5000 1.859 0.767 0.546 0.459 0.381 0.297 0.718

10,000 1.644 0.716 0.632 0.480 0.240 0.200 0.652
Average 2.056 1.289 0.712 0.782 0.491 0.409

Table 2: Optimality gaps for the basic heuristic with respect to the assignment
lower bound (in percentage)

Tables 3 and 4 provide a comparison of the different optimization methods in
terms of average computation time and average optimality gap. Since these meth-
ods are time consuming we only tested them for relatively small values of n. We

12

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

n Basic 3-opt 4-opt 3-4-opt

100 0.0 0.0 0.1 0.2
200 0.1 0.3 3.3 2.2
500 1.7 7.4 246.7 128.3
1000 18.8 95.7 4596.1 2736.2

Average 5.1 25.8 1211.5 716.7

Table 3: Comparison of computation times for the full heuristic (in seconds)

n Basic 3-opt 4-opt 3-4-opt

100 1.532 1.251 1.346 1.147
200 1.266 0.922 0.979 0.829
500 0.921 0.643 0.678 0.592

1000 0.896 0.639 0.680 0.585
Average 1.154 0.864 0.921 0.788

Table 4: Comparison of optimality gaps for the full heuristic with respect to the
assignment lower bound (in percentage)

can see that 3-opt improves the optimality gap by about 25% with only a relatively
small increase in computation time. This algorithm seems to be a good choice for
small and medium size instances. The 4-opt heuristic is far less attractive since it
generates larger optimality gaps and has very high computation times. The method
yielding the smallest optimality gaps was the 3-4-opt heuristic, which combines
3-opt and 4-opt, but with this method running times also increase quickly with n.
Performing 4-opt after 3-opt sometimes allows to escape from the current local
minimum. On average, the 3-4-opt improvement heuristic yields a gap reduction
of about 32% over the basic algorithm. Since 3-opt often improves the solution,
there are fewer opportunities for 4-opt to do so, and then the overall process takes
in general less time than applying only 4-opt. It should be noted that for each of
these optimization techniques, the number of object types drastically affects the
computation time. Instances for which m is small take more time since the number
of triplets or quadruplets to consider is higher. For example, we noticed that apply-
ing 3-opt on a 1000-vertex instance with three object types increases by a factor 10
or more the time needed to solve an instance of the same size but containing eight
object types. Finally tests have shown that the proportion of droppable object types
has no significant effect on the performance of our heuristics.

13

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

6 Conclusions

We have provided a complete description of a constructive and several improve-
ment heuristics for the Mixed Swapping Problem. These heuristics were success-
fully applied to large instances containing up to 10,000 vertices. The average opti-
mality gap is remarkably small, typically less than 1%.

Acknowledgements This research was partially supported by the Canadian Nat-
ural Sciences and Engineering Research Council under grants 338816-05 and 39682-
05. This support is gratefully acknowledged.

References

[1] Boost C++ libraries, 2001–. http://www.boost.org.

[2] S. Anily, M. Gendreau, and G. Laporte. The swapping problem on a line.
SIAM Journal on Computing, 29:327–335, 1999.

[3] S. Anily, M. Gendreau, and G. Laporte. The preemptive swapping problem
on a tree. Submitted for publication, 2006.

[4] S. Anily and R. Hassin. The swapping problem. Networks, 22:419–433,
1992.

[5] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. Concorde TSP
solver, 1995–. http://www.tsp.gatech.edu/concorde.html.

[6] M.J. Atallah and S.R. Kosaraju. Efficient solutions to some transportation
problems with applications to minimizing robot arm travel. SIAM Journal on
Computing, 17:849–869, 1988.

[7] C. Bordenave, M. Gendreau, and G. Laporte. A branch-and-cut algorithm for
the non-preemptive swapping problem. Submitted for publication, 2008.

[8] C. Bordenave, M. Gendreau, and G. Laporte. A branch-and-cut algorithm for
the preemptive swapping problem. Submitted for publication, 2008.

[9] P. Chalasani and R. Motwani. Approximating capacitated routing and deliv-
ery problems. SIAM Journal on Computing, 28:2133–2149, 1999.

[10] W.J. Cook and A. Rohe. Computing minimum weight perfect matchings.
INFORMS Journal on Computing, 11:138–148, 1997.

14

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

http://www.boost.org
http://www.tsp.gatech.edu/concorde.html

[11] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:
449–467, 1965.

[12] G.N. Frederickson and D.J. Guan. Preemptive ensemble motion planning on
a tree. SIAM Journal on Computing, 21:1130–1152, 1992.

[13] G.N. Frederickson and D.J. Guan. Nonpreemptive ensemble motion planning
on a tree. Journal of Algorithms, 15:29–60, 1993.

[14] G.N. Frederickson, M.S. Hecht, and C.E. Kim. Approximation algorithms
for some routing problems. SIAM Journal on Computing, 7:178–193, 1978.

[15] C. Hierholzer. Über die Möglichkeit, einen Linienzug ohne Wiederholung
und ohne Unterbrechnung zu umfahren. Mathematische Annalen, 6:30–32,
1873.

[16] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. In Proceedings of the American Mathematical Society,
volume 7, pages 48–50, 1956.

[17] H.W. Kuhn. The Hungarian method for the assignment problem. Naval Re-
search Logistics Quaterly, 2:83–97, 1955.

[18] J. Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5:32–38,
1957.

15

Heuristics for the Mixed Swapping Problem

CIRRELT-2008-24

	CIRRELT-2008-24pp
	CIRRELT-2008-24-abstract
	CIRRELT-2008-24.pdf
	1 Introduction
	2 Constructive heuristic
	2.1 Assignment solution
	2.2 Patching solution
	2.3 Matching solution
	2.4 Construction of an Eulerian circuit

	3 Improvement heuristics
	3.1 Shortcutting
	3.2 Exchanging arcs
	3.3 Using drops

	4 Implementation
	5 Computational results
	6 Conclusions
	Sans titre

