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The Flemish Ministry of Education promotes the integrated education of
disabled children by providing educational opportunities in common schools.
In the current system, disabled children receive ambulant help from a teach-
ing assistant (TA) employed at an institute for extra-ordinary education.
The compensation that the TAs receive for driving to visit the students is
a major cost factor for the institute that provides the assistance, therefore
its management desires a schedule that minimizes the accumulated distance
traveled by all TAs combined. We call this optimization problem the teaching
assistants assignment routing problem (TAARP). It involves three decisions
that have to be taken simultaneously: (1) pupils have to be assigned to TAs;
(2) pupils assigned to a given TA have to be spread over the TA’s different
working days; and (3) the order in which to visit the pupils on each day
has to be determined. We propose a solution strategy based on an auction
algorithm and a variable neighborhood search which exhibit an excellent per-
formance both in simulated and real instances. The total distance traveled
in the solution obtained for the real data set improves the current solution
by about 22% which represents a saving of around 9% on the annual budget
of the institute.



1 Introduction

To promote the integration of disabled children into the general school system, the
Flemish Ministry of Education provides opportunities and special support for those
pupils in their own schools. In the current system, disabled children in common schools
receive ambulant help from a teaching assistant (TA) employed at an institute for extra-
ordinary education, the royal Institute Woluwe. Three main types of disability are
supported: hearing disability, autism spectrum disorder and language disability.

Every pupil that receives assistance is assigned to a TA and is visited at his or her
own school. Pupils with a moderate disability are visited once a week, whereas pupils
with a severe disability receive assistance twice a week. Every morning, the TAs depart
from their homes and travel from school to school to visit the pupils that have been
assigned to them for that day. At the end of the working day, the TAs return to their
homes. In the beginning of the school year, the TAs receive their roster: a schedule
that specifies for each day of the week which pupils they should assist and in which
order. The TAs drive their private cars, and receive a financial compensation per driven
kilometer. This compensation is a major cost factor for the institute that provides the
assistance. Its management therefore desires a schedule that minimizes the accumulated
distance traveled by all TAs combined.

Determining the schedule involves three decisions that have to be taken simultaneously:
(1) pupils have to be assigned to TAs; (2) pupils assigned to a given TA have to be spread
over the TA’s different working days; and (3) the order in which to visit the pupils on
each day has to be determined. We call this optimization problem the teaching assistants
assignment-routing problem (TAARP).

Several constraints have to be taken into account when solving the TAARP. First,
whether or not a certain TA is allowed to assist a certain pupil depends on her edu-
cational degree, on the pupil’s disability type, and on the school the pupil is in (nursery,
primary school or secondary school). Second, the number of working hours per week is
different across TAs. This is due to the fact that certain TAs only work part time, and
to an oddity in the Belgian law which prescribes that the number of hours a full time
TA has to work depends on her exact diploma. The higher the TA’s diploma, the fewer
hours she has to work during any given week. Third, pupils that receive assistance twice
a week do so at two different and non-consecutive days.

This problem is related to the multi-depot multi-period vehicle routing problem, but has
several additional constraints. Some special characteristics of the problem, such as the
fact that the teachers’ “capacity” (maximum working time) is expressed as a multiple
of the unit of “demand” (one hour of teaching), have motivated us to develop a new
solution approach for this specific problem. In this paper we therefore propose a new
metaheuristic that consists of two phases: a heuristic to find an initial feasible solution,
followed by an improving phase. The heuristic for the first phase is inspired by the
auction algorithm, while the improving phase is a variable neighborhood search (VNS)



metaheuristic that considers swaps between two pupils with similar requirements and
exchanges that involve more than two pupils with different characteristics (number of
required sessions and hours per session).

This paper is organized as follows. Section 2 surveys the relevant literature on related
routing problems. In section 3 we develop a mixed-integer programming formulation
of the problem. Our solution strategy is proposed in section 4 and tested in section 5.
Finally, section 6 contains some conclusions and pointers for future research.

2 Literature Review

Because of the fact that several different starting locations for vehicles are used and
that the problem data stretches over several days, the TAARP that we consider in this
paper is closely related to the multi depot periodic vehicle routing problem (MDPVRP),
which generalizes two other well-known routing problems: the multi depot vehicle routing
problem (MDVRP) and the periodic vehicle routing problem (PVRP). The PVRP is a
generalization of the VRP the objective of which is to determine routes for a fleet of
vehicles over a period of days. Like in the VRP, the vehicles’ tours start and end at a
given depot. An extensive description of PVRP can be found in a survey by Francis
et al. [12], where the evolution of the problem in the literature and its solution methods
are presented, starting from the initial identification of the problem by Beltrami and
Bodin [1] and its subsequent formulation and first dedicated heuristics by Russell and
Igo [23] and Christofides and Beasley [8]. A discussion of the different objectives and
constraints is presented in Mourgaya and Vanderbeck [19]. Early heuristics to solve
the PVRP consist of a cluster-first route-second approach in which customers are first
clustered into days. Examples are the heuristics proposed by Beltrami and Bodin [1],
Tan and Beasley [24] and Russell and Gribbin [22]. In some cases these heuristics
are complemented with improving phases. Recently approaches based on metaheuristics
have been implemented, like the tabu search proposed by Cordeau et al. [9] (also suitable
for the MDVRP) and the solution strategy based on genetic algorithms by Drummond
et al. [10]. Also, mathematical programming approaches have been presented, like the
method based on lagrangian relaxation by Francis et al. [11].

The MDVRP is a generalization of the VRP in which the vehicles can be based in
different depots and each route followed by a vehicle must depart from one of those
depots and return to it after visiting a sequence of customers. In all other aspects, the
problem is completely similar to the VRP. The first approaches for this problem were
based on construction and improvement procedures and, in general, used adaptations of
known heuristics for the VRP. More recently a search procedure was proposed by Chao
et al. [7], and tabu search approaches have been proposed by Renaud et al. [20] and
Cordeau et al. [9]. In the latter paper a formulation is presented that shows that the
MDVRP is a special case of the PVRP by associating depots with days. Some of the
solution approaches for the MDVRP also use a cluster-first route-second strategy (see,



e.g., the clustering procedures described by Giosa et al. [13]). Two exact algorithms
have been developed for the MDVRP. Both are due to Laporte et al. [16], but these
only work well for relatively small instances in the symmetric and asymmetric cases,
respectively.

The combination of periodicity and multiples depots into the MDPVRP has not been
extensively studied. Francis et al. [12] define this problem as a variant of the PVRP.
Hadjiconstantinou and Baldacci [14] consider the resource planning problem of a utility
company that provides preventive maintenance services to a set of a geographically
dispersed network of customer using a fleet of depot-based vehicles and crews. They
formulate this problem as a MDPVRP and a heuristic based on a generalization of the
classical VRP is used to solve it. More recently, Mingozzi [18] presented an integer
programming formulation of the MDPVRP that is an extension of the set partitioning
formulation of the Capacitated VRP.

3 Mathematical Formulation

The TAARP is defined on a graph where nodes correspond either to TAs’ homes or
schools where pupils attend classes, while arcs represent routes (distances calculated
over a road network) that connect every pair of nodes. In this section, we formulate the
TAARP as an integer (binary) program. The symbols used are shown in Table 1.

The model is formulated as follows:

minz Z Z Z CijTijtd (1)

teT deDieN jeN

Zﬂfz‘jtd—zﬁjz‘tdzo VieSvteT,vdeD (2)
ieN ieN

Z Z Z bjtzijta = kj VjeSs (3)
deD teT ieN

Z Z bjtwijea > kj + M(y;¢ — 1) VieS,vteT  (4)
deDieN

Z Z bjtrijta < Myj VjiesSvteT (5)
deDieN

Z erﬂfz‘jtd < Qtd VteT,vdeD  (6)
ieN jeS

DY i< VteT,¥deD (7)
i€T jES

> i+ Y Tijyarn < 1 VieSVteT,vde D\{D|} (8)
JEN JEN



Table 1: Symbols used in the MIP formulation of the TAARP

Sets
S Set of pupils
T Set of teaching assistants
N Set of nodes, N =SUT
D Set of days, D ={1,2,3,4,5}
Parameters
k; Number of times that pupil j has to be visited every week
1, If teaching assistant ¢ is allowed to visit pupil j
bjt .
0, Otherwise
Gd Number of hours of assistance available for teaching assistant ¢ at day d (capacity)
Tj Number of hours per session that pupil j requires (session duration for pupil 7)
Cij Cost (distance) for traveling from node ¢ to node j
Variables
1, If node ¢ is visited after node j by teaching assistant ¢ on day d
Lijtd .
0, Otherwise
1, If pupil j is assisted by teaching assistant ¢
Yijt .
0, Otherwise




YD waslcl -1 VCCS2<|Cl<a,Vt€T,vdeD  (9)

€T jeC
zija € {0,1} Vie NVje N, Vte T,VdeD (10)
y;e € {0,1} VieS,vteT (11)

The objective function (1) minimizes the total distance traveled by all TAs on all days.
Constraints (2) impose that if pupil j is assisted by TA t on day d, then an arc should be
traversed by TA ¢ on day d ongoing to pupil j and outgoing from pupil j. Constraints (3)
ensure that each pupil is visited as many times as required and that visits are performed
only by a TA allowed to visit him/her, while constraints (4) and (5) impose that each
pupil is assisted by only one teacher when the pupil requires more than one visit (M
is an arbitrarily large constant). Constraints (6) and (7) impose each TA’s capacity
(maximum number of hours worked on each day) and that each route is executed by
exactly one TA respectively. Constraints (8) ensure that for each pupil there is at least
one day between two consecutive visits. Constraints (9) correspond to the generalized
subtour elimination constraints. Finally, equations (10) and (11) are the integer (binary)
constraints.

The model presented involves a large number of variables and the number of subtour
elimination constraints in (9) is exponential. Using this model to solve medium and large
size instances is not computationally tractable. However, the model is useful to solve
small instances in order to compare the results obtained with those of the metaheuristic
approach developed in section 4. To solve such instances, we have implemented a cut
adding procedure, in which the problem is first solved without considering the subtour
eliminiation constraints (9). At each iteration, the set of violated subtour elimination
constraints is determined and these constraints are added to the problem before solving
it. This procedure is run iteratively until no more subtours are found. The results of
this procedure can be found in section 5.

4 A metaheuristic for the TAARP

In this section, we present an efficient metaheuristic for the TAARP formulation dis-
cussed in section 3. The metaheuristic solution approach consists of two procedures.
First, a feasible solution is constructed using a procedure inspired by the auction al-
gorithm. Next, the constructed solution is improved by a procedure based on wvariable
neighborhood search (VNS).

4.1 Initial solution heuristics

Finding a feasible solution of the TAARP is difficult because of the special structure of
the problem. Three heuristics to construct an initial solution were implemented.



The first heuristic we implemented is a cluster-first route-second heuristic. The clus-
tering phase of this heuristic uses two of the measures described by Giosa et al. [13]
to define a precedence relationship between customers (pupils). This precedence rela-
tionship determines the order in which pupils are assigned to TAs. The routing phase
involves an insertion algorithm (Campbell and Savelsbergh [5]), where the savings are
computed similarly to those presented by Campbell et al. [6].

The second heuristic performs the assignment and routing simultaneously. This heuristic
is analogous to the application of the routing phase of the first heuristic applied to the
complete set of pupils and without clustering the pupils first. In each iteration the
insertion algorithm evaluates the insertion of the pupil in each possible route of each
teacher and inserts a pupil in its best possible location.

Neither of these two heuristics provided satisfactory results. We have attempted to
improve the performance of the two mentioned heuristics by introducing randomness in
a GRASP-like fashion (Resende and Ribeiro [21]). However, even then the effectiveness of
these two heuristics proposed is low as they typically end without having found a feasible
solution. This is due to the combined effect of the periodicity and the requirement that
all the sessions for one pupil must be provided by the same TA.

4.2 A heuristic based on the auction algorithm

We propose a third heuristic that focuses on trying to assign the pupils to TAs in such
a way that a feasible solution is found. In order to achieve that objective, we first
tackle the problem of assigning pupils to teachers ensuring that all constraints except
those related with the routing are fulfilled. Note that after a feasible solution for the
assignment problem is found, it can be trivially transformed into a feasible solution for
the TAARP by determining an arbitrary routing of the pupils assigned to each working
day of each teacher. In other words, the routing does not affect the feasibility of the
solution once it has been reached during the assignment phase. Our heuristic is inspired
by the auction algorithm which was initially proposed by Bertsekas [2] for the assignment
problem. We first provide a description of the basic idea behind the auction algorithm.
Next, we introduce additional constraints and features that are required to tackle the
TAARP.

4.2.1 The auction algorithm

In an assignment problem n objects and n agents are given, together with a value g;;
that represents the benefit of object j for agent ¢. The objective is to find the optimal
assignment of objects to agents so that each agent is assigned to one object, each object
is assigned to one agent and the total benefit is maximized.

In the auction algorithm, an object j has a price p; that has to be paid by the agent to
whom the object is assigned. Under these conditions, the value of object j for agent 7 is



equal to g;; —pj. Obviously, Each agent prefers the object which generates the maximum
value for him/her, that is . max }{gij —p;}
j=1l..n

The auction algorithm starts with an empty assignment and all prices equal to zero,
and ends when all objects have been assigned. The algorithm proceeds in iterations,
assigning a single agent to an object in each iteration. A typical iteration involves three
steps:

a) Selection Select an agent i to assign an object to. This agent can be selected at
random, or in lexicographical order.

b) Bidding Determine the object j; which has maximum value for agent 4, using the
formula

Ji=arg max {g;j —p;j} (12)
(=1}

The value of object j; for agent i is given by v; = ¢;5, — pj;, while the bid from
agent ¢ on object j;: is estimated to be

bij, = pj, +vi — w; (13)
where w; is the second best value for agent i of all objects, i.e.

w; = max i — Dj 14
P ety b ) 4

c) Assignment: Assign object j; to agent i. If another agent was assigned to object
Ji, this agent becomes unassigned again. Raise the price of object j; to b;j,.

The algorithm continues with a sequence of iterations until all agents have been assigned
to an object. Bertsekas [2] provides additional suggestions to modify the auction algo-
rithm to deal with assignment problems. One of the suggestions is the e-complementary
slackness, which we will use below in the construction of a starting solution for the
TAARP. Generally, auction algorithms perform well in practice, have excellent com-
putational complexity properties and their running times are competitive, (Bertsekas

[3)-

4.2.2 Auction heuristic for the TAARP

With some modifications, the auction algorithm described in the previous paragraphs
can be adapted to find a feasible solution for the TAARP, where pupils have to be
assigned to TAs. One of the reasons why a modification is required, is that although
each pupil is assigned to a single TA, every TA can have several pupils assigned. We
therefore define an object in the terminology of the auction algorithm to be one hour of
teaching of a given TA. We define an agent to be an hour of assistance required by a

pupil.



For each object t and each agent s, we define the benefit g5 to be a measure of the
proximity between the teacher corresponding to the object and the pupil corresponding
to the agent (i.e. a large enough constant minus the driving distance). If we assume that
the total number of hours of teaching required by all pupils is equal to the total number
of hours provided by the TAs, the corresponding problem of assigning objects (hours
provided by a TA) to agents (hours demanded by a pupil) is an assignment problem
that can be solved by the auction algorithm.

One problem with the auction algorithm is that its performance can be negatively af-
fected by the fact that for each agent all objects associated with a particular TA generate
the same benefit. The extension of the algorithm to the transportation problem consid-
ering similar objects proposed by Bertsekas and Castanon [4] avoids this difficulty. Two
objects 7 and j are called similar if they can be matched with the same agents at equal
values. For each object j, the set of all objects similar to j is called the similarity class
of j and is denoted by M, (7).

There are two other issues that must be taken into account in the real instance: (i) a
session lasts either one or two hours, and (ii) there are pupils that require more than
one session per week and these sessions must be taught by the same teacher and take
place on different days.

The first issue can be addressed by defining similar agents as Bertsekas and Castanon
[4] propose in order to deal with transportation problems. As mentioned, an agent is
defined for each hour of assistance that a pupil requires (e.g. for a pupil who requires
two session of two hour per week, four agents must be defined). Two agents i and i’ are
called similar if they obtain the same benefit when an object j is assigned to them. The
set of all agents similar to an agent ¢ is called the similarity class of i and is denoted by
M, (3). In the auction algorithm for the TAARP, all agents corresponding to a specific
pupil are similar.

The second issue implies that the set of objects that an agent ¢ can bid for (denoted by
A(7)) should often be restricted to a subset of the complete set of unassigned objects.
Moreover, the set of possible objects that two agents can bid for are related if the
agents correspond to the same pupil. Consider, for example, a pupil s who requires two
sessions of two hours per week. For this pupil, four agents are created, one for each hour
of assistance. Assume that object j (j € A(i)) has already been assigned to agent i,
i.e. one of the hours of assistance for this pupil has already been assigned. Consider a
second agent k associated with a different hour of assistance required by pupil s:

e If agent k is a different hour in the same session as i (e.g. i is the first teaching
hour of the first session of the week and & is the second hour for the same session)
then A(k) consists of objects associated with the same teacher and the same day
of the week as object j.

e If agent k is associated with a different session than i (e.g. ¢ is the first hour of
the first session and & is the first hour of the second session), then A(k) consists of



all objects associated with the same teacher but a different day of the week than
object 7.

The set A(i) therefore changes depending on the current assignment (partial state of the

auction).

Based on the basic auction heuristic for the assignment problem in Section 4.2.1 and
the considerations listed above, we have developed a modified auction heuristic for the
TAARP. This auction heuristic works as follows.

1. Initialization. Unassign all objects ¢ and all agents j, set all prices p; to zero.

2. Auctioning. This phase iteratively considers three steps until a feasible assign-
ment is found.

If all agents have been assigned go to the routing phase (phase 3), otherwise per-
form the following steps:

2)
b)

Selection. Select an unassigned agent i.

Bidding. Determine the object j in A(i) which has maximum value for
agent 1
ji = arg max {gij —pj} (15)
7j=1,...,n

=1,...

The value of object j; for agent 7 is given by v; = g;;, — pj,- Estimate the bid
from agent 7 on object j;:

bij, = pj; T vi —wi + € (16)
where € is a small constant explained below and w; is the best value g;; — p;

for any object in A(7) that belongs to a different similarity class than j;:

Wi = max i — i 17
Gty 99 Pk (17)

If such an object does not exist, then w; is set to —wv;.
Assignment.

e If object j; was assigned to an agent [ # 4, then all objects in the similarity
class M,(l)) are unassigned.

e Assign object j; to agent 1.
e For every agent k € M,(i), raise the price pj to b;j,.

Perturbation. If the number of iterations without decreasing the number
of unassigned agents is equal to L, then decrease the price of all unassigned
objects to zero. Otherwise, go to step 2a.

10



3. Routing. Apply a routing procedure to find the shortest tour for each teacher on
each day.

In phase 2b, € is a small constant value that ensures that prices keep increasing through
the different iterations. This is important because it prevents the auction from getting
stuck in a cycle of bids without price increments.

If the number of unassigned agents after the assignment step is not decreasing over time
any more, the perturbation step tries to force the unassigned agents to bid for a free
object when the algorithm has spent L iterations on a war of prices. To this end, the
algorithm decreases the price of unassigned objects to make them more attractive for
unassigned agents.

If at the end of the auction phase, a feasible assignment has been reached, it is still
necessary to determine the order in which the pupils assigned to a teacher are visited on
each day. This is done by an exhaustive enumeration procedure because the maximum
number of pupils visited each day is at most eight.

4.3 Improving phase

The improving phase is based on the variable neighborhood search metaheuristic. More in
particular, it corresponds to the basic VNS variant described in Hansen and Mladenovic
[15]. A schematic overview of the improving stage is given in Algorithm 1.

Algorithm 1 Improving phase for the TAARP
Initialization: Consider an initial solution x, and select the set of neighborhood struc-
tures Ni(x) k=1,2,..., knax-
repeat
Set k+— 1
repeat
Ezplore Neighborhood k. Find the best neighbor 2’ of z (2’ € Ni(x))
Move or not. If the solution z’ thus obtained is better than z, set x «— 2/ and
k «—— 1; otherwise, set k «— k + 1;
until £ > kpax
until no improvement can be found any more

Two move types have been considered, defining two different neighborhood structures
(kmax = 2). The first move, that defines neighborhood Ni(x), is a simple exchange
move that attempts to swap pupils with similar characteristics. This move exchanges
the positions of two pupils who need the same number of sessions and hours per sessions
if no constraints are violated with the move, (e.g. if one of the TAs is not allowed to
assist a pupil involved in the swap).

The second type of move, a combined exchange, allows exchanges among three pupils
with different characteristics. Three cases of this type of move are considered.

11



e (Case 1: A pupil who requires one session of two hours per week is exchanged
with two pupils that need one session, of one hour per week and that are currently
visited on the same day by the same teacher.

e (Case 2: A pupil who requires two sessions of one hour per week is exchanged with
two pupils of one hour per week session who are currently visited on different days
by the same teacher.

e (Case 3: A pupil who requires two sessions of two hours per week is exchanged with
two pupils that need one session, of two hours per week and are currently visited
on different days by the same teacher.

Figure 1 visualizes the first case for the second move type. Figure 2 corresponds to the
cases 2 and 3, as they only differ on the numbers of hours per session required by the
pupils involved in the move. In the figures, the squares correspond to the TAs and the
bullets represent pupils. In Figure 1, one pupil who needs one session of two hours per
week is swapped with two pupils who need one hour of assistance per week only. In
Figure 2, a similar swap is performed except that the two pupils who need one hour of
assistance are visited on different days.

Pupil assisted once per week/one honr @ Popil assisted once per week/two honrs

Figure 1: Example of the second type of move: Case 1

12



move

Popil assisted once per week @ Pupil assisted twice per week

Figure 2: Example of the second type of move: Case 2 and 3

The neighborhood Na(z) is composed of all solutions ' that can be reached from the
current solution x through the moves described in cases 1-3 without violating any con-
straint. After applying this type of move it is necessary to re-optimize the day-routes
obtained because one of the sessions could have been assigned in a suboptimal position
into the tour. As in the algorithm for constructing the initial solution, we use a complete
enumeration for that purpose.

4.4 Algorithm structure

The solution approach has been described for one iteration, however it is possible to
insert it in a multi iterate scheme by considering a different initial solution each time
as in the multistart methods described by Marti [17]. In our approach, the auction
algorithm is used to generate different starting solutions for the improving phase by
randomly selecting agents in step 2a. The complete algorithm is run iteratively until
a stopping criterion is reached (e.g. for the number of iterations or running time) and
the best solution is kept. A schematic overview of the proposed solution strategy is

13



presented in Algorithm 2.

Algorithm 2 Solution strategy for the TAARP
Initialization: Consider an initial empty solution
while Stopping condition is not satisfied do

Auction Algorithm: Get initial solution — x
VNS Algorithm: Improvement phase — x’
if x’ improves the incumbent then
Update incumbent
end if
end while
Return best solution

5 Computational results

In this section, we report the results from a computational study to evaluate the perfor-
mance of our metaheuristic approach. For the study several small instances were gen-
erated randomly so that our approach could be compared to an exact solution method,
i.e. the implementation of the mathematical model described in Section 3.

Next, we use our algorithm to solve the real-life instance of the TAARP that motivated
this research. The mathematical model was implemented using Xpress-MP while the
metaheuristic was coded in Java. All experiments were carried out on a personal com-
puter equipped with an Intel(R)Core(TM)2 Duo(CPU) T9300 processor at 2.5 GHz and
with 4 GB of RAM.

5.1 Randomly generated instances

In a first set of experiments, we concentrate on determining the effectiveness and effi-
ciency of the metaheuristic proposed in this paper. Since only small instances can be
solved to optimality using the mathematical model, we have generated several small ran-
dom instances considering 20 pupils, to be assigned to three TAs and three working days.
The coordinates of the pupils and TAs were generated using a U0, 100] distribution and
rounded to the nearest integer. For each pupil the number of sessions per week was 1
with probability 0.7 and 2 with probability 0.3, while the number of hours per session
is 1 or 2 with probability 0.25 and 0.75, respectively. These values were selected so as
they emulate the distribution observed in the real data set. Table 2 shows the results
obtained by both the exact method and the metaheuristic for ten of these instances. In
the table, the column with heading TTD (total traveled distance) contains the objective
function value, the columns with heading MTD contains the maximum traveled distance
for any TA, and the columns with heading CPU contains the running time in seconds.

14



Table 2: Computational results for small simulated instances
Exact Method Metaheuristic

Instance TTD MTD CPU TTD MTD CPU Gap
(s) (s) (%)

1 1166.7  273.3 13101.5 1166.7  273.3 12.0 0.00
2 1082.7  200.6  2095.9 1082.7  200.6 9.4 0.00
3 1025.6  193.4  6079.9 1057.8  225.7 6.4 3.14
4 12972 286.5 12246.4 1323.1 2074 44.5 2.00
) 992.3  263.0 4204.5 1021.8  263.0 3.7 297
6 1000.1  174.1 26833.0 1000.1  174.1 5.9 0.00
7 10563.6  207.1  2586.8 1053.6  207.1 14.9 0.00
8 1161.3  210.3 530.0 1161.3  210.3 13.8  0.00
9 1273.4  175.3 11186.5 1273.4  175.3 15.2  0.00
10 1205.0  169.2 452.5 1205.0  169.2 12.8  0.00
Avg. 7931.7 13.9 081

The metaheuristic provides the optimal solution for seven out of ten instances. The
maximum gap is 3.14%. However, the computing times for the metaheuristic are signifi-
cantly smaller, even considering that 1000 iterations were performed for all instances and
that the optimal solution was usually found long before the end of these iterations.

In the second set of experiments, we concentrate on analyzing the performance of three
different elements of our metaheuristic: the heuristic to construct an initial solution, the
variable neighborhood search and the effect of randomness. To this end, ten instances
with 150 pupils, 16 TAs and 5 working days were generated. For each instance the
following experiments were conducted:

e Observation 0: An initial solution is constructed using the heuristic described in
Section 4.1 without randomization. This means that agents are assigned in the
order in which they appear in the input file.

e Observation 1: The VNS is applied to the solution produced in Observation 0.

e Observation i: i iterations (i > 1) of the complete metaheuristic (including ran-
domness in the construction of the initial solution) are carried out and the best
solution is reported.

The results of these experiments are presented in Figure 3 where the improvement of
each observation (in percent) is computed with respect to the objective value obtained
in observation 0. The dashed lines are the result for each of the ten problem instances.
The solid line is the average result.
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Figure 3: Results of the experiments with 10 artificially generated instances involving
150 pupils, 16 TAs and 5 working days

As can be seen from Figure 3, the heuristic usually provides an initial solution that
is quite far from any local optimum, as the VNS generates about 28% improvement
over that solution. This also demonstrates that the search in different neighborhoods
is working properly. The use of randomness in the construction of the initial solution
provides, on average, about 5% of additional improvement.

5.2 Real-life instance

The real-life instance involves 212 disabled children that must be assisted by 24 TAs.
The pupils are distributed over 138 schools dispersed in a central area of Belgium. About
25% of the pupils require two visits per week and two of the pupils require three visits
per week. For each TA, the number of working days is between one and five and the
number of available hours per day is between two and eight.

We have used the Google Maps API to develop several scripts that allow us: (1) to
geocode the addresses of schools and TAs, (2) to compute an approximation of the real
driving distance between each pair of locations, and (3) to draw the routes generated
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by our algorithm. Figure 4, showing the geographical distributions of schools and TAs,
was generated using one of those scripts.
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Figure 4: Geographical distribution of schools and TA

Currently, the planning is done by hand using only a spreadsheet. The total distance
of the schedule currently in use is 4828.7km. Because of the planning difficulties this
poses, the current schedule does not take into account the constraint that enforces the
different sessions for a student to take place on non-consecutive days.

To compare our metaheuristic to the current planning technique, we have run it without
considering this constraint, using 1000 iterations as a stopping criterion. The best solu-
tion was found in iteration 748 and the complete run took 4.6 hours of processing time.
Table 3 presents for each TA the total number of pupils assigned, the traveled distance
in kilometers per week (TTD) and the number of kilometers traveled per teaching hour
(TTD/hour) for both the current solution and for the metaheuristic (MH). The change
in TTD compared to the current solution and the number of common students between
the two solutions (Comm.) are also showed.

The final solution produced by our algorithm improves the current solution by about
22%, and results in a schedule with 3756.1km of total traveled distance. On average,
the total traveled distance per TA is around 45 km less than in the current solution, the
number of kilometers traveled per teaching hour is also improved in about 2km and the
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Table 3: Comparison of the current and the metaheuristic solution

N° Stud TTD TTD/hour
TA Curr. MH Comm. Curr. MH Curr. MH Differ.
(km)  (km) (%)
1 6 5 0 72.7 40.2 7.3 4.0 44.7
2 9 13 0 142.8 143.2 5.9 6.0 -0.3
3 7 10 1 75.1 58.8 3.6 2.8 21.7
4 9 11 2 135.2 191.4 5.9 8.3 -41.6
5 7 6 2 103.2 26.0 7.4 1.9 74.8
6 9 8 0 208.7 218.7 10.4 10.9 -4.8
7 7 8 0 248.4 240.8 15.5 15.1 3.1
8 6 5 2 87.0 122.8 79 11.2 -41.1
9 4 4 4 4.0 4.0 1.0 1.0 0.0
10 11 11 2 326.4 81.1 12.6 3.1 75.2
11 6 4 0 76.2 45.4 6.3 3.8 40.4
12 14 14 7 270.8 252.9 9.7 9.0 6.6
13 10 13 1 743.1 328.6 23.2  10.3 55.8
14 10 10 5 249.2 160.7 11.9 7.7 35.5
15 7 7 1 71.5 79.6 4.5 5.0 -11.3
16 16 16 13 155.8 147.5 5.6 5.3 5.3
17 9 9 3 186.0 110.9 9.3 5.5 40.4
18 12 11 9 146.6 183.9 5.2 6.6 -25.5
19 6 4 0 28.9 89.7 2.1 6.4  -209.8
20 8 6 0 183.4 26.1 11.5 1.6 85.7
21 11 8 2 151.2 96.8 6.9 4.4 36.0
22 8 9 6 901.2 851.8 41.0 38.7 5.9
23 11 12 5 182.1 131.2 6.5 4.7 28.0
24 9 8 2 79.4 124.2 3.3 5.2 -56.4
Average 201.20  156.50 9.35 7.43 7.00
Total 212 67 4828.71 3756.05 22.21
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improvement obtained per TA amounts to 7%.

In our best solution, only 31% of the pupils are assigned to the same TA as in the current
solution. This shows that the improvement is not only due to the routing but also to a
better assignment of pupils to TAs.

While the travel distance is reduced for most TAs in the final solution, TA19 faces a
substantial increase in TTD. However, the total distance that she has to travel per week
is still less than 90km, which is less than the average over all the TAs. For TA22, the
distances are considerable larger than for the others TA because TA22’s home lies at a
large distance from the cluster of schools to be visited, as can be seen in figure 4.

The value of our solution of the TAARP at the Royal Institute Woluwe can easily be
calculated. The institute receives an annual subsidy of 483.50 euro for 184 of the pupils
it assists in the context of integrated education. The total annual budget, which forms
the basis for compensating the TAs for the distances they drive with their private cars,
is therefore 88964 euro. Our solution to the TAARP problem saves the TAs a total of
1072.6 km per week and thus about 32178 km per annum. The compensation per km
driven amounts to 0.25 euro, so that our solution saves the institute 268.15 euro per
week and 8044.5 euro per annum, which is 9% of the annual budget and 22% of the
current annual expenses for transportation.

Finally, we have also run our algorithm considering the constraint that enforces the
different sessions for a student to take place on non-consecutive days. The total distance
of the resulting schedule is 3861.5km, which is about 20% better than the current solution
and 1% worse than the solution obtained without considering that constraint.

6 Conclusions and future research

In this paper, we have defined the teaching-assistants assignment-routing problem (TAARP)
to solve a real-life routing problem faced by several institutes for extraordinary educa-
tion in Flanders. This real-life problem is closely related to the multi depot periodic
vehicle routing problem, but has several additional constraints. We described and im-
plemented a solution approach based on the auction algorithm and concepts from the
GRASP and VNS metaheuristics. The approach we proposed was tested using both
simulated instances and a real-life data set. On both data sets, our algorithm performed
excellently. The solution obtained on the real-life data set improves the total distance
traveled by about 22% compared to the current solution used by the institute. The use

of our method represents a 9% saving on the available budget to assists the disabled
children.

According to our results, the key to improve the current solution in the real-life instance
does not lie in the routing itself but in the clustering or distribution of the pupils over the
TAs. Indeed, in this case the routing problems usually involve not more than a few nodes
and are highly determined for the way that the students are allocated to the different
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working days of the TAs. The proposed approach provides an integrated framework for
the different decisions involved in the TAARP, where the clustering, assignment and
routing decisions are considered simultaneously.

There are two potential topics for future research that arise from this work. First, we
could explicitly consider the fairness of the assignment and look for solutions that min-
imize the total traveled distance while keeping the distance traveled by each teacher as
homogeneous as possible. Second, we could attempt to construct a portfolio of alter-
native low-cost solutions, which can then be ranked using secondary criteria based on
human and social considerations that are hard to quantify.
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