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Abstract

In this article, we propose a parallel implementation of the dynamic pro-
gramming method for the knapsack problem on NVIDIA GPU. A GTX 260
(192 cores, 1.4GHz) was used for computational tests and processing times
obtained with the parallel code are compared to the sequential one on a
CPU with an Intel Xeon 3.0GHz. The results show a speedup up to 26 and
permit one to solve large size problems within a reasonable processing time.
Furthermore, in order to limit the communication between the CPU and the
GPU, a compression technique is presented which decreases significantly the
memory occupancy.

Keywords: Knapsack problems, Dense dynamic programming, Parallel
computing, GPU computing.

1. Introduction

Since a few years, graphics card manufacturers have developed tools to use
their products for high performance computing. Graphics Processing Units,
or GPUs, are high-performance many-core processors. NVIDIA GPUs are
SIMT (Single Instruction, Multiple Thread) architectures which is akin to
SIMD (Single Instruction, Multiple Data) architecture [1].
Severals parallel dynamic programming method have been proposed (see, for
example, [2], [3] and [4]). Implementations on SIMD machine were performed
on a 4K processor ICL DAP [5] and 16K Connection Machine CM-2 systems
(see [6], [7]) and a 4K MasPar MP-1 machine [7]. To the best of our knowl-
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edge, no parallel implementation of dynamic programming for combinatorial
optimization problems has been done on a GPU.
Using GPU architectures for solving combinatorial optimization problems is
a great challenge in order to reduce the computing time needed to solve these
NP-hard problems. In this paper, we propose a parallel implementation of
the dynamic programming algorithm on a NVIDIA GPU for exactly solving
the KP. Furthermore, a data compression is presented. This compression
permits one to limit significantly, the communication between the CPU and
the GPU and the memory needed to build the solution vector.
The paper is structured as follows. Section 2 deals with the knapsack prob-
lem and its solution via dynamic programming. Section 3 focuses on GPU
computing and the parallel dynamic programming method. In section 4 we
propose a compression method which permits one to reduce significantly the
memory occupancy and communication between CPU and GPU. Section 5
deals with computational experiences. Conclusion and future work are pre-
sented in section 6.

2. The knapsack problem

The knapsack problem, KP, is a NP-hard combinatorial optimization prob-
lem. It is one of the most studied discrete programming problem as it is
among the simplest prototypes of integer linear programming problems and
it arises in several sub-problems of many more complex problems (see, for
example, [8], [9], [10], [11], [12], [13] and [14]).

2.1. Problem formulation

Given a set of n items i, with profit pi ∈ N∗
+ and weight wi ∈ N∗

+, and a
knapsack with the capacity C ∈ N∗

+, KP can be defined as the following
linear integer programming problem:

(KP )


max

n∑
i=1

pi.xi,

s.t.

n∑
i=1

wi.xi ≤ C,

xi ∈ {0, 1}, i ∈ {1, ..., n}.

(2.1)
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To avoid any trivial solution, we assume that:
∀i ∈ {1, ..., n}, wi ≤ C,

n∑
i=1

wi > C.

2.2. Dynamic programming

Bellman’s dynamic programming [15], presented in 1957, was the first exact
algorithm to solve KP. It consists in computing at each step k ∈ {1, ..., n},
the values of fk(ĉ), ĉ ∈ {0, ..., C}, using the classical recursion:

fk(ĉ) =

{
fk−1(ĉ), for ĉ = 0, ..., wk − 1,
max {fk−1(ĉ), fk−1(ĉ− wk) + pk} , for ĉ = wk, ..., C.

(2.2)

with, f0(ĉ) = 0, ĉ ∈ {0, ..., C}.
The algorithm, presented in this section, is based on the the Bellman’s re-
cursion (2.2). A state corresponds to a feasible solution associated with the
fk(ĉ) value. Toth [16] has proposed an efficient recursive procedure in order
to compute the states of a stage and used the following rule to eliminate
states:

Proposition 1 [16] If a state defined at k − th stage with total weight ĉ
satisfies:

ĉ < C −
n∑

i=k+1

wi,

then the state will never lead to an optimal solution and can be eliminated.

The dynamic programming method is described in algorithm 1. The matrice
M stores all the decisions and is used to build a solution vector corresponding
to the optimal value by doing a backtracking. The time and space complex-
ities are O(n.C).

Algorithm 1 (Dynamic programming)
for ĉ ∈ {0, ..., C}, f(ĉ) := 0,
for i ∈ {1, ..., n} and ĉ ∈ {1, ..., C}, Mi,ĉ = 0,

sumW :=
n∑

i=1

wi,
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for k from 1 to n do
sumW := sumW − wk,
c = max{C − sumW,wk},
for ĉ from C to c do

if f(ĉ) < f(ĉ− wk) + pk then
f(ĉ) := f(ĉ− wk) + pk,
Mi,ĉ := 1,

end if,
end for,

end for.
return f(C) (the optimal bound of the KP)

The high memory requirement are frequently cited as the main drawback of
dynamic programming. However, this method has a pseudo-polynomial time
complexity and is insensitive to the kind of instances, i.e. with correlated
datas or not.
In order to reduce the memory occupancy, the entries of the matrix M have
been stored in integers of 32 bits. This permits one to divide by 32 the
number of lines of the matrix and the memory needed. However, the memory
occupancy is still important and an efficient compression method will be
presented in section 4.

3. GPU computing

GPUs are highly parallel, multithreaded, many-core architectures. NVIDIA
introduced, in 2006, CUDA, a software development kit that enables users
to solve many complex computational problems on their GPU cards. This
tool has been used in order to implement our parallel dynamic programming
code.

3.1. NVIDIA GPU architecture

On CUDA compatible NVIDIA cards, the threads are separated in blocks
and these blocks are distributed on the multiprocessors. A multiprocessor
processes one block at a time. When the threads of a block terminate, a new
block is launched on the idle multiprocessor. The multiprocessor executes
threads in groups of 32 parallel threads called warps. Threads composing a
warp start together at the same program address, they are nevertheless free
to branch and execute independently.
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Another important aspect in GPU computing is the memory hierarchy. In-
deed, threads have access to data from multiple memory spaces. Each thread
has a private local memory. Each thread block has a shared memory visible
to all threads of the block which has the same lifetime as the block. Finally,
all threads have access to a global memory. Furthermore, there is two other
read-only memory spaces accessible by all threads which are cache memories:

• the constant memory, for constant data used by the process,

• the texture memory space, designed for graphics applications.

In order to have a maximum bandwidth for the global memory, we have to
insure a coalesced memory accesses. Indeed, the global memory access by all
threads is done in one or two transactions if:

• threads access:

– either 32-bit words, resulting in one 64-byte memory transaction,

– or 64-bit words, resulting in one 128-byte memory transaction,

– or 128-bit words, resulting in two 128-byte memory transactions;

• all 16 words lie in the same segment of size equal to the memory transac-
tion size (or twice the memory transaction size when accessing 128-bit
words);

• threads access the words in sequence (the kth thread in the half-warp
accesses the kth word).

Otherwise, a separate memory transaction is issued for each thread. For
further details on the NVIDIA cards architecture and how to optimize the
code, see [1].

3.2. Parallel dynamic programming

Parallel implementation of the dynamic programming method is optimized
for GPU NVIDIA architectures. The activity that consumes processing time
is the loop that processes the values of f(ĉ), ĉ ∈ {0, ..., C}. This step has
been parallelized on the GPU: one thread processes one value of f . Many
efforts have been made in order to limit the communication between the CPU
and the GPU and ensure coalesced memory access in order to significantly
reduce the processing time. The procedures implemented on the CPU and
the GPU, respectively, are described in algorithms 2 and 3, respectively.
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Algorithm 2 (CPU processing)
n lines := dn/32e,
Variables stored on the device:
for ĉ ∈ {0, ..., C} do

f0 d(ĉ) := 0 and f1 d(ĉ) := 0,
m dĉ := 0,

end for
Variables stored on the host:
for i ∈ {1, ..., n lines} and ĉ ∈ {1, ..., C}, M hi,ĉ := 0,

sumW :=
n∑

i=1

wi,

bit count:=0 and k M:=1,
for k from 1 to n do

sumW := sumW − wk,
c := max{C − sumW,wk},
bit count:=bit count+1,
if k is even then

Compute f and m on device(f0 d,f1 d,m d,c),
else

Compute f and m on device(f1 d,f0 d,m d,c),
end if
if bit count=32 then

bit count:=0,
copy m d in M hk M,ĉ,
for ĉ ∈ {0, ..., C}, m dĉ := 0,
k M:=k M+1,

end if
end for.
if n is even then

return f1 d(C),
else

return f0 d(C).

In algorithm 2, the launching of the threads on GPU is done via the following
function:

Compute f and m on device(input f,output f,output m,c min)

where:
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• input f are the values of f processed at the previous step,

• output f are the output values of f ,

• output m are the output values of the decisions stored as integers of 32
bits and

• c min is the minimum value of ĉ.

This function creates C − c min + 1 threads for the GPU and groups them
into blocks of 512 threads (the maximum size of a block of one dimension),
i.e. d(C − c min + 1)/512e blocks. All threads carry out on the GPU the
procedure described in algorithm 3.

Algorithm 3 (Thread processing on GPU)
blocks id: the ID of the belonging block,
thread id: the ID of the thread within the belonging block,
k: the step number of the dynamic programming (k ∈ {1, ..., n}),
i := (k + 31)%32: the rest of the division of k + 31 by 32,

ĉ:=blocks id * 512 + thread id,
if ĉ < c min or ĉ > C then STOP end if,
if input f(ĉ) < input f(ĉ− wk) + pk then

output f(ĉ) := output f(ĉ− wk) + pk,
output mĉ := output mĉ + 2i,

else
output f(ĉ) := output f(ĉ),

end if

In the algorithm 3, threads have to access the values of input f(ĉ−wk), this
results in un-coalesced memory accesses as described in section 3.1. In order
to reduce the memory latency, the texture memory is used to access the data
stored in input f . We used the texture memory since this type of memory
can be allocated dynamicaly contrarily to the constant memory. output f
and output m are stored in the global memory.

4. Reducing memory occupancy

The analysis of the values stored in the matrix M h shows that the right
columns are often filled with 1 and that the left columns are filled with 0. As
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these bits values are grouped in integers of 32 bits, in practice it corresponds
to the value 232− 1 for the right columns (and 0 for the left columns). Thus,
the communication between the CPU and the GPU occurs every 32 iterations
in order to retrieve all the decisions stored in m d into the matrix M h (see
algorithm 2). This step is time consuming and we have tried to further reduce
the amount of data transfered to the CPU.
A simple way to reduce the vector m d is then to compress it as follows:

for ĉ ∈ {0, ..., rc− lc}, m d cĉ = m dĉ+lc

with lc = min{ĉ ∈ {1, ..., C} | m dĉ−1 = 0 and m dĉ 6= 0},
rc = max{ĉ ∈ {1, ..., C} | m dĉ−1 6= 232 − 1 and m dĉ = 232 − 1}.

Thus, we know that:

• if ĉ < lc, then m dĉ = 0 and

• if ĉ ≥ rc, then m dĉ = 232 − 1.

Then we have to retrieve only the values of m dĉ for ĉ ∈ {lc, ..., rc− 1} and
we process lc and rc directly on the GPU via the algorithm 4.

Algorithm 4 (Thread compression on GPU)
blocks id: the ID of the belonging block,
thread id: the ID of the thread within the belonging block,
m d: the input vector,
lc: shared variable initiate with the value C,
rc: shared variable initiate with the value 0,

ĉ:=blocks id * 512 + thread id,
if ĉ ≤ 0 or ĉ > C then STOP end if,
if m dĉ−1 = 0 and m dĉ 6= 0 then

lc := min{ĉ, lc},
end if,
if m dĉ−1 6= 232 − 1 and m dĉ = 232 − 1 then

rc := max{ĉ, rc},
end if.

This compression method decreases the amount of data transfered from the
GPU to the CPU and permits one also to decrease significantly the memory
occupancy needed to store all the decisions made throughout the dynamic
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programming recursion. Computational experiences shows that the efficiency
of the compression depends on the sorting of the variables of the KP and, in
average, the best results have been obtained with the following sorting:

p1

w1

≥ p2

w2

≥ ... ≥ pn

wn

.

5. Computational experiences

Computational tests have been carried for randomly generated correlated
problems, i.e. problems such that:

• wi, i ∈ {1, ..., n}, is randomly draw in [1, 1000],

• pi = wi + 50, i ∈ {1, ..., n},

• C = 1
2
.

n∑
i=1

wi.

For each instance, the average results displayed have been obtained with 10
problems.
A NVIDIA GTX 260 graphic card (192 cores, 1.4GHz) has been used and the
parallel computational time is compared with the sequential one obtained on
a CPU with an Intel Xeon 3.0GHz. Results on the memory occupancy are
also presented.

5.1. Memory occupancy

In this section, we display the results obtained with the compression method
presented in section 4. Table 1 shows the factor of compression computed as
follow:

comp factor =
size of M c + 2. dn/32e

size of M
,

where M is the matrix of decision and M c the corresponding compressed
matrix. 2. dn/32e corresponds to the values of lc and rc needed for each lines.

Table 1 shows that in the worst case the size of the compressed data (size of M c+
2. dn/32e) corresponds to only 0.3% of the size of the initial the matrix M ,
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n comp factor n comp factor
10000 0.00309 60000 0.00051
20000 0.00155 70000 0.00044
30000 0.00103 80000 0.00038
40000 0.00077 90000 0.00034
50000 0.00062 100000 0.00031

Table 1: Factor of data compression.

which leads to a very small memory occupancy as compared with the origi-
nal dynamic programming algorithm. Furthermore, the factor of compression
decreases with the size of the knapsack.
This method of compression reduces significantly the memory occupancy
of the dynamic programming algorithm and is robust when the number of
variables increases. This permits one to solve larger problems that could not
be solved otherwise, like problems with 100000 variables.
Time spent for the compression step is presented in the next subsection, in
order to be compared to the overall processing time.

5.2. Processing time

Table 2 presents the average processing time to solve KP obtained with the
sequential and parallel algorithms. It also shows the corresponding aver-
age time spent during the compression step. Table 3 provides the resulting
speedup.
We can see that the processing time cost of the compression step is relatively
small as compared with the overall one. These results include the compres-
sion step and the transfer of data to the CPU. Thus, this approach is very
efficient both in terms of memory occupancy and processing time.
The comparison of the parallel implementation with the sequential one shows
that the resulting speedup increases with the size of the problem and meets
a level around 26. Our parallel implementation of the dynamic programming
reduces significantly processing time and shows that solving hard knapsack
problems is possible on GPU.
The parallel implementation of the dynamic programming algorithm on GPU
combined with our compression method permits one to solve large size prob-
lems within a small processing time and a small memory occupancy.
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n t. // t. seq. t. comp. // t. comp. seq.
10000 3.06 58.95 0.11 1.08
20000 11.97 226.66 0.31 4.16
30000 26.57 536.14 0.71 9.27
40000 47.43 1225.52 1.23 18.66
50000 73.55 1912.43 1.85 25.66
60000 105.93 2752.81 3.25 38.14
70000 143.98 3739.74 3.61 50.15
80000 183.15 4771.55 4.69 64.09
90000 238.57 6184.28 5.95 82.56
100000 289.21 >7200 7.16 -
t. //: average parallel time
t. seq: average sequential time
t. comp. //: average parallel time for compression
t. comp. seq.: average sequential time for compression

Table 2: Processing time (s.).

n speedup n speedup
10000 18.90 60000 25.98
20000 19.26 70000 25.97
30000 20.17 80000 26.05
40000 25.83 90000 25.92
50000 26.00 100000 -

Table 3: Speedup ( t. seq.
t. //

).

6. Conclusion

In this article we have proposed a parallel implementation of the dynamic pro-
graming algorithm for the knapsack problem on NVIDIA GPU with CUDA.
This algorithm has been combined with data compression techniques. Com-
putational experiences have shown that large size problems can be solved
within small processing time and memory occupancy.
The proposed approaches, i.e. implementation on GPU and data compres-
sion, seems to be robust as the results are not deteriorated when the number
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of variables increases. The observed speedup appears to be stable (around
26) for instances with more than 40000 variables. The reduction of the size
on the matrix increases with the number of variables, resulting in a more
efficient compression and the overhead does not exceed 3% of the overall
one.
The proposed parallel algorithm to solve knapsack problems on GPU shows
the relevance of using this type of architecture for combinatorial optimiza-
tion. Further computational experiences are foreseen, in particular with a
NVIDIA Tesla cards and hybrid supercomputers which are dedicated to hight
performance computing.
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