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A B S T R A C T 

Garcia et al. [1] present a class of column generation (CG) algorithms for nonlinear programs. Its main 
motivation from a theoretical viewpoint is that under some circumstances, finite convergence can be 
achieved, in much the same way as for the classic simplicial decomposition method; the main practical 
motivation is that within the class there are certain nonlinear column generation problems that can 
accelerate the convergence of a solution approach which generates a sequence of feasible points. This 
algorithm can, for example, accelerate simplicial decomposition schemes by making the subproblems 
nonlinear. This paper complements the theoretical study on the asymptotic and finite convergence of 
these methods given in [1] with an experimental study focused on their computational efficiency. 

Three types of numerical experiments are conducted. The first group of test problems has been 
designed to study the parameters involved in these methods. The second group has been designed to 
investigate the role and the computation of the prolongation of the generated columns to the relative 
boundary. The last one has been designed to carry out a more complete investigation of the difference 
in computational efficiency between linear and nonlinear column generation approaches. 

In order to carry out this investigation, we consider two types of test problems: the first one is the 
nonlinear, capacitated single-commodity network flow problem of which several large-scale instances 
with varied degrees of nonlinearity and total capacity are constructed and investigated, and the second 
one is a combined traffic assignment model. 

1. Introduction 

Analyzing and solving combined traffic models for large-scale 
networks of practical interest requires computationally efficient 
solution methods for the following constrained optimization 
problem: 

minimize/(x), 
XEX 

(CDP(f,X)) 

where X s B " is non-empty and convex, and f:Xt-^M is 
continuously differentiable on X. 

The class of simplicial decomposition methods successfully 
solves network equilibrium models formulated as CDP(/,X). At 
present, certain mathematical programming problems with 
equilibrium constraints, such as the capacity enhancement 
problem, the congestion toll pricing problem, the signal setting 
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problem and the origin-destination matrix problem have led to 
the appearance of methods based on sensitivity analysis [2]. These 
new methods should solve many of these CDP(pC) with great 
accuracy. This motivates an interest in accelerating classical 
simplicial decomposition methods, which is the objective of this 
work. For example, [3] analyses new ways of generating columns 
by exploiting the acyclicity of user equilibrium flows. 

We consider here the class of simplicial decomposition methods 
for this problem, as represented by the work in Holloway [4], von 
Hohenbalken [5], Hearn et al. [6,7], Ventura and Hearn [8], Larsson 
et al. [9], Patriksson [10], Rosas et al. [11], Bertsekas and Yu et al. 
[12]. There are two main characteristics of the methods in this class: 
(i) an approximation of the original problem is constructed and 
solved, wherein the original feasible set is replaced by a compact 
subset, which is an inner approximation, and is the so-called restricted 
master problem (RMP); and (ii) this inner approximation is improved 
by generating a new vector (column) in the feasible set through the 
solution of another approximation of the original problem wherein 
the cost function is approximated. This stage is called the column 
generation problem (CGP). 
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Concretely, we consider: 

(1) The column generation problem is characterized by an 
iterative procedure. This iterative procedure is denoted by 
Ak and belongs to a finite collection Kc. The assumptions on 
Ak are associated with an algorithm that operates as a descent 
algorithm on the original problem. In order to rule out the 
uninteresting case that the original problem is solved by 
means of only using the column generation problem an 
infinite number of times starting from a given iterate x eX, we 
presume that the number of iterations performed from x is 
finite. 

(2) The restricted master problem is assumed to be solved by the 
use of an iterative procedure, denoted A^ and belonging to a 
finite collection Kr. It operates on X cX being equal to the 
current inner approximation of X Also this algorithm will be 
presumed to be applied a finite number of times; we can still 
solve any given RMP exactly in this way, by making the proper 
choice of the procedure A$. 

In Table 1, we summarize the different steps of this CG 
algorithm. The algorithm described is conceptual, but important 
algorithms are readily placed in its framework. The concept of the 
CG method was first outlined and established convergent in 
Larsson et al. [13]. Garcia et al. [1] establish the global 
(asymptotic) convergence for the CG algorithm under the above 
assumptions on Ak

c with k belonging to Kc and Ak with k 
belonging to Kr similar to those utilized in the convergence 
analysis in Zangwill [14]. Finite convergence results with respect 
to the optimal face and the optimal solution are established for 
weak sharp minima. 

The CG method offers a different viewpoint of the CGP from 
previous simplicial decomposition methods. There, the CGP is 
seen as an approximation to the original problem which provides 
a new column by means of its (truncated) solution. The approach 
taken in the CG algorithm is to construct profitable columns by 
roughly solving the original problem through the use of a limited 
number of iterations of a convergent algorithm. Now, the 
emphasis is placed on the algorithm used to generate a new 
column, and not on the definition of the approximation 
subproblem. 

Previous simplicial decomposition methods, however, constitute 
instances of the CG algorithm. The classic simplicial decomposition 
method discussed earlier can be described by considering problems 
where X is a polyhedral set, Ak

c describes the Frank-Wolfe algorithm, 
and only one iteration is performed. The nonlinear simplicial 
decomposition (NSD) method of Larsson et al. [9], which is applied 
to the traffic assignment problem (see Sheffi [15], Patriksson [16]) 
can be described as an instance of the CG algorithm where Ak 

realizes one iteration of a truncated Newton algorithm, and in 
which the quadratic subproblems which appear in the Newton 
type algorithm are approximately solved using the Frank-Wolfe 

Table 1 
The conceptual algorithm. 

0. {Initialization): Choose an initial point x° eX, and let t: = 0 

1- (Column generation problem): Choose an algorithm Ak
c', kt e Kz. Apply a 

finite number of iterations on CDP(f,X), starting from x'. Let the resulting 
point be y' 

2. (Termination criterion): If x' e SOL(V/,X) -* Stop. Otherwise, continue 
3. (Set augmentation): Let X t + 1 c X be a non-empty, compact and convex set 

containing [x'.y'] 

4- (Restricted master problem): Choose an algorithm A,', kt e Kr. Apply at least 
one iteration of the algorithm on CDP (f, X1*1), starting from x'. Let the 
resulting point be x t+1 

5. (Update): Let t: = t + 1. Go to Step 1 

algorithm. The RSDCC method of Ventura and Hearn [8] follows 
from letting Ac describe the Topkis-Veinott algorithm, of which only 
one iteration is performed. Daneva et al. [17] provide a Frank-Wolfe 
type method for the stochastic transportation problem, which 
includes a multidimensional search. 

The set augmentation rules applied in the original work 
on simplicial decomposition [4,5], as well as in the later 
developments in Hearn et al. [7] can be used in this framework 
as well. The role played by the extreme points is now assumed by 
the column generated. Since the columns generated by the CG 
algorithm are not necessarily extreme points or even boundary 
points, Larsson et al. [18] propose extending the column 
generated to the (relative) boundary. Under the realization of 
this operation the CG algorithm can be interpreted as a 
(restricted) simplicial decomposition method where the choice 
of columns belonging to the set of extreme points of the feasible 
region is enriched by the inclusion also of other points on the 
boundary. 

While the CG method appears to have traditional, in particular 
primal, sub and master problems, one may derive through the CG 
framework also primal-dual types of methods. Among other 
methods, Larsson et al. [13] derive the Dantzig-Wolfe method in 
linear programming as a CG method, as well as a sequential 
quadratic programming algorithm with a side constrained master 
problem. Daneva et al. [19] similarly derive a sequential linear 
programming type method. 

Table 2 summarizes these rules, which constitute realizations 
of Step 3 in the conceptual algorithm of Table 1. 
(The corresponding necessary initialization step is not included.) 

2.2. Motivations 

Garcia et al. [1 ] have theoretically analyzed the asymptotic and 
finite convergence of the CG algorithm, but this study is not 
sufficient from the viewpoint of applications. This paper is a 
complementary study which computationally addresses impor­
tant questions about the performance of the CG algorithms in 
terms of the elements that define them. 

The following three main aspects of the CG algorithms are 
studied in this paper. 

Performance of the CG algorithms: The SD algorithm alternates 
between the solution of two subproblems, the CGP and the RMP, 
in each iteration. The number of variables of the RMPs grows 
when this algorithm progresses, because in each iteration one 
new extreme point (a new variable) is stored and is usually not 

Table 2 
The set augmentation phase. 

0. (Initialization): choose an initial point x° eX, let t: = 0, T°5 = 0, Pj = {x0}, 
P° = T°s u Pj and X° = conv(P°). Further, let r be a positive integer, and let 
{£',(^0 be a sequence of positive real numbers 

3.1 Column dropping rules): let x' — YT= I ftP>. where m — \Tf\ and pt e V' 
3.1.a (Exact solution of RMP). Discard all elements pf with weight ft — 0 
3.1.b (Truncated solution of RMP). Discard all elements pt satisfying 

V/(x t)T(p i-x t) > £$ > 0 (1) 

3.2 (Extension to the relative boundary ofX): Lety' be the vector generated, and 
let y' be defined by 
y' =x'+My'-x'); €, = max{/|x t-K(y t-x t)eX} (2) 
3.3. (Set augmentation rules): 

3.3.a (Simplicial decomposition scheme). P t + 1 —p'u ty'}. Set 
X t + 1 =conv(P t + 1) 

3.3.b (Restricted simplicial decomposition scheme). If \T'S\ < r, then set 
^ s + 1 = T*s u (/}. a n d 'px+1 = 'P*; otherwise, replace the element of V's with 
minimal weight in the expression of x' wi thy ' to obtain P j + 1 , and let 
P j + 1 ={>?}. Finally, s e t p t + 1 = p j + 1 u p j + 1 andX t + 1 =conv(P t + 1) 



dropped. On the other hand, the CPU time to generate the extreme 
points along the process is constant, and depends only on the size 
and type of the original problem. In the applications considered 
here, for example, this time is less for single-commodity network 
flow problems than for multi-commodity flow problems. The CPU 
time for solving the CGPs is approximately linear in the number of 
iterations but it is nonlinear for solving the RMPs. 

In this paper, we study the concept of the "quality" of the 
columns in a CG algorithm, in particular its role in practice for 
large-scale, structured problems. For example, we will investigate 
the effect of increasing the number of times that Ac is applied 
in the CGP on the convergence of the overall algorithm compared 
to the cost of generating the corresponding columns. 

The role of the prolongation to the relative boundary: As was 
described earlier, the column generation problem in the nonlinear 
SD method of Larsson et al. [9] is a nonlinear approximation of 
the original problem. They observed that rather than retaining the 
subproblem solution vector y{ as the new column, it is always 
an advantage to instead store the vector yc+£(yc-xc) for 
the maximum value of l>\, that is, the prolongation of yc to 
the relative boundary of X in the direction of yt—xt from x{. The 
main motivation for this operation is to obtain the largest feasible 
regions of the RMPs possible, and thus the greatest improvements 
of the solution. The operation is simple in the case where X is 
polyhedral and does not increase the amount of work to solve the 
RMPs because the number of variables is equal in both cases (one 
per column). 

Generalization of the methods of feasible directions: A further 
motivation for this work is to illustrate the potential of improving 
line search based feasible direction methods by means of its use 
within a CG scheme. The descent algorithm is then used as a 
means of generating the columns, that is, by defining instances of 
the mapping Ac- There are two ways to do this: 

• Multidimensional searches: The perhaps most obvious way to 
generalize a line search method in this way is, at a given 
iteration of the CG algorithm, to perform one or more 
iterations of the descent method, after which the resulting 
vector (or, rather its prolongation to the relative boundary) is 
stored as a column in the RMP. In the extreme case where only 
one iteration of the line search method is performed in each 
step results in a methodology in which, essentially, the line 
search in this algorithm is replaced by a multidimensional 
search. The main motivation for this algorithm is that the 
search directions are given a better opportunity to be used 
efficiently, since they are not used only once and discarded but 
instead kept in memory. 

• Generalized PARTAN: In the RSD algorithm, the parameter r 
defines the maximal number of columns retained in the RMP, 
disregarding the current iterate, x{. (With r = 1, RSD reduces to 
the Frank-Wolfe algorithm.) In our more general framework, 
the columns stored are the result of having applied a method 
for the original problem for a given number of iterations, and 
therefore choosing r = 1 may result in much more efficient 
algorithms than the Frank-Wolfe method. The effect of making 
this choice is that after having carried out nc line searches in 
the current CGP, the next iterate is produced via yet another 
line search, but with one end point at the previous iterate. This 
type of method requires no special algorithm for RMPs, 
because only line searches are made, and it brings forward 
natural extensions of the PARTAN technique used previously 
together with the Frank-Wolfe algorithm. 

In this work we have dealt with both extensions. We have 
conducted numerical tests with the classical Frank-Wolfe and 

Evans algorithms as Ac, and a comparison with SD, RSD and NSD 
has been carried out. 

2. Applications 

In this section we describe the test problems and algorithms 
used for their resolution in our numerical experiments. 

2.1. Test problems 

The CG methods have been applied to single-commodity 
network flow problems, and a network equilibrium model with 
combined modes. There are several reasons for our choice of 
applications: 

• The test problems are nonlinear network flow ones, and 
therefore they are amenable to solutions with methods based 
on the linearization of the objective function. The linear 
approximation of single-commodity nonlinear network flow 
problems is a minimal cost network flow problem. The 
linearization of the combined traffic problem separates into a 
number of shortest route calculations in two different net­
works, say A and B, and the computation of the shortest 
combined paths. Over the three optimal paths (the optimal 
path using only A, only B and both networks) the best path is 
chosen, taking into account a cost derived from the equili­
brium formulation by modes of transport and transfer nodes 
between the networks. 

• The main motivation for choosing nonlinear single-commodity 
network flow problems is that it is possible to explicitly 
compute the prolongation of any vector to the relative 
boundary of the feasible set. In our approach this step is 
important in order to produce competitive methods. 

2.1.1. Single-commodity network flow problems [SNFP] 
Consider a directed graph (N, A) with n nodes and m arcs. For 

each node i e jV a scalar s,- is given, where s,- is the strength of the 
source (if positive) or sink (if negative) flow at node i, and for each 
arc (ij) e A a convex and continuously differentiable cost function 
fj : Uh^ U is given. The nonlinear single-commodity network flow 
problem with separable arc cost functions is stated as that to 

minimize/(x) := V^ fijQkj), (SNFP) 
(if) e -A 

subject to 

y ^ Xy- ^2 xji=si> iejV, 
O'l(ij) e A} O'lO'.O s A} 

0 < Xy < Uy, (ij) e A, 

where the real variable x,j is referred to as the flow on the arc (ij) 
and the vector x = (xy)^ e A is referred to as the flow vector. The 
real numbers u,j are the capacities on the arcs (ij). 

We have created three types of test problems. The first and 
second ones were developed using two of the public-domain 
generators: NETGEN, written by Klingman et al. [20], which 
generates linear-cost assignment/transportation/transhipment 
problems having a certain random structure, and GRIDGEN, 
written by Bertsekas [21 ], which constructs random problems 
with an underlying two-dimensional grid with wraparound 
structure. The grid arcs form a skeleton, guaranteeing problem 
feasibility. Additional arcs are added between randomly selected 
nodes. The third type was created by the authors. The topology of 
the graph consists of a complete and bipartite graph of size nxn 



plus two sets of links which connect an origin node with the 
nodes of the first set, and the nodes of the second set with a 
destination node such as is illustrated in Fig. 1. 

The test problems have been entitled NET, GRI and AUT to 
indicate that they have been generated with NETGEN, GRIDGEN 
and the author's own generator, respectively. 

The generators only create the topology of the graphs. We have 
considered nonlinear costs of the following types: 

(V Mxij) = aiJ{xij+0.2biJ{xllcl)l 
(2 ) fijiXij) = aijxfj+bijxfj+CijXij, 

(3 ) fij(Xij) = dijXJj+bijXij, 

(4 ) fij(Xy) = dyXijilogiXij/b^-Cij), 

where ay, by, Cy are parameters. 
Table 3 describes the test problems in more detail. The name of 

the first problem type is encoded using the convention net+-
number+ letter. The number indicates a type of network topology 
and the letters indicate different parameterizations of the 
problem. With problems of type NET1 we have explored different 
cost functions. NET2 problems are those of larger size. NET3a and 
NET4a are ill-conditioned strictly convex quadratic problems as in 
Bertsekas et al. [22]. These problems were created by assigning to 
some of the arcs a much smaller (but nonzero) quadratic cost 
coefficient in comparison with other arcs. 50% of the links have a 
small coefficient of 1 and the other 50% of the coefficients have 

Fig. 1. Topology of the test graph AUT type. 

been generated by means of a uniform distribution on [5,10]. 
When the arc cost functions have this structure, ill-conditioning 
in the traditional sense of unconstrained nonlinear programming 
tends to occur. 

NET3b and NET4b are mixed linear/quadratic cost problems. 
The linear costs have been obtained by means of replacing the 
small quadratic coefficients of the NET3a and NET4a problem 
instances with zero. 

The problems generated with GRIDGEN have two kinds of 
links: the set of links of the grid and a set of random links. The 
cost coefficient of the An grid arcs is MAXCOST. All other arcs have 
cost coefficients selected according to a uniform distribution 
between MINCOST and MAXCOST. Thus, there is an incentive to 
avoid the grid arcs as much as possible in an optimal solution. The 
capacity of the links of the grid is the total demand. This choice 
guarantees the feasibility of the problem. The capacity of the 
random links is generated by a uniformly distributed random 
variable. We have generated two versions of the same problem. 
The first, whose title ends in a, creates the incentive of 
avoiding the grid by means of generating large numbers of 
random links. The grids which end in b, on the other hand, have 
fewer links by which to avoid the grid. This reduces the number of 
paths between the source node and the sink node. 

The third type (AUT) of problems are designed to obtain test 
problems with a large number of links with optimal flows at the 
upper bounds. We have distinguished between the links with the 
beginning or the end at the origin or destination nodes, (the so-
called exterior links) and the rest of the links (the so-called 
interior links). The exterior links have a capacity equal to the total 
demand, causing the maximum flow between the origin node and 
destination to be the sum of all the capacities of the interior links. 
This value, denoted by MAXFLOW, has been considered as a 
parameter in the generation of the graph. We have generated the 
uniform variables X;, and Yy for all i=\ n andj=n+l 2n. The 
capacity of the interior link (ij) is calculated as 

u„ := —;fi — ^ MAXFLOW. 
Z^s = 1 A s Z^k = 1 'ft 

The saturation of the network is monitored by the size of the 
demand in relationship to the parameter MAXFLOW. 

Table 3 
Description of the single-commodity test problems. 

Problem 

NETla 
NETlb 
NETlc 
NET2a 
NET2b 
NET3a 
NET3b 
NET4a 
NET4b 
GRIla 
GRIlb 
GRI2a 
GRI2b 
GRI3a 
GRI3b 

AUT1 
AUT2 
AUT3 

Nodes 

500 
500 
500 

1000 
1000 
200 
200 
400 
400 
100 
100 
100 
100 
100 
100 

42 
102 
102 

Arcs 

2500 
2500 
2500 
5000 
5000 
1300 
1300 
4500 
4500 
3000 
1000 
3000 
1000 
3000 
1000 

440 
2600 
2600 

Func. 

1 
2 
3 
1 
2 
3 
3 
3 
3 
1 
1 
2 
2 
4 
4 

4 
4 
4 

Otj 

[1-lOJ 
[1-50J 
[1-lOJ 
[1-lOJ 
[1-50J 
[5-10] or 1 
[ 5 - l o jo rO 
[5-10] or 1 
[5 -10Jor0 
[1-50J 
[1-lOJ 
1 
1 
1 
1 

1 
1 
1 

bij 

[1-lOJ 
[1-lOJ 
[1-lOJ 
[1000-10000) 
[1-lOJ 
[1-100) 
[1-100) 
[1-100] 
[1-100) 
20 
20 
0.05 
0.05 
1 
1 

2 
2 
0.5 

CS 

50 
25 
50 
[5-25] 
25 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 

1 
1 
1 

Uij 

35 
35 
35 
15 
15 
[100-
[100-
[100-
[100-
[3-5] 
[1-3] 
1 
1 
1 
1 

300) 
300] 
300) 
300] 

MAXFLOW 
425 
2514 
2514 

Demand 

(250 a,250 b,5000 c) 
(250,250,5000) 
(250,250,5000) 
(500,500,5000) 
(500,500,5000) 
(1,1,10000) 
(1,1,10000) 
(1,1,10000) 
(1,1,10000) 
(1,1,100) 
(1,1,100) 
(1,1,6000) 
(1,1,2000) 
(1,1,6000) 
(1,1,2000) 

(1,1,300) 
(1,1,100) 
(1,1,2400) 

a Number of sinks. 
b Number of sources. 
c Total supply. 



Table 4 
Description of the accuracy, parameters and percentage of active bounds at the solution. 

Network 

NETla 
NETlb 
NETlc 
NET2a 
NET2b 
NET3a 
NET3b 
NET4a 
NET4b 

Accuracy 

1 0 - 5 

1 0 - 3 

1 0 - 4 

1 0 - 4 

1 0 - 3 

1 0 - 4 

1 0 - 4 

1 0 - 4 

1 0 - 4 

% links at lower bound 

79.48 
43.04 
55.40 
40.24 
43.48 
71.38 
85.84 
83.69 
93.26 

%lin 

0.40 
0.04 
0.00 
0.04 
0.06 
0.54 
0.77 
0.09 
0.13 

Table 4 presents the relative objective accuracy used in the 
experiments for every network and the percentage of the links 
whose flow are at the bounds for an approximate solution to the 
problem. 

2.2.2. Network equilibrium model with combined modes [TAP-M] 
Fernandez et al. [23] and Garcia and Marin [24] present a 

network equilibrium model with combined trips. We have used 
this model as the second test problem. The main elements are a 
demand model and a transport network. The first one is a nested 
logit model, wherein at the first level the users choose between 
three modes of transport: (a) car, (b) public transport and (c) 
park'n'ride (a combined trip) which implies taking the first part of 
the trip by car, and the second by public transport. At the second 
level of the demand model the users of park'n'ride choose the 
transfer node where they change their mode of transport. 
The transport supply model assumes a road network and a public 
transport network. The users choose the route in each subnetwork 
according to Wardrop's first principle. In this model there is a 
simultaneous equilibrium for the demand, where no user has the 
incentive to unilaterally change the mode of transport or 
the transfer point chosen, and another where no users have the 
unilateral incentive of changing the route used. 

The equilibrium conditions for the assignment is obtained as 
the solution to the following differentiable convex problem: 

minimizeZ(x,g) := ] T ["' Ci(s) ds + ] T G-J (gffl), (TAP - M) 
i e / ' ' 0 ffleW 

subject to 

AB&B = da,, CO 6 W, 

Bahm=gm, coeW, 

a, 

hm > 0, coeW, 

where / is the set of the links of the multimodal network; co = (ij) 
is a pair of demand between an origin i and a destination j ; W is 
the set of all O-D pairs; x,- denotes the flow in the link i e I; hm is 
the flow in the paths connecting O-D pair or, (dm) is the origin-
destination matrix of trips in all alternatives; (gffl) is the number of 
users of the demand co that travel by the considered modes; c,{x,) 
is the unit travel cost in link i e / which is associated with the 
traffic flow vt; G-1 (x) is the inverted demand model (a nested logit 
model); and Affl,Bffl,CJj are incidence matrices. 

The authors do not know of any previous instances of the 
model TAP-M in the literature. For this reason, test problems are 
defined from the basic traffic assignment problems: NgD 
(see Nguyen and Dupuis [25]), Sioux Falls (see LeBlanc et al. 
[26]) and Hull (see Florian [27]). 

Network 

GRIla 
GRIlb 
GRI2a 
GRI2b 
GRI3a 
GRI3b 
AUT1 
AUT2 
AUT3 

Accuracy 

io - 3 

io - 3 

10~2 

IO"2 

IO"2 

i o - 2 

i o - 4 

io - 3 

i o - 5 

% links at lower bound 

80.36 
12.40 
23.36 
23.22 
15.30 
9.42 
0.00 
0.00 
0.00 

% links 

0.90 
1.10 

14.06 
13.30 
39.53 
23.35 
15.26 

0.00 
73.88 

Table 5 
Traffic network models with combined modes. 

Problem 

NgD2 
SiF2 
Hul2 

W\ 

26 
48 
1002 

\I\ 

45 
224 
1678 

\W\ 

4 
528 
142 

# Centroids 

4 
24 
23 

# Demand variables 

20 
3263 
757 

# Variables 

65 
3487 
2435 

Table 6 
Parameters for the test networks. 

Problem name 

NgD2 
SiF2 
Hul2 

A 

2.00 
1.00 
1.00 

Pi 

4.00 
1.20 
1.50 

6a 

1.0 
1.0 
1.0 

o„ 
1.0 
1.0 
1.0 

Tea 

1.0 
1.0 
1.0 

«c, 

1.0 
1.0 
1.0 

ak 

1.0 
1.0 
1.0 

The topology of the network is obtained by duplicating the 
basic network. Two new kinds of links are added. The first one 
joins centroids with their duplications. The direction of the link 
depends on whether it is an origin centroid or a destination 
centroid. The adjacent nodes from the origin centroids are 
the transfer nodes, and links that join these nodes to their 
duplications are added. 

The test problems are small-size networks, data for which are 
given in Table 5. Here, \Af\ is the number of nodes, |/| is the 
number of links and | W\ is the number of origin-destination pairs. 
The number of variables is the sum of the number of demand 
variables plus the number of flow link variables. 

The main motivation for choosing small-size basic networks is 
that the duplications still define large-size networks. The total 
number of variables is approximately six times the number of 
O-D pairs plus twice the number of links in the original network. 

We have duplicated the original demand. The modal split 
depends on the logit parameters and the cost of the journey in 
each alternative. The parameters of the test networks for TAP-M 
are presented in Table 6. We have chosen the parameters of the 
nested logit model, so that the users' choices of route, mode of 
transport and transfer node only depend on the cost of each 
alternative of making a journey. That is, if two alternatives for 
mode of transport, or in route or in used transfer node are 
different, but they have the same cost then they have the same 
disutility for the users. For this reason the parameters 6a, 6b, ak, 
and ac

t are equal to 1. For simplicity, we have assumed that the 
vehicle-occupancy rate is of one person per car, that is Tffl = 1. The 
relevance of the cost in the choice of the mode of transport by the 
users is taken into account by means of the parameters /?1, fi2. We 
have chosen different parameters of /?•,, fi2 for each test network. 

All test problems employ the travel cost formula C;(X;) = 
cf + (Xi/ki)m', where cf is the free-flow travel time on link i, mi>\, 



and kj is the practical capacity for the original links and their 
duplications. The link cost function is c,{/j) = 0 for the new links. 

2.2. CG algorithms implemented 

2.2.1. CGP algorithms implemented 
Table 7 summarizes the algorithms for the CGP that have been 

used in our test problems. We have used the following feasible 
descent methods for Ac-

The column generation problem (CGP) for the NSD class of 
Larsson et al. is defined by means of applying n iterations of a 
descent and closed algorithm A over an auxiliary problem of the 
form 

min ll(y,x), 
y EX 

(CGP(II,X,x)) 

where U(-,x) :Xi-^U is an approximation of / at the point x. 
The combinations of both choices, the algorithm and the 
approximation problem, define the method Ac = (I1,A). In NSD, 
only one iteration of Ac is applied. 

The objective function for TAP-M is of the separable form 
Z{xg) = Kx)+G(g)> then an approximation function may be 
defined by 

nNSD(y,q,x,g) := n(x,y) + G(q). 

For the multi-commodity flow problems considered, quadratic 
CGP problems are favourably solved with truncated versions of 
the Frank-Wolfe or Evans algorithms. The efficiency of these 
algorithms is based on the efficiency to solve their linear 
subproblems. When they are applied to the original problem, 
then the linear subproblem is essentially a shortest path problem, 
wherein all costs are non-negative. (This fact stems from the cost 
on each link being the derivate of the cost function of the link for 
the actual level of service. The link travel cost functions are 
increasing for every link, so its derivate is non-negative.) By the 
non-negativity of the link costs, these subproblems can be solved 
by Dijkstra's algorithm. If these algorithms are applied to 
quadratic subproblems, this property is lost however. 

We have considered a modification of the quadratic subpro­
blem of CGP in order to avoid this disadvantage, which could 
otherwise result in negative cycles occurring. To explain the 
modification in short, we consider a multi-commodity nonlinear 
network problem, and we assume that the objective function is 
separable, that is, of the form f(x): = X)ie//i(

xi). where ft is a 
function of one variable. The quadratic approximation of / at a 
point x is n(y,x)=f(x) + Wf(x)1(y-x) + \/2(y-x)H(x)(y-x) where 
H(x) is a symmetric and positive definite matrix. This function is 
also separable and is expressed as II(y,x) = ^ielni(yi}Xi) where 

Hi (yt ,Xj) =/; (xO +/'; (x;)(y; -xf) +1 /2Ht (x;)(y; -xf)
2, 

where H;(x;) =/";(x;) holds for Newton's method, and H;(x;) = y > 0 
for the gradient projection method. 

We denote by r,{y;,X;) the equation of the tangent straight line 
of the curve U(y;,X;) at a point co for which ft(0) = r,(0,x,) holds. 
We have replaced the approximation U;(y;,X;) with 

nfyuXi) : 
HfyuXi) if y f>w, 
Ti(yi}Xi) otherwise, 

where w is the abscise of the tangent point. This point is given by 

w(xf) = 
2(fi(xi)-f>i(xi)xi-fi(0)) 

Hi(xd +xf 

This function is convex, differentiable and increasing over IR. If 
the symbol ~ is placed over the name of an approximation, it 
indicates that this modification is used. Here, it applies to two 
methods, denoted by NE and GLPE. 

To fully define these algorithms we must state the number of 
iterations performed in each iteration, and we must also choose 
the value of the parameter nf

c. For the algorithms N, GLP, NE and 
GLPE we have used the parameter n\ = \ for every iteration t. 
They lead to CG algorithms belonging to the NSD class. For the 
algorithms FW, E, RSD(f), we have used sequences {n^} defined in 
two ways. The first one takes a fixed value of nc

c = nc > 1 in all 
iterations t, and the second one is defined by an adaptive tool for 
choosing the value of n\ (see Garcia [31]), which has been devised 
to allow the method to choose the best trade-off between 

Table 7 
Algorithms used in CGP. 

Problem 

SNFP 

TAP-M 

A 

RSD(f) 
FW/RSD(1) 
SD/RSD(oo) 
N(n) 

GLP(n) 

FW 
E 

NE 

GLPE 

Algorithm 

Restricted simplicial decomposition 
Frank-Wolfe Algorithm 
Simplicial decomposition method 
Truncated Newton method 

Gradient projection 

Frank-Wolfe Algorithm 
Evans method 
A modified Newton-Evans method 

A modified GLP-Evans method 

Definition 

Hearn et al. [7] 
Frank and Wolfe [28] 
Holloway [4] and von Hohenbalken [5] 
nN(y,x) :=/(x)Ty+(l/2)yTV2/(x)y, 

A •— n iterations of FW 

Goldstein [29] and Levitin and Polyak [30] 
nGLP(y,x) •- Vf(x)Ty+(y/2)yTy,y > 0 

A •— n iterations of FW 

Frank and Wolfe [28] and Garcia [31] 
Evans [32] and Garcia [31 ] 
nNE(y,x) •- nN(y,x) + G(q) 

A •— n iterations of FW 

nGLPE(y,x) •- nGLP(y,x)+G(q) 

A •— n iterations of FW 



the generation of columns of high quality and the resulting 
computational efficiency. 

2.2.2. Description of the RMP 
The second main contribution of the CG algorithms to the 

state-of-the-art in solving the problems considered is the 
generality by which we may define the feasible set of the RMP. 
We have used the set augmentation rule given in Larsson et al. [9] 
to define X\ and which is given in Step 3.2 in Table 2. Note that to 
fully define the set augmentation rule, we must also specify the 
parameter r. 

We have throughout used the projected Newton method of 
Bertsekas [33] to solve the RMPs. This algorithm has a superlinear 
convergence rate, and it is advantageous especially because of the 
simple constraint structure of RMP. 

We have not considered other algorithms because in this phase 
of CG the key is the convergence speed of AT. A sublinear 
convergence rate could make the CG algorithm inefficient, and a 
different algorithm with a superlinear convergence rate would 
have similar behavior, and would perhaps only change the 
amount of time spent in the RMP. 

The truncation of the RMP is monitored by the number of 
iterations (number of projections) used with the algorithm AT; 
this number is denoted by n\. In all iterations we have used the 
same number of iterations, and this number is denoted by nr. 

2.2.3. Notation 
We have introduced the following notation to refer to a 

specific CG algorithm: 

({A^'}f',{Ak
c'}% 

where, at the main iteration t, Ak
c' describes the algorithm used in 

the CGP, n\ is the number of iterations that is performed by using 
the algorithm Ak

c' on this problem, .4^ describes the algorithm 
used in the RMP, n\ is the number of iterations performed on the 
RMP using this method, and r is the parameter used in the RMP. 
We can shorten this notation, because in every test problem only 
one algorithm is used for the RMP, as was remarked above, and 
only one algorithm A\' is used in each experiment. Therefore, the 
title of AT is implicitly defined and the index k't can be omitted. 
The following notation hence is sufficient to specify an algorithm: 

{Actf*. 

2.3. Implementation^ details 

2.3.1. The single-commodity network flow problem [SNFP] 
Table 8 presents the parameter y used in the GLP algorithm for 

each subproblem. This parameter has been calibrated by means of 
performing five trials, and taking the best value. 

The implementation of the projected Newton method of 
Bertsekas [33] to solve the RMP is identical to that used 
by RSDNET of Hearn et al. [34]. This algorithm includes an 
Armijo-type line search and two parameters a and p. We have 
used the values of 1.0D-4 and 0.5, respectively, which are 
adequate in most applied problems (see Bertsekas [33]). The 
number of iterations n\ has been variable in the computational 
experiments, but this number is fixed in all the iterations of the 
same experiment. 

All codes were compiled in FORTRAN and run on a PC with 64 
megabytes of RAM and a 200 MHz CPU. All computations are done 
in double precision. All the considered algorithms use as a 
subroutine the RSD algorithm. We have used the code RSDNET of 
Hearn et al. [34] to implement this method. This code uses a 

Table 8 
Values of the parameter y used in every problem. 

Network 

NETla 
NETlb 
NETlc 
NET2a 
NET2b 
NET3a 
NET3b 
NET4a 
NET4b 
GRIla 
GRIlb 
GRI2a 
GRI2b 
GRI3a 
GRI3b 
AUT1 
AUT2 
AUT3 

y 

3 
75 
10 

2000 
50 
50 
15 
50 
25 

100 
50 

100 
25 

100 
25 
75 
50 

200 

primal simplex algorithm for networks, the NETFLO code, which is 
implemented as in Kennington and Helgason [35] to solve the 
linear minimum cost flow problem. 

2.3.2. The combined traffic assignment problem [TAP-M] 
The adaptation of the Frank-Wolfe and Evans algorithms for 

TAP-M is given in Garcia and Marin [31,36]. We have used the 
algorithm L2QUE of Gallo and Pallotino [37] to solve the 
minimum path problem in order to obtain the direction search. 
A main iteration of these algorithms is completed by means of the 
solution to a one-dimensional minimization problem, which 
determines the optimal step size that minimizes the value of 
the objective function, given the current solution and the descent 
direction obtained in the CGP. The unidimensional search is made 
by using the Golden Section Method. 

The same Frank-Wolfe subroutine is used in order to generate 
the column in the CGP, and as a truncated solver for the quadratic 
approximation of the Newton method. 

The RMPs for TAP-M are also solved by the projected Newton 
method of Bertsekas [33]. This algorithm has been coded as for 
the SNFP. 

Program sources are written in the FORTRAN Visual Work­
bench programming language and double precision has been 
employed in the representation and in all the operations where 
roundoff error might arise or when accuracy is important for 
algorithm behavior. Whenever roundoff errors might not affect 
performance, single precision is employed. For example, single 
precision is used in the shortest path tree computations. Double 
precision is employed in operations involved in the master 
problem resolution, because projections are very sensitive to 
roundoff errors. The codes are run on a PC with 384 megabytes of 
RAM and 400 MHz. 

3. Numerical experiments 

We have designed three computational experiments to 
investigate the behavior of the CG algorithms. The first one has 
the objective of studying the influence of some factors on the 
performance of CG algorithms. The second one has the objective 
of studying the relevance of prolonging the columns obtained in 
the CGP to the relative boundary. The last experiment is designed 
to compare the new CG algorithms with classic ones. 
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Fig. 2. Number of main iterations of CG algorithm and number of extreme points versus nc. 

3.1. A study of some factors determining the performance of CG 
algorithms 

Experiment 1—A study of the quality of the columns versus the 
performance ofCG algorithms: The CG algorithms have two means 
of improving the quality of the columns generated in an CGP. The 
first is by means of increasing the number of times that the 
algorithm Ac is applied to CGP, that is, increasing the number nc, 
and the second is by choosing a more efficient algorithm to 
represent Ac-

In our first experiment, we solve the network GRIlb with the 
algorithms RSD (f )£,'"' for several combinations of the parameters 
nc and f. The value of nr is here fixed to 10. We have considered 
the following CGP algorithms: Frank-Wolfe (f = 1), RSD (f = 2 and 
f = 5) and SD (f = oo), as procedures to generate the columns. 

Fig. 2 shows the number of main iterations and the total number 
of extreme points generated by the CG algorithm as a function of the 
number of iterations done in the CGP for GRIlb. Note that the 
number of extreme points generated by the CG algorithm is 
computed as the number of main iterations multiplied by nc. 

The conclusion drawn from this experiment is that if the quality 
of the columns is improved by means of increasing the value of the 
parameter nc or by choosing a better algorithm Ac (in our example 
this is obtained by increasing the value of f), then the number of 
RMPs and CGPs required to obtain a given accuracy is reduced. On 
the other hand, the computational cost in the CGP is increased or 
decreased according to the trade-off between a reduction of the 
number of CGP and an increase of the total number of inner 
iterations (that is nc) to obtain the column (compare in Fig. 2 the 
values of f = 5 and oo with respect to f = 1 and 2). 

Our experiment has the objective of evaluating the effect of the 
quality of the columns on the CPU time of a CG algorithm. An 
improvement in the quality of the columns always reduces the CPU 
time spent in the RMPs because a smaller number of RMPs is carried 
out, and they also have fewer variables, since in general the number 
of variables of the RMP is augmented by one in each iteration. 
Furthermore, the CPU time spent in the CGPs is proportional to the 
total number of iterations carried out by using the CG algorithm 

multiplied by the CPU time for the generation of one column.1 An 
improvement in the quality of the columns reduces the number of 
iterations of the CG algorithm but it increases the CPU time spent in 
performing each iteration. This may indicate that an improvement of 
the quality of the columns could reduce the CPU time spent in CGP, 
but this it is not guaranteed. 

The CPU time of a CG method is the sum of the CPU time for 
solving the CGPs plus the CPU time for solving the RMPs. The first 
is roughly proportional to the number of iterations of the CG 
algorithm, but the second is proportional to the square of the 
number of main iterations. For this reason, a small increase 
in the quality of the columns will reduce the overall 
computational cost, especially for problems with high dimension, 
dimF*, of the optimal face, and which require greater accuracy, 
but if this increment is too large, the total CPU time 
begins to grow, because the CPU time for solving the CGPs 
increases and it is not compensated by the saving of CPU time 
in the RMPs. 

The experiment consists of solving the test networks NETla, 
and AUT1 using the algorithm RSD (f )£,'"' for several values of the 
parameters nc and f, and computing the total CPU time spent. The 
values of the parameter nr used for each network are 8 and 15, 
respectively. 

Fig. 3 shows the results obtained. The behavior of the CG 
algorithm agrees with the above discussion. The range of the 
optimal values for the parameter nc is in the interval [5-10]. This 
illustrates the potential improvement of the CG class over the 
original simplicial decomposition method (which corresponds to 
nc = 1, and which is too slow to even be included in the figure). 

In the NETla example (the picture to the left) we can observe 
that the best algorithm to use in the CGP is always defined by 
the choice of f = 1, that is, the Frank-Wolfe algorithm, while in 
the AUT1 example (the picture to the right) the best choice 
corresponds to f = oo, that is, the simplicial decomposition 

1 Assuming that the value of n\ is constant the complexity of each iteration of 
A algorithm is approximately the same throughout the procedure. 
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Fig. 3. Algorithm RSD(f)5/"c applied to NETla and AUT1. CPU time versus value of nc. 

algorithm. (For NETla, an algorithm such as RSD(r) with f > 1 is 
always worse.) This perhaps surprising result is explained by the 
fact that while the columns generated by the algorithm RSD(P) 
have a better quality then the columns produced by the Frank-
Wolfe algorithm, the quality is not good enough to significantly 
reduce the number of main iterations of the CG algorithm. As the 
mean CPU time used in one iteration of the Frank-Wolfe 
algorithm is less than that of RSD(f), this implies that the total 
CPU time is also lower. For AUT1, this trade-off is, however, 
reversed. 

The dimension of the optimal face of AUT1 is dimF* = 399, while 
for NETla it is not possible to compute exactly. (The dimension of 
the optimal face is upper bounded by the number of links with a 
positive flow, that is, by 513. Moreover, all feasible solutions have at 
least 250 links with a positive flow, thus dimF* is upper bounded by 
263.) The linear terms of NETla dominate the nonlinear terms; for 
this reason the linear approximation of the objective functions is 
very accurate. On the other hand, AUT1 is significantly nonlinear at 
the optimal solution. This explains why for NETla it is optimal to 
generate the columns using the Frank-Wolfe algorithm but that this 
is not so for AUT1. 

We have carried out additional tests where we initialize the 
RMPs of the algorithm RSD(f) with the extreme points retained in 
the previous CGP. This is, however, a bad choice compared with an 
empty set of extreme points as the initialization for this test 
problem. This type of initialization could, however, be of interest 
when the computational cost to obtain the extreme points is 
much higher. 

Experiment 2—A study of the effect of accuracy required on the 
performance of CG algorithms: According to the arguments 
given earlier nonlinear versions of the CG algorithm should 
be better than an (R)SD algorithm for finding highly 
accurate solutions. In this experimented we investigate this issue 
numerically. 

This experiment consists of solving SiF2 with the algorithms 
E?""c for the relative accuracies of 1.0D+00,1.0D-01,1.0D-02,1.0D-
03.1.0D-04 and several combinations of nc and nr. There exist 
interactions between the parameter nc and the parameters nr and r 
used in the RMPs. Computationally, it is very intensive to study all 
combinations. We have therefore considered three small and three 
large values of the parameter nc (2, 3, and 4, and 10, 20, and 30, 

respectively). We have chosen r = oo as being the best choice and 
we have dealt with two values of the parameter nr. The first one 
is nr = 100, which means that the RMP is solved almost exactly, 
and the other one is nr = 10, which is (in general) much less 
accurate. 

When applied to the combined traffic model TAP-M, a natural 
improvement over SD is to replace its linear CGP by an only partially 
linearized subproblem, as in Evans' algorithm. We denote this choice 
by E""1. We have compared the algorithm E""1 with algorithms for 
which nc > 1 by means of the CPU time ratio 

n r . l 

CPU time ratio = 
CPU time spent by E" 
CPU spent time by E""' 

as a function of nc and the level of accuracy of the solution of 
CDP(pC). This rate measures the relative improvement of a CG 
scheme with respect to a modification of the original scheme of SD. 

Fig. 4 displays the results obtained from this experiment. 
It is shown that the optimal quality of the columns generated 
depends on the accuracy that we wish to achieve. For a low 
(respectively, high) degree of accuracy a small (respectively, 
large) value of nc is advisable. These results confirm that the 
original scheme jj'1 is improved when the demanded accuracy is 
higher. 

Experiment 3—A study of the RMPs on the efficiency of the CG 
algorithm: The parameters nr and r determine the number of 
main iterations of the CG algorithm and the complexity of the 
RMPs, respectively. The value of nr monitors the accuracy of the 
RMPs and r their sizes. With smaller values of r the total 
number of RMPs is larger, but they are easily solvable, 
and the relative importance of the parameter nr is small. On the 
other hand, when r is larger the number of iterations of 
the CG method is decreased, but the computational time spent 
on each RMP is larger. Our next experiment investigates this 
trade-off. 

Experiment 1 shows that the CG methods with nc > 1 solve 
less RMPs which hence have less variables than those in the (R)SD 
method. A consequence of this is that it may not be necessary to 
introduce a strategy to keep the size of the RMP in such CG 
methods small. To investigate this reasonable assumption we 
have considered the evolution of the CPU time spent for the 
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algorithms FW""1 (which is the original RSD) and FW,!0,nc as a 3.2. On the prolongation to the relative boundary 
function of the parameter r. This experiment consists of solving 
the test problem Hul2 for a relative accuracy of 1.0D-03 by means 
of these algorithms and for several values of nc, nr and r. In the 
FW""1 algorithm, we have used three (eight) values of nr (r), and 
correspondingly, three (eight) values of nc (r) in the FW,!0,nc 

algorithm. 
The results of this experiment are shown in Fig. 5. The conclusion 

of this experiment is that the best choice for this example is, not 
surprisingly, r = oo (a simplicial decomposition scheme) for high 
quality columns (the picture on the right). On the other hand, the 
algorithm FW""1 is sensitive to the parameters r and nr. In this case 
the better performance is achieved for a finite value of the parameter 
r (a restricted simplicial decomposition method). Moreover, the 
performance of the RSD algorithm depends largely on the accuracy 
of the RMPs, that is, on the value of nr. 

This subsection deals with the role of the prolongation to the 
relative boundary given in (2) played in the performance of the CG 
algorithm. 

Experience with the RSD method has shown that it initially 
makes rapid progress, quickly reaching a near-optimal solution, 
especially when relatively large values of r are used and when 
second-order methods are used for the solution of the RMP; 
experience also shows that it slows down close to an optimal 
solution. 

If r > dim F* +1 , where F* is the optimal face, then the number 
of RMP is finite, and the local rate of convergence is governed by 
the local convergence rate of the method chosen for the solution 
of the RMP; thus, a superlinear or quadratic convergence rate 
may be attained. If r<dimF* + l, then the algorithm is only 



asymptotically convergent, and the rate of convergence is the 
same as that of the Frank-Wolfe algorithm, that is, the conver­
gence rate is sublinear. In this work we formulate the following 
conjecture based on experimental results: 

If one does not prolong the columns to the relative boundary, then 
the convergence rate of the CG algorithm is governed by that of 
the algorithm used in CGP Ac- Otherwise, and if r> dim(F*) + l, 
then the convergence rate is governed by that of the algorithm AT. 

This result generalizes that for RSD to the more general CG 
algorithm. It postulates that it is also true for the CG algorithm 
under a new assumption: the realization of the prolongation of 
the columns to the relative boundary. When RSD is used the 
columns are extreme points and the prolongation is therefore 
unnecessary. 

A main difference between SNFP and TAP-M is that for the 
single-commodity flow problem SNFP it is possible to easily 
compute the prolongation based on the flow vector of the column. 
The TAP-M problem is a multi-commodity flow problem, where 
this is more complicated; the reason is that the columns stored 
are aggregated (that is, stored in terms of the total link flows), 
whereas the prolongation must be calculated taking disaggre­
gated, commodity link flow, information into account. More 
comments on the latter is made below. 

We have carried out two numerical experiments. Experiment 4 
is designed to show the role of the prolongation to the relative 
boundary in the performance of the CG methods. Experiment 5 is 
designed to numerically compute the speed of convergence of CG 
methods. 

Experiment 4—On the effect of a prolongation to the relative 
boundary: This experiment consists of solving NET2b with the 
algorithms FW, N™'1, GLP™'1 and FW™'10 with and without a 
prolongation of the columns to the relative boundary. The 
quadratic subproblems of NSD have been solved using 10 
iterations of the Frank-Wolfe algorithm in both trials. 

The computational results are shown in Fig. 6. The efficiency of 
the algorithms N™'1 and FW™'10 are dramatically reduced when 
the columns generated are not prolonged to the relative 
boundary. Moreover, the convergence speed of FW™'10 and N™'1 

algorithms then are to that of the Frank-Wolfe algorithm. The 
method GLP™'1 has similar behavior in both approaches. 
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We have observed that if we do not prolong the columns to the 
relative boundary, then an integer x exists, so that 

x'=y'^ fora l l t>T. 

For the case of the NSD algorithm where the CGP is based on a 
quadratic approximation (that is, a method similar to N™'1), this 
was also observed by Larsson et al. [9]. This means that eventually 
the RMPs in fact reduce to line searches, and the CG method here 
reduces to a pure Newton method. An interesting conclusion is 
that by prolonging the columns to the relative boundary, the 
RMPs become non-trivial, with the result of an improvement over 
Newton's method which can be quite substantial. 

We provide a formula for this computation when X is a closed 
and convex, and a feasible descent direction method, Ac, is used 
for the CGP. Within this algorithm we assume that the line search 
has the form 

min f(Xx+(\—X)p), 
Xe[Q,X\ 

where x is the current iteration point and p is an extreme point of 
X. Then, the prolongation to the relative boundary of the resulting 
vector is given by 

lf-
1 

i-nH,V 
(3) 

where X{ for i=\ n(
c are the step lengths provided by the line 

searches at iteration t in CGP. 
Experiment 5—Speed of convergence of the CG methods: The 

following experiment is designed to evaluate the speed of 
convergence of CG methods with and without using a prolonga­
tion of the columns to the relative boundary. First, we have 
computed a solution to the problem Hul2 with a relative objective 
accuracy of 5.8 x 1CT6. This solution is denoted by x. We have 
then calculated the sequence 

fAbsErrt:=f(xc)-f(x), 

which is an estimation of the absolute error of the objective 
function. 

We have solved Hul2 with the methods FW™'5 and E™5, with 
and without prolongation to the relative boundary of the columns 
generated. We have computed a fit of the sequences fAbsErrt of 
the type fAbsErrt = a/r^, and the results are presented in Table 9. 
We have estimated the parameters a and p by using the least 
square method. The goodness-of-fit has been evaluated by means 
of R2, a coefficient of determination, that gives the proportion of 
the variance of fAbsErr explained by the regression. (These values 
are very close to 1.) 

The main conclusion is that if the prolongation is not used then 
the rate of convergence of the methods is similar to that of the 
algorithm used in CGP. That is, FW™5 is similar to performing five 
iterations of the Frank-Wolfe algorithm, and E™5 to performing 
five iterations of Evans' algorithm. Note that if the prolongation is 
used p > 1, otherwise p < 1. 

Table 9 
Fit fAbsErrt — a/tl1 of methods. 

Algorithm 

FVy-up 

El0 , 5 

FW 
E 

With prolongation 

a 

2799.83 

2726.18 

2271.94 
3746.75 

P 

1.7468 

2.1362 

0.5469 
0.8718 

J?2 

0.9676 

0.9978 

0.9914 
0.9943 

Without 

a 

2013.24 

886.305 

>rolongation 

P 

0.7112 

0.8622 

J?2 

0.985 

0.9971 



3.3. Further comparisons between CG methods 

We can say that the class of CG algorithms generalizes 
methods of feasible descent directions by means of their use in 
CGP, and obtain them from a CG method by choosing r = 1 and 
nc = 1. We have investigated three ways to improve feasible 
direction methods by using its algorithm description Ac within a 
CG method: 

I: Generalized PARIAN (n c> 2 and r = 1). This extension 
consists of making nc line searches within the algorithm Ac, 
thus making a new line search on the direction defined by the 
column and the current iterates of RMP. These methods are 
new except for the case nc = 2, which includes the method of 
parallel tangents (PARTAN) credited to Shah et al. [38]. 

II: Multidimensional searches (nc = 1 and r > 2 ) . The choice 
of nc = 1 and r > 2 is a means to generalize line search 
methods to multidimensional searches on simplices (when 
RMP is solved exactly). Examples of these are the NSD 
algorithms of Larsson et al. [9]. 

Ill: Multidimensional searches (nc > 2 and r > 2 ) . This type of 
algorithm is new, and could be said to properly define the 
class of CG algorithms. 

This experiment has been designed to compare some 
algorithms of feasible directions with their extensions of type I, 
II, and III. To this end we have solved the SNFP and TAP-M 
problems using the algorithms presented in Table 10. Some of 
these methods have lower bounds available for the optimal value 
of the problem. Differences exist between their quality. To 
eliminate this factor in the measure of the performance of the 
methods we use the same lower bound for all of them. The 

Table 10 
Algorithms. 

Type 

I 

II 

III 

A 

SNFP 

FW?/"' 

SD, N^.GLP^ 1 

F W « 

N, GLP, 

TAP-M 

FWf1"', E^-n' 

FW^.E^.NK'1 

FWJ'"1, E '̂"1 

FW, E NE 

Table 11 
CPU times for the SNFP problems. 

Network 

NETla 
NETlb 
NETlc 
NET2a 
NET2b 
NET3a 
NET3b 
NET4a 
NET4b 

Network 

SD 

260.9" 
2056.3 
4686.1 
> 11000 
> 44 000 
6407.9 
665.9 
>17110 
> 15550 

FW?/"' 

20.2 
585.8 
544.1 

1106.8 
1685.5 

136.5 
21.6 

471.7 
154.6 

FW?5'"' 

N 

7.5 
607.1 

= 
4003.7 
2360.4 

= 
= 
= 
= 

N 

GRI2a 227.1 266.2 
GRI2b 93.7 116.2 
GRI3a 76.6 43^0 
AUT1 29.8 24.9 
AUT2 45^0 92.3 
AUT3 31.9 18.7 

accuracy used for the SNFP problems are presented in Table 4; 
two degrees of accuracy (10~3 and 10~4) for the TAP-M problems 
have been used. 

We have always used nr = 8 projections to solve the RMPs for 
the problems of the NET type, and nr = 25 for the other types of 
SNFP problems. We have used the adaptive tool developed in 
Garzia [31] to dynamically choose the parameter nc and n for all 
the algorithms used in SNFP problems. On the other hand, we 
have used a fixed value of nc for TAP-M problems. We have used 
the value of nc = 15 for Sif2 and the value of nc = 5 for the 
problems: Hul2 and NgD2. We have here always used nr = 10. 
The quadratic subproblems that appear in NE^' and NE were 
solved by means of the Frank-Wolfe algorithm and the number of 
iterations was then equal to nc. 

The results obtained for SNFP problems are presented in 
Table 11 and those for the TAP-M problems in Table 12. Table 11 
shows the CPU times. Table 12 presents in the first block the 
method of feasible directions and in the second one their 
generalizations to searches on simplices. The report for this 
experiment consists of the CPU times. 

We analyze below the results derived from Tables 11 and 12. 

I: It is not really possible to compare the "crude" FW algorithm 
with its extensions FW '̂"C or FWJ""C because the CPU time 
spent by FW to solve the test problems is prohibitive. If we 
compare the latter two with the SD methods for NET-SNFP 
problems and with the RSD method FW]°o for the TAP-M 
problems, then the harmonic mean of the ratios between CPU 
times is 17.2 and 1.5, respectively. 
On the other hand, it is possible to compare the algorithm 
E"r,"c with its original algorithm E. The harmonic mean of the 
ratios of CPU times is 3.4 for the accuracy 10~3 and 5.6 for the 
accuracy 10~4. Note that E"r,"c also improves upon the 
simplicial decomposition with Evans' subproblems, that is, 
the method E] ̂ . This mean rate of improvement is 1.9 for the 
accuracy 10~3 and 1.2 for the accuracy 10~4. The SD method 
is satisfactory for small or medium accuracy, but highly 
computationally intensive when a large accuracy is 
demanded. The CG methods are much better here to reach 
high accuracies. 

II: We have computed the harmonic mean of the ratios between 
the unidimensional methods and their NSD extension. We 

GLP 

33.6 
1624.6 
663.0 

1434.3 
3552.3 

264.0 
103.0 
922.6 

1442.6 

GLP 

1604.8 
256.6 
263.7 

22.9 
47.1 
24.3 

F W « 

18.7 
37.1 
31.6 
92.5 
93.4 
21.2 
13.3 
98.5 
81.6 

FW^"-

102.6 
37.2 
59.7 
12.8 
59.5 
33.3 

N^"' 

10.5 
56.4 

= 
80.5 
207.6 

= 
= 
= 
= 

NL5 '"' 

126.2 
62.8 

297.9 
6.8 

81.8 
20.3 

GLP^"' 

20.2 
104.2 
45.2 

111.9 
293.5 

24.9 
52.9 

110.5 
918.7 

GLP?5'"' 

94.6 
35.4 
1668.0 
6.6 
71.3 
27.5 



Table 12 
CPU times for the TAP-M problems. 

Accuracy 

10 3 

10 4 

Problem 

NgD2 
SiF2 
Hul2 

NgD2 
SiF2 
Hul2 

FW 

3.62° 
>72.5 
89.2 

144.56 
? 
? 

E 

1.37 
49.8 
16.6 

39.32 
394.9 
639.1 

NE 

0.33 
310.3 
20.9 

15.22 
? 
990.3 

FW!°-"= 

0.60 
313.1 
22.5 

24.44 
> 2346.5 
1291.2 

cl0,nc 

0.28 

11.3 

8.6 

6.59 

48.5 

185.5 

FW10-1 

r v v 100 

0.33 
> 1616.9 
44.1 

0.60 
? 
> 30000 

n100 

0.22 
56.2 
16.8 

1.04 
222.3 
423.4 

NEL 0 ' 1 

0.11 

34.9 

10.2 

0.55 

1682.7 

67.8 

FW™-"= 

0.22 

13.4 

10.1 

0.77 

942 .6 

67.3 

El0'"1 

0.11 
11.7 
6.2 

0.72 
18.9 
25.9 

have dealt with the algorithms N and GLP for the SNFP 
problems and NE for the TAP-M problems. These values for 
the type NET are 5.6 and 6.4 for N and GLP, respectively, and 
1.1 and 1.8 for the GRID-AUT problems. 
Within these classes of problems there exist networks where 
the multidimensional searches do not improve the method of 
feasible directions. This is due to two factors. The first one is 
that these examples have a solution with a great number of 
active bounds, see Table 4, which make the expansion of the 
simplex inefficient. The second factor is that the RMPs should 
be solved more exactly. 
The algorithm NE is improved around a mean value of a factor 
3.8 for the accuracy 10~3 and around 20.35 for the accuracy 
o f l O - 4 

We conclude that CG methods improve upon the unidimen-
sional search methods. Moreover, this improvement is larger 
for larger accuracies demanded. 

Ill: The algorithms of type III, FW^"s FW^'"C, and E^'"c have a 
quite satisfactory computational behavior for the NET and 
TAP-M problems. Table 11 presents that the speed-up over 
the SD algorithm is improved by the FW^"c algorithm by a 
mean factor of 113.2 for the NET problems. This factor is 10.3 
for the TAP-M problems. If we compare FWJQQ (restricted 
simplicial decomposition) with E^"c we obtain that this factor 
is 24.9. (In fact, we should compare the E^"c algorithm with 
Elob1 and this factor is 4.3.) 
We have also seen that the algorithms of type III generate the 
best lower bounds throughout the process. 

depends on the accuracy demanded by the solution and the 
characteristics of dimF*. 

The computational experiments have also established the 
crucial role of the prolongation of the columns generated to the 
relative boundary. In the case that this prolongation is not used, 
the speed of convergence is monitored by the algorithm used in 
the CGP. 

We stress finally that in the CG methods tested, with the 
exception of the column prolongation, the computations per­
formed are of the same type as in the (R)SD methods, namely, 
linear network flow problems and multidimensional searches 
over simplices. The fact that the well-studied (R)SD methods can 
be substantially improved within the same framework of 
algorithms suggests, in our opinion, that "unorthodox" column 
generation methods such as the ones investigated here should be 
studied further. 
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