
www.elsevier.com/locate/cor

Author’s Accepted Manuscript

Restricted dynamic programming: A flexible
framework for solving realistic VRPs

J.Gromicho, J.J. vanHoorn,A.L.Kok, J.M.J. Schutten

PII: S0305-0548(11)00195-X
DOI: doi:10.1016/j.cor.2011.07.002
Reference: CAOR2860

To appear in: Computers & Operations
Research

Received date: 18 January 2010
Revised date: 30 June 2011
Accepted date: 1 July 2011

Cite this article as: J. Gromicho, J.J. van Hoorn, A.L. Kok and J.M.J. Schutten, Restricted
dynamic programming: A flexible framework for solving realistic VRPs, Computers &
Operations Research, doi:10.1016/j.cor.2011.07.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/cor
http://dx.doi.org/10.1016/j.cor.2011.07.002

Restricted dynamic programming: a flexible
framework for solving realistic VRPs

J. Gromichoa,b, J.J. van Hoorna,b, A.L. Kokb, J.M.J. Schuttenc,∗
a Vrije Universiteit, Amsterdam, The Netherlands

b ORTEC, Gouda, The Netherlands
c University of Twente, Enschede, The Netherlands

Abstract

Most successful solution methods for solving large vehicle routing
and scheduling problems are based on local search. These approaches
are designed and optimized for specific types of vehicle routing prob-
lems (VRPs). VRPs appearing in practice typically accommodate
restrictions that are not accommodated in classical VRP models, such
as time-dependent travel times and driving hours regulations. We
present a new construction framework for solving VRPs that can han-
dle a wide range of different types of VRPs. In addition, this frame-
work accommodates various restrictions that are not considered in
classical vehicle routing models, but that regularly appear in practice.
Within this framework, restricted dynamic programming is applied
to the VRP through the giant-tour representation. This algorithm
is a construction heuristic which for many types of restrictions and
objective functions leads to an optimal algorithm when applied in an
unrestricted way. We demonstrate the flexibility of the framework for
various restrictions appearing in practice. The computational experi-
ments demonstrate that the framework competes with state of the art
local search methods when more realistic constraints are considered
than in classical VRPs. Therefore, this new framework for solving

∗Corresponding author. Tel.: +31 53 489 4676; fax: +31 53 489 2159
E-mail adresses: joaquim.gromicho@ortec.nl, JHoorn@feweb.vu.nl,

leendert.kok@ortec.nl, j.m.j.schutten@utwente.nl

1

VRPs is a promising approach for practical applications.

Keywords: Restricted DP; Giant-Tour Representation; VRP; Real-
life Restrictions

1 Introduction

Meta heuristics have proved to be very successful in solving large vehicle
routing and scheduling problems. The survey by Gendreau et al. [1] lists
six types for the Capacitated VRP alone, and from the surveys of Parragh
et al. [2, 3] we can only estimate the number to be much larger when al-
lowing different types of VRP. While meta heuristics rely on the careful
definition (and redefinition) of neighborhoods for each type of VRP, Pisinger
and Ropke [4] propose a framework for construction, destruction and amend-
ment of solutions, in which they assume construction to be simple and focus
on identifying parts of the solution suspected of compromising quality and
amending them. Alongside with the extensive work on meta heuristics for
the Vehicle Routing Problem and the work of Pisinger and Ropke, we pro-
pose a general construction only framework for very general Vehicle Routing
Problems based on dynamic programming.

We believe that there is still room for a general construction method that
is able to deal with realistic and general types of Vehicle Routing Problems.
Solutions found may certainly be improved by either local search or other
amendment algorithms, but our approach already allows for a trade-off be-
tween performance and quality. Moreover, the computational experiments
indicate that our approach is generic enough to allow finding reasonable solu-
tions for many types of vehicle routing problems without substantial redesign
and coding effort.

The approach we propose is a restricted dynamic programming heuristic
for very general vehicle Routing Problems, along the same lines as followed
by Malandraki and Dial [5] for the time-dependent Traveling Salesman Prob-
lem. Furthermore, our parameter H has the same interpretation as theirs
homonym parameter: H = 1 renders our approach to a nearest neighbor ap-
proach, while higher values of H generalize this simple approach by allowing
at most H solutions to be expanded further in each stage of the state space.
By also including a new restriction, now on the number E of expansions
per state, we reason as Toth and Vigo [6] in their Granular Tabu Search

2

approach: long arcs are not likely to be part of optimal solutions. Therefore,
ignoring those long arcs may substantially reduce the required computation
times, without significant quality loss. Our approach can also be seen as a
beam search approach, following the terminology introduced by Raj Reddy
on his Artificial Intelligence courses at the Carnegie Mellon University in
1976. The first published use of the term seems to be Lowerre [7]. Novel
from our perspective is the concept being used on the state space of a dy-
namic equation and not on the solution space, as traditional enumerations
algorithms do.

In practice, extensions of various types of VRPs need to be solved, such as
the capacitated VRP (CVRP), the VRP with time windows (VRPTW), and
the pickup and delivery problem (PDP). Toth and Vigo [8] give an extensive
overview of different types of VRPs and proposed solution methods. In
addition, companies such as logistic service providers and distribution firms
have their own set of restrictions of which a certain part may be general to
all companies, but most companies also have some unique restrictions. As a
consequence, each company requires a unique solution method to solve their
routing problems.

The framework we propose covers a wide range of different types of VRPs.
Moreover, it accommodates various restrictions that appear in practice, but
that have been generally ignored in VRP literature, such as time-dependent
travel times and driving hours regulations. We apply restricted dynamic
programming to the VRP through the giant-tour representation, which was
introduced by Funke et al. [9]. The giant-tour representation allows us to
handle single tour and multiple tour problems in a similar way.

The contributions of this paper are the following. First, we propose an
exact algorithm for the VRP. In the framework of this algorithm, various real
life restrictions and VRP variants can be accommodated. Second, we demon-
strate this flexibility by showing how the algorithm can be applied to known
VRP variants, and by showing how various additional real life restrictions
can be accommodated. Third, in addition to the way Malandraki and Dial
[5] propose to restrict the state space to reduce computation times, we pro-
pose an additional way to restrict the state space which reduces computation
times even further while maintaining or even improving solution quality. As
a result of restricting the state space, the algorithm runs in practical (poly-
nomial) computation times and produces high quality solutions for realistic
types of VRPs. Fourth, we show the quality of our framework by solving the
classical Solomon [10] benchmark instances for the VRPTW. Moreover, we

3

apply it to benchmarks of more restrictive vehicle routing problems: the PDP
with time windows (PDPTW) and the VRPTW with the European Com-
munity (EC) social legislation on driving and working hours (VRPTW-EC).
The results illustrate the power of this construction framework when applied
to more realistic vehicle routing problems: when more restrictions are added
to the problem, the performance of the framework improves, making it even
competitive with state of the art improvement methods for the VRPTW-EC.

Our paper is organized as follows. Section 2 first describes dynamic pro-
gramming for the TSP, then describes the giant-tour representation of VRP
solutions, and finally describes our framework for solving VRPs. Section 3
describes a way to reduce the state space of this dynamic programming for-
mulation to obtain solutions within practical computation times. Section 4
demonstrates the flexibility of our framework by showing how known types
of VRPs can be solved within this framework, and how various additional
real life restrictions can be accommodated. Section 5 presents the results of
computational experiments. Section 6 summarizes the main findings in this
paper.

2 DP applied to the VRP

Our framework for solving VRPs is based on the the restricted dynamic pro-
gramming (DP) heuristic for the TSP proposed by Malandraki and Dial [5]
We apply the (DP) heuristic to the VRP through the giant-tour representa-
tion (GTR) of vehicle routing solutions introduced by Funke et al. [9]. The
term giant tour was also introduced by Beasley [11]. However, this giant tour
is actually a TSP solution with only one single copy of the depot. Therefore,
it is not a representation of a feasible VRP solution, but it has to be turned
into a feasible VRP solution by somehow cutting the giant tour into feasible
VRP routes. We first describe the DP for the TSP and the GTR of vehicle
routing solutions.

2.1 Dynamic programming for the TSP

The restricted dynamic programming heuristic for the TSP is based on the
exact dynamic programming algorithm for the TSP of Held and Karp [12]
and Bellman [13]. The exact dynamic programming algorithm for the TSP
can be described as follows.

4

The TSP considers the problem of visiting a set V = {0, 1, ..., n− 1} of
n cities exactly once, starting and ending at city 0, and minimizing the total
travel distance. The travel distance between each pair of cities i, j ∈ V is
given by cij .

A state (S, j) , j ∈ S, S ⊆ V \0 in the DP algorithm represents a path
starting at city 0, visiting all cities in S exactly once, and ending in city
j. The cost C (S, j) of a state is given by the length of the smallest of such
paths. In the first stage, the costs of the states are determined by C ({j} , j) =
c0j , ∀j ∈ V \0. Next, in each successive stage the costs of the states are calcu-
lated with the recurrence relation C (S, j) = mini∈S\j {C (S\j, i) + cij}. Fi-
nally, the length of the optimal TSP tour is given by minj∈V \0 {C (V \0, j) + cj0}.

Since there are
∑n−1
|S|=1

(
n−1
|S|

) ≈ 2n subsets S and each subset S contains

|S| ≤ n− 1 possible end nodes, the total number of states is O (n2n). Next
each state is calculated by comparing at most n − 2 additions, resulting in
an algorithm with a running time complexity of O (n22n). The optimal TSP
tour can be backtracked by saving for each state (S, j) the city i ∈ S\j that
minimizes C (S\j, i) + cij .

Since this approach constructs only one route, it cannot be applied di-
rectly to the VRP. We propose to apply it to the VRP through the GTR of
vehicle routing solutions.

2.2 Giant-tour representation

Funke et al. [9] introduce the GTR of vehicle routing solutions, because it
allows to handle single and multiple route problems in a similar way. Besides,
it is a ‘natural’ representation of vehicle routing solutions. We use the GTR
for the development of our general framework for solving VRPs. The GTR
can be described as follows.

The basis of any routing problem is a directed graph G = (V, A), in
which the node set V consists of request nodes R ⊂ V , origin nodes O ⊂ V ,
and destination nodes D ⊂ V , and the arc set A represents feasible travels
between these nodes. For a VRP, the request nodes R correspond to all
customer requests. Furthermore, for each vehicle there is one origin and one
destination node, which all may represent the same location. Therefore, if
m is the number of vehicles available, we get |O| = |D| = m. If we order
the vehicle routes rv, v = 1, ..., m in a routing solution, then the GTR of
this solution is a cycle in the graph G in which each route end node dv is

5

connected to the route start node of the next vehicle route ov+1. Finally, the
cycle is closed by connecting dm with o1.

To use this representation, the number of available vehicles must be
known beforehand. If the number of available vehicles is not given, we can
use an upperbound on the required number of vehicles, e.g., by setting it
equal to the number of customers. If it turns out that some of the vehicles
are not required (typically when one of the objectives is to minimize the
number of vehicles), this is represented by directly connecting their origin
and destination nodes.

In Figure 1, we present an example of a vehicle routing solution with
three vehicles, two depots (A and B) and nine customers. Vehicle 1 starts
at depot A and ends at depot B, vehicle 2 starts and ends at depot B, and
vehicle 3 starts and ends at depot A. Figure 2 presents the same solution
with its corresponding GTR.

A B

1 4

2

3
5

6

8

7

9

Figure 1: Example of a solution to a VRP with three vehicles

o1 d3 o3 d1 o2 d2

1 4

2

3
5

6

8

7

9

Figure 2: The giant-tour representation of a solution to the VRP of Fig. 1

6

2.3 Dynamic programming for the VRP

By using the GTR we transform the VRP into a sequencing problem and
we can use the DP formulation for the TSP to solve it. However, we need
to ensure that the DP solution is the GTR of a feasible VRP solution. A
general way to do this is by checking the feasibility of a partial solution while
expanding a state. We only call an expansion feasible if it represents the
giant tour of a feasible partial VRP solution. So for a state (S, dv) where
the partial solution ends with node dv, the only feasible expansion is ov+1.
Furthermore, ov+1 can only be an expansion of a state with end node dv.
Therefore, unlike the TSP, not every expansion is feasible for the VRP and
we must perform a feasibility check when expanding a state. This seems a
downside, but it actually gives us the power to use this framework for almost
every type of VRP.

To derive the running time complexity of the DP algorithm for the VRP,
observe that we have to add 2m nodes to the |R| nodes for the customers.
This would lead to a total of 2m + |R| nodes. However, each end node of a
vehicle is attached to the start node of the following vehicle leaving only m
extra nodes in consideration (i1, i2, . . . , im), i.e., n = m + |R|. Furthermore,
these nodes have a fixed order in the GTR which reduces the state space
considerably.

The ordering of the vehicles imposes a serial precedence relation of m
nodes i1 → i2 → . . .→ im. For every state (S, j) for which holds that ia
∈ S,
ib ∈ S and ia → ib, there exists no feasible partial solution, because the
precedence relation is not satisfied. Therefore, for every (S, j) that does have
a feasible partial solution, there exists a k, 0 ≤ k ≤ m, such that ia ∈ S if
a ≤ k and ia
∈ S if a > k. We first derive the fraction of the total number
of subsets that have this property, since this fraction equals the fraction of
states that contain feasible partial solutions.

Suppose |S| = l and let i1, ..., ik ⊆ S. Then it must hold that k ≤ l and
l − k ≤ n −m, with l − k request nodes in S and n − m request nodes in
total. The total number of such subsets S equals

(
n−m
l−k

)
. If we sum this over

all k and l, we get
∑m

k=0

∑n−m+k
l=k

(
n−m
l−k

)
= (m+1)2n−m subsets. If we divide

this by the total number of subsets S ⊆ V , we get (m+1)2n−m

2n = m+1
2m , which

is the fraction of states that can contain feasible partial solutions given the
precedence relations i1 → i2 → . . .→ im. This implies that each independent
precedence relation i → j reduces the state space by 1

4
(in this case m = 2

such that the fraction of states that contain feasible partial solutions is 3
4
).

7

Finally, observe that any given state can possibly end in |R| + m = n
nodes, but can only be expanded to |R| + 1 nodes (because of the serial
precedence relation). Therefore, the running time complexity of the DP
algorithm for the VRP is

O
(

(|R|+ m)(|R|+ 1)
m + 1

2m
2|R|+m

)
= O (

n2m2n−m
)
.

3 Restricting the state space

Although dynamic programming has the best running time complexity of all
known exact algorithms for the TSP (see Woeginger [14]), it is not fast enough
to solve problems of realistic sizes in practical computation times. Therefore,
Malandraki and Dial [5] propose a restricted version of this algorithm, in
which the number of states in each stage is bounded by a parameter H . This
bounding procedure works as follows.

In each stage, we only use the H states with the smallest costs to expand
in the next stage. Since each state reflects a partial tour and in each stage
all partial tours visit the same number of customers, a state with low costs
is more likely to yield the first part of a good TSP solution than a state with
high costs. Therefore, continuing the algorithm with only the H states with
smallest costs will, although it does not guarantee to find the optimal TSP
tour, probably still result in a good TSP solution. Next, each of these H
states is expanded in all possible ways with one extra city. If certain states
are reached multiple times (e.g., expanding (S, j) with customer k results in
the same state as expanding (S, i) with customer k, i.e., (S ∪ k, k)), then,
according to the original recurrence relation, only the one with lowest costs
is maintained.

Malandraki and Dial [5] show that restricted dynamic programming is
a flexible approach for solving TSPs by applying it to the TSP with time-
dependent travel times. They also show that increasing the value of H results
in better solutions, but also in substantial higher computation times. Note
that setting H = 1 results in the nearest neighbor heuristic and setting
H = ∞ results in the exact dynamic programming algorithm for the TSP.

We restrict the state space even further by expanding each state (S, j) to
its nearest unvisited nodes until we have found at most E feasible expansions
of state (S, j). Note that E = 1 also results in the nearest neighbor heuristic,
regardless of the value of H . This restriction is similar to beam search (Bisiani

8

[15]). However, beam search is applied to the solution space, whereas we use
a restriction on the search through the state space. The restriction on the
number of expansions of each state is reasonable, because edges in the optimal
solution will most likely be between two nodes that are near neighbors of each
other, as observed by Rego and Glover [16] and Toth and Vigo [6].

The same principle can be applied to the DP algorithm for the VRP. Since
state expansions may be infeasible, we expand to the nearest unvisited nodes
until we have found at most E feasible expansions. We respect the precedence
relations on the route start and end nodes when expanding the states. We
observe that our beam through the state space will require a polynomial
effort, i.e., for each fixed H and E we expand to O (nHE) states. The
expansion of a state can be done in O(1). However, since we need to select
the H best states we get a running time complexity of O (n2HE log(H)). We
give a numerical analysis of the effects of E in Section 5.1, which shows that
a small value of E has a positive effect on computation time, and sometimes
even also on the solution quality.

4 The flexibility of our solution approach

To demonstrate the flexibility of the DP algorithm, we show two techniques
to accommodate various problem extensions. Then, we show how various
realistic constraints, both ones that are considered in classical vehicle routing
models and ones that have never or hardly been considered in VRP literature,
can be accommodated in the DP framework. Note that any conceivable
combination of these constraints is equally suited. Therefore, our generic
approach is unique in comparison with the large variety of approaches found
in literature, see Parragh et al. [2, 3], all of which are diverse and specific for
some variants of the VRP. Also the application of the DP framework to VRP
variants with complex timing restrictions as time-dependent travel times and
driving hours regulations by Kok [17] emphasizes the flexibility of the DP
framework.

4.1 Extra state dimensions

For the CVRP, as well as the VRPTW, we add state dimensions on capacity
or time. When expanding a state, we perform a feasibility check to ensure
that there is enough slack in capacity or time. However, we have to be careful

9

not to lose the optimality guarantee of the (unrestricted) DP algorithm for
the VRP. We demonstrate this by the following example. Suppose two states
(S, j) and (S, i) can be feasibly expanded with the same node k such that
the first expansion results in a partial solution with lower costs than the
second expansion, but with less slack in capacity or time. According to the
original recurrence relation, the first expansion will be selected. However, it
may prove impossible to complete the first expansion to a feasible complete
solution, while the second expansion can be completed to a feasible solution.
This is resolved by making two copies of this state such that one represents
the partial solution with lower costs, while the other represents the partial
solution with more slack. This is formalized in dominance rules as in Dumas
et al. [18], which can result in several copies of a single state. However,
in practice costs and slack are correlated, such that for all states with the
same visited node set S and end node j ∈ S it is unlikely that no state is
dominated by another one.

4.2 Input characteristics and precedence relations

In certain cases it may be infeasible to visit a certain customer with a specific
vehicle. For example, frozen goods need to be transported in a refrigerated
truck. This feasibility and others, even depending on the actual visit se-
quence, can be checked when expanding a state. To apply our model to
VRPs with sequencing restrictions (e.g., the PDP), we add precedence con-
straints to the nodes involved (e.g., for each pickup-delivery pair, we add a
precedence constraint), thereby reducing the state space. Furthermore, we
need to add a feasibility check when a vehicle returns to a depot to ensure
that the vehicle only returns if it has visited all the deliveries corresponding
to the pickups that it has visited. These precedence relations also have a big
impact on the running time, because every independent relation of a pickup
and delivery reduces the state space by 1

4
(see Section 2.3). When the state

space is restricted, the effect on the running time is in general negligible.
However, the reduction of the state space generally has a positive impact on
the solution quality: the (restricted) part of the state space that is explored
is now a larger portion of the entire state space.

10

4.3 Realistic constraints

Several other realistic constraints fit within our algorithmic framework. State
dimensions and input characteristics allow for various extensions of the VRP.
Section 4.3.1 presents an overview of classical VRP extensions and how they
fit within our algorithmic framework. Section 4.3.2 presents an overview of
practical VRP extensions that have never or hardly been considered in liter-
ature, but can be accommodated in the DP framework using the techniques
described above. Moreover, any conceivable combination of these extensions
can be accommodated by combining the single extensions in the DP frame-
work. This list of extensions is motivated by practice [19], but is certainly
not exhaustive.

4.3.1 Overview of classical VRP extensions that fit within the DP
framework

Capacities (CVRP) For the CVRP, we add a state dimension for the re-
maining capacity of the current vehicle. A state dominates another
state if it has no more costs than that other state and if it has at least
the same amount of slack with respect to the remaining capacity. More-
over, we add a feasibility check to test whether the remaining capacity
is sufficient to be able to visit a customer.

Time windows (VRPTW) We add a state dimension for the departure
time at the last visited node. Furthermore, we add a feasibility check
to each expansion to see whether the time window at the customer can
be met. The dominance criteria are similar as with the CVRP with
time dimensions added.

Pickup and deliveries (PDP) We add precedence relations for the pickup
and delivery pairs in the PDP. We add feasibility checks preventing ex-
pansions to deliveries where the predecessor (corresponding pickup) has
not been visited yet. Furthermore, we add a feasibility check when re-
turning to the depot to ensure that all corresponding deliveries to the
visited pickups have also been visited.

Open VRP1 The open VRP can be controlled by the input, setting all
distances from customers back to the depot to 0.

1In the open VRP, vehicles do not have to return to the depot.

11

Multiple depots Different start and finish locations of the vehicles can be
regulated by the input. The start and finish location of each vehicle
are characteristics of the nodes representing the origin and destination
of that vehicle.

Heterogeneous fleet Different vehicle capacities and availability periods
can be controlled by setting the state dimensions at the departure from
the depot to different values corresponding to the vehicle characteristics
of the current vehicle.

Multiple routes for a single vehicle Each route of a single vehicle can
be modeled by a separate (successive) vehicle route. The dependency
of a vehicle route B on its preceding route A can be controlled by a
flexible time window (or location) on the departure node of route B,
depending on the return time and location of route A. The routes
of the same vehicle should appear ordered in the GTR to be able to
provide the start time and location of successive routes.

4.3.2 Overview of VRP extensions from practice that fit within
the DP framework

Time-dependent travel times As with the VRPTW, a state dimension is
added on the departure time at the last visited node to determine the
travel time. Moreover, the applicability of restricted DP to the VRP
with time-dependent travel times is illustrated in Malandraki and Dial
[5], Kok et al. [20], and Kok et al. [21]. Furthermore, the assumption is
normally made that leaving at a later time cannot result in an earlier
arrival (the non-passing property). If the non-passing property does
not hold, a function that returns the earliest arrival according to the
current possible departure time, possibly waiting before departure, can
be implemented to still provide this property.

Driving hours regulations To account for driving hours regulations, we
add state dimensions to keep track of the remaining driving and working
times until a break is required. When a break occurs during a travel
between two customers, this travel is extended by the duration of the
break (see Kok et al. [22]).

Rolling time horizon We add state dimensions according to the initial
state of the problem. For example, at the start of the planning horizon,

12

we set the capacities of the vehicles to the remaining capacity, given the
stops that are already planned for these vehicles (see also the scenario
with multiple routes for a single vehicle).

Multiple compartments We add state dimensions to keep track of the
remaining capacity of each compartment of the current vehicle. We
expand a state not only to each node, but for each node we consider
placing the load into each compartment. Feasibility checks are added
to test whether a load fits in a compartment. Note that the specifics
of these feasibility checks depend on the problem at hand. For ex-
ample, indivisible loads require to be placed entirely within the same
compartment, whereas formless load can be divided over different com-
partments, but each compartment may then contain only one type of
product.

Vehicle characteristics We add feasibility checks to ensure that customers
are only visited by vehicles that are allowed to visit them (e.g., large
trailer combinations may not be allowed to serve customers located in
city centers).

Customer combinations We add feasibility checks to ensure that all cus-
tomers visited in the same route can actually be combined in the same
vehicle (e.g., loads from different customers may contaminate, such that
they should not be visited in the same route).

Drivers exchanging trucks at country borders This can be modeled by
different routes for each country and for each route to and from the
country border. Flexible time windows can be used to ensure the route
in the next country can only depart when the previous route arrived at
the border (see also multiple routes for a single vehicle). Furthermore,
state dimensions are added on time and, e.g., driving hours regulations,
to ensure that each route starting at the country border is initialized
correctly. As with multiple routes per vehicle, a correct order in the
GTR should be preserved (i.e., the two routes to the border should
precede the two routes from the border).

13

4.4 A case study

To demonstrate how a set of realistic constraints can be incorporated into
our DP framework, we consider the rich VRP variant described in Oppen
and Løkketangen [23] and show how this problem can be incorporated in our
DP framework. Oppen and Løkketangen describe a VRP variant based on
livestock collection in Norway. We briefly describe the livestock collection
problem and show how to incorporate this problem into our DP framework.

The livestock collection problem considers the collection of two types of
livestock to a slaughterhouse: bovine and pigs. This collection is done with a
heterogeneous vehicle fleet, where each vehicle can make a maximum of four
routes per day. The planning period is several consecutive days, and each
driver starts at home each day.

Each vehicle contains three sections that need to be (un)loaded in a spe-
cific order. Each section can be divided into an upper and a lower compart-
ment, where the upper compartment must be loaded first. Bovine can never
be loaded into an upper compartment. Moreover, when bovine is loaded into
the lower compartment, then it depends on the specific vehicle whether the
upper compartment is available for pigs.

Due to divisions, certain vehicles may not collect at certain customers. To
protect animal welfare, a constraint is added indicating that no livestock may
be transported for more than eight hours continuously, effectively restricting
the time from the first collection to the unloading at the slaughterhouse to
eight hours. Furthermore, some customers have to be visited as the first stop
or as the last stop in a route, due to protection of the livestock used for breed-
ing purposes (first) or to avoid spreading diseases (last). Finally, inventory
demands and constraints at the slaughterhouse give a minimum and maxi-
mum of both livestock that has to be delivered at the slaughterhouse, where
the minimum and maximum depends on the amount of livestock delivered
in the previous days.

We model the livestock collection problem to incorporate it into our DP
framework as follows. For each vehicle, we create four routes for each day
(possibly empty), where each route starts and ends at the slaughterhouse,
except for the first route for each vehicle, which starts at the driver’s home.
Since the routes for a single vehicle depend on each other in time, we order
them by time in the GTR. Furthermore, to incorporate the inventory con-
straints (which depend on what has been delivered in the previous days), we
also order the routes by day in the GTR.

14

The inventory constraints are modeled by feasibility checks preventing to
add pickups that will exceed the limit for the current day and prevent the
return to the slaughterhouse of the last route of the day when the minimum
inventory is not met. Since all routes of the preceding days are finished before
any route of a day starts, the minimum and maximum inventory requirements
for that day will be known for the feasibility checks. The amounts of livestock
delivered of both types are added as state dimensions to preserve optimality.

Feasibility checks are used to ensure certain farms are visited as first or as
last in a route, and feasibility checks are also used for the constraints regard-
ing vehicle customer combinations due to the divisions. As the compartments
have a specific loading order, a state dimension is added for the number of
available compartments, so both used and blocked compartments can be ac-
counted for (since in each state the loading history is precisely known, we
always know whether there is a compartment available for the livestock at a
particular customer). At a pickup, we do not need an extra choice regard-
ing the compartment, as the livestock can be loaded into the first available
compartment for the type of livestock. This ensures the most slack on the
capacity as loading in any other available compartment will block at least all
compartments now blocked or loaded. Finally, time is added as a state di-
mension to be able to keep track of the remaining time since the first pickup
to ensure that livestock is transported continuously for at most eight hours.

5 Computational experiments

We test our framework on known benchmark instances. Since most bench-
mark instances in literature are proposed for classical VRPs in which only
few realistic constraints are considered, they are not well suited for this study.
The recently developed benchmark instances for the VRPTW with the EC
social legislation on driving and working hours (VRPTW-EC) proposed by
Goel [24] form an exception to these classical benchmark instances. There-
fore, we selected these instances to test our solution framework. To illustrate
the difference in performance of our framework on classical VRP variants
instead of more realistic VRPs, we first solve the well-known Solomon [10]
instances with our solution framework. Moreover, the Solomon instances are
standard reference in VRP literature, whereas Goel’s instances are modifica-
tions of the Solomon instances. In addition, we test our framework on the
benchmarks for the PDPTW by Li and Lim [25], to illustrate the impact

15

of precedence relations on the performance of our solution framework. We
implemented the DP framework in Delphi 7 and ran our experiments on a
PC with a Core I7 Q 840, 1.87 GHz CPU and 8 GB of RAM.

5.1 VRPTW

The Solomon instances consist of 6 problem sets: in the c1 and c2 instances
customer locations are clustered, in the r1 and r2 instances they are random,
and in the rc1 and rc2 instances they are semi-clustered; the 2-instances
have a relatively longer time horizon and larger vehicle capacities than the 1-
instances allowing for larger vehicle routes in terms of number of customers.
The primary objective is to minimize the number of vehicles used, the sec-
ondary objective is to minimize the total travel distance.

In order to satisfy the time window and capacity constraints, we add
state dimensions t and q, indicating the departure time from the last visited
customer and the remaining vehicle capacity, respectively. If states A and B
visit the same customer set S and end in the same node j ∈ S, then state
A dominates state B if its costs are not larger than the costs of state B, its
departure time is not larger than the departure time in state B, and its re-
maining capacity is not smaller than the remaining capacity in state B. This
ensures that we do not exclude the optimal solution. If in a certain stage the
number of states exceeds its maximum H , then only the most promising H
states are maintained. To determine the most promising states, we use the
following hierarchical criteria: number of vehicles used, total distance trav-
eled, departure time from the last visited node, remaining vehicle capacity of
the active vehicle. The first two criteria correspond to the objective function;
the last two criteria select the most flexible solutions with respect to adding
more customers (smaller departure times imply more time for visiting addi-
tional customers; larger remaining capacities imply more capacity available
for visiting additional customers). We set H = 100,000 and we first set E to
its maximum value n.

Table 1 presents the results for the six Solomon problem sets. The first
three columns present the average number of vehicles used, the average travel
distance, and the cpu time in seconds, respectively. The last two columns
present the objective values for the best known solutions identified by heuris-
tics.

On average, the DP algorithm results in 1.27 more vehicle routes than
state of the art local search methods for the VRPTW. The total travel dis-

16

Problem DP Algorithm Best Known Solutions
Set # Veh. Dist. cpu (s) # Veh. Dist.
c1 10.00 852.71 228 10.00 828.38
c2 3.00 608.72 252 3.00 589.86
r1 14.08 1333.52 235 11.92 1205.39
r2 4.18 1111.24 274 2.73 951.91
rc1 14.13 1510.09 266 11.50 1384.16
rc2 4.25 1336.96 275 3.25 1119.35

Table 1: results for the VRPTW

tance is 11.0% larger, on average. The average computation time per prob-
lem instance is 254 seconds. Increasing H results in substantial reductions
of the gaps with the best known solutions. We run our experiments also for
H = 10,000 and H = 1,000,000, and it turns out that increasing H reduces
the gaps in number of vehicles used and total travel distance considerably:
increasing H from 10,000 to 100,000 reduces these gaps by 14.5% and 18.3%,
respectively, and increasing H from 100,000 to 1,000,000 reduces these gaps
by 12.7% and 20.5%, respectively. In these experiments, computation times
increase (approximately) by a factor 11 when H increases by a factor 10.

Table 2 presents the impact of different E values on the performance of
the algorithm. We trie to expand each state to its nearest unvisited nodes,
until we have E feasible expansions, or we have tried all expansions. Since
the problem includes time windows, we sort the unvisited nodes to increasing
arrival times when traveling from the last visited node. In case two or more
expansions result in the same arrival time, we sort them to increasing travel
distance from the last visited node. We set the values of E to n, 20, 10, and
5 and present average gaps and average computation times over all problem
instances.

The results indicate that decreasing E results in smaller computation
times, while the solution quality is maintained or even improved. In particu-
lar, smaller values of E result in less vehicles used, but with a slightly bigger
total travel distance. This is due to the primary sorting criterion (arrival
time), allowing for more slack in adding stops to the same vehicle, but also
allowing slightly more travel distance.

Since E = 5 results in the smallest computation times and the best ob-
jective values, we intensified the search for E = 5 with H = 1,000,000.
These results are presented in Table 3. The overall gaps with the best known

17

E # vehiclesa travel distanceb cpu (s)
n 1.27 11.11% 254
20 1.27 10.27% 229
10 1.20 11.11% 214
5 1.11 11.86% 197

aabsolute average gap
brelative average gap

Table 2: Impact of different E values

solutions are 0.84 vehicles and 10, 88% travel distance, with an average com-
putation time of 1994 seconds.

Problem DP Algorithm Best Known Solutions
Set # Veh. Dist. cpu (s) # Veh. Dist.
c1 10.00 865.12 2000 10.00 828.38
c2 3.13 615.79 1969 3.00 589.86
r1 13.58 1322.70 1986 11.92 1205.39
r2 3.64 1129.96 1971 2.73 951.91
rc1 13.00 1510.46 2021 11.50 1384.16
rc2 3.75 1289.45 2028 3.25 1119.35

Table 3: results for the VRPTW with H = 1,000,000 and E = 5

Note that, in addition to CPU time, also memory requirements could
become a limit when intensifying the search with larger H values. In our
implementation, we only keep two stages in memory: the current stage to
be expanded and the new stage (we write the required information for back-
tracking the best found solution to disk). This leads to at most 2H stages
in memory. Each state contains information on, a.o., the visited node set,
the end-node, the index of the current vehicle, costs, and time. If we assume
that each node, as well as the index of the current vehicle, is represented by a
4-byte integer, and the costs and time by 8-byte floats, this leads to 424 bytes
per state. It requires a bit more than 20 million 424-byte states to fill 8GB
of RAM. This implies that, due to memory requirements, we can increase
H to approximately = 10,000,000. The estimated CPU time per problem
instance, based on the results with H = 100,000 and H = 1,000,000, will be
about 20,000 seconds for this value of H , which is not acceptable for practice.

18

Therefore, the computation time is the real limit in these experiments, and
having a larger memory would not be benificial.

The DP algorithm cannot compete with state of the art methods for the
VRPTW. For example, Pisinger and Ropke [4] attain the minimum number
of vehicles for all problem instances, and the total travel distance is within
1% of the best known solutions. However, the DP framework is designed for
solving realistic VRPs instead of classical VRPs. In Section 5.2, we show
that the performance of the DP framework substantially improves when the
problem is more restrictive and in Section 5.3, we demonstrate that the DP
framework even competes with state of the art improvement methods when
they are applied to more realistic VRPs.

5.2 PDPTW

To apply the DP framework to the PDPTW, we ensure that delivery nodes
can only be selected when the corresponding pickup node has already been
selected. Next, we only allow a vehicle to return to the depot when it is
empty, i.e., when all deliveries corresponding to its pickups have been carried
out. Since selecting too many pickups may result in a state with no feasible
expansions (all unvisited nodes are infeasible, but returning to the depot is
also not possible, since there are still deliveries to be carried out), we check
for each state expansion whether each delivery that still has to be done is
feasible in the next state expansion. We test the DP on the set of modified
Solomon instances proposed by Li and Lim [25]. The primary objective is
to minimize the number of vehicles used and the secondary objective is to
minimize the total travel distance. We again select H = 1, 000, 000 and
E = 5 for these experiments, and use the same criteria for selecting the H
best states and the E nearest unvisited nodes as with the VRPTW.

Table 4 presents our results and the best known solutions for these prob-
lem instances. On average, the DP framework requires 0.32 more vehicles
than the best known solutions and the travel distance is on average 6.30%
larger. Therefore, the performance on these benchmarks is considerably
better than on the VRPTW (where these gaps were 0.8 and 10.88%, re-
spectively). Moreover, these results are obtained with an average compu-
tation time of 1263 seconds, against 1994 seconds for the VRPTW. The
reason for this performance improvement is that the precedence relations in
the PDPTW substantially reduce the state space. This indicates that the
DP framework performs better on more restrictive VRP variants, making

19

it almost competitive with state of the art improvement methods for the
PDPTW.

Problem DP Algorithm Best Known Solutions
Set # Veh. Dist. cpu (s) # Veh. Dist.
lc1 9.89 848.80 1233 9.67 847.12
lc2 3.00 589.86 1259 3.00 589.16
lr1 12.42 1255.10 1144 11.92 1219.62
lr2 3.18 1170.79 1431 2.80 994.44
lrc1 11.88 1420.21 1115 11.50 1386.74
lrc2 3.50 1265.38 1396 3.25 1133.12

Table 4: results for the PDPTW

5.3 VRPTW with EC social legislation

We further illustrate the better performance of the DP framework when more
realistic restrictions are accommodated by applying the algorithm to a set of
benchmark instances for a more restrictive VRP. The Solomon benchmarks
have recently been adapted for the Vehicle Routing Problem with Time Win-
dows and the European Community social legislation (VRPTW-EC). Due to
the generality of this legislation (it is valid for all member countries of the
European Union, and the EC social legislation is more restrictive than the US
Hours-Of-Service Regulations [26]), we selected this set of problem instances
as benchmarks for more realistic VRPs.

The EC social legislation poses restrictions on the amount of driving and
working times before a mandatory rest is taken. The legislation considers
different time horizons for scheduling breaks and rest periods: single driving
periods, daily driving and working times, and weekly driving and working
times. After a restricted amount of accumulated driving and working time, a
break or rest of certain minimum duration must be scheduled. For a detailed
description of the rules in the legislation, we refer to Kok et al. [22]. Kok et
al. [22] also propose a break scheduling heuristic that schedules breaks and
rest periods such that the vehicle routes satisfy the requirements posed by the
EC social legislation on driving and working hours. They embed this break
scheduling method in the DP framework. Goel [24] proposes the following
modification of the Solomon instances for the VRPTW-EC.

20

Goel proposes to consider the depot opening time as a period of 144
hours, corresponding to a weekly working period, and to scale the customer
time windows accordingly. Next, Goel suggests a driving speed of 5 distance
units per hour, and to set all service times to 1 hour. Due to the required
breaks and rest periods, it may turn out to be impossible to reach certain
customers before their due dates, or the vehicle may not be able to return
in time to the depot after serving a customer at his ready time. Therefore,
Goel suggests to adjust such time windows in such a way that the ready
time equals the earliest time the vehicle can reach the customer, and the
due date is such that starting service at this due date and directly returning
to the depot results in a return time at the depot’s due date, respectively.
Table 5 presents the results found by the DP algorithm, including the break
scheduling heuristic of Kok et al. [22], for H = 10,000 and E = n compared
with Goel’s solutions for this problem, which were obtained by a state of the
art large neighborhood search algorithm.

Problem DP Algorithm Goel’s Solutions
Set # Veh. Dist. cpu (s) # Veh. Dist.
c1 10.33 965.44 55 11.11 1054.45
c2 5.00 770.42 72 8.38 954.64
r1 9.67 1152.39 63 10.92 1144.23
r2 7.55 1100.83 66 10.27 1107.14
rc1 10.25 1300.60 71 11.13 1347.75
rc2 8.13 1266.64 69 10.00 1347.26

Table 5: results for the VRPTW-EC

In contrary to the classical Solomon instances, the DP algorithm signif-
icantly improves the VRPTW solutions when the EC social legislation is
accommodated in the problem2. The number of vehicles used reduces by 1.8,
on average, and the travel distance by 5.4%. The results were obtained with
an average computation time of 65 seconds. A reason for this improvement is
that the evaluation of neighborhood solutions with Goel’s approach is much
more expensive when driving hours regulations are considered. As a con-
sequence, much fewer neighborhood solutions can be evaluated in the same

2Goel’s results have also recently been improved by Prescott-Gagnon et al. [27], who
also obtained better results than the DP algorithm (about 17% less vehicles and 13% less
travel distance), but they also allowed more computation time (about 50 times). If we
allow similar computation times, these gaps become 16% and 9%, respectively.

21

amount of computation time. In contrary, embedding the break schedul-
ing heuristic of Kok et al. [22] in the DP framework does not increase the
running time complexity of the DP algorithm, such that the DP algorithm
can evaluate a similar amount of states in the same computation time when
considering driving hours regulations. This illustrates the opportunities of
applying the DP framework in practice: when real life restrictions are added
to the problem, the performance of the DP framework improves with respect
to state of the art local search methods, making it even competitive with
state of the art heuristic for the VRPTW-EC.

6 Conclusions

This paper introduces a highly flexible framework based on dynamic pro-
gramming for Vehicle Routing Problems that is able to model and solve dif-
ferent types of problems previously tackled by tailored algorithms. Moreover,
this framework accommodates various real life restrictions that have been
generally ignored in classical vehicle routing models, such as time-dependent
travel times and driving hours regulations. We demonstrate this flexibility by
a case study, in which we applied the framework to a rich VRP variant based
on livestock collection. Formerly, if a type of Vehicle Routing Problem would
emerge from a known type by just changing or adding some constraints, one
would often be forced to go back to the drawing board and devise a whole
new tailored approach to handle it. Therefore, a general framework that
is able to accommodate different types of problems offers the added benefit
to handle several variants of problems which are hybrid variants of existing
ones.

In order to demonstrate that the benefit of our framework extends further
than just theoretical possibilities, the paper also shows how to control the
size of the state space by restricting the number of expansions of a state
leading to practical and efficient polynomial construction heuristics. The
quality of these heuristics for solving realistic Vehicle Routing Problems is
demonstrated by significantly improving the best known solutions for the
VRPTW with the EC social legislation on driving and working hours, which
were obtained by a state of the art local search method. Such achievements
are generally only the realm of powerful neighborhood search methods, and
hence a remarkable outcome of a generic construction algorithm.

22

Acknowledgment

This work was financially supported by Stichting Transumo through the
project ketensynchronisatie. We thank the anonymous referees for their help-
ful comments to improve this paper.

References

[1] M. Gendreau, G. Laporte, and J.-Y. Potvin. Metaheuristics for the
capacitated VRP, pages 129–54. The Vehicle Routing Problem. SIAM
Monographs on Discrete Mathematics and Applications. SIAM Publish-
ing: Philadelphia, PA, 2002.

[2] S. N. Parragh, K.F. Doerner, and R.F. Hartl. A survey on pickup and
delivery problems. Part I: Transportation between customers and depot.
Journal für Betriebswirtschaft, 58(1):21–51, 2008.

[3] S. N. Parragh, K.F. Doerner, and R.F. Hartl. A survey on pickup and
delivery problems. Part II: Transportation between pickup and delivery
locations. Journal für Betriebswirtschaft, 58(2):81–117, 2008.

[4] D. Pisinger and S. Ropke. A general heuristic for vehicle routing prob-
lems. Computers & Operations Research, 34(8):2403–2435, 2007. 0305-
0548.

[5] C. Malandraki and R.B. Dial. A restricted dynamic programming heuris-
tic algorithm for the time dependent traveling salesman problem. Euro-
pean Journal of Operational Research, 90(1):45–55, 1996.

[6] Paolo Toth and Daniele Vigo. The granular tabu search and its applica-
tion to the vehicle-routing problem. INFORMS Journal on Computing,
15:333–346, December 2003.

[7] B. T. Lowerre. The Harpy Speech Recognition System. PhD thesis,
Carnegie Mellon University, 1976.

[8] P. Toth and D. Vigo. The vehicle routing problem. SIAM Monographs
on Discrete Mathematics and Applications. Philadelphia, 2002.

23

[9] B. Funke, T. Grünert, and S. Irnich. Local search for vehicle routing
and scheduling problems: Review and conceptual integration. Journal
of heuristics, 11(4):267–306, 2005.

[10] M. M. Solomon. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Operations Research, 35(2):254–265,
1987.

[11] J.E. Beasley. Route first–cluster second methods for vehicle routing.
Omega, 11(4):403 – 408, 1983.

[12] M. Held and R.M. Karp. A dynamic programming approach to se-
quencing problems. Journal of the Society for Industrial and Applied
Mathematics, 10(1):196, 1962.

[13] R. Bellman. Dynamic programming treatment of the travelling salesman
problem. Journal of the Association for Computing Machinery, 9(1):61,
1962.

[14] G.J. Woeginger. Exact algorithms for NP-hard problems: A survey.
In Combinatorial Optimization–Eureka! You shrink!, Lecture Notes in
Computer Science, Vol. 2570, pages 185–207. Springer, Berlin, 2003.

[15] R. Bisiani. Beam search. In S. Shapiro, editor, Encyclopedia of Artificial
Intelligence, pages 56–58. Wiley & Sons, 1987.

[16] C. Rego and F. Glover. Local search and metaheuristics. In G. Gutin
and A. Punnen, editors, Traveling Salesman Problem and Its Variations,
pages 309–367. Kluwer Academic Publishers Dordrecht, 2002.

[17] A.L. Kok. Congestion Avoidance and Break Scheduling within Vehicle
Routing. PhD thesis, University of Twente, School of Management and
Governance, 2010.

[18] Y. Dumas, J. Desrochiers, E. Gelinas, and Marius M. Solomon. An op-
timal algorithm for the traveling salesman problem with time windows.
Operations Research, 43(2):367–371, 1995. 0030-364X.

[19] ORTEC Algorithmic Research and Development Team. Flexible vehicle
routing and scheduling. ORTEC White Paper Series, 2011.

24

[20] A. L. Kok, E. W. Hans, and J. M. J. Schutten. Vehicle routing under
time-dependent travel times: the impact of congestion avoidance. Beta
working paper series, 267, 2009. http://beta.ieis.tue.nl/node/

1441.

[21] A. L. Kok, E. W. Hans, J. M. J. Schutten, and W. H. M. Zijm. A
dynamic programming heuristic for vehicle routing with time-dependent
travel times and required breaks. Flexible Services and Manufacturing
Journal, 22:83–108, 2010.

[22] A. L. Kok, C. M. Meyer, H. Kopfer, and J. M. J. Schutten. A dy-
namic programming heuristic for the vehicle routing problem with time
windows and european community social legislation. Transportation Sci-
ence, 44(4):442–454, 2010.

[23] Johan Oppen and Arne Løkketangen. A tabu search approach for
the livestock collection problem. Computers & Operations Research,
35:3213–3229, 2008.

[24] A. Goel. Vehicle scheduling and routing with drivers’ working hours.
Transportation Science, 43(1):17–26, 2009.

[25] H. Li and A. Lim. A metaheuristic for the pickup and delivery problem
with time windows. Tools with Artificial Intelligence, Proceedings of the
13th International Conference on, pages 160–167, 2001.

[26] Hours-Of-Service Regulations. Federal Motor Carrier Safety Admin-
istration, 2005. http://www.fmcsa.dot.gov/rules-regulations/

topics/hos/hos-2005.htm.

[27] E. Prescott-Gagnon, G. Desaulniers, M. Drexl, and L.-M. Rousseau. Eu-
ropean driver rules in vehicle routing with time windows. Transportation
Science, 44(4):455–473, 2010.

25

� new construction framework for solving VRPs (based on dynamic programming) that can
handle a wide range of different types of VRPs

� this framework accommodates various restrictions that are not considered in classical vehicle
routing models, but that regularly appear in practice.

� framework competes with state of the art local search methods when more realistic
constraints are considered than in classical VRPs.

