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We develop a decomposition method for the Time-Constrained Project Scheduling Problem (TCPSP)

with adjacent resources. For adjacent resources the resource units are ordered and the units assigned to

a job have to be adjacent. On top of that, adjacent resources are not required by single jobs, but by job

groups. As soon as a job of such a group starts, the adjacent resource units are occupied, and they are

not released before all jobs of that group are completed. The developed decomposition method

separates the adjacent resource assignment from the rest of the scheduling problem. Test results

demonstrate the applicability of the decomposition method. The presented decomposition forms a first

promising approach for the TCPSP with adjacent resources and may form a good basis to develop more

elaborated methods.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

We develop a decomposition method for project scheduling
problems with adjacent resources. Adjacent resources are re-
sources for which the units assigned to a job are required to be in
some sense adjacent. Possible examples of adjacent resources are
dry docks, shop floor spaces, and assembly areas. We focus on the
Time-Constrained Project Scheduling Problem (TCPSP), Gulde-
mond et al. [1], with one one-dimensional adjacent resource.
However, the presented concepts and methods can be easily
extended to more general models, e.g. multiple one-dimensional
adjacent resources or two-dimensional adjacent resources.

The Time-Constrained Project Scheduling Problem (TCPSP) with
an adjacent resource is defined as follows. We are given a set of jobs,
a set of renewable resources and one one-dimensional adjacent
resource. Each job is characterized by a release date, processing time,
deadline and its resource requirements, and has to be scheduled
without preemption. The processing of jobs is further restricted by
precedence relations. The adjacent resource is a special type of
resource that is characterized by two properties. First, the resource
units of adjacent resource are somehow topologically ordered (in
this case ordered on a line) and the resource units assigned to a job
have to be neighbored/adjacent and reassignment is not allowed.
Second, motivated by the occurrence of adjacent resources in real
life problems, we consider the more general case that the adjacent
resource is not required only by a single job but by groups of jobs
ll rights reserved.
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(called job groups or simply groups). As soon as a job of such a job
group starts, the assigned adjacent resource units are occupied, and
they are not released before all jobs of that group are completed. In
the considered model, it is only possible to hire additional capacity
for the renewable resources, and not for the adjacent resource. The
objective is to find a feasible assignment of the job groups to
the adjacent resources and a feasible job schedule that minimizes
the cost of hiring additional capacity.

The consideration of adjacent resources in the above-men-
tioned form is motivated by a cooperation with a Dutch
consultancy company. They encountered at several of their clients
adjacent resource requirements. Since the project scheduling
models in the literature do not cover these requirements, the
company either assigns the adjacent resources in advance based
on simple rules or they relax the adjacency requirements and
repair the achieved solutions afterwards. However, since both
approaches do not lead to satisfactory solutions, the company
strives to incorporate adjacent resources in their planning soft-
ware for project scheduling. One practical application is from the
ship building industry that we use to illustrates the adjacency
requirements. In this problem the docks form one-dimensional
adjacent resources, and all jobs related to building a single ship
form a job group. Clearly, the part of the dock assigned to one ship
has to satisfy the adjacency requirement. As soon as the
construction of a ship starts, the assigned part of the dock is
occupied until the construction is finished and the ship is
removed from the dock. Removal or repositioning of a partially
assembled ship is in practice too cumbersome and time consum-
ing and therefore not an option. The other resources required to
build the ships (like machines, equipment and personnel) can be
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modeled as renewable resources. The capacity of the dock is fixed
but the capacity of renewable resources can be increased, e.g. by
hiring additional personnel.

Adjacent resources have some relation with other special resource
types considered in the literature. Spatial resources, as introduced in
De Boer [2], are also resources which are not only required by a single
job but also by a group of jobs. However, no adjacency of the assigned
resource units is required. Make-to-order assembly problems under
assembly area constraints, see e.g. Hess and Kolisch [3] and Kolisch
[4], form a special case of project scheduling problems with spatial
resources where each job group requires exactly one unit of the
spatial resource. In this case the adjacency requirement is auto-
matically fulfilled. Without the adjacency requirement on the
resources, the spatial resource can also be modeled with the concept
of cumulative resources, see e.g. Beck [5], Neumann and Schwindt [6]
and Neumann et al. [7]. Cumulative resources are, for example, used
to incorporate storage facilities into project scheduling problems.
When a job group starts the cumulative resource is depleted by a
given amount, and replenished as soon as a job group completes. In
Section 3.1 we show why an adjacent resource cannot be modeled as
a cumulative resource.

The literature that does consider an adjacency requirement on
resources, only considers the special case in which exclusively
adjacent resources are considered and groups consist of a single
job. In this case the scheduling problem can be seen as a two-
dimensional packing problem. Examples of this can be found in
literature on berth allocation at container terminals, e.g. Guan et al.
[8] and Lim [9], reconfigurable embedded platforms, e.g. Fekete
et al. [10] and Steiger et al. [11], and check-in desks at airports, see
Duin and Van der Sluis [12]. In Hartmann [13] such packing
problems are modeled by introducing a mode for each possible
placement of a job on the adjacent resource. Consequently, one has
to solve a multi-mode project scheduling problem with possibly an
exponential number of modes (see Section 3.2).

Relaxing the group and adjacency requirements, the consid-
ered problem reduces to the TCPSP as considered in Guldemond
et al. [1]. The study of such types of Time-Constrained Project
Scheduling Problems started with Möhring [14] and Deckro and
Herbert [15], for an overview see Neumann et al. [7].

Summarizing, the concepts of job groups and adjacency
requirement on resources have been treated in the literature,
but never in a combined manner. To the best of our knowledge
this work is the first to consider this combination.

The outline of this paper is as follows. In Section 2 we formally
state the Time-Constrained Project Scheduling Problem with one one-
dimensional adjacent resource. Additionally, we provide an illustra-
tive example which we use throughout this paper. Before we present
the developed decomposition method, we discuss in Section 3 why
existing modeling and solution techniques for related problems are
not applicable when we are dealing with an adjacent resource.
Section 4 describes the decomposition method, the main contribution
of this paper. In this approach, first the groups are assigned to the
adjacent resource and then the jobs are scheduled. The solution of the
group assignment problem implies additional precedence relations
between the jobs. Once these precedence relations are added, the
scheduling of the jobs can be done with a method for the TCPSP, e.g.
the method of Guldemond et al. [1]. In Section 4.3 we introduce
objective functions for the group assignment problem in order to
steer the assignment to a promising one. Section 5 reports on
computational tests. In Section 6 we give some concluding remarks.
2. The TCPSP with adjacent resources

In this section, we start by giving a detailed description of the
time-constrained project scheduling problem with adjacent
resources (TCPSP with adjacent resources). As mentioned before,
we restrict ourselves to a single one-dimensional adjacent
resource and, thus, each job group has a requirement for exactly
one adjacent resource. However, the presented concepts and
methods can be easily extended to more general models, e.g.
multiple one-dimensional adjacent resources or two-dimensional
adjacent resources. In Section 2.2, we show how an instance of the
scheduling problem can be represented by an Activity-on-Node
network (AoN network) and at the end of this section, we give an
example project with its corresponding AoN network and a
corresponding solution to illustrate the problem. We use this
illustrative example throughout this paper.

2.1. Formal model description

For a project, we are given a set J of n jobs, i.e. J ¼ fJ1, . . . ,Jng.
Each job Jj has a release date rj, a processing time pj, and a
deadline dj. W.o.l.g. we assume that all these and following input
parameters are integer. Preemption of jobs is not allowed. The
time horizon is divided into T time buckets, t¼0,y,T�1, where
time bucket t represents the time interval [t,t+1) and
T¼max{d1,y,dn}. Thus, for each job Jj, time bucket rj is the first
and time bucket dj�1 the last in which the processing of job Jj can
take place. We assume the time windows for each job to be large
enough to process the job, i.e. dj�rjZpj, since otherwise no
feasible schedule exists. The processing of the jobs is further
restricted by precedence relations, which are given by sets Pj � J ,
denoting all direct predecessors of job Jj. With each precedence
relation JiAPj there is an associated non-negative time lag tij

indicating that there have to be at least tij time buckets between
the completion of job Ji and the start of job Jj. We assume w.l.o.g.
that all release dates and deadlines are consistent with the
precedence relations, i.e. riþpiþtijrrj and dj�pj�tijZdi for all
JiAPj. (If this is not the case, it can be achieved by a simple
preprocessing.)

For the processing of the jobs there is a set R of renewable
resources, R¼ fR1, . . . ,RKg, and one one-dimensional adjacent
resource R available. Each renewable resource RkAR has a
capacity Qk,t in time bucket t, and the adjacent resource has
capacity Q in all time buckets. Job Jj has a resource requirement
qjk for renewable resource Rk during its processing. Additionally,
we are given a set G of job groups, i.e. G¼ fG1, . . . ,Gmg. A job group
Gg AG represents a subset of the jobs ðGg �J Þ and has a
requirement of qg adjacent resource units. The assigned resource
units to group Gg are occupied from the first moment a job in Gg

starts, and are released as soon as all jobs in Gg are completed. In
principle a job can belong to any number of job groups.

In the considered model we assume the adjacent resource to
have a fixed capacity. However, we do allow an increase of the
capacity of the renewable resources. Increasing the capacity of
renewable resource Rk in time bucket t by one unit, incurs a cost
of ckt. The objective is to find a feasible assignment of groups to
the adjacent resource units, and at the same time a feasible
schedule of jobs on the renewable resources, such that the total
costs of increasing the capacity of the renewable resources is
minimized.

2.2. Activity-on-Node representation

Representing an instance of a project scheduling problem by
an Activity-on-Node (AoN) network is a well known modeling
technique from the literature, see e.g. Neumann et al. [7]. In such a
network nodes correspond to jobs (or sometimes called activities,
hence the name) and arcs to precedence relations. Two dummy
jobs having zero processing time and no resource requirements, J0



Table 1
Example project: job characteristics.

Job Cleaning crew (R1) Painting crew (R2) Safety inspector (R3) Processing time Release date Deadline Direct predecessors Job group

J1 1 0 0 2 0 7 | G1

J2 0 1 0 4 2 11 {J1} G1

J3 1 0 0 2 1 7 | G2

J4 0 1 0 4 3 11 {J1,J3} G2

J5 1 0 0 2 4 8 | G3

J6 0 2 0 3 6 11 {J5} G3

J7 0 0 1 2 4 11 | G3

Fig. 1. Example project: Activity-on-Node representation.
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and Jn + 1, are added to represent the start and completion of the
project, respectively. So, {J0,J1,y,Jn +1} is both the node and the job
set. Each precedence relation JiAPj is represented by an arc from
node Ji to Jj with weight tij. The release date of job Jj is modeled by
an arc from node J0 to Jj with weight equal to rj.

The job groups and the deadlines can be incorporated into the
AoN network construction for project scheduling problems as
follows. To be able to identify the start and completion of the job
groups, we add to the project dummy jobs with zero processing
time and no resource requirement. For each group Gg we
introduce a start job Js

g and a completion job Jc
g, respectively. Job

Js
g is a predecessor of all jobs in Gg with zero time lag, and has

release date minJj AGg
frjg and deadline minJj AGg

fdj�pjg. All jobs in
Gg are predecessors of Jc

g. Jc
g has release date maxJj AGg

frjþpjg and
deadline maxJj AGg

fdjg. To model the deadlines of the jobs, we fix
the scheduling of job Jn +1 at time T (the largest deadline). The
deadline of job Jj now can be modeled by an arc from node Jj to
Jn +1 with weight equal to T�dj.
Fig. 2. Example project: Gantt-charts of a solution.
2.3. Example project

To emphasize the impact of an adjacent resource on the
scheduling problem, consider the following illustrative example
project from the yacht building industry. There are three yachts,
each to be cleaned and painted in the next few days. The third
yacht is also due for safety inspection. There is one adjacent
resource, the dock ðRÞ with a length of 30 m ðQ ¼ 30Þ. There are
three renewable resources: cleaning crews (R1), painting crews
(R2), and safety inspectors (R3). There is one crew for cleaning
(Q1,t¼1), one crew for painting (Q2,t¼1), and no safety inspector
(Q3,t¼0) available during the entire project horizon. These
capacities can (and have to) be extended in some time periods
by hiring personnel, e.g. the safety inspector. Table 1 displays the
characteristics of the seven jobs. All time lags are of zero length.
Job group Gg corresponds to yacht g, and all yachts have to be
placed on the one available dock. The lengths of the yachts are
given by q1 ¼ 10, q2 ¼ 10 and q3 ¼ 20.

Fig. 1 shows the AoN network corresponding to this example
project. All precedence relations implied by transitivity are
omitted from the AoN network. Fig. 2 gives a feasible solution
for this project. The schedules for the renewable resources R1 to R3

indicate that for time buckets 4, 5, 8, 9, and 10 an additional
painting crew and for time buckets 7 and 8 a safety inspector has
to be hired. For the adjacent resource there are two different
schedules displayed in Fig. 2. Both schedules for R satisfy the
timing constraints (both schedules for R have the exact same start
and completion times) and both are consistent with the schedules
for the renewable resources R1 to R3, but only the second satisfies
the adjacency requirement. For the renewable resources it suffices
to specify the start of each job, but for the adjacent resources the
specific assignment of resource units is also necessary. The
necessity of specifying the assignment of the groups to the
adjacent resources is also the topic of the next section.
3. Failing modeling techniques

In this section we review two modeling techniques, cumulative

resource modeling and multi-mode modeling, and comment on the
use of sequential planning heuristics for scheduling problems
having job groups. These techniques and methods seem at first
glance useful for solving problems with adjacent resources.
However, as we show, the additional computational complexity
introduced by the adjacency requirement causes these techniques
and methods to fail. The TCPSP with adjacent resources contains
several elements which make the problem NP-hard. If we remove
the adjacent resources and the notion of groups, we get the TCPSP
which is NP-hard even if all processing times are equal to 1.
However, by assuming all time windows to be large enough, i.e.
rjþpjrdj for all Jj, and assuming unlimited hiring possibilities, at
least there always exists a feasible solution for the TCPSP. In
contrast to this, with the addition of only one adjacent resource
the problem of deciding whether or not a feasible solution exists,
turns out to be NP-complete. Furthermore, it is NP-complete to
decide whether or not given group start and completion times
that respect the adjacent resource capacity constraints can be
extended to a feasible solution respecting also the adjacency
requirements without changing the start and completion times of
the job groups (see Section 3.1). In Section 3.2 we discuss why
multi-mode modeling should not be used and in Section 3.3 we
discuss what the pitfalls are when jobs are planned sequentially
in the presence of job groups.
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3.1. Cumulative resources modeling

Relaxing the adjacency requirement gives a problem that can
be modeled with a cumulative resource replacing the adjacent
resource. At the start of a group the cumulative resource is
depleted and at completion the resource units are again available.
Cumulative resources are used to model, for example, inventory
levels, see Neumann et al. [7]. This is, however, a proper
relaxation of the problem and not a different formulation, i.e.
there is no guarantee that a solution for the ‘problem with a
cumulative resource’ can be transformed into a solution for the
‘problem with an adjacent resource’.

Modeling groups with cumulative resources, relaxing the
adjacency requirements and solving it as such, gives us start
and completion times of the jobs and groups, but no assignment
of particular adjacent resource units to groups. It is only
guaranteed that in each time bucket at most Q units of the
adjacent resource are used. Determining whether there exist a
feasible assignment of adjacent resources given these start and
completion times, is a strongly NP-complete problem, see Duin
and Van der Sluis [12]. As a consequence, there is no guarantee
that the start and completion times found with a solution method
based on cumulative resource modeling, are such that there exists
a feasible assignment of the groups to the adjacent resource units.
It is even an NP-complete problem to determine whether there
exists such a feasible assignment.

3.2. Multi-mode representation

An possible approach to model the adjacency requirements is to
represent each possible placement of a group on the adjacent
resource by a different mode, as done in Hartmann [13]. To explain
this construction, we assume that each job group consists of
exactly one job. We introduce for each possible placement a mode
for the job (job group), where a placement is an interval of adjacent
resource units of the required length. To be precise, we introduce a
set of renewable resources Zl (with l¼ 1, . . . ,Q ) all with a capacity
of 1. Each resource Zl represents one resource unit of the adjacent
resource. For job j with adjacent resource requirement qj we
introduce modes mij (with i¼ 1, . . . ,Q�qjþ1). Mode mij represents
job j being placed on adjacent resource units i to iþqj�1. Thus, the
resource requirement of job j in mode mij for resource Zl is 1 if
ir lr iþqj�1 and 0 otherwise.

The problem with this multi-mode representation is that the
number of new resources and modes we have to introduce
depends on the input data of a specific problem instance, and not
on the input size of the problem. More precisely, with this
transformation the instance size grows exponential, since the
adjacent resource capacity is encoded in size logQ in the original
formulation, and after the transformation we need to specify OðQ Þ

modes for each job. Thus, this problem transformation is not a
polynomial time transformation. From a computational time
perspective, but also from a practical point of view, this should
be avoided.

A second problem occurs when a constructive planning
heuristic is used in combination with such a multi-mode
representation. Then, not finding a feasible solution does not
mean that the instance is infeasible (see Section 3.3). The
decomposition method presented in Section 4 does not have this
drawback and gives proof of infeasibility if it occurs.

3.3. Sequential planning heuristic

A sequential planning heuristic includes the jobs one by one
into a schedule. This approach is the basis of almost all
constructive heuristics for project scheduling problems. However,
there is a large pitfall when we consider instances of the TCPSP
with job groups, whether it be with an adjacent resource or a
cumulative resource. As soon as the first job of a group is selected
to be scheduled next, the group has to be assigned to the adjacent
resource (or a given amount of the cumulative resource is
depleted). These resource units stay assigned (or depleted) until
the last job of the group is completed. However, in general it is
hard to estimate when this will be. Thus, it is unclear how long
other jobs may be delayed.

As a consequence, there is no mechanism to predict whether or
not starting a certain group will cause jobs of other groups to miss
their deadline. Thus, for a partially created schedule one cannot
ensure that it can be extended to a complete feasible schedule.

For the decomposition method described next, this is not an
issue. The assignment of the groups to adjacent resources is done
such that a feasible job schedule exists.
4. The decomposition method

The considerations in the previous section indicate that for the
TCPSP with adjacent resources no direct and simple heuristic can
be found, since the problem of finding a feasible assignment of the
adjacent resource for a given timing is already NP-complete.
Furthermore, this fact also implies that it does not make sense to
first treat the timing of the jobs and then the assignment of
adjacent resources. Even more, it indicates that the problem of
getting a feasible assignment of the adjacent recourse units to
groups should play a central role and be treated first. Therefore, in
this section, we present a decomposition method which considers
first the feasibility of the assignment to the adjacent resource, and
second the timing of the jobs. By considering the assignment of
the groups first, we can use a sequential planning heuristic to
schedule the jobs in the second stage and do not run into the
problems mentioned in the previous section.

Since already the feasibility question of the assignment of the
adjacent resource is NP-complete, we choose to use an exact
approach in this first stage. It is based on an ILP formulation.

The outline of the decomposition method for the TCPSP with
adjacent resources (which we refer to as the original problem) is as
follows. The decomposition method separates the adjacent re-
source assignment from the problem of scheduling the jobs. The
first step is to determine an assignment of the groups to the
adjacent resource units, and an ordering between those groups that
are assigned to at least one common adjacent resource units. We
call this the group assignment problem (GAP). Let FGAP denote the
set of all feasible solutions of the GAP. For a solution aAFGAP, we
have an ordering of the groups that are assigned to the same
adjacent resource. This ordering implies additional precedence
relations in the original problem, i.e. if groups g and h share an
adjacent resource unit in a solution of the GAP and g is scheduled
before h then no job of group h can start before the completion of
all jobs in group g. After adding these implied precedence relations,
the adjacent resources do not have to be considered anymore. The
resulting problem is a TCPSP without adjacent resources (which we
refer to as the resulting TCPSP). Denote this resulting TCPSP for
aAFGAP by TCPSP(a). The second step is to find a low cost solution
of the resulting TCPSP, which can be done by employing existing
methods, e.g. the method proposed in Guldemond et al. [1].

By the above construction we can rewrite the TCPSP with
adjacent resources as

min
aAFGAP

OptðTCPSPðaÞÞ

where Optð�Þ denotes the optimal value of the resulting TCPSP.
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In the following we first describe the GAP. We design the GAP
in such a way that the original problem has a feasible solution if
and only if the GAP has a feasible solution and such that each
feasible solution of the GAP can be extended to a feasible solution
of the original problem. Afterwards, we present an ILP formula-
tion of the GAP which can be used to solve it. Finally, we treat the
resulting TCPSP problem resulting after fixing the assignment of
the adjacent resource units according to a solution of the GAP.

4.1. The group assignment problem (GAP)

The feasibility of the original problem depends on the adjacent
resource capacity and requirements, and on the timing constraints
of the jobs. It does not depend on the renewable resources, since we
assume that we can hire unlimited additional capacity of the
renewable resources. For each group Gg we have to determine an
adjacent resource assignment and a start and completion time,
denoted by sg and cg, respectively. The start and completion time of a
group implies a time window [sg,cg] in which it should be possible to
process all jobs of group Gg, respecting the timing constraints of the
jobs. Note that the processing time of a group is not a priori fixed.

The start and completion time of a group have to be consistent
with the release dates and deadlines of the jobs in this group.
This gives rise to the following definitions: earliest start time
of a group ESTg :¼minJj AGg

frjg, latest start time of a group
LSTg :¼ minJj AGg

fdj�pjg, earliest completion time of a group
ECTg :¼maxJj AGg

frjþpjg, and latest completion time of a
group LCTg :¼ maxJj AGg

fdjg. In order to guarantee processing of
all jobs in a group, the start and completion of a group should be
such that sg A ½ESTg ,LSTg � and cg A ½ECTg ,LCTg �.

It is, however, not possible to choose sg and cg independently
within the mentioned intervals. For example, if we choose the
start time of a group Gg to be large, then choosing the completion
time of group Gg equal to ECTg might not be feasible. The reason
for this is that there can be a path in the AoN network from Jg

s to Jg
c

such that adding all processing times and time lags on this path
exceeds the value cg�sg. This means that the time window [sg,cg]
is not large enough to process the jobs in Gg. We define therefore a
minimum processing time pg

min for group Gg. To obtain the value
of pg

min, we schedule Jg
s as late as possible (i.e. set sg¼LSTg) and

given this start time of Jg
s we schedule Jg

c as early as possible. The
difference between these start and completion times gives pg

min.
The renewable and adjacent resource capacity is not considered,
only timing constraints play a role. Note that pg

min is determined
by some critical path in the AoN network or by the release dates
and deadlines. Only in the first case the minimum processing time
requirement forms an additional constraint.

The above constraints focus on a single group. But there are also
restrictions between different groups. Whenever there is a path in
the AoN network from Jsg to Jch we call group Gg a predecessor of
group Gh, and by Puh � Gwe denote the set of predecessors of group
Gh. Again, if the start of group Gg is chosen large, it might not be
possible to schedule the completion of group Gh at ECTh. This gives
rise to the definition of start-completion time lags tugh between

groups, i.e. sgþtughrch for Gg APuh. As before with the calculation

of pg
min, to calculate tugh, we schedule group Gg to start as late as

possible, and given this start time, we schedule group Gh as early as
possible. The difference between these values gives tugh. (In

particular tugg ¼ pmin
g .) Since we have start-completion time lags,

it is possible that Gg is a predecessor of Gh and simultaneously that
Gh is a predecessor of Gg. This implies that these groups have to be
scheduled in parallel for some duration.

The group assignment problem (GAP) can now be formally
stated as follows: We are given a set G of groups, i.e.

G¼ fG1, . . . ,Gmg, precedence relations among the groups, and an
adjacent resource R. The adjacent resource has a capacity of Q

resource units. Each group Gg AG has to be assigned to qg adjacent

resource units for its entire duration. Group Gg has to start between

ESTg and LSTg, and to complete between ECTg and LCTg with a

duration of at least pg
min. Whenever there is a precedence relation

between two groups Gg and Gh, i.e. Gg APuh, group Gg has to start at

least tugh time units before the completion of Gh. A solution of the GAP

is an assignment of the groups to the adjacent resource units, and a

schedule of the groups that respect the time windows and the

precedence relations.
The following theorem shows that the feasibility of the GAP

and the original problem are equivalent.

Theorem 1. The group assignment problem has a feasible solution if

and only if the TCPSP with adjacent resources has a feasible solution.

Proof. Suppose that the original problem has a feasible solution.
This solution of the TCPSP with adjacent resources specifies the
adjacent resource assignment of the groups and the start times of
the jobs. From the start times of the jobs we can derive the start
and completion times of the groups. By definition, these start and
completion times satisfy all the time restrictions for the groups in
the GAP. So, the GAP has a feasible solution.

Now suppose that the GAP has a feasible solution. From the GAP

solution we have an adjacent resource assignment and start and

completion times of the groups. Since the renewable resources can

be hired, the feasibility of the original problem only depends on the

timing constraints on the jobs. By definition of the time windows of

the groups, their minimum duration, and the time lags it is ensured

that feasible start times of jobs exists, i.e. by scheduling the jobs as

early as possible. &

As mentioned in the previous section, the problem of finding a
feasible solution for the overall problem is already NP-complete.
Since this feasibility is equivalent to the feasibility of the GAP, the
given decomposition has the advantage that the hard feasibility
question is already treated at an early stage.

4.1.1. ILP formulation of the GAP

To find a solution for the GAP we model it as an ILP. For this,
we define the following variables. The variable ag A ½0,Q�qg � gives
the adjacent resource assignment of group Gg, i.e. group Gg is
assigned to the interval ½ag ,agþqg �. Variables sg A ½ESTg ,LSTg � and
cg A ½ECTg ,LCTg � are the start and completion time of group Gg as
before. Finally, binary variables xgh, ygh, zgh are used in the
modeling to avoid overlap in the adjacent resource assignment.

The GAP is represented by the following set of constraints
(directly followed by an explanation):

cg�sg Zpmin
g 8Gg ð1Þ

ch�sg Ztugh 8Gg APuh ð2Þ

Q � ðzghþyghÞZahþqh�ag 8goh ð3Þ

Q � ð1þzgh�yghÞZagþqg�ah 8goh ð4Þ

T � ð1�zghþxghÞZch�sg 8goh ð5Þ

T � ð2�zgh�xghÞZcg�sh 8goh ð6Þ

The constraints (1) and (2) are clear from the definition of pg
min

and tugh. What remains it to ensure that no two groups using a
common adjacent resource unit, overlap in time. It is sufficient to
check this for each index pair (g,h) with goh. Whenever the
groups overlap on the adjacent resource, the right hand sides of
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(3) and (4) are both larger than 0, implying that zgh¼1. If they do
not overlap, at least one of the right hand sides is at most 0. Due to
the free choice for the variable ygh the variable zgh is now
unrestricted. Whenever the groups overlap in time the right hand
sides of (5) and (6) are both larger than 0, implying that zgh¼0.
Again, due to the variable xgh the variable zgh is unrestricted
otherwise. Thus, constraints (3)–(6) ensure that no two groups
have a conflict, since it is impossible for groups Gg and Gh to
overlap in time and on the adjacent resource simultaneously (the
two possibilities lead to different values of zgh).

It is not necessary to restrict the variables sg, cg, and ag to be
integer. If the obtained solution contain a non-integer value for
one of these variables we can round the value down without
violating the constraints, since all input parameters are integers.
No objective function is needed since we are at this stage only
looking for a feasible assignment.

4.1.2. Adding cutting planes

The ILP given by (1)–(6) gives a complete description of the
GAP. By adding additional valid inequalities (cutting planes) we
can reduce the computation time required to solve the ILP. We
propose two types of cutting planes.

For a subset of groups that have a cumulative adjacent
resource requirement more than Q , we know that at least two
group have a resource overlap in any solution. We call such a
subset a resource conflicting set. A minimum resource conflicting set

is a resource conflicting set that does not remain a resource
conflicting set if any of the groups are removed from it. Let S be
such a minimum resource conflicting set. Then we can add the
following constraint to our model:X
Gg ,Gh AS,goh

zghZ1 8S ð7Þ

Similarly we can look at a minimum time conflicting set. When a set
of groups have a cumulative minimum duration larger than T, we
know that at least two groups share time units, and thus not
adjacent resource units. This implies that not all zgh values can
be 1. Let Su be such a minimum time conflicting set. We can add

X
Gg ,Gh ASu,goh

zghr
1

2
jSujðjSuj�1Þ�1 8Su ð8Þ

As we show in Section 5, adding constraints (7) and (8) to the ILP
formulation (1)–(6) can significantly reduce the computational
time needed to solve the GAP.

4.2. Deriving and solving the resulting TCPSP

In this section we treat the problem that remains after assigning
the groups to the adjacent resource. We show how the solution of
the GAP can be incorporated into the AoN network, such that the
group structure and adjacent resource do not have to be considered
anymore when searching for a low cost schedule for the jobs.

A solution of the GAP gives us for each group Gg a start time
(sg) and a completion time (cg), and an adjacent resource
assignment (½ag ,agþqg �). We could impose these start and
completion times of a group on the jobs within that group by
redefining the release dates and deadlines of the jobs, i.e. r j :¼
maxfrj,sgg and dj :¼ minfdj,cgg for all JjAGg . However, this would
unnecessarily restrict the resulting TCPSP, i.e. hiring a lot of
renewable resources might be unavoidable, since these aspects
did not play a role in the GAP. It is sufficient to keep the order in
which two groups Gg and Gh are assigned to the same adjacent
resource unit. Thus, if groups Gg and Gh share an adjacent resource
unit and group Gg completes before group Gh starts (all jobs of
group Gg complete before any job of group Gh starts), we add a
precedence relation from jobs Jg
c to Jh

s . In this way, different
solutions for the resulting TCPSP may result in different start and
completion times of the groups, however, the assignment of the
groups to the adjacent resources remains valid to all these
solutions. Therefore, adding precedence relations restricts the
resulting TCPSP less than imposing the start and completion times
from the GAP solution, and still guarantees feasibility of the
adjacent resource assignment. Note that the release dates and
deadlines of jobs may require adjustment such that they are
consistent with the added precedence relations. The dummy jobs
Jg
s and Jg

c now can be removed from the AoN network. When
removing a dummy job all predecessors of the dummy job
become predecessors of all the successors of the dummy job.

To find a solution of the resulting TCPSP any known method
from the literature can be employed. We employ the method of
Guldemond et al. [1] since it fits the resulting TCPSP best. The
method is designed to deal with hiring of renewable resources and
work in overtime. Since our model does not include working in
overtime, the method boils down to the following two stage
procedure. The first stage of the heuristic constructs schedules by
means of randomized sampling. In this stage many schedules are
constructed by adding jobs one by one into the schedule. Jobs can
only be put into the schedule if all their predecessors have been
scheduled. The selection of the job to be scheduled next is based on
a randomization which is biased to jobs which get close to their
deadline. The second stage consists of a neighborhood search. This
neighborhood search repeatedly removes a small subset of the jobs
from the schedule and reinsert them by means of an ILP solution.
This last technique is based on the work of Palpant et al. [16].
4.3. Objective function

Up to now, we considered just an arbitrary feasible solution
aAFGAP of the GAP. However, if we choose different feasible
solutions of the GAP we obtain different resulting TCPSP’s. The
following example illustrates how different solutions of the GAP
imply different precedence relations in the resulting TCPSP, and
hence different solutions for the original problem.

Consider the example project as given in Section 2.3, but now
with the duration of job J4 reduced to 2, i.e. p4¼2. In Fig. 3 two
different assignments of the adjacent resource together with the
corresponding schedules of the renewable resources are given.
Since a second painting crew has to be hired in time buckets 4 and
5 for Assignment 1 and not for Assignment 2, Assignment 2
results in a better solution of the resulting TCPSP. Therefore, it is a
better solution of the original problem.

This raises the question whether it is possible to predict
somehow the quality of the overall solution by assigning some
quality measure to the assignments within the ILP. The above
example illustrates that it may be beneficial to have long durations
for the groups. An assignment of groups with long durations allows
more flexibility in scheduling the jobs in the resulting TCPSP. One
may expect to find better job schedules when there is more room
for the jobs. To get a GAP solution with long group durations, we
propose the following two objective functions for the GAP.

The first objective function simply maximizes the total
absolute group duration:

ABS :¼ maximize
X

Gg AG
ðcg�sgÞ

The second objective function maximizes the total group duration
relative to the minimum duration of the group:

REL :¼maximize
X

Gg AG

cg�sg

pmin
g

 !



Fig. 3. Example project: two alternative assignments.
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For the assignments given in Fig. 3 both measures have a
preference to Assignment 2, i.e. for Assignment 1 we have
ABS¼6+4+5¼15 and REL¼ 6

6 þ
4
4 þ

5
5¼ 3, and for Assignment 2

we have ABS¼6+6+5¼17 and REL¼ 6
6 þ

6
4 þ

5
5 ¼ 31

2.
One may think of various other objective criteria for assign-

ments. However, our goal is not to investigate many different
objectives, but to see if the objectives influence the overall
outcome and if one objective dominates the other. Therefore, in
next section we study the effect of adding these objective
functions to the GAP on the quality of the solution found for the
original problem.
5. Computational tests

In this section we report on computational experiments for the
presented decomposition approach. The aim of this section is to
show that the presented decomposition approach gives a flexible
approach to handle the TCPSP with adjacent resources. Since no
solution methods for this problem are known and since also the
possible relaxations of the problem (e.g. relaxing the adjacency
constraints of the adjacent resources) do not lead to useful lower
bounds, it is hard to judge the overall quality of the achieved
solutions. However, we show that by using different objective
functions for the GAP we obtain different solutions for the original
problem. The test results show no dominance between the
proposed GAP objective functions.

The computations are performed on a computer with a dual
3.40 GHz processor and 1.00 GB of RAM memory. The ILP’s are
solved with CPLEX version 11.1.
5.1. Generating instances

For the generation of the instances we make use of the project
generator ProGen, described in Kolisch and Sprecher [17,18] and
Kolisch et al. [19], which generates instances for the RCPSP. This
generator uses various parameters to govern the properties of the
precedence network and the resource requirements of the instances
generated. In this work, we do not fully explore all possible parameter
variations but restrict ourself to the parameter values that are
mentioned in Kolisch et al. [19] as leading to instances that are
interesting to study. Further below we mention the precise settings.

The instances of the TCPSP with one one-dimensional adjacent
resource are generated in three steps. To construct an instance,
we first generate a set of groups with their adjacent resource
requirement and the precedence relations among them, and
determine the capacity of the adjacent resource. In the second
step, we generate a set of renewable resources, for each group a
set of jobs with corresponding renewable resource requirements
and precedence relations, and the renewable resource capacities.
In the final step, we convert the precedence relations between
groups into precedence relations between jobs of those groups.
Whenever there is a precedence relation from group Gg to Gh we
add a precedence relation from a randomly selected job from Gg to
a randomly selected job from Gh.

We generate four different sets of instances that vary in the
number of groups and the number of jobs per group. However, for
all instances we let the total number of jobs be equal to 120. This
allows us to somehow compare the computation times. In the
four different sets of instances the number of groups are 8, 10, 12,
and 15 with each group having 15, 12, 10 and 8 jobs, respectively.
For each set of instances we generate 100 instances.

The parameters of ProGen are chosen as follows. The network
complexity (the average number of non-redundant arcs per node) of
the group and job networks is 1.5 with an allowed deviation of 0.3.
Each group requires up to 10 units of the adjacent resource and the
resource strength (a measure of the resource scarceness through a
scaling in the convex combination of the minimum and maximum
resource demand) of the adjacent resource is 0.2. The number of
renewable resources varies between 5 and 10 and each job requires
up to 5 of these resources for processing. The renewable resource
factor (the average portion of resources required per job) is 0.5 and
the renewable resource strength is 0.2. The processing times of the
jobs are drawn uniformly from f1, . . . ,15g. For details on these
measures we refer to Kolisch et al. [19].

In order to transform these instances to instances of the time-
constrained project scheduling problem, we define the cost of
hiring one additional renewable resource unit in one time bucket
to be 1, i.e. ckt¼1 for all k,t. Furthermore, we define the release
date of the project as 0 and derive a deadline that applies to all
jobs. The deadline of an instance is determined in the same way as
projects generated by ProGen have due dates. Let MP denote the
minimum project length, which is defined by the longest path in
the AoN network, and let T be the sum of all processing times. T is
thereby an upper bound on the project length. Now we define the
project deadline as MPþdðT�MPÞ. The scaling parameter d is
called the due date factor. The smaller this value the smaller the
deadline becomes, and as a consequence the resource require-
ments play a more important role. We vary the value of d between
0.05 and 0.20. Varying d while keeping the remaining data fixed,
leads to different instances, which we treat as different versions of
the same instance. Using these general release date and deadline,
release dates and deadlines of the jobs are derived by making
them consistent with the precedence relations.

The parameter values are chosen in this way to achieve
instances that are useful for testing, that is, instances that are not
easy to solve. By varying the due date factor we can move from
sets with many instances having 0 cost solutions (large due date
factor) to sets with many infeasible instances (small due date
factor). Due to the adjacency requirements of the adjacent
resource, there is no guarantee that there exist feasible solutions
for the generated instances. However, infeasibility of an instance
can already be determined after solving the GAP.



Table 2
Solving the GAP: eight groups.

Number of

groups

Due date

factor

GAP

objective

Using

CP1

Using

CP2

Time Number

feasible

Time

feasible

Number

infeasible

Time

infeasible

Number time

exceeded

8 0.05 NO TRUE TRUE 0.01 1 0.02 99 0.01 0

TRUE FALSE 0.01 1 0.02 99 0.01 0

FALSE TRUE 24.07 1 0.00 98 6.20 1

FALSE FALSE 20.95 1 0.09 98 3.00

ABS TRUE TRUE 0.01 1 0.02 99 0.01 0

TRUE FALSE 0.01 1 0.02 99 0.01 0

FALSE TRUE 0.33 1 0.02 99 0.33 0

FALSE FALSE 0.17 1 0.03 99 0.17 0

REL TRUE TRUE 0.01 1 0.02 99 0.01 0

TRUE FALSE 0.00 1 0.02 99 0.00 0

FALSE TRUE 0.16 1 0.02 99 0.16 0

FALSE FALSE 0.23 1 0.02 99 0.23 0

8 0.10 NO TRUE TRUE 25.78 50 0.15 49 15.72 1

TRUE FALSE 26.88 50 0.11 50 53.64 0

FALSE TRUE 317.51 49 48.70 36 65.67 15

FALSE FALSE 271.58 50 1.13 38 144.76 12

ABS TRUE TRUE 0.41 50 0.08 50 0.74 0

TRUE FALSE 0.54 50 0.08 50 1.00 0

FALSE TRUE 3.48 50 1.05 50 5.90 0

FALSE FALSE 3.45 50 0.25 50 6.64 0

REL TRUE TRUE 0.35 50 0.10 50 0.59 0

TRUE FALSE 0.46 50 0.08 50 0.83 0

FALSE TRUE 6.21 50 0.55 50 11.88 0

FALSE FALSE 12.07 50 0.20 50 23.94 0

8 0.15 NO TRUE TRUE 18.32 95 0.33 4 0.01 1

TRUE FALSE 3.63 95 0.05 5 71.60 0

FALSE TRUE 29.26 95 11.85 4 0.02 1

FALSE FALSE 18.51 95 0.54 4 0.01 1

ABS TRUE TRUE 0.07 95 0.06 5 0.33 0

TRUE FALSE 0.08 95 0.06 5 0.48 0

FALSE TRUE 0.55 95 0.33 5 4.82 0

FALSE FALSE 0.35 95 0.13 5 4.52 0

REL TRUE TRUE 0.14 95 0.06 5 1.78 0

TRUE FALSE 0.13 95 0.06 5 1.45 0

FALSE TRUE 0.69 95 0.32 5 7.82 0

FALSE FALSE 2.21 95 0.15 5 41.43 0

8 0.20 NO TRUE TRUE 0.02 99 0.02 1 0.09 0

TRUE FALSE 0.02 99 0.02 1 0.13 0

FALSE TRUE 0.05 99 0.04 1 1.11 0

FALSE FALSE 0.03 99 0.03 1 0.34 0

ABS TRUE TRUE 0.02 99 0.02 1 0.06 0

TRUE FALSE 0.02 99 0.02 1 0.05 0

FALSE TRUE 0.05 99 0.05 1 0.42 0

FALSE FALSE 0.03 99 0.03 1 0.16 0

REL TRUE TRUE 0.02 99 0.02 1 0.06 0

TRUE FALSE 0.02 99 0.02 1 0.05 0

FALSE TRUE 0.06 99 0.06 1 0.58 0

FALSE FALSE 0.03 99 0.03 1 0.11 0
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5.2. Solving the GAP

In the first series of tests we concentrate on the group assignment
problem (GAP) only. For the four sets of instances (100 instances with
8, 10, 12, and 15 groups, respectively), we explore the effect of varying
the due date factor on the number of feasible solutions, and the effect
of using cutting planes in combination with the proposed objective
functions on the computation time.

For each of the 400 instances we solve the GAP 48 times; four
different due date factors, three different objective functions (NO



Table 3
Solving the TCPSP: comparing objectives.

Number of

groups

GAP

objective

Number feasible Average time GAP

(feasible)

Average Time resulting

TCPSP

Average TCPSP objective

value

Average value best found

solution

8 NO 95 0.05 42.42 54.43 37.6

ABS 95 0.05 40.59 57.28

REL 95 0.06 40.92 56.85

10 NO 100 8.30 36.53 56.17 29.99

ABS 100 0.07 35.37 50.21

REL 100 0.08 36.89 43.27

12 NO 100 0.26 34.05 53.79 33.23

ABS 100 0.17 32.51 54.34

REL 100 0.19 33.18 53.41

15 NO 99 (1 time

exceeded)

1.89 30.51 60.04 32.64

ABS 100 0.84 30.67 60.87

REL 100 0.81 30.57 53.65

Table 4
Solving the TCPSP: times best.

8 groups 10 groups

NO ABS REL NO ABS REL

62 58 62 34 47 44

12 groups 15 groups

NO ABS REL NO ABS REL

39 32 44 39 34 37
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meaning without objective, ABS and REL) each with four different
settings of the cutting planes. For these computations we have set
a time limit of 1800 s on the computation time spent on one
instance. Table 2 summarizes the results for the instances with
eight groups per instance. The table displays the number of
feasible and infeasible instances and the number of instances for
which the time limit of 1800 s is exceeded. Additionally, it
contains the average computation time per instance, and, more
specific, also the average computation time for the feasible and
infeasible instances separately.

As mentioned earlier and now demonstrated by the computa-
tional tests, a decrease of the due date factor leads to a growing
fraction of infeasible instances in the set. By increasing the due
date factor from 0.05 to 0.10, the number of feasible instances
grows a lot, but still half of the instances are infeasible in the set
with 8 groups in each instance. Further increasing the due date
factor to 0.15 seems to lead to interesting instances for testing the
resulting TCPSP, i.e. we expect many of the instances to be feasible
but also that hardly any of the instances has a feasible job
schedule that does not hire additional renewable resources.

Regarding the cutting planes we can draw a firm conclusion. It
is best to employ the cutting planes of (7), called CP1, and not the
cutting planes of (8), called CP2. The improvement obtained by
adding CP1 is particularly large for the computation time spent on
the infeasible instances.

We have tested instances with up to 15 groups. The results are
similar to the ones in Table 2. Obviously, the computation time
increases as the number of groups increases. Tests have shown
that the computation time spent becomes large, i.e. the time limit
of 1800 s is exceeded more often, but by tuning CPLEX this can be
dealt with. We point out that for practical applications 15 groups
are already quite a lot. We end this section by a note on the use of
CPLEX.

Note. It is surprising to see that CPLEX 11.1 is able to determine
the feasibility of an instance faster if there is an objective function
in the GAP. CPLEX’s search strategies are influenced by the
objective function.

For a subset of instances that exceed the time limit we have

tested different settings of CPLEX 11.1. For each of these instances

we are able to reduce the required computation time to a fraction

of a second by changing the settings. However, the optimal setting

differs from instance to instance. We use therefore the default

settings for all computations.
5.3. Solving the resulting TCPSP

In the second series of tests we compare the cost of the
resulting TCPSP when different objective function are used in the
GAP. In these tests we use a due date factor of 0.15 and use only
the cutting planes of (7), that is CP1, as motivated in the previous
section. For each of the 100 instances of the four sets, we solve the
GAP and the resulting TCPSP 3 times, once without an objective
for the GAP and next with the two proposed objectives. As a
consequence of the chosen cost for hiring extra renewable
resources, the objective value of the resulting TCPSP equals the
amount of resource units hired in total. Solving the resulting
TCPSP takes on average 35 s and never more than 3 min.

Table 3 displays the results of these tests. Note that only one
instance in the set of 15 groups exceeds the time limit of 1800 s in
the GAP. When we consider the cost of the TCPSP solution, we see
that all GAP objectives result in about the same average values
(second to last column).

To see whether the different GAP solutions found by the three
objectives result in large differences, we can compare them with
the overall best found solution. The rightmost column of Table 3
gives the average values of these best found solution. There is a
significant difference between the average best found solution
and the average solution found by using just one specific GAP
objective. So, the overall solution found heavily depends on the
GAP solution found.

In Table 4 we count the number of times that the best found
solution is due to either the use of no objective, the ABS objective
or the REL objective. The results show that the use of either
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objective is equally good, the number of times they lead to the
best found solution is about the same. So, no choice of objective
function dominates the other.

The above results show that it is hard to predict just on the
basis of the GAP solution, what the objective value of the resulting
TCPSP will be. Therefore, it is worth to generate not only one
solution for the GAP, but also to generate a number of different
GAP solutions by using different objectives, and solve for each of
them the corresponding TCPSP.
6. Concluding remarks

We presented a decomposition approach for the time-
constrained project scheduling Problem with adjacent resources,
which focuses in an early stage on the issue of a feasible
assignment of groups to adjacent resource units. This is important
since the NP-completeness of the feasibility problem forms the
main obstacle to develop fast heuristic solution approaches for
the overall problem. The presented approach detects infeasibility
of an instance of the TCPSP with adjacent resources by solving the
corresponding GAP in the first step. In case an instance is feasible,
the first step gives also a solution for the group assignment and
the order of the groups on the adjacent resources, which can be
extended to an overall feasible solution in the second step. The
test results show no clear dominance among the presented GAP
objective functions. Finding good solutions by one specific
objective remains problematic, but by solving each instance
multiple times with different GAP objective functions, the quality
of the generated schedules improves significantly.

The presented method can easily be extended to include two-
dimensional adjacent resources and multiple adjacent resources,
by modifying the ILP formulation. However, the computational
time required to solve the GAP’s will become a bigger issue.

For future research it would be interesting to see whether
other GAP objectives are more successful. In particular, one might
choose an objective function that is more dependent on the job
characteristics. However, preliminary tests have shown that using
weighted versions of the presented objectives does not improve
the results (the weights of a group corresponds to the renewable
resource requirements of the jobs in that group). Besides
exploring a fixed objective, the presented decomposition can be
the basis of a feedback between the GAP and the resulting TCPSP,
where the outcome of the resulting TCPSP can influence the GAP
objective before resolving. This may lead to a local search
approach, where the weights and the different type of objectives
of the GAP can be used as a solution space. Adapting the weights
can be seen as some sort of intensification phase and the change
of the objective as some sort of diversification phase of the search
process. To make such an approach successful, intelligent ways of
changing the weights based on the outcome of the TCPSP have to
be developed.
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