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Branch-and-Cut for the Pickup and Delivery

Traveling Salesman Problem with FIFO Loading

Jean-François Cordeau∗ Mauro Dell’Amico† Manuel Iori†
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Abstract

This paper introduces a branch-and-cut algorithm for a variant of the pickup
and delivery traveling salesman problem in which pickups and deliveries must
obey the first-in-first-out policy. We propose a new mathematical formulation
of the problem and several families of valid inequalities which are used within
the branch-and-cut algorithm. Computational experiments on instances from
the literature show that this algorithm outperforms existing exact algorithms,
and that some instances with up to 25 requests (50 nodes) can be solved in
reasonable computing time.

Keywords: Traveling salesman problem, pickup and delivery, FIFO loading,
branch-and-cut.

1 Introduction

In the classical Traveling Salesman Problem with Pickup and Delivery (TSPPD) each
customer request is represented by an origin location and a destination location, and
the problem is to find a minimum-cost Hamiltonian cycle visiting all locations with
the additional constraint that the origin location of each request is visited before the
corresponding destination location. The TSPPD has applications in several areas such
as urban courier services, less-than-truckload transportation, and dial-a-ride systems
(Cordeau et al., 2007).

The TSPPD with FIFO Loading (TSPPDF) is a variant of the TSPPD where
the pickup and delivery operations must be done in a first-in-first-out fashion: if the
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pickup of a request i is performed before that of a request j, then the delivery of
request i must be performed before that of request j. The TSPPDF was recently
introduced by Erdogan et al. (2009) who mention that the problem arises in dial-a-
ride transportation when fairness is a major concern and passengers resent another
passenger being pickup up after them but dropped off before them. The problem
may also arise in the routing of some automatic guided vehicles that load items on
one end and unload them at the other end.

Erdogan et al. (2009) have proposed an integer linear programming formulation
of the problem with a polynomial number of variables and constraints. Using the
branch-and-bound algorithm of CPLEX, the authors were able to solve instances
with 12 requests to optimality within four hours of computing time. For instances
with 37 or more requests, however, even the LP relaxation of the problem could not
be solved within the four hour time limit. Local search heuristics were thus proposed
and results were reported on instances with up to 375 requests. The authors have also
shown that the TSPPDF is NP–hard. In another recent paper, Carrabs et al. (2007a)
have used an additive branch-and-bound algorithm to solve the TSPPDF. Using lower
bounds from the assignment problem and shortest spanning r-arborescence problem,
they were able to solve most instances with up to 13 requests and some instances with
15, 17 and 19 requests. Their algorithm also strongly benefits from the application
of elimination rules that gradually remove from the graph arcs that are incompatible
with prior branching decisions.

The TSPPD has received far more attention in the literature. Several heuristic
algorithms have been proposed for this problem (see, e.g., Van der Bruggen et al.,
1993; Healy and Moll, 1995; Renaud et al., 2000, 2002), while exact algorithms were
developed, among others, by Kalantari et al. (1985), Ruland and Rodin (1997) and
Dumitrescu et al. (2009). Another closely related problem is the TSPPD with LIFO
Loading (TSPPDL) in which pickup and delivery operations must obey the last-in-
first-out policy (see, e.g., Xu et al., 2003). Algorithms for the TSPPDL have been
suggested, among others, by Pacheco (1995, 1997), Cassani (2004), Carrabs et al.
(2007a,b), and Cordeau et al. (2009). The best exact algorithm for the TSPPDL is
currently that of Cordeau et al. (2009) which is able to solve most instances with up
to 17 requests as well as some instances with 21 and 25 requests.

In this article, we introduce a new formulation of the TSPPDF as well as several
families of valid inequalities. These inequalities are used within a branch-and-cut
algorithm which is capable of solving some instances with up to 25 requests.

The remainder of the article is organized as follows. In the next section, we
provide a formal definition of the problem and introduce a mathematical formulation.
Section 3 then describes the valid inequalities which are used within the branch-
and-cut algorithm introduced in Section 4. Finally, computational experiments are
presented in Section 5, and this is followed by the conclusions.
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2 Problem Definition and Mathematical

Formulation

Let n denote the number of customer requests. One can define the TSPPDF on a
complete directed graph G = (N, A) where N = {0, . . . , 2n + 1} is the node set and
A is the arc set. Nodes 0 and 2n + 1 represent the origin and destination depots,
while subsets P = {1, . . . , n} and D = {n + 1, . . . , 2n} represent pickup and delivery
nodes, respectively. Each request i is associated with a pickup node i and a delivery
node n + i. Each arc (i, j) has a non-negative routing cost cij .

The TSPPD consists in finding the minimum cost route starting from the origin
depot 0, visiting every node in P ∪ D exactly once, and finishing at the destination
depot 2n+1, while satisfying the precedence constraints which require that the pickup
node of any given request be visited before the corresponding delivery node. The
TSPPDF requires, in addition, that the FIFO constraints be satisfied: if the pickup
node i ∈ P is visited before the pickup node j ∈ P , then the delivery node n + i ∈ D
must be visited before the delivery node n + j ∈ D.

As in the work of Erdogan et al. (2009) and Carrabs et al. (2007a), we focus here
on the uncapacitated case.

To formulate the TSPPD, we associate to each arc (i, j) ∈ A a binary variable
xij taking value 1 if and only if node j is visited immediately after node i. As usual,
we define S̄ = N \ S, x(S) =

∑

i,j∈S xij , x(δ+(S)) =
∑

i∈S,j 6∈S xij and x(δ−(S)) =
∑

i6∈S,j∈S xij . For any node i ∈ N , let also x(i, S) =
∑

j∈S xij and x(S, i) =
∑

j∈S xji.
We also define the collection S of all node subsets S ⊂ N such that 0 ∈ S, 2n+1 6∈ S
and there exists a node i such that i 6∈ S and n + i ∈ S.

Using this notation, the TSPPD can then be formulated as the following integer
program:

(TSPPD) Minimize
∑

(i,j)∈A

cijxij (1)

subject to

x(δ+(i)) = 1 ∀i ∈ P ∪ D ∪ {0} (2)

x(δ−(i)) = 1 ∀i ∈ P ∪ D ∪ {2n + 1} (3)

x(S) ≤ |S| − 1 ∀S ⊆ P ∪ D, |S| ≥ 2 (4)

x(S) ≤ |S| − 2 ∀S ∈ S (5)

xij ∈ {0, 1} ∀(i, j) ∈ A. (6)

The objective function (1) minimizes the total routing cost. Constraints (2) and
(3) ensure that each pickup and delivery node is visited exactly once. Constraints (4)
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ensure the connectivity of the solution while constraints (5) impose the precedence
relationships between pickups and deliveries. The latter were introduced by Balas
et al. (1995) in the context of the asymmetric TSP with precedence constraints, and
by Ruland and Rodin (1997) in the context of the TSPPD. The idea behind these
constraints is that if a set S contains the origin depot 0 and a pickup node i but
not the corresponding delivery node n + i, then there cannot be a path starting from
node 0 and visiting every other node in S before leaving the set. As a consequence,
the maximum flow on the arcs in S cannot exceed |S| − 2. Since the TSPPDF is a
restriction of the TSPPD, these constraints are also valid for the former problem.

We now define the collection Ω of all subsets S ⊂ P ∪D for which there is at least
one request j such that j, n+ j ∈ S. The TSPPDF can be formulated by introducing
an additional set of constraints in model (1)-(6).

Proposition 1 The FIFO policy can be imposed through the following constraints:

x(i, S) + x(S) + x(S, n + i) ≤ |S| ∀S ∈ Ω, ∀i ∈ P : i, n + i 6∈ S. (7)

Proof. Suppose that the FIFO policy is satisfied but that one of these constraints
is violated. Since x(S) ≤ |S| − 1 by constraints (4), this violation implies that
x(i, S) = x(S, n + i) = 1 for a given set S ∈ Ω and node pair i, n + i. As a result,
there is a path starting from i, visiting every node in S and reaching n + i. But this
is impossible because this path would violate the FIFO policy. Suppose now that all
constraints are satisfied but the FIFO policy is not. This implies that between a given
node pair i, n + i, the route visits a pickup node j as well as the delivery node n + j.
Hence, a constraint is violated for the set S containing all nodes visited between i
and n + i, a contradiction. �

One can easily check that constraints (7) can be lifted as follows:

x(i, S) + x(S) + x(S, n + i) + xi,n+i ≤ |S| ∀S ∈ Ω, ∀i ∈ P : i, n + i 6∈ S. (8)

Indeed, if xi,n+i takes value 1, then x(i, S) + x(S, n + i) = 0 and the inequality
reduces to (4). The resulting inequality is represented in Figure 1

Figure 1: FIFO inequality.
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3 Valid Inequalities

In this section we describe the valid inequalities that are added to model (1)-(7) to
strengthen its linear programming relaxation within the branch-and-cut algorithm.
We first describe some known inequalities for the TSPPD and we then introduce new
inequalities that rely on the structure of the TSPPDF.

For general references on branch-and-cut algorithms and their application in the
context of vehicle routing problems we refer the reader to Caprara and Fischetti
(1997) and Naddef and Rinaldi (2002).

3.1 Inequalities from the TSPPD literature

All valid inequalities for the TSPPD are also valid for the TSPPDF. We thus include
in our model some of the most effective inequalities for the TSPPD: strengthened
subtour elimination constraints and generalized order constraints.

Balas et al. (1995) proposed the following inequalities to model the precedence
constraints:

x(n + i, S) + x(S) + x(S, i) ≤ |S| ∀S ⊂ N, ∀i ∈ P : i, n + i 6∈ S. (9)

These constraints can be explained as follows. For any node subset S ⊂ N , we know
from subtour elimination constraints that x(S) ≤ |S| − 1. If x(n + i, S) = x(S, i) = 1
there exists a path going from node n+ i to node i, which contradicts the precedence
relationships and violates one of the constraints (9).

For any given subset S ⊆ P ∪ D, let π(S) = {i ∈ P : n + i ∈ S} and σ(S) =
{n + i ∈ D : i ∈ S} denote the sets of predecessors and successors of S, respectively.
Balas et al. (1995) also introduced the following predecessor and successor inequalities
for the precedence-constrained asymmetric TSP which generalizes the TSPPD:

x(S) + x(S, S̄ ∩ π(S)) + x(S ∩ π(S), S̄ \ π(S)) ≤ |S| − 1 (10)

x(S) + x(S̄ ∩ σ(S), S) + x(S̄ \ σ(S), S ∩ σ(S)) ≤ |S| − 1. (11)

Figure 2 illustrates the predecessor inequality (10) with the sets S = {j, k, n+i, n+j},
S̄ ∩ π(S) = {i}, S ∩ π(S) = {j} and S̄ \ π(S) = {l}.

Figure 2: An example of a predecessor inequality (10).

For a given ordered set O = {i1, i2, . . . , ik} ⊆ N , with k ≥ 3, Grötschel and
Padberg (1985) proposed two generalizations of cycle inequalities for the asymmetric
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TSP, called D+
k and D−

k . These were later strengthened by Cordeau (2006), in the
context of the pickup and delivery problem, to obtain the following lifted D+

k and D−
k

inequalities:

k
∑

h=1

xihih+1
+ 2

k−1
∑

h=2

xihi1 +
k−1
∑

h=3

h−1
∑

l=2

xihil +
∑

n+j∈S̄∩σ(S)

xn+j,i1 ≤ k − 1 (12)

k
∑

h=1

xihih+1
+ 2

k
∑

h=3

xi1ih +

k
∑

h=4

h−1
∑

l=3

xihil +
∑

j∈S̄∩π(S)

xi1j ≤ k − 1, (13)

where ik+1 = i1.
Figure 3 illustrates inequality (12) for the set O = {i1, i2, i3, i4}.

Figure 3: An example of a lifted D+
k inequality (12)

.

Finally, let U1, . . . , Uk ⊂ P∪D be mutually disjoint subsets such that i1, . . . , ik ∈ P
are requests for which il, n+il+1 ∈ Ul for l = 1, . . . , k (where ik+1 = i1). The following
generalized order constraints were introduced by Ruland and Rodin (1997) for the
TSPPD:

k
∑

l=1

x(Ul) ≤
k
∑

l=1

|Ul| − k − 1. (14)

Because of subtour elimination constraints, we know that x(Ul) ≤ |Ul| − 1 for
every set l. However, one can check that if x(Ul) = |Ul| − 1 for every set l = 1, . . . , k,
then there will be a path violating the precedence constraint for one of the requests
il. As a result, at least one arc from this path must not be used.

3.2 New TSPPDF inequalities

We now introduce new families of valid inequalities for the TSPPDF.

3.2.1 Simple inequalities

The first four inequalities follow directly from the application of the FIFO policy.

Proposition 2 For any pair i, j ∈ P the following inequality holds for the TSPPDF:

xij + xn+i,j + xn+i,2n+1 +
∑

h∈D:h 6=n+i,n+j

xn+i,h ≤ 1. (15)

6



Proposition 3 For any pair i, j ∈ P the following inequality holds for the TSPPDF:

xij + xj,n+j + xi,n+j +
∑

h∈D:h 6=n+i,n+j

xh,n+j ≤ 1. (16)

Proposition 4 For any pair i, j ∈ P the following inequality holds for the TSPPDF:

xn+i,n+j + xi,n+i + xi,n+j +
∑

h∈P :h 6=i,j

xih ≤ 1. (17)

Proposition 5 For any pair i, j ∈ P the following inequality holds for the TSPPDF:

xn+i,n+j + xn+i,j + x0j +
∑

h∈P :h 6=i,j

xhj ≤ 1. (18)

Figure 4 provides an example of a violated inequality of type (15) where the flow
on each of the dashed arcs is equal to 0.5.

Figure 4: An example of a violated inequality (15)
.

The next three inequalities come from the fact that whenever an arc (j, n + j) is
used, it follows from the FIFO policy that the vehicle arrives empty at j and leaves
empty from n + j.

Proposition 6 For any node j ∈ P and any set H ⊆ P \{j} the following inequality
holds for the TSPPDF:

∑

i∈H

xij + xj,n+j +
∑

n+h∈σ(P\H)

xn+h,n+j ≤ 1. (19)

Proposition 7 For any node j ∈ P and any set H ⊆ P \{j} the following inequality
holds for the TSPPDF:

∑

i∈H

xji + xj,n+j +
∑

n+h∈σ(P\H)

xn+j,n+h ≤ 1. (20)

Proposition 8 For any pair i, j ∈ P the following inequality holds for the TSPPDF:

xij + xj,n+j + xn+j,n+i ≤ 1. (21)
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Figure 5: An example of a violated inequality (19)
.

Figure 5 provides an example of a violated inequality of type (19) where the flow
on each of the dashed arcs is equal to 0.5.

One can also check by case enumeration that the following two inequalities follow
from the FIFO policy.

Proposition 9 For any pair i, j ∈ P and any node k ∈ P \ {i, j} the following
inequality holds for the TSPPDF:

xij + xn+i,j + xn+i,k + xn+i,2n+1 + xk,n+i +
∑

n+h∈D:h 6=i,j

(xn+i,n+h + xk,n+h) ≤ 2. (22)

Proposition 10 For any pair i, j ∈ P and any node n + k ∈ D \ {n + i, n + j} the
following inequality holds for the TSPPDF:

xn+i,n+j + xi,n+i + xi,n+j + xi,n+k + xn+k,i +
∑

h∈P :h 6=i,j

(xih + xn+k,h) ≤ 2. (23)

Figure 6 provides an example of a violated inequality of type (22) where the flow
on each of the dashed arcs is equal to 0.5.

Figure 6: An example of a violated inequality (22)
.

3.2.2 Alternative FIFO inequalities

The next set of inequalities can be used interchangeably with (8) to impose the FIFO
policy in the TSPPD.

Proposition 11 Consider a node subset S ⊂ P ∪ D and two requests i, j such that
i, n+j 6∈ S and |S∩{j, n+ i}| = 1. The following inequality is valid for the TSPPDF.

x(i, S) + x(S) + x(S, n + j) + xi,n+j ≤ |S|. (24)
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Proof. Observe that if xi,n+j = 1 in a feasible solution, then x(i, S) = x(S, n+j) = 0
and (24) reduces to (4).

Suppose that FIFO policy holds, but that (24) is violated for a set S and a pair
i, j. The left-hand-side of (24) is greater than |S| if x(i, S) = x(S, n + j) = 1 and
x(S) = |S| − 1. This implies that there is a path from i to n + j. If j ∈ S and
n + i 6∈ S, then n + j is visited before n + i and the FIFO policy is not satisfied for
request i, which contradicts the hypothesis. If instead j 6∈ S and n + i ∈ S, then j
is visited before i and the FIFO policy is not satisfied for j, which again contradicts
the hypothesis.

Suppose now that constraints (24) are satisfied, but the FIFO policy is not. This
implies that there exists a pair of requests i, j whose pickup nodes are visited in this
order, while the delivery nodes are visited in the reverse order. In this case xi,n+j = 0
since the vehicle must visit at least node j after node i. More specifically there is a
path which starts at i, terminates at n + j and includes j but not n + i. By selecting
a set S containing all the vertices in the path, except i and n + j, one can check that
the corresponding constraint (24) is not satisfied, a contradiction. �

Figure 24 illustrates the alternative FIFO inequalities. In case (a), the set S
contains node j, while in case (b) this set contains node n + i.

Figure 7: Alternative FIFO inequalities (24)

3.2.3 Shutter inequalities

Consider a pair of requests i and j. The FIFO policy implies that at most one arc
between (i, j) and (n + j, n + i) may belong to a feasible solution, while the degree
constraints (2) and (3) make the arc (n + j, i) incompatible with each of the previous
ones. Hence,

xij + xn+j,n+i + xn+j,i ≤ 1. (25)

Similar reasoning leads to the following inequality:

xij + xn+j,n+i + xn+i,j ≤ 1. (26)

Inequalities (25) and (26) can in fact be merged into the following inequality:

xij + xn+j,n+i + xn+j,i + xn+i,j ≤ 1. (27)

Inequality (25) can also be generalized by considering a sequence of three or more
requests, thus obtaining the following shutter inequality which is depicted in Figure 8.
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n + ih+1 n + ih

n + ih−1

n + i1n + ik

n + ih+2

ih+1 ih ih−1

i1ik

ih+2

Figure 8: Shutter inequality.

Proposition 12 Consider a sequence of k ≥ 3 requests i1, i2, . . . , ik and let ik+1 = i1
then the following inequality holds for the TSPPDF:

k
∑

h=1

(xih,ih+1
+ xn+ih+1,ih + xn+ih+1,n+ih) ≤ k − 1. (28)

Before proving the above proposition we introduce some notation and observation that
will be used in the following. First observe that we extend the sequence of requests in a
circular way, i.e., request indices ih should be read modulo k. Given a request ih, with
h = 1, . . . , k, we call zig-zag set the set Sh = {(ih, ih+1), (n+ih+1, ih), (n+ih+1, n+ih)},
distinguished by the shaded vertices in Figure 8. Moreover, we call clockwise the
arcs starting from each pickup node (internal circuit) and counter clockwise the arcs
starting from each delivery node (external circuit). From (25) we know that only one
of the three arcs of Sh may belong to a feasible integer solution. Two cases may arise:

(a) If the clockwise arc (ih, ih+1) belongs to a feasible solution, then, the two counter
clockwise arcs (n + ih+2, ih+1), (n + ih+2, n + ih+1) ∈ Sh+1 cannot belong to the
same feasible solution, due to the degree constraint or to the FIFO policy.
Hence, either Sh+1 is empty or the arc (ih+1, ih+2) is in the solution.

(b) If one of the two counter clockwise arcs starting from node n + ih+1 belongs to
a feasible solution, then the degree constraint or the FIFO policy impose that
(ih−1, ih) cannot belong to this solution. Hence, either Sh−1 is empty or exactly
one of the arcs (n + ih, ih−1), (n + ih, n + ih−1) belongs to the solution.

Applying (a) to sets Sh, Sh+1, . . . , in turn, or (b) to sets Sh, Sh−1, . . . one can prove
the following observation.
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Observation 1 If a solution uses a clockwise arc, then there is a path starting with
this arc that contains only clockwise arcs, until an empty zig-zag set is reached. If a
solution uses a counter clockwise arc starting from a node n+ ih, then there is a path
that visits n + ih, n + ih−1, n + ih−2, . . . using counter clockwise arcs and possibly arcs
not in (28), until an empty zig-zag set is reached.

Using the above observation, we are now in a position to prove Proposition 12.

Proof. The left hand side of inequality (28) is the sum of the x variables associated
with the k zig-zag sets S1, . . . , Sk. From inequality (25) we know that at most one arc
for each set may belong to a feasible solution, so we can prove (28) by showing that
at least one of the k zig-zag sets is empty. Without loss of generality suppose that set
Sh is not empty. For any choice of the arcs in Sh, Observation 1 shows that there is
an empty zig-zag set, otherwise there exists a path (clockwise or counter clockwise)
which returns to a node of Sh. �

3.2.4 Lifted shutter inequalities

The shutter inequalities can be lifted by adding arcs between pairs of pickup vertices.

Proposition 13 Consider a sequence of k > 3 requests i1, i2, . . . , ik and let ik+1 = i1
then the following inequality holds for the TSPPDF:

k
∑

h=1

(

xih,ih+1
+ xn+ih+1,ih + xn+ih+1,n+ih +

h+k−2
∑

l=h+2

xih,il

)

≤ k − 1. (29)

Proof. Consider a feasible solution. If no lifted arc (inner summation) is used then
the proof follows from Proposition 12. Otherwise, let p be the number of lifted arcs
used in the solution. Suppose that the solution has at least p + 1 empty zig-zag sets.
In this case, recalling that at most one arc from each zig-zag set is used, we know
that the total number of arcs from (29) is at most k − p − 1 (from the zig-zag sets)
plus p (from the lifted arcs) and the proposition holds.

To conclude the proof it remains to show that there are more than p empty zig-
zag sets. Let r denote the number of different head/tail vertices of the p lifted arcs
used, and note that p < r ≤ 2p. The different head/tail vertices divide the circuit
of the clockwise arcs into r parts which define r corresponding sectors of the shutter.
Consider any sector and let ih and ih+j be the two head/tail vertices which define
the sector (i.e., ih and ih+j are consecutive along the circuit). From Observation 1 we
know that one of the following cases arises: i) there is an empty zig-zag set in this
sector; ii) there is a clockwise path from ih to ih+j; iii) there is a path from n+ ih+j to

11



n+ ih. In the latter case, since the precedence constraints hold for a feasible solution,
we also know that there is a counter clockwise path from ih+j to ih. Now suppose
that the r sectors contain q ≤ p empty zig-zag sets. The total number of arcs and
paths among the r head/tail vertices is p + (r − q) ≥ r, but, in this case, at least one
subtour arises. We have thus shown that more than p empty zig-zag sets exist, which
concludes the proof. �

By applying the same ideas used to generalize (25), we may also generalize (26),
which results in the following inequality.

Proposition 14 Consider a sequence of k > 3 requests i1, i2, . . . , ik and let ik+1 = i1
then the following inequality holds for the TSPPDF:

k
∑

h=1

(

xih,ih+1
+ xn+ih,ih+1

+ xn+ih+1,n+ih +
h+k−2
∑

l=h+2

xn+ih,n+il

)

≤ k − 1. (30)

4 Branch-and-Cut

The formulation introduced in Section 2 along with the valid inequalities described
in Section 3 are used within a branch-and-cut algorithm which we now describe.

4.1 Starting model

At the root node we initialize our model with constraints (2), (3), and all subtour
elimination constraints (4) with |S| = 2. We also add the following set of inequalities:

• the simple predecessor inequalities (10) obtained by setting S equal to {i, j},
{i, n + j} and {i, n + i, j}, and the successor inequalities (11) with S equal to
{n + i, n + j}, {i, n + j} and {i, n + i, n + j};

• simple cases of the strengthened D+
k inequalities (12) and D−

k inequalities (13)
with k = 3: xn+i,j + xji + xi,n+i + xn+j,n+i + 2xj,n+i ≤ 2 and xi,n+i + xn+i,n+j +
xn+j,i + xij + 2xi,n+j ≤ 2;

• the constraints (15), (16), (17), (18), (21) and (27) whose cardinality is n2.

4.2 Separation procedures

The separation of the inequalities from the literature, namely (4)-(5) and (9)-(14)
is done in the way described by Cordeau et al. (2009). Inequalities (4), (5) and
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(9) are separated exactly by performing O(n) maximum flow computations, whereas
(10)-(14) are separated by fast heuristic procedures.

Constraints (8) are separated exactly with a procedure similar to the one used by
Cordeau et al. (2009) for the LIFO constraints. Using (2), (3) and x(S)+x(δ+(S)) =
|S| we can rewrite (8) as

x(δ+(S)) + x(i, S̄) + x(S̄, n + i) ≥ 2 + xi,n+i. (31)

For each node i ∈ P we need to check all sets S ∈ Ω such that i, n + i 6∈ S (recall
that Ω = {S ⊂ P ∪ D : ∃j ∈ P such that j, n + j ∈ S}). This check is performed by
considering, in turn, one vertex j ∈ P at a time. Let x∗ denote the current fractional
optimal solution. We start from the standard support digraph G∗ = (N, A∗), that is
obtained from G by selecting each arc (i, j) ∈ A with x∗

ij > 0 and associating with it
a capacity of value x∗

ij . Then we apply the following transformations:

(i) we increase the capacity of the arcs (j, k) by the value x∗
ik + x∗

k,n+i (k ∈ P ∪D);

(ii) we set to a large value (e.g., 3) the capacity of arcs (0, i), (i, n+ i) and (j, n+j).

We then solve the maxflow problem from j to i and we define S∗ ∋ j as the set which
identifies the minimum cut separating j from i. Note that due to the capacity setting
(ii), for any minimum cut the vertices 0, i and n + i belong to one shore of the cut
and j, n + j to the other, so S∗ ∈ Ω and is a valid set for computing (31). If the
maximum flow value is smaller than 2 + x∗

i,n+i, then S∗ defines a violated constraint
(31). We can show the correctness of this claim as follows. Let f ∗ denote the optimal
flow and recall that the maximum flow value, say v∗, is equal to the sum of the flows
on the arcs in δ+(S∗). Then v∗ = f ∗(δ+(S∗)) = f ∗(j, S̄∗) + f ∗(S∗ \ {j}, S̄∗). Since all
the outgoing arcs in the minimum cut are saturated we can rewrite v∗ = x∗(j, S̄∗) +
x∗(i, S̄∗) + x∗(S̄∗, n + i) + x∗(S∗ \ {j}, S̄∗) = x∗(δ+(S∗)) + x∗(i, S̄∗) + x∗(S̄∗, n + i),
which proves the validity of the procedure.

We separate constraints (19) and (20) in O(n2) by observing that, given an arc
(j, n+ j) ∈ A, for any H ∈ P \{j} exactly one of the two arcs (h, j) and (n+h, n+ j)
is used in the constraints, independently of the choice of set H ⊆ P . It follows that
we can determine the most violated constraint (19), for arc (j, n + j), by scanning all
requests in P \ {j} and adding the current request i to set H if xij ≥ xn+i,n+j. The
most violated constraints (20) are computed similarly.

The separation of constraints (22) is carried out in a straightforward way by
considering each arc (i, j) ∈ A, each k ∈ P \ {i, j}, and evaluating the constraint.
This method leads to an O(n4) time procedure. We can reduce the computing time

13



by rewriting (22) as

xij +xn+i,j +xn+i,k +xn+i,2n+1 +
∑

n+h∈D

xn+i,n+h +
∑

n+h∈D

xk,n+h−xk,n+j −xn+i,n+j ≤ 2.

(32)
We can compute the two summations in (32), for each ℓ ∈ P ∪ D, through a pre-
processing phase running in O(n2) time. Using these values each evaluation of (32)
is done in O(1) and the overall separations requires O(n3) time.

A similar procedure is used to separate inequalities (23).
The separation of inequalities (24) is done with a procedure similar to the one

adopted for (8). We discuss the case j ∈ S, n+ i 6∈ S: the second case j 6∈ S, n+ i ∈ S
can be easily derived from this one. We can rewrite (24) as

x(i, S̄) + x(δ+(S)) + x(S̄, n + j) ≥ 2 + xi,n+j. (33)

We consider the support digraph G∗ and apply the following capacity transformations:

(i) the capacity of each arc (j, k) (k ∈ P ∪ D \ {j}) is increased by x∗
ik + x∗

k,n+j;

(ii) we set to a large value (e.g., 3) the capacity of arcs (i, n+ j), (n+ j, i), (i, n+ i)
and (0, i).

Transformation (ii) imposes that in any minimum cut the vertices 0, i, n+ i and n+j
belong to the same shore of the cut. We compute a maximum flow from source j
to sink i on the resulting digraph, and we define S∗ ∋ j as the set which identifies
the minimum cut separating j from i. If the maximum flow value is greater than
2+x∗

i,n+j, then S∗ defines a violated constraint (33). The separation of (24) may thus
require O(n2) maximum flow computations.

The shutter inequalities (28) can be separated exactly in polynomial time with
the following procedure. Let us define new arc costs x∗

ij = 1 − x∗
ij + x∗

n+j,i + x∗
n+j,n+i

and rewrite (28) as
k
∑

h=1

x∗
ih,ih+1

≥ 1, (34)

with ik+1 = i1. The separation of (34) is equivalent to finding a circuit of k vertices
in the subgraph GP induced by P , with total cost strictly smaller than one. We
can apply the well-known O(n3) procedure of Floyd (1962) to compute the all-pairs
shortest paths in GP . Since negative costs may exist, negative length circuits can
be found in GP . In this case the procedure terminates with one such circuit, which
induces a violated inequality. Otherwise, we have computed all shortest paths and it
is then sufficient to consider one arc (i, j) at a time to identify the shortest circuit
using (i, j) and, finally, the shortest circuit of GP . If the cost of this circuit is smaller
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than one we have found the most violated shutter inequality. Otherwise, we have
proved that no inequality is violated.

Unfortunately the procedure outlined above cannot be applied to the lifted shutter
inequalities (29) and (30). We thus separate them by means of a tabu search heuristic
similar to the one used by Cordeau et al. (2009) to separate the so called ”hamburger”
inequalities. We start with a sequence σ of three randomly selected requests. Than,
we compute all the moves obtained by deleting one of the requests in σ, switching the
positions of two requests in σ, and inserting a request in a given position in σ. We
choose the move leading to the maximum value of the left-hand side of the inequality
being separated minus |σ|. The tabu list is implemented as a set of couples 〈i, j〉,
where i = −1 means that request j is inserted in σ, j = −1 means that i is removed
from σ, and i, j ≥ 0 implies that i and j are exchanged in σ. When a move 〈i, j〉
is performed, the opposite move 〈j, i〉 is forbidden for max(5, 2n/10) iterations. The
algorithm is halted after 50 iterations or after 10 violated cuts have been added to
the model. In practice, in the worst case the algorithm requires 50 iterations, each
having complexity O(n2).

4.3 Branching strategy

Following the branching rules introduced by Carrabs et al. (2007a), we branch by
extending a feasible path from the origin depot. We start by identifying the arc with
largest flow among those leaving the depot, and we create two branches corresponding
to this variable taking value 0 or 1. At each node, we extend the path by branching
on the outgoing arc with the largest flow. As a result, we may sometimes branch on
variables taking value 1. Every time a variable is set to 1 in a branch, we apply the
filters used by Carrabs et al. (2007a) to eliminate incompatible arcs from the graph.

4.4 Separation strategy

At a given node of the branch-and-bound tree, we first call the heuristic separation
procedures for FIFO constraints, and then the heuristic procedures for the classical
TSPPD constraints. After these two steps, we create the support digraph based on the
(fractional) x values and call the exact separation procedures for FIFO constraints,
followed by the exact procedures for the TSPPD constraints. This process stops as
soon as θ inequalities have been added to the model, where θ is a parameter (see
Section 5). To reduce computing times, we do not call the separation procedures at
nodes where the the number of variables already fixed to 1 by the branching is greater
than or equal to n/2.

Although every valid inequality that is added during the branching is a global cut,
in the sense that it is valid for any portion of the search tree, the strength of these
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inequalities depends on the variables that have been set to 1. As a result, some cuts
are redundant in some subtrees and their presence slows down the simplex algorithm.
To alleviate this problem, we add all cuts as local cuts.

To avoid re-generating the same local cut at several nodes in the tree, however, we
use a pool of cuts. Every time we process a node, we first check if the pool contains
violated cuts. In that case, we add to the model the θ most violated cuts.

5 Computational Results

We coded the branch-and-cut algorithm in C++ and used CPLEX 9 as Integer Linear
Programming solver. We ran the algorithm on a Pentium IV at 3 GHz, and tested
its behavior on the same test bed used by Carrabs et al. (2007a) and Erdogan et al.
(2009). This test bed was generated from nine TSP instances of the TSPLIB: a280,
att532, brd14051, d15112, d18512, fnl4461, nrw1379, pr1002 and ts225. From each
TSP instance, nine TSPPDF instances were generated by selecting 19, 23, 27, 31,
35, 39, 43, 47 and 51 vertices, respectively. The smallest instances (19 vertices) were
constructed by performing random matchings between the selected vertices to obtain
n = 9 pairings between pickups and deliveries (i.e., nine requests). The unmatched
vertex represents both the origin and the destination depot. Each larger instance was
in turn constructed from the previous one by considering four more vertices from the
original TSP file, and randomly matching them into two requests. This procedure
ensures that the optimal solution value of a larger instance is not lower than that of
a smaller one. The costs associated with the arcs were obtained by rounding down to
the next integer the Euclidean distances between the vertices. Our branch-and-cut
algorithm was given a limit of 3 hours of CPU time on each instance. It takes as an
initial upper bound the value obtained by the heuristic algorithm of Erdogan et al.
(2009), which runs in a few seconds for the instance size considered here.

We first focus on the results obtained by solving the LP relaxation of the problem.
In Table 1 we report the results obtained by the plain formulation (model (1)–(7)),
and by this formulation enlarged by considering one family of valid inequalities at
a time. For each row, the column labeled Inst. gives the name of the original TSP
instance, and the column labeled n gives the number of requests in the TSPPDF
instance. The other columns in the table give the percentage gaps between the LP
relaxation of the given formulation and the upper bound. The gaps are computed as
100(UB−LB)/UB, where UB is the upper bound provided by the heuristic algorithm
of Erdogan et al. (2009). For these columns we use as labels the equation number of
the family of inequalities. The last row reports, for each column, the average over all
instances. The last columns are grouped by inequalities from the TSPPD literature
(Section 3.1) and new FIFO inequalities (Section 3.2).
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One can observe that the plain formulation is rather weak and that the integrality
gaps are large: around 16% on average, and more than 32% in the worst case (instance
ts225 with n = 15). This performance is improved by the successive families of
inequalities. Among the ones from the TSPPD literature, inequalities (10) and (11)
give the best improvement, as they reduce the gap by 1.7% on average, and by almost
8% in the best case (instance a280 with n = 11). Among the simple inequalities, (15)
and (16) based on arc (i, j), and inequalities (17) and (18) based on arc (n + i, n + j)
are the most effective ones, as they reduce the average gap by roughly 1%. Inequalities
(19), (20) and (21) based on arc (j, n + j) have a slightly worse behavior then the
previous ones. It is worth recalling that (15), (16), (17), (18) and (21) are all added
directly at the root node, whereas (19) and (20) are separated also at the children
nodes and can lead to further improvements. Inequalities (22) and (23) have a weak
performance. Their use is nonetheless very important during the branching as they
are effective in improving the lower bounds and thus reducing the number of nodes in
the tree. Lifting the FIFO inequalities by means of (24) gives a small but systematic
improvement in the gap. The lifted shutter inequalities (29) and (30) lead to an
average improvement of roughly 0.7%. Again, these inequalities become effective
during the exploration of the branch-and-bound tree.

In Table 2 we focus on the marginal contribution of each family of inequalities.
In column labeled full we present the percentage gap of the linear relaxation of our
full formulation (i.e., the one containing all the inequalities). In the next columns
we give the gaps obtained by the full formulation minus the family of inequalities
whose number appears as label of the column. The use of all the inequalities leads to
an important improvement of more than 5% with respect to the plain formulation.
In some cases this improvement can be very high, as for instances a280 with n ≤ 13,
where it is 12% and more. Removing a single inequality at the time does not affect
significantly this improvement, with the exception of inequalities (10) and (11), that,
if removed, produce a worsening of roughly 1.4% in the average gap. In some cases
deleting an inequality from the model can lead to an improvement in the gap. This is
a known phenomenon, due to the implicit heuristic separation procedures of CPLEX.

In Table 3 we finally report the results obtained by running our branch-and-cut
algorithm with a CPU time limit of 3 hours on each instance. Columns labeled
Inst. and n have the same meaning as in the two previous tables, whereas column
labeled UB reports the upper bound value. It is worth noting that this upper bound
coincides with the optimal value for all the instances where a proof of optimality is
given. Our formulation is compared with the two other exact algorithms developed for
the TSPPDF: the additive branch-and-bound algorithm of Carrabs et al. (2007a), and
the linear integer programming formulation with a polynomial number of variables
and constraints of Erdogan et al. (2009). These two procedures were run on a 2.4
GHz AMD Opteron 250 processor, with a 3-hour CPU time limit. For the additive
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branch-and-bound, the column labeled nodes reports the number of nodes explored
by the enumeration tree, and the column labeled sec indicates the number of seconds
required to run the algorithm. For the linear integer programming formulation only
the CPU time information is known. For our branch-and-cut algorithm we also report
the lower bound obtained (LB), the percentage gap (%gap = 100(UB − LB)/UB)
and the number of local cuts stored in the pool (pool).

The formulation we use is the full one, with the exception of the generalized order
constraints (14) since they proved to worsen the average performance of the complete
branch-and-cut algorithm. All other families of inequalities are useful. On the basis
of our computational evidence with some trial values of the parameters, we set the
maximum number of cuts to be added at each node as θ = 10 (better than 5 or 20)
and the maximum size of the pool of local cuts to 20000 cuts (better than 10000 or
30000). As mentioned in the previous section, we stop separating inequalities when
the number of variables already fixed to 1 by the branching is greater than or equal
to n/2 (better than n or n/3).

All instances with up to 13 requests (i.e., 27 vertices) were solved to optimality in
usually less than one hour. Instance d15112 is solved in one hour and three minutes
and is the one requiring the most time. Among the instances with 15 requests, four
out of nine are solved to optimality within the given time limit. For the unsolved
instances, the percentage gap can be quite large. The worst case is instance nrw1379,
where the gap is larger than 10%. The easiest groups of instances are the ones derived
from a280 and pr1002, for which the branch-and-cut solves all instances in the test
bed (up to 51 vertices) to optimality. Both the number of nodes and the number of
local cuts in the pool grow from the instances with small size to the instances with
large size. For 8 cases out of 49 the number of local cuts stored in the pool reaches
the maximum value allowed.

The branch-and-cut algorithm outperforms the two other exact algorithms for the
TSPPDF. The compact formulation of Erdogan et al. (2009) solves consistently to
optimality only the instances with 9 requests. Moreover, this is achieved with very
large CPU times. No instance with 13 requests or more was solved. The additive
branch-and-bound algorithm of Carrabs et al. (2007a) has a better performance,
but is nevertheless outperformed by branch-and-cut. The smallest unsolved instance
has 13 requests (versus 15 for the branch-and-cut) while the largest solved instance
has 19 requests (versus 25 for the branch-and-cut). Moreover the branch-and-cut
algorithm was able to solve eight more instances. Although comparing computing
times between the two algorithms does not lead to any meaningful conclusion, one
can observe that the CPU time consumption of the branch-and-bound algorithm
grows consistently with the size of the instance, while it is less predictable for branch-
and-cut. Nevertheless, the number of nodes explored by the branch-and-cut is much
smaller, often by several orders of magnitude. Since the branching schemes used by
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both algorithms are very similar, the main difference comes from the tighter lower
bounds provided by the formulation and inequalities introduced in this paper.

6 Conclusions

This paper has introduced a branch-and-cut algorithm for the TSPPDF. The FIFO
policy affects the combinatorial structure of the problem and makes it very difficult
to solve. Branch-and-cut techniques can solve instances of the symmetric TSPPD
with up to 35 requests (see Dumitrescu et al., 2009). For the problem addressed in
this paper, instances with only 15 requests remain unsolved after being tackled with
three different exact techniques. The TSPPDF also appears to be more difficult to
solve than the TSPPD with LIFO loading. On a very similar set of test instances,
the smallest unsolved instances have 23 requests (see Cordeau et al., 2009). The
combinatorial structures of the two problems are very different and so are the valid
inequalities introduced for each of them.

The results presented in this paper were obtained with a formulation based on
classical arc variables with an exponential number of constraints separated within
a branch-and-cut framework. This approach outperforms previous exact algorithms
for the same problem. The use of valid inequalities to strengthen the formulation
is very important, but it is not the only ingredient that contributes to the success
of the branch-and-cut algorithm. Significant improvements were obtained by using
a tailored branching strategy enriched with fathoming criteria, and by using local
cuts instead of global ones. It is an interesting topic for future research to evaluate
the use of these ideas in branch-and-cut techniques for other variants of the traveling
salesman problem.
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Table 1: Integrality gaps for the plain formulation plus one family of valid inequalities at a time.
Inst. n plain TSPPD literature new FIFO inequalities

(9) (10),(11) (12), (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (29) (30)

a280 9 12.94 12.94 9.14 12.18 11.68 10.91 9.90 10.91 11.68 11.17 12.18 12.94 12.69 12.69 12.94 11.42 11.42
11 18.12 17.06 10.45 15.99 16.42 15.14 14.29 15.14 15.99 15.57 16.42 18.12 16.84 17.91 16.63 14.93 15.14
13 23.18 23.18 18.32 21.87 22.80 19.44 19.63 20.00 19.44 20.93 20.56 21.68 22.24 22.62 22.43 20.93 21.31
15 23.01 23.01 18.71 21.19 21.85 20.20 19.70 19.70 19.87 21.03 20.86 21.69 22.35 22.52 22.68 20.36 20.70
17 20.26 20.26 16.76 19.24 19.24 17.93 17.20 17.64 17.64 19.24 18.51 19.53 19.97 19.97 20.12 18.66 18.80
19 20.33 19.92 15.93 18.82 18.41 18.27 18.54 17.58 17.99 18.96 18.41 18.96 19.51 19.78 19.92 17.86 17.99
21 19.95 19.82 16.16 18.43 18.81 18.06 17.55 17.55 17.42 18.81 18.18 19.07 19.57 19.44 19.57 17.93 18.18
23 20.69 19.98 15.58 18.43 17.95 19.26 18.55 19.02 18.67 19.50 19.02 19.74 20.45 20.21 19.74 17.12 17.36
25 21.51 21.17 16.44 18.69 19.03 20.05 19.03 19.71 19.26 20.16 19.93 20.50 21.17 21.28 20.95 18.02 18.13

att532 9 11.28 9.70 8.64 10.40 8.89 10.79 9.56 9.63 11.01 10.05 11.21 11.28 11.28 11.28 11.28 11.19 11.23
11 9.08 8.84 8.60 8.99 8.80 8.84 8.40 8.40 8.69 8.16 8.84 9.08 9.08 9.08 9.08 8.91 8.99
13 14.36 14.04 12.61 13.63 13.31 13.86 13.13 12.93 13.52 13.31 13.70 13.72 13.73 14.04 14.04 13.75 13.81
15 17.13 17.12 15.79 16.83 15.68 16.93 16.36 16.58 16.97 16.50 17.03 17.12 17.08 16.93 17.08 16.73 16.68
17 16.80 16.77 16.01 16.56 15.66 16.77 16.04 16.24 16.85 16.28 16.70 16.82 16.66 16.56 16.70 16.30 16.30
19 18.51 18.50 17.41 18.30 18.10 17.98 17.43 17.05 17.82 17.52 17.91 17.83 18.54 18.24 18.42 18.10 18.09

brd14051 9 3.65 3.65 3.53 3.60 3.65 3.65 3.65 3.63 3.58 3.63 3.63 3.58 3.65 3.65 3.63 3.60 3.60
11 3.89 3.89 3.70 3.84 3.89 3.86 3.86 3.86 3.89 3.89 3.89 3.89 3.89 3.89 3.89 3.86 3.86
13 12.59 12.59 12.42 12.54 12.56 12.56 12.54 12.56 12.56 12.59 12.59 12.59 12.59 12.56 12.59 12.54 12.54
15 17.78 17.78 17.65 17.76 17.76 17.78 17.78 17.78 17.78 17.78 17.78 17.78 17.78 17.76 17.78 17.76 17.76

d15112 9 16.35 16.35 13.19 16.48 16.62 15.92 15.93 16.32 16.48 16.35 16.51 16.62 16.18 16.35 16.62 16.45 16.48
11 19.86 19.82 18.46 19.75 19.47 19.06 19.06 19.13 19.01 19.13 19.12 19.52 18.88 19.82 19.79 19.82 19.79
13 25.72 25.72 23.96 24.82 25.38 24.12 23.96 24.20 24.27 24.21 24.27 25.44 23.96 25.53 25.72 25.31 25.05
15 27.26 27.26 24.34 26.57 26.21 25.93 25.46 26.03 26.19 26.07 26.26 27.05 26.31 27.10 27.26 26.69 26.52

d18512 9 4.54 4.54 4.45 4.52 4.52 4.50 4.52 4.52 4.50 4.52 4.50 4.50 4.52 4.50 4.54 4.54 4.54
11 9.30 9.28 9.11 9.24 9.30 9.24 9.26 9.26 9.24 9.26 9.24 9.28 9.30 9.26 9.28 9.26 9.24
13 10.19 10.17 10.02 10.10 10.17 10.02 10.04 10.02 10.02 10.04 10.04 10.15 10.17 10.15 10.17 10.12 10.10
15 17.52 17.50 17.40 17.44 17.52 17.08 17.25 17.29 17.21 17.21 17.21 17.50 17.50 17.44 17.50 17.50 17.42

fnl4461 9 14.42 14.28 13.52 14.42 14.23 13.33 13.43 13.43 13.61 13.47 13.66 13.47 13.00 13.57 13.24 13.90 13.80
11 19.48 19.48 19.39 19.48 19.48 18.71 19.26 18.84 18.79 18.88 18.84 19.09 18.66 19.26 18.41 19.48 19.48
13 21.33 21.33 21.22 21.33 21.10 20.79 20.29 20.06 19.75 20.37 19.98 20.06 20.64 20.91 20.45 20.99 21.10
15 22.14 22.14 21.96 22.10 22.14 20.80 21.04 20.37 20.90 20.62 20.48 22.00 21.82 22.07 22.00 21.89 21.75
17 24.82 24.82 24.58 24.68 24.45 24.18 24.22 23.62 23.72 23.62 23.62 24.22 24.68 24.68 24.78 24.68 24.65

nrw1379 9 8.53 8.53 8.46 8.53 8.49 8.53 8.38 8.35 8.27 8.35 8.27 8.27 8.53 8.53 8.20 8.49 8.53
11 8.13 8.13 7.99 8.06 8.13 8.13 7.99 7.89 8.03 7.96 8.03 7.89 8.13 8.13 8.10 8.10 8.10
13 17.21 17.09 16.15 16.97 16.82 17.09 16.51 16.24 16.55 16.48 16.64 16.51 17.03 17.12 16.76 17.12 17.15
15 21.19 21.19 20.70 21.04 20.76 21.13 20.56 20.70 20.76 20.76 20.99 20.79 20.99 20.90 21.07 21.10 21.07

pr1002 9 6.52 6.52 6.47 6.72 6.71 5.58 6.21 6.30 5.45 6.43 5.58 6.67 5.59 6.79 6.83 6.70 6.64
11 9.07 9.01 7.90 8.67 9.05 7.48 7.57 7.38 6.53 7.61 6.69 8.15 7.04 8.99 8.32 8.65 8.65
13 11.91 11.76 9.48 11.03 10.52 10.28 10.95 10.33 9.79 10.86 9.87 11.32 9.85 11.69 11.81 10.80 10.81
15 11.42 11.40 9.69 11.01 11.27 10.02 10.42 10.42 9.64 10.33 9.79 10.84 10.10 10.80 11.30 10.99 11.01
17 11.92 11.87 10.43 11.35 11.07 10.82 11.12 11.02 10.92 11.08 10.59 11.73 10.76 11.56 11.89 10.90 10.83
19 12.78 12.78 10.91 12.18 12.64 11.72 12.17 11.94 11.50 12.15 11.38 12.26 11.71 12.36 12.70 11.98 11.96
21 12.44 12.14 10.13 11.86 12.19 11.41 11.28 11.28 10.50 11.31 10.54 11.64 11.00 11.79 11.87 11.91 11.92
23 11.57 11.42 9.84 11.27 11.36 10.93 10.72 10.61 10.36 10.70 10.13 11.10 10.30 11.04 11.20 11.10 11.10
25 13.54 13.40 11.62 12.83 13.23 12.89 12.80 12.76 12.40 12.75 11.95 13.09 12.47 13.01 13.36 12.76 12.69

ts225 9 21.73 21.73 21.71 21.73 21.72 21.71 21.71 21.72 20.55 21.72 20.87 21.30 21.73 21.43 21.30 21.73 21.71
11 21.41 21.41 20.51 21.41 21.42 21.40 21.41 21.40 20.66 21.41 20.71 20.83 21.41 21.17 20.66 21.42 21.42
13 23.72 23.72 22.69 23.66 23.62 23.68 23.72 23.62 23.60 23.67 23.68 23.60 23.72 23.72 23.64 23.66 23.66
15 32.30 32.30 29.75 31.73 31.78 31.71 32.24 30.75 31.22 31.70 31.83 30.70 32.30 32.30 31.87 31.12 31.16

Averages 16.19 16.07 14.49 15.68 15.63 15.32 15.16 15.14 15.12 15.39 15.28 15.74 15.66 15.97 15.92 15.49 15.52
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Table 2: Integrality gaps for the full formulation minus one family of valid inequalities at a time.
Inst. n plain full TSPPD literature New FIFO Inequalities

(9) (10),(11) (12), (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (29) (30)

a280 9 12.94 3.05 3.05 4.82 1.78 3.30 3.05 4.31 1.27 3.05 2.03 3.05 2.79 2.03 3.05 3.81 2.79 3.05
11 18.12 4.05 4.26 8.96 3.84 3.41 4.05 7.46 4.05 3.84 3.62 4.05 3.84 4.26 4.05 4.48 4.05 4.26
13 23.18 9.53 9.53 12.71 9.53 8.79 8.41 10.84 8.22 8.22 9.53 9.53 9.53 8.60 8.22 9.53 10.84 9.72
15 23.01 10.60 10.60 12.91 12.09 11.59 9.11 12.75 10.43 10.60 10.60 10.76 10.76 10.93 10.76 10.76 10.43 11.92
17 20.26 10.50 10.20 12.83 10.20 9.62 9.18 11.08 9.18 9.18 10.64 10.64 10.50 9.33 10.50 10.50 10.64 10.35
19 20.33 10.03 10.03 12.09 11.81 9.75 9.48 12.36 8.79 10.16 10.03 11.26 8.65 9.34 8.79 10.03 11.95 10.44
21 19.95 9.72 9.60 12.37 10.86 9.22 8.59 11.74 9.60 9.60 9.60 9.60 11.11 9.85 11.11 9.85 9.60 9.85
23 20.69 10.58 10.58 11.77 10.94 10.82 9.27 11.18 9.27 9.16 10.94 10.34 9.39 9.27 11.06 10.46 10.94 10.46
25 21.51 10.47 10.59 12.39 11.60 11.26 11.26 12.05 10.70 10.59 10.36 10.47 11.82 10.59 11.49 10.36 10.36 10.47

att532 9 11.28 4.10 4.10 5.11 4.30 5.53 4.15 4.15 4.17 4.15 4.07 4.15 4.15 4.22 4.15 4.37 4.35 4.15
11 9.08 4.77 4.77 6.24 4.88 4.64 4.86 4.77 4.75 4.82 4.77 4.77 4.77 4.79 4.99 5.26 4.77 4.77
13 14.36 9.68 9.68 10.78 9.16 9.39 9.43 9.96 9.61 10.50 9.23 9.94 9.39 9.71 9.80 10.00 9.78 9.50
15 17.13 12.68 12.68 13.85 13.59 13.64 13.22 13.23 13.15 12.25 13.47 12.41 12.48 13.32 13.40 13.32 13.50 12.36
17 16.80 13.22 13.22 13.32 12.91 13.82 13.15 13.04 13.14 13.06 13.14 13.15 12.98 13.04 13.41 13.12 13.15 13.11
19 18.51 14.39 14.39 15.21 14.52 14.87 14.81 14.66 14.64 14.63 14.39 14.39 14.90 14.64 15.38 14.39 14.51 14.45

brd14051 9 3.65 3.35 3.31 3.37 3.35 3.33 3.35 3.33 3.33 3.33 3.35 3.33 3.35 3.35 3.33 3.51 3.31 3.35
11 3.89 3.39 3.43 3.75 3.43 3.36 3.45 3.45 3.39 3.41 3.43 3.39 3.34 3.48 3.41 3.61 3.43 3.41
13 12.59 11.95 11.95 12.38 11.92 11.95 12.01 11.97 12.01 11.90 11.97 11.92 11.92 11.97 11.86 12.30 11.95 11.95
15 17.78 17.23 17.40 17.57 17.40 17.44 17.23 17.46 17.25 17.40 17.40 17.40 17.25 17.28 17.27 17.46 17.27 17.40

d15112 9 16.35 11.48 11.48 14.24 11.95 12.09 11.82 11.74 11.48 11.46 11.50 11.48 11.51 11.70 11.50 11.41 11.49 11.38
11 19.86 14.91 14.91 16.59 14.77 14.85 15.06 15.77 14.68 15.48 14.89 14.77 14.88 15.02 14.93 14.95 14.86 15.09
13 25.72 18.06 18.06 19.78 17.84 18.26 17.46 19.14 18.08 18.05 17.63 18.03 17.62 19.03 18.87 18.18 18.03 17.64
15 27.26 19.58 19.58 20.90 19.75 20.45 19.70 20.74 19.73 19.77 19.17 19.48 19.94 20.63 20.11 19.67 19.77 19.77

d18512 9 4.54 4.16 4.16 4.41 4.16 4.16 4.16 4.18 4.16 4.16 4.16 4.16 4.16 4.16 4.18 4.16 4.16 4.16
11 9.30 8.06 8.51 9.06 8.12 8.08 8.12 8.34 8.14 7.91 8.40 8.04 7.95 8.31 8.25 8.23 7.95 8.06
13 10.19 8.18 8.20 9.53 8.41 8.39 8.45 8.73 8.20 8.39 8.39 9.04 8.39 8.90 9.11 8.52 8.41 8.39
15 17.52 15.49 15.83 16.70 15.81 15.83 15.87 16.03 15.78 15.78 15.91 15.74 15.83 15.83 16.37 16.03 15.81 15.81

fnl4461 9 14.42 8.87 8.87 11.67 9.25 8.87 10.53 9.06 10.15 8.97 10.01 8.92 9.20 9.87 10.20 9.25 9.20 8.87
11 19.48 15.75 15.71 17.21 16.31 16.27 15.67 16.40 15.71 16.05 16.22 16.01 16.27 16.48 16.18 16.78 16.44 16.01
13 21.33 17.71 17.71 18.44 18.13 17.63 17.82 18.06 17.71 17.79 17.86 17.79 17.55 17.44 17.75 17.86 17.71 17.44
15 22.14 19.03 19.03 19.10 18.89 18.05 19.00 19.10 18.05 18.93 19.07 19.03 19.10 18.05 19.07 18.61 19.03 18.61
17 24.82 22.29 22.32 22.32 22.29 21.92 22.39 22.32 22.29 22.25 22.29 21.29 22.32 21.59 22.09 22.32 22.29 22.29

nrw1379 9 8.53 7.24 7.24 8.01 7.24 7.16 7.16 7.20 7.24 7.16 7.16 7.20 7.16 7.83 7.20 7.20 7.16 7.16
11 8.13 6.88 7.19 7.29 6.95 7.12 6.95 6.95 6.95 6.95 6.95 7.02 6.95 7.16 6.95 7.02 6.95 6.95
13 17.21 14.39 14.42 14.75 14.48 14.51 14.51 14.36 14.45 14.39 14.51 14.36 14.36 14.36 14.39 14.21 14.51 14.51
15 21.19 18.77 18.77 19.23 18.77 18.94 18.86 18.83 18.92 18.83 18.80 18.86 18.83 19.09 18.94 18.80 18.80 18.77

pr1002 9 6.52 2.43 2.43 2.71 1.97 2.11 1.16 0.67 1.99 2.14 1.34 1.97 2.13 3.00 1.02 1.81 1.85 2.07
11 9.07 2.52 2.52 4.25 2.87 2.01 2.10 2.22 1.97 2.04 2.04 2.56 2.72 3.08 2.81 2.73 2.22 2.66
13 11.91 4.50 4.50 6.45 4.11 4.68 4.43 4.64 4.44 4.19 4.51 4.32 4.10 4.83 4.57 4.25 4.47 4.45
15 11.42 4.91 4.91 6.91 6.48 4.87 6.26 5.34 5.10 5.10 4.82 4.81 5.13 5.62 5.41 6.28 4.98 5.08
17 11.92 6.35 6.73 6.97 6.74 6.48 6.76 6.57 6.41 6.35 6.32 6.39 6.47 6.82 6.84 7.05 6.40 6.78
19 12.78 7.02 7.02 8.22 7.15 7.22 7.01 7.18 6.99 7.09 7.03 7.00 7.04 7.34 7.18 7.45 7.02 7.01
21 12.44 6.58 6.53 7.73 6.70 7.54 6.58 7.38 6.35 6.75 6.34 6.41 6.32 6.75 6.57 7.04 6.44 6.34
23 11.57 6.97 7.17 7.62 6.77 6.39 7.02 7.11 6.25 7.07 6.72 6.70 6.69 7.17 6.94 7.47 6.71 6.78
25 13.54 8.51 8.36 9.26 8.46 8.63 8.47 8.62 8.44 8.53 8.47 8.36 8.37 8.95 8.51 9.12 8.37 8.39

ts225 9 21.73 18.74 18.32 19.54 18.77 17.39 17.39 18.53 17.06 18.37 17.07 18.32 17.15 17.03 17.05 18.43 18.63 18.37
11 21.41 16.72 16.06 19.26 16.72 16.44 16.04 15.93 15.56 16.01 15.53 15.89 15.94 15.63 14.43 15.81 16.06 15.41
13 23.72 19.75 19.76 23.30 19.90 19.96 19.86 20.16 19.35 19.89 20.05 21.36 20.07 20.11 20.18 21.81 19.79 19.88
15 32.30 25.89 25.97 28.88 26.50 26.31 26.50 25.80 26.24 28.10 25.92 25.62 27.76 26.42 26.35 25.95 26.36 27.98

Averages 16.19 10.92 10.93 12.30 11.11 10.99 10.84 11.36 10.71 10.89 10.85 10.93 10.92 10.98 11.02 11.13 11.01 10.96
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Table 3: Comparisons with exact algorithms from the literature.
Carrabs et al. Erdogan et al. Branch-and-cut

Inst. n UB nodes sec sec LB %gap sec nodes pool

a280 9 394 16404 0.2 284.0 394 0.00 1.5 11 136
11 469 67000 1.1 5130.0 469 0.00 3.5 13 202
13 535 1060629 25.9 n.d. 535 0.00 17.8 224 642
15 604 7153930 244.0 n.d. 604 0.00 44.6 637 1144
17 686 18407525 897.8 n.d. 686 0.00 109.8 903 1872
19 728 125794822 7863.3 n.d. 728 0.00 164.9 934 2128
21 792 n.d. n.d. n.d. 792 0.00 425.4 2009 3430
23 841 n.d. n.d. n.d. 841 0.00 616.3 2163 3957
25 888 n.d. n.d. n.d. 888 0.00 1396.1 3166 5631

att532 9 4050 44058 0.3 1103.1 4050 0.00 3.0 29 256
11 4548 145537 2.0 1896.1 4548 0.00 6.4 46 404
13 5621 4028821 88.9 n.d. 5621 0.00 112.4 1531 3114
15 5977 20321304 683.5 n.d. 5977 0.00 1114.6 10965 11070
17 6196 169472851 7313.2 n.d. 6196 0.00 3160.0 20578 16499
19 6645 n.d. n.d. n.d. 6368 4.17 10800.1 42300 20000

brd14051 9 4357 941600 5.0 46.3 4357 0.00 3.3 10 432
11 4400 5618833 52.7 652.9 4400 0.00 5.2 13 503
13 4847 268489184 3998.8 n.d. 4847 0.00 1754.2 22278 12425
15 5236 n.d. n.d. n.d. 4951 5.44 10800.0 84153 20000

d15112 9 78016 115896 1.0 6329.9 78016 0.00 25.4 947 1533
11 87166 1321367 18.9 n.d. 87166 0.00 112.2 2171 3167
13 97921 62744515 1259.8 n.d. 97921 0.00 3779.7 58948 20000
15 113268 n.d. n.d. n.d. 106775 5.73 10800.1 101259 20000

d18512 9 4401 158974 1.2 376.6 4401 0.00 3.4 58 299
11 4667 4941047 45.2 n.d. 4667 0.00 45.6 2285 1540
13 4721 68754702 961.2 n.d. 4721 0.00 146.8 4589 2457
15 5223 n.d. n.d. n.d. 5107 2.22 10800.0 145973 20000

fnl4461 9 2108 32321 0.3 354.6 2108 0.00 8.7 283 505
11 2336 556081 7.2 n.d. 2336 0.00 70.2 2907 1167
13 2592 6198073 128.5 n.d. 2592 0.00 704.8 41447 3034
15 2837 45726987 1401.5 n.d. 2837 0.00 1155.6 31038 3713
17 3002 n.d. n.d. n.d. 2924 2.60 10800.0 186089 8994

nrw1379 9 2708 1959041 11.4 603.7 2708 0.00 11.0 201 727
11 2865 37121719 365.4 n.d. 2865 0.00 27.8 289 1192
13 3294 n.d. n.d. n.d. 3294 0.00 3587.6 36598 20000
15 3526 n.d. n.d. n.d. 3167 10.18 10800.0 70650 20000

pr1002 9 13484 9483 0.1 155.1 13484 0.00 1.6 5 218
11 14791 85261 1.2 2857.8 14791 0.00 3.4 11 212
13 16478 1282958 26.0 n.d. 16478 0.00 11.9 57 554
15 17209 5359043 167.0 n.d. 17209 0.00 27.3 117 843
17 18683 102771998 3420.4 n.d. 18683 0.00 86.6 767 1795
19 19930 n.d. n.d. n.d. 19930 0.00 240.7 1221 3219
21 21348 n.d. n.d. n.d. 21348 0.00 511.7 5445 2955
23 22653 n.d. n.d. n.d. 22653 0.00 890.8 8838 4238
25 23790 n.d. n.d. n.d. 23790 0.00 8386.2 66092 10922

ts225 9 23000 47732 0.4 7707.4 23000 0.00 4.6 147 340
11 28000 318781 4.3 n.d. 28000 0.00 9.0 138 525
13 38306 17849184 289.9 n.d. 38306 0.00 357.5 14905 3154
15 44398 n.d. n.d. n.d. 41790 5.87 10800.0 272175 20000

Averages 15721 0.01 2137.7 25461 5738
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