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Abstract

In this paper we deal with the Critical Node Problem (CNP), i.e.,
the problem of searching for a given number K of nodes in a graph G,
whose removal minimizes the (weighted or unweighted) number of con-
nections between pairs of nodes in the residual graph. In particular, we
study the case where the physical network represented by graph G has
a hierarchical organization, so that G is a tree. The NP-completeness
of this problem for general graphs has been already established (Arul-
selvan et al.). We study the subclass of CNP over trees, generalizing
the objective function and constraints to take into account general
nonnegative “costs” of node connections and “weights” for the nodes
that are to be removed. We prove that CNP over trees is still NP-
complete when general connection costs are specified, while the cases
where all connections have unit cost are solvable in polynomial time
by dynamic programming approaches. For the case with nonnega-
tive connection costs and unit node weights we propose an enumera-
tion scheme whose time complexity is within a polynomial factor from
O(1.618034n). Results from computational experiments are reported
for all the proposed algorithms.

Keywords: Complexity, Critical Node Problem, Multicut in Trees, Dynamic
Programming
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1 Introduction

Given an undirected graph G(V,E) with n nodes V = {1, 2, . . . , n}, the
Critical Node Problem (CNP) calls for removing from G a subset of nodes
S ⊆ V in order to minimize some connectivity measure in the subgraph
G[V − S] induced by V − S, while a constraint on the size or “weight” of
S has to be enforced. In a possible — and fairly general — formulation, a
nonnegative connection cost cij is specified for each pair of distinct nodes
i, j ∈ V , a weight wj ≥ 0 for each j ∈ V and a bound K are given. Two
nodes i, j are connected if a path exists between them. The optimal solution
is required to

minimize f(S) =
∑

{cij : i, j are connected in G[V − S]}
subject to

∑

j∈S
wj ≤ K.

The problem has attracted some attention in recent years; especially the
case where cij = 1 for all i 6= j, wj = 1 for all j ∈ V has been tackled
in the literature. In such a case the problem amounts to removing at most
K ≤ n nodes, minimizing the number of pairs connected in the residual
graph. Applications of CNP considered in the literature include: fragmenta-
tion of terrorist networks, where a fixed number of persons has to be identified
in such a way that their removal will result in the minimum communication
between the remaining individuals (see [8]); network immunization, where
a graph representing contacts between people is given, only a given maxi-
mum number of persons can be vaccinated, and we aim at minimizing the
propagation of the virus (see [4, 9]); transportation networks, where identi-
fying critical nodes, i.e., nodes whose failure would highly compromise the
efficiency of the transportation, is quite important for a correct allocation of
the resources (see [6]); telecommunication networks, when we want to pre-
vent the spread of a virus or find some way to reduce as much as possible
the communication within the network (see [5]).

Among recent works about the subject we mention that of Borgatti (see
[2]), where different measures of fragmentation within a network, including
the one employed in CNP, are introduced and a greedy heuristic is proposed,
and the work by Arulselvan et al. (see [1]). In the latter work a detailed
computational study is presented, including an Integer Linear Programming
model and a heuristic algorithm for the case with all unit weights and all
unit costs. Also, the NP-completeness of CNP on general graphs is proved.
The proposed model is a binary linear programming problem with O(|V |2)
variables and O(|V |3) constraints. The recognition version of CNP with
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unit connection costs and node weights is proved to be an NP-complete
problem through a reduction from the maximum independent set problem.
Finally, the proposed heuristic performs a greedy construction starting from
an independent set of nodes, followed by a refinement phase based on local
search. The results and computation times of the heuristic are compared
with those obtained by CPLEX applied to the proposed mathematical model
of CNP.

In this paper we are interested in studying the complexity of a special
case of CNP, namely the case where the graph G is a tree. This case is
relevant if the (terrorist, communication, . . . ) network to be fragmented has
some kind of hierarchical organization, i.e., each entity in the network (node
in the graph) directly communicates only with its “boss” (its parent node
in the graph) and with its “subalterns” (its children nodes in the graph).
This paper offers complexity results and algorithms for different versions of
CNP on trees, depending on whether the costs cij and weights wj are general
nonnegative integers or all have unit values, as summarized in the following
table.

cij wj complexity

≥ 0 ≥ 0 strongly NP-complete
≥ 0 = 1 strongly NP-complete
= 1 ≥ 0 solvable in O(n7)
= 1 = 1 solvable in O(n3K2)

While for general graphs the NP-completeness of the general version of the
CNP follows from the results of [1], it turns out that for the case of trees there
is a gap between the complexities of the version with arbitrary nonnegative
costs and that with unit costs.

In Section 2 we prove that the CNP over trees is strongly NP-complete
for general costs cij , even if wj = 1 for all j ∈ V . In Section 3 we present a
dynamic programming approach for the case with unit costs and unit node
weights whose complexity is polynomial; in Section 4 we similarly deal with
the case with unit costs and general node weights. In Section 5 we propose
an enumeration scheme for the case with general costs and unit node weights,
whose time complexity is within a polynomial factor from O(1.618034n). In
Section 6 we present and discuss the results of some computational experi-
ments carried out with all the algorithms introduced in the paper.
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2 Complexity of the general problem over trees

When the graph involved in the CNP is a tree T (V,E), each pair of nodes is
connected by exactly one path. In order to establish the complexity of the
CNP over trees we need to introduce the following problem.

MULTICUT IN TREES (MCT) Given an undirected tree T = (V,E), a col-
lection H of pairs of nodes

H = {{u1, v1}, {u2, v2}, . . . , {ut, vt}}

and a weight we for each edge e ∈ E, determine a subset W ⊆ E with
minimum total weight

∑
e∈W we, whose removal disconnects each pair of

nodes in H .

In [7] it has been proved that MCT is NP-complete even in the un-
weighted case, where we = 1 for all e ∈ E and a minimum-cardinality subset
W is required. The decision version of the unweighted-MCT asks whether
there exists a set W with |W | ≤ B, for a given bound B. We define a
polynomial reduction from the decision version of unweighted MCT to the
decision version of CNP on trees. Given an instance of unweighted-MCT
with T = (V,E), define an instance of CNP as follows.

• Define a tree T ′ = (V ′, E ′) where

V ′ = V
⋃

e∈E
{e1, e2},

E ′ =
⋃

e={i,j}∈E
{{i, e1}, {e1, e2}, {e2, j}}.

(1)

That is, each edge e = {i, j} ∈ E is replaced in T ′ by a chain i−e1−e2−j
including two additional nodes e1, e2. Note that removing edge e from
T disconnects two nodes i, j ∈ V if and only if removing one of nodes
e1, e2 from T ′ disconnects i, j (see Figure 1).

• We assign the following costs to the connections between nodes a, b ∈
V ′, where M is a constant strictly greater than |H| (for example, M =
1 + n(n− 1)/2 is enough):

cab =





1 if a, b ∈ V and {a, b} ∈ H ;

M if a, b ∈ V ′ − V and a = e1, b = e2 for some e ∈ E;

0 in all other cases.

(2)
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• We assign wj = 1 to each j ∈ V ′ and require that no more than K = B
nodes are removed. The decision problem asks whether there exists a
subset S ⊆ V ′ such that the total cost of the surviving paths when S
is removed is not greater than

K ′ = M(n−K − 1). (3)

It can be easily seen that the construction is computable in polynomial
time.

We prove the following

Proposition 2.1. CNP on trees is NP-complete.

Proof. CNP on trees is easily seen to be a member of NP. We prove

Unweighted-MCT ∝ CNP on trees.

Given an instance I of MCT, we build an instance I ′ of CNP according
to (1)–(3).

Assume that I is a yes-instance. Then there exists a subset W with (no
more than) K edges whose removal from T disconnects all pairs in H . In I ′,
we can select the K nodes in S as follows:

select exactly one between nodes e1, e2 for each e ∈ W .

By removing the nodes in S from T ′, exactly K connections with cost M are
broken, and no more than (n−K−1) of them survive; also, all the unit-cost
connections between pairs of nodes in H are broken. Hence the total cost of
the surviving connections is at most M(n−K − 1).

Conversely, assume that I ′ is a yes-instance. Then there exists a subset
S ⊆ V ′ with (at most) K nodes such that removing S from T ′ leaves only a
set of connected pairs with total cost ≤ K ′ = M(n − K − 1). We observe
that

(i) S must be composed only of nodes from V ′ − V , and

(ii) for each pair of additional nodes e1, e2 (with e ∈ E) at most one of
them can belong to S.

Indeed, if (i) or (ii) is violated, at most K − 1 connections with cost M can
be removed and the total cost of the surviving connections would be at least
M(n−K) > K ′. With (i) and (ii) holding true, exactly K connections with
cost M are broken; then the total cost of the surviving connections is at least
M(n−K − 1), and not greater than M(n−K − 1) + |H|. The lower bound
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is attained only if also all the unit-cost connections between pairs of nodes
in H are broken.

Hence we can remove in I a set W of at most K edges separating all pairs
in H by setting

e ∈ W ⇐⇒ {e1, e2} ∩ S 6= ∅,
and I is a yes-instance.

Remark 1. We note that the reduction does not exponentially inflate the
numbers in Unweighted-MCT, which is not a number problem. This also
establishes NP-completeness in the strong sense for the general version of
the CNP on trees, ruling out the possibility of finding a pseudopolynomial
algorithm, unless P = NP. Because of the reduction involved, the proof
of Property 2.1 also establishes the strong NP-completeness for the special
case with general connection costs cij and unit weights wj = 1 for all j ∈ V .

Remark 2. We also note that the problem with general connection costs cij
and node weights wj remains NP-complete, at least in the ordinary sense, on
even very simple topologies, like the star graph. Figure 2 sketches a simple
reduction PARTITION ∝ CNP for a star graph. Note that the star case is
trivial when wj = 1 for all j ∈ V . A simple reduction can also be worked out
for the case where the graph is only a tree with maximum degree 2 (a path).

3 The unit-costs, unit-weights case on trees

In this section we ilustrate a polynomial algorithm for solving CNP on trees
when cij = 1 for all i, j and wj = 1 for all j ∈ V . In this case the problem
calls for minimizing the number of paths surviving in a tree T (V,E) after
having removed at most K nodes.

Given the tree T (V,E), let Ta be the subtree of T rooted at a ∈ V . If a
is not a leaf of T , let Ta1 , . . . , Tas be the subtrees of Ta rooted at the children
nodes a1, . . . , as respectively, where s depends on a (see Figure 3). Let also
|Ta| be the number of nodes in Ta. In order to solve the problem by dynamic
programming, we define the following functions.

Fa(m, k) = minimum number of paths surviving in Ta when k nodes are re-
moved from Ta and m nodes of Ta are still connected to a. Note that
the number of nodes connected to some given v ∈ V always counts v
itself. Condition m = 0 indicates that a is removed from Ta. Further-
more, if it is not possible to remove k nodes from Ta so that m nodes
of Ta are still connected to a, then we define Fa(m, k) = ∞.
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Gai(m, k) = number of paths surviving in the subtree Tai,s = a+Tai+· · ·+Tas

when k nodes are removed from Tai,s and m nodes of the subtree are
still connected to a. As above, m = 0 indicates that a is removed from
Tai,s and Gai(n, k) = ∞ if it is not possible to remove k nodes from
Tai,s so that m nodes of Tai,s are still connected to a.

The values for F and G can be computed by traversing the tree in postorder
(from leaves to root), by means of the following relations:

Fa(m, k) = Ga1(m, k) for any non-leaf node a ∈ V ; (4)

Gai(m, k) =





min{Fai(p, q) +Gai+1
(0, k − q) :

p = 0, . . . , |Tai |, q = 0, . . . , k − 1} if m = 0 (a ∈ S),

min{Fai(p, q) +Gai+1
(m− p, k − q) + p(m− p) :

p = 0, . . . , m− 1, q = 0, . . . , k} if m > 0 (a /∈ S),

(5)

for any non-leaf node a ∈ V and i < s;

the initial conditions on each leaf a and on each rightmost subtree Tas are
the following:

Fa(m, k) =

{
0 if (m = 0, k = 1, i.e. a ∈ S) or (m = 1, k = 0, i.e. a /∈ S),

∞ otherwise,

(6)

Gas(m, k) =





∞ if m = k = 0,

min{Fas(p, k − 1) : p = 0, . . . , |Tas|} if m = 0, k > 0 (a ∈ S),

Fas(m− 1, k) + (m− 1) if m > 0 (a /∈ S).

(7)

Equation (4) follows because Ta = Ta1,s for any non-leaf node a ∈ V .

Recursion (5) can be interpreted as follows.

• Consider first the case m = 0 (i.e., node a is removed from the subtree),
which is illustrated in Figure 4 (where i = 2 and k = 3). Expression
Fai(p, q) gives the minimum number of paths that survive in Tai when
q nodes are removed from Tai and p nodes of Tai are still connected to
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ai (for instance, in the example in Figure 4, for p = 3 and q = 1 we
have Fa2(3, 1) = 3: this is achieved by removing node b). Since q nodes
have been removed from Tai , exactly k− q nodes (including a) must be
removed from Tai+1,s

. The minimum number of paths that survive in
Tai+1,s

when k− q nodes (including a) are removed from Tai+1,s
is given

by Gai+1
(0, k − q) (in the example, Ga3(0, 2) = 5, which is achieved by

removing nodes a and c). Thus the expression Fai(p, q)+Gai+1
(0, k−q)

gives the minimum number of paths that survive in Tai,s when q nodes
are removed from Tai (and the other k − q nodes are removed from
Tai+1,s

) and p nodes of Tai are still connected to ai (this value is 8
in the example). By taking the minimum over p = 0, . . . , |Tai| and
q = 0, . . . , k − 1, we find the value of Gai(0, k).

• Consider now the case m > 0, which is illustrated in Figure 5 (where
m = 7, i = 2 and k = 2). As above, expression Fai(p, q) gives the
minimum number of paths that survive in Tai when q nodes are removed
from Tai and p nodes of Tai are still connected to ai (for instance, in
the example in Figure 5, for p = 3 and q = 1 we have Fa2(3, 1) = 3:
this is achieved by removing node b). Since q nodes have been removed
from Tai , exactly k − q nodes must be removed from Tai+1,s

; and since
p nodes of Tai are still connected to ai and thus to a, exactly m − p
nodes of Tai+1,s

must remain connected to a. The minimum number
of paths that survive in Tai+1,s

when k − q nodes are removed from
Tai+1,s

and m − p nodes of Tai+1,s
are still connected to a is given by

Gai+1
(m−p, k−q) (in the example, Ga3(4, 1) = 9, which is achieved by

removing node a3). Thus the expression Fai(p, q) +Gai+1
(m− p, k− q)

gives the minimum number of paths that survive in Tai or Tai+1,s
when q

nodes are removed from Tai (and the other k−q nodes are removed from
Tai+1,s

) and p nodes of Tai are still connected to ai, while m−p nodes of
Tai+1,s

are still connected to a. Now we have to add the paths connecting
nodes of Tai to nodes of Tai+1,s

, i.e. p(m − p) paths (12 paths in the
example). This gives expression Fai(p, q)+Gai+1

(m−p, k−q)+p(m−p)
of recursion (5) (whose value is 24 in the example). By taking the
minimum over p = 0, . . . , m − 1 and q = 0, . . . , k, we find the value of
Gai(m, k).

Given a leaf a ∈ V , equation (6) says that

• if a is removed (k = 1), then no node (m = 0) and no path survive in
Ta (which becomes empty);

• if a is not removed (k = 0), then node a survives (m = 1), and the
number of paths is again 0.
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For a justification of (7), recall that Tas,s = a + Tas .

Now, assuming that T is rooted at node 1, the optimal value for the
problem is given by

OPT = min{F1(m,K) : m = 0, . . . , |V |}, (8)

and the optimal solution is recovered by backtracking.

The following property formally establishes that Unweighted-CNP on
trees belongs to the class P.

Property 3.1. The recursion (4)–(7) can be computed in O(n3K2) time.

Proof. For each of the n nodes there are at most (n+1) · (K+1) values of F
and G to compute; for each (m, k) pair, m ∈ {0, . . . , n}, k ∈ {0, . . . , K}, the
heaviest computation is that of equation (5) that requires at most O(nK)
steps. Hence a time bound of O(n3K2) follows.

We remark that this dynamic programming approach can be easily ex-
tended to the case of a forest: just add a dummy node 0 along with edges
between node 0 and the root of each connected component of the forest, and
then apply the above recursion to the resulting tree, with the additional con-
dition that node 0 must be removed (this is accomplished by modifying (8)
into OPT = F0(0, K + 1)).

4 The case with unit costs and arbitrary node

weights

Let wj ≥ 0 be arbitrary weights assigned to the nodes j ∈ V . The CNP
problem in this case amounts to finding a subset S of nodes with total weight∑

j∈S wj not exceeding a given K such that the number of surviving paths
after having removed the node set S is minimized.

This special case can be solved by a dynamic programming algorithm
formulated in the same spirit of that in Section 3. The recursion uses two
parameters m and k representing respectively the number of nodes connected
to the root of a subtree and the number of paths surviving in the same
subtree.

Keeping the notation for subtrees introduced in Section 3, we define the
following functions.

• Fa(m, k) is the minimum total weight of the nodes to be removed from
the subtree Ta in order to have node a connected to exactly m nodes
(including a itself) and k paths surviving in Ta.
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• Gai(m, k) is the minimum total weight of the nodes different from a to
be removed from the subtree Tai,s = a+ Tai + Tai+1

+ · · ·+ Tas in order
to have a connected to m nodes of Tai,s and k paths surviving in Tai,s .

We compute the values for F and G recursively for all a ∈ V , m = 0, . . . , n,
k = 0, . . . , n(n − 1)/2, as follows. Assume Fa(m, k) = ∞, Ga(m, k) = ∞ if
m < 0 or k < 0.

Fa(m, k) = Ga1(m, k) for all non-leaf nodes a ∈ V (9)

Gai(m, k) =





min{Fai(p, q) +Gai+1
(0, k − q),

p = 0, . . . , |Tai|, q = 0, . . . , k} if m = 0,

min{Fai(p, q) +Gai+1
[m− p, k − q − p(m− p)],

p = 0, . . . , m, q = 0, .., k} if m > 0.

(10)

Equation (10) is written for all non-leaf nodes ai ∈ V with i < s (non-
rightmost subtrees). For each rightmost subtree Tas we specify the initial
condition

Gas(m, k) =

{
wa +min{Fas(p, k), p = 0, . . . , |Tas|} if m = 0,

Fas(m− 1, k −m+ 1) if m > 0,
(11)

and, for every leaf a:

Fa(m, k) =





wa if m = 0, k = 0,

0 if m = 1, k = 0,

∞ in all other cases.

(12)

The optimal value, assuming the tree is rooted at node 1, is given by

OPT = min{k : F1(m, k) ≤ K,m = 0, . . . , n, k = 0, . . . , n(n− 1)/2}. (13)

The optimal solution is recovered by backtracking.
The arguments justifying equations (9)–(12) are analogous to those pre-

sented for equations (4)–(7) in the previous section, and we illustrate them
concisely.

For equation (9), note that Ta = Ta1,s .

For equation (10) note that if m = 0 (i.e. a is removed), a path surviving
in Tai,s = Tai + Tai+1,s

either belongs entirely to Tai or to Tai+1,s, hence if q
paths belong to Tai exactly k − q belong to Tai+1,s. In the latter tree, no
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node will be connected to a, whereas at most |Tai | nodes can be connected to
ai. Hence by definition of F and G the minimum total weight of the nodes
removed from Tai,s will be Gai(m, k) = minp,q{Fai(p, q)+Gai+1

(0, k−q)}. On
the other hand, if a is not removed and it is connected to m > 0 nodes of
Ta, a path in Tai,s can be either completely contained in one of Tai , Tai+1,s

,
or partially contained in both subtrees because it passes through a. If ai is
connected to p nodes of Tai and a is connected to m − p nodes in Tai+1,s

,
the paths passing through a are exactly p(m− p). If q paths survive in Tai ,
k − q − p(m − p) paths survive in Tai+1,s

and, by definition of F and G,
Gai(m, k) = minp,q{Fai(p, q) +Gai+1

[m− p, k − q − p(m− p)]}.
The initial condition (11) takes into account that, if node a is removed

(m = 0), the k surviving paths of Tas,s = a+Tas must belong entirely to Tas ,
hence the minimum possible weight for the nodes removed from Tas,s will be
Gas(0, k) = minp{Fas(p, k)}+wa. On the other hand if node a is not removed
(m > 0), in Tas we must have m− 1 nodes connected to as and k − (m− 1)
surviving paths, since m − 1 paths connect a to m− 1 other nodes in Tas,s ;
thus Gas(m, k) = Fas(m− 1, k −m+ 1) follows.

The initial condition (12) trivially handles the case of a one-node tree:
remove the single node a (case m = 0, k = 0), or keep it (m = 1, k = 0); all
other combinations of m and k are unfeasible and are considered to have an
infinite weight.

Property 4.1. The recursion (9)–(12) can be computed in O(n7) time.

Proof. For each node a ∈ V there are at most n + 1 = O(n) values for m
and n(n − 1)/2 + 1 = O(n2) values for k; this gives O(n4) values Fa(·, ·)
and Gai(·, ·) to compute. The heaviest computation lies in equation (10),
where O(n) values are possible for p and O(n2) for q. Hence in the worst
case a number of operations bounded by O(n) · O(n2) · O(n4) = O(n7) is
required.

5 An enumeration scheme for the case with

unit node weights

When different costs cij ≥ 0 are specified for each pair of nodes i 6= j and unit
weights wj = 1 are given for all nodes j ∈ V , the CNP problem is strongly
NP-hard (see Section 2), hence not even a pseudopolynomial algorithm is
likely to exist. In this section we consider a superpolynomial algorithm for
such a case.

Following a standard notation, let O∗(αn) denote a time complexity of
type O(αnpoly(n)). A brute-force enumeration of all K-nodes subsets of V
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is viable when K is very small (or large), but in the general case the trivial
enumeration algorithm requires O∗(2n) time. A better enumeration scheme
can be developed as follows. First of all we remark the following dominance
result.

Property 5.1. For a tree with more than two nodes, there exists an optimal
solution where no leaf is removed.

For an immediate proof, note that since the nodes have unit weights,
every path broken by removing a leaf can be broken by leaving the leaf in
the tree and removing the leaf’s parent, instead. Hence we only consider
solutions where no leaf is removed.

A tree T (V,E) with depth ≤ 1 is a star with one (a single node), two
(an edge) or n nodes, and an optimal solution is trivially computed by the
following rule:

if K > 0 remove the center of the star, obtaining a solution with
cost zero ;
if K = 0 no node can be removed, and the optimal value is∑{cpq : p, q ∈ V, p 6= q}.

Consider an instance of the problem with given T (V,E), K, {cij}; if T
has depth > 1 we select a node j such that all its neighbors except one are
leaves and perform a branch on it. Let Γj be the set of leaves adjacent to j.
We compute the optimal value f ∗(T,K) as

f ∗(T,K) = min

{
f ∗(T ′, K − 1) (j is removed)∑

p,q∈{j}∪Γj
cpq + f ∗(T ′′, K) (j stays in the tree).

The trees T ′ and T ′′ are defined as follows.

(i) If we remove node j, we must solve the residual problem of removing
at most K − 1 nodes from the tree T ′ obtained by pruning j and all
i ∈ Γj from T .

(ii) If we do not remove j from T , we pay a constant term
∑

p,q∈{j}∪Γj
cpq

in the objective function and then we must solve an equivalent residual
problem on a tree T ′′, where the nodes {j}∪Γj are shrunk into a single
node j′ and the costs are given by

c′′pq = cpq if p, q /∈ {j} ∪ Γj ,

c′′pj′ = cpj +
∑

q∈Γj

cpq for all p /∈ {j} ∪ Γj.

12



Note that, if node j is not removed from T , every path linking p and
q ∈ Γj can be broken if and only if the path linking p and j′ in T ′′ is
broken.

Refer to Figure 6, where we branch on node 6 as an example. When we dive
into branch (i), the residual problem has at most n−2 nodes — at least node
j and a leaf are pruned; when we dive into branch (ii) the residual problem
has at most n − 1 nodes — at least node j and a leaf are shrunk. Both T ′

and T ′′ are obtained from T in at most O(n2) time. Then, the running time
t(n) for n nodes satisfies the recursive relation

t(n) ≤ t(n− 1) + t(n− 2) +O(n2),

that solved by standard techniques gives t(n) ≈ O∗(1.618034n).

6 Computational experiments

Here we test the algorithms discussed in the previous sections by performing
experiments on randomly generated instances of the CNP (in its various
versions). In all cases the trees are generated using Broder’s algorithm for
the Uniform Spanning Tree problem [3]: this guarantees that each time the
tree is chosen at random with uniform distribution among all trees having n
nodes.

For the dynamic programming algorithms, we performed tests on an AMD
Athlon 1.5GHz PC with 512 MB RAM. In order to save time, we tested the
superpolynomial algorithm of Section 5 on a faster Xeon 2.33 GHz processor
with 8 GB RAM.

6.1 Unit costs and unit node weights

We tested the O(K2n3) dynamic programming algorithm — called DP1 in
what follows — of Section 3 on randomly generated trees for number of nodes
ranging from 10 to 200; the parameter K has been set to values ⌊αn/2⌋
for α = 0.2, 0.4, 0.6, 0.8, 1.0. For each value of n, ten random trees were
generated. Table 1 reports the average and maximum running times for n =
50, . . . , 200. In order to save some CPU time, the algorithm is implemented
so that the F and G matrices in general are not completely filled; instead the
value of each state is computed and stored only when it is actually required to
compute other states. Anyway we remark that in most cases 70 to 90% of the
state space has to be exploited. Table 2 highlights the quadratic dependence
of the running time on K and the cubic dependence on n.
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6.2 Unit costs and general node weights

We tested the O(n7) algorithm — called DP2 in what follows — of Section 4
on the same randomly generated trees used for testing DP1. Integer weights
wj for the nodes were randomly generated from the uniform distribution
[1, 100]. The parameter K was fixed at K = ⌊αW/2⌋ where W =

∑n
i=1wj,

and α = 0.2, 0.4, 0.6, 0.8, 1.0. As in the previous case, the algorithm is imple-
mented so that the value of each state is computed only when it is actually
needed. Despite the higher worst-case complexity, the algorithm handles
quite easily all instances up to n = 100 — Table 3 summarizes the CPU
times obtained for n = 50, . . . , 100. Note that applying equation (13) when
searching for the optimum, if the values of k = 0, . . . , n(n−1)/2 are scanned
in increasing order, the search terminates as soon as a value F1(m, k) ≤ K
is found. This offers a valuable speedup, especially on instances where low
values of objective function can be reached — that is, when large values of
K are involved. Because of the heavy O(n4) memory requirements, we could
not test instances with n > 100; indeed on the instances of Table 3 the appli-
cability of DP2 seems limited more by the space complexity rather than by
the running time. Anyway we note that usually less than 10% of the state
space had to be exploited in these tests, hence as far as this type of instances
is considered, one can implement the F and G matrices by means of sparse
structures in order to attack larger examples.

We expect things go worse for DP2 with a narrower distribution of the
node weights and tighter values of K. Hence we tested the algorithm on the
extremal case with all-unit weights wj = 1, on the same instances used for
DP1; Table 4 reports the performance of DP2 on such instances. Although
with still acceptable CPU times, the performance of DP2 deteriorates quickly
as n grows from 50 to 100, especially for low values of K. The loss of
performance is better seen when considering very small values of K, such
as K = 2, 3, . . . , 6 — that are below ⌊αW/2⌋ in most cases, hence do not
show up in Tables 3–4. Table 5 clearly shows that for these values of K
a substantial effort is required by DP2; from 60 to 85% of the state space
had to be computed. We suspended the tests for the n = 100, K = 2 case
because times higher than 2,000 seconds were required in most cases. Note
however that for such small values of K even an enumerative approach could
be viable. Each of the instances tested for Table 5 is easily handled by DP1

in less than half a second. However by comparing Tables 1 and 4, DP2 is the
winner for instances with large enough K — see the columns with α ≥ 0.6.
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6.3 General costs and unit node weights

We present here the results of computational experiments testing the super-
polynomial recursive algorithm of Section 5.

We used a few devices to reduce the number of subtrees analyzed by the
algorithm. First of all, whenever K becomes equal to zero, clearly we do not
continue the recursion on the current subtree and we just return the total
weight of the remaining connections. We also exploited the following easy
observations.

Observation 6.1. The optimal solution to the CNP is zero whenever the
tree admits a vertex cover with at most K nodes.

Thus, whenever our recursive algorithm produces a new subtree T to
analyze, we can compute a minimum vertex cover C of T . If |C| ≤ K, an
optimal solution for T is given by C and we do not need to continue the
recursion on this subtree.

Note that a minimum vertex cover C of a tree T can be computed by
means of the following well-known algorithm: select a node j such that all
its neighbors except one are leaves; include j in C; prune j and iterate. This
procedure can be implemented to run in linear time.

The observation below is easy to prove.

Observation 6.2. Let τ be the cardinality of a minimum vertex cover of a
tree T and let j be a node of T such that all its neighbors except one are
leaves.

(i) If j is pruned from T (giving a tree T ′), then the cardinality of a mini-
mum vertex cover of T ′ is τ − 1.

(ii) If the nodes in j ∪ Γj are shrunk into a single node (giving a tree T ′′),
then the cardinality of a minimum vertex cover of T ′′ is either τ or
τ − 1.

By the above observation, we do not need to compute a minimum vertex
cover for every subtree generated throughout the recursion, but just for some
of them. More specifically, assume that we know that the cardinality of a
minimum vertex cover for some subtree T is τ > K, and let j be the node
on which the branching described in Section 5 is performed.

(i) When T ′ is obtained by pruning node j, the value of K has to be
decreased by 1. Then, since the cardinality of a minimum vertex cover
of T ′ is τ − 1, there is no hope of finding a vertex cover with at most
K − 1 nodes.
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(ii) When T ′′ is obtained by shrinking the nodes in j ∪ Γj into a single
node, the value of K does not change. Then, since the cardinality of
a minimum vertex cover of T ′ is at least τ − 1, it is possible to find a
vertex cover with K nodes only if τ −K = 1.

It follows that: (i) there is no need to compute a minimum vertex cover after
pruning a node; (ii) if we have computed a vertex cover C for some subtree
T , with |C| > K, there is no need to compute a minimum vertex cover before
|C| −K shrinking operations have been performed.

We tested the algorithm (with the speed-up techniques described above)
on instances of the CNP with unit weights on nodes, where n takes all even
values between 20 and 60 and K takes all even values between 0 and n/2.
(Note that for K ≥ n/2, there is always a vertex cover with K nodes, thus
the algorithm would immediately return an optimal solution to the problem.)
For each choice of n and K, ten instances were generated and solved to op-
timality. The weights on the edges are randomly generated integer numbers
with uniform distribution in [0, 100]. The average computation times for each
family of instances are listed in Table 6.

The results indicate that for fixed K the computation time grows quickly
as n increases. For fixed n, the worst cases seem to be those with K close
to n/4. This can be explained as follows: on the one hand, the smaller K,
the smaller number of pruning operations are needed to have K = 0, and
thus the smaller number of subtrees must be analyzed; on the other hand,
when K approaches n/2, it is more likely that there is a vertex cover of T
with cardinality not too larger than K, and thus a small number of shrinking
operations is needed to obtain a subtree where a vertex cover with at most
K nodes exists.

Without implementing the speed-up devices based on vertex covers, the
average computation time would be much higher. In particular, many hours
would be needed to solve instances with n large and K close to n/2, whereas
these instances are solved almost instantaneously when exploiting vertex cov-
ers. As to the instances with K close to n/4 (which are the most time-
consuming ones when using the speed-up devices), without speed-ups the
average computation time would be more than the double.

7 Conclusions

In this paper we studied the complexity of a subclass of the Critical Node
Problem (i.e., the problem of removing K nodes in a graph G in order to
maximize disconnectivity), namely the subclass of CNP over trees. NP-
completeness of CNP for general graphs was proved in [1]. In this work we
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proved that the general version of CNP over trees with different connection
costs cij is still (strongly) NP-complete through a reduction from MULTICUT

IN TREES, but also that the cases with cij = 1 for all pairs i 6= j and unit
or arbitrary node weights, are solvable in polynomial time through dynamic
programming approaches. For the version with general costs and unit node
weights, an enumeration scheme with time complexity cheaper than O∗(2n)
has been proposed. For all the algorithms presented we reported and dis-
cussed some computational experiments.
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Figure 1: Reduction Unweighted-MCT ∝ CNP on trees. Insertion of addi-
tional nodes.

PARTITION





Given A = {a1, a2, . . . , an},
n∑

j=1

= 2B

find S ⊆ A such that
∑

aj∈S
aj = B.

CNP

0

1 . . . n

c0j = aj j = 1, . . . , n
cij = 0 i, j = 1, . . . , n
wj = aj j = 1, . . . , n
w0 = B + 1
K = B

Figure 2: Reduction PARTITION ∝ CNP for a star graph.
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a1 a2 a3 a4

T
2a

Ta3,4

a

b c

Figure 3: Example of a subtree Ta, where node a has four children (i.e. s = 4).
The subtrees Ta2 and Ta3,4 are shown.

a1 a2 a3 a4

Ta2

Ta3,4

a

b c

Figure 4: Application of recursion (5) to the subtree of Figure 3 for m = 0,
i = 2 and k = 3.
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a1 a2 a3 a4

Ta2

Ta3,4

a

b c

Figure 5: Application of recursion (5) to the subtree of Figure 3 for m = 7,
i = 2 and k = 2.

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

n Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax

50 0.0 0.0 0.1 0.1 0.1 0.7 0.1 0.2 0.2 0.2
60 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.4 0.3 0.5
70 0.1 0.1 0.2 0.3 0.4 0.5 0.7 0.9 0.1 1.1
80 0.2 0.2 0.5 0.6 1.0 1.1 1.6 1.8 2.1 2.7
90 0.3 0.4 0.9 1.1 1.7 2.1 2.9 3.6 3.3 4.5
100 0.5 0.6 1.6 1.8 3.2 3.5 5.4 6.0 6.7 8.8
150 4.0 5.0 11.6 14.7 23.1 29.2 38.4 48.1 52.1 62.8
200 15.4 18.7 47.9 58.6 97.7 119.9 164.3 201 166.0 255.1

Table 1: Performance of DP1 for cij = 1, wj = 1. CPU time in seconds.
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T

1

2 3 4

5 6

8 9

7

T ′

1

2 3 4

5 7

T ′′

1

2 3 4

5 6′ 7

c′′p6′ = cp6 + cp8 + cp9.

Figure 6: Equivalent trees obtained when removing node 6 or not removing
node 6.

K = 10 K = 20 K = 30 K = 40 K = 50

n Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax

100 0.5 0.6 1.6 1.8 3.2 3.5 5.4 6.0 6.7 8.8
150 2.2 3.0 6.0 7.8 11.6 14.7 18.8 23.8 27.7 34.9
200 5.5 6.5 15.4 18.7 29.5 35.8 48.0 58.6 70.6 86.6

Table 2: Performance of DP1 for several values ofK, n. CPU time in seconds.
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α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

n Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax

50 0.3 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
60 0.4 0.7 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1
70 1.0 1.6 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.2
80 2.3 4.5 0.6 0.7 0.4 0.4 0.4 0.4 0.4 0.4
90 3.1 7.1 0.9 1.1 0.7 0.7 0.6 0.6 0.6 0.7
100 5.2 7.8 1.4 1.9 1.1 1.2 1.0 1.0 1.0 1.1

Table 3: Performance of DP2 for cij = 1, wj uniformly distributed in [1, 100].
CPU time in seconds.

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

n Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax

50 0.9 1.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
60 2.2 4.8 0.3 0.4 0.1 0.2 0.1 0.1 0.1 0.1
70 4.3 6.7 0.5 0.8 0.3 0.3 0.2 0.3 0.2 0.2
80 8.0 12.2 1.0 1.5 0.5 0.6 0.2 0.5 0.4 0.4
90 14.2 20.8 1.7 2.3 0.8 0.9 0.6 0.7 0.6 0.7
100 23.6 39.4 2.8 4.2 1.3 1.6 1.1 1.2 1.0 1.1

Table 4: Performance of DP2 for cij = 1, wj = 1. CPU time in seconds.

K = 2 K = 3 K = 4 K = 5 K = 6

n Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax Tavg Tmax

50 11.2 15.9 4.2 6.1 1.8 2.8 0.9 1.3 0.5 0.8
60 46.0 67.7 16.7 29.3 7.1 13.9 3.6 7.6 2.2 4.8
70 139.3 247.9 49.3 90.2 22.6 38.6 11.7 14.6 6.7 9.8
80 383.1 466.1 145.4 191.9 67.3 108.6 36.9 56.8 21.3 31.9
90 871.1 1300.7 353.6 640.6 140.5 125.4 76.5 125.4 44.2 65.1
100 – – 818.4 1171.4 379.9 627.8 202.1 312.5 123.1 196.7

Table 5: Performance of DP2 for cij = 1, wj = 1, with very small K. CPU
time in seconds.
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