The Interleaved Constructive Memetic Algorithm and
its Application to Timetabling

Ender Ozcan, Andrew J. Parkes, Alpay Alkan®

ASAP Research Group, School of Computer Science, University of Nottingham, NG8
1DY, UK, e-mail: exo and ajp@cs.nott.ac.uk.

®Department of Computer Engineering, Yeditepe University, Istanbul, Turkey, e-mail:
alpayalkan@gmail.com.

Abstract

Timetabling problems are well known NP-hard constraint satisfaction, and
real-world cases often have complicated and challenging structures. For
such problems, we present a new hybrid method, “Interleaved Construc-
tive Memetic Algorithm” (ICMA) that interleaves memetic algorithms with
constructive methods. ICMA works using an active subset of all the events.
Starting with a few events, in multiple construction stages ICMA increases
the active set to eventually include all of them. At each stage, a memetic
algorithm (MA) is applied to improve the current partial solution before the
next construction step. We also describe a real-world course timetabling
problem, the “Preparation School Timetabling Problem” (PSTP), which is
of particular interest because it has a highly hierarchical structure arising
from various organisational requirements. An important advantage of ICMA
is that both the constructive heuristics and MA can be tailored to exploit
such hierarchical structures. We give empirical results showing that ICMA
performs better than the corresponding conventional MA on the PSTP.

Keywords: Genetic algorithms; timetabling; scheduling; metaheuristics;
memetic algorithms.

1. Introduction

Timetabling problems are NP-complete and often provide significant real-
world challenges [1]. Naturally, memetic algorithms (MAs) have been applied
to such problems: A survey on timetabling and that particularly discusses

Preprint submitted to Computers & Operations Research June 1, 2011

the use of MAs can be found in [2]. As common in practical problems,
timetabling problems have many different kinds of constraints, and they can
be hard or soft. Hard constraints represent unacceptable situations, whereas
soft constraints are less essential preferences. Hill-climbing, and so also MAs,
can be designed explicitly to target the different constraint types. For exam-
ple, Alkan and Ozcan (2003) [3] introduced a violation directed hierarchical
hill climbing method (VDHC). VDHC performs a local search over the con-
straint oriented neighborhoods as described in Viana, Pinho de Sousa and
Matos (2003) [4] based on the constraint types, their violations and structure
of the problem. Ozcan (2007) [5] extended the study and suggested a heuris-
tic template for designing a set of operators. Before this, a variety of genetic
operators and self-adjusting hill-climbers implicitly respecting this template
had already been investigated within MAs for solving different timetabling
problems in [6], [7] and [8]. The VDHC methods within the MAs that man-
aged multiple constraint based hill climbers turned out to be successful in
timetabling.

As standard with MAs, this previous work on VDHC always used the com-
plete problem, that is, it would be working simultaneously on finding suitable
reassignments for all of the events. However, it is well-known that construc-
tive methods can also be effective. Such methods work by finding solutions
for a subset of events, and then increasing this subset; that is, they work with
partial assignments instead of complete assignments. Working with partial
assignments and constructive techniques has advantages. Firstly, it allows
the use of powerful constructive heuristics and these can incorporate domain
knowledge and so be highly effective. Secondly, we also believe that it has the
potential advantage of often focussing search effort onto smaller subproblems
where the computational search effort might be used more efficiently than
on the full problem. This suggests that it could be useful to build a hybrid
that tries to get the best of both MAs and constructive methods. Naturally,
a randomised constructive method could be used to create new individuals
for populations and then MA is applied to the full individual. However, here
we give a method in which the MA and construction are tightly connected in
that applications of MA and construction are interleaved. We call this new
hybrid method the “Interleaved Constructive Memetic Algorithm” (ICMA).
This paper will describe this method and show its successful application to a
real problem called the “Preparation School Timetabling Problem” (PSTP)
(based on an initial study which can be found in [9]).

The “Preparation School Timetabling Problem” PSTP, that we will de-

2

scribe, is an example of a Course Timetabling Problem (CTP). These are
a subset of timetabling problems that require an arrangement of resources
for the teaching of courses, such as teaching events (lectures, classes, etc)
to times and rooms, as well as teachers to deliver them. (The PSTP was
analyzed initially by Alpay Alkan during his studies on timetabling). Such
problems have a wide variety of constraints (these can be categorized further
in practical timetabling [10]) and so constraint-directed hill-climbers within
an MA framework can be applied. However, the PSTP is also highly hi-
erarchically structured as a result of the administrative and organisational
system within the schools. One key advantage we will see of ICMA is that
it can successfully exploit this hierarchical/clustered structure. Generally,
we believe that this ability to include domain specific heuristics during its
interleaved construction, could give ICMA an advantage in many domains
besides timetabling.

The structure of the paper is as follows. In Section 2 we briefly survey
existing relevant work in timetabling, and the basics of memetic algorithms.
Section 3 presents the PSTP, and in particular its hierarchical structure and
constraints. The general ICMA method, in the context of timetabling, is
given in Section 4. Section 5 gives the details of how ICMA is implemented
for the specific case of the PSTP. Experimental evidence for the effectiveness
of ICMA is given in section 6: The performance of ICMA is compared to
the conventional one both using a VDHC instance on real PSTP instances.
The conclusions in section 7 discuss ideas of what underlies the success and
avenues for future research.

2. Related Work

2.1. Memetic algorithms

Memetic algorithms (MAs), also referred to as hybrid genetic algorithms
(GAs) represent a set of population based approaches that combine genetic
algorithms [11] and local search [12]. A meme represents the local search
component in an MA. There are many studies showing that the use of a
meme can improve the performance of a GA and different memes might
yield different performances [5]. The description of different types of memetic
algorithms and their categorisation can be found in [13], [14]. In this paper,

a different approach based on a memetic algorithm is proposed for solving
PSTPs.

Figure 1 illustrates the basic steps of a generic memetic algorithm. An
individual (chromosome) in a GA represents a candidate solution for a given
problem. Each gene that composes an individual receives an allele value
from a set of values. For example, in a binary representation, a gene gets
an allele value from the set {0, 1}. In an iterative cycle, a randomly gener-
ated population of individuals evolves towards an optimal solution by passing
through a set of genetic operators, namely crossover, mutation and replace-
ment. During crossover, selected individuals named as mates, exchange their
genetic materials with a given probability (p.). Mutation randomly perturbs
some alleles. The traditional mutation operator scans each offspring bit by
bit and inverts the ones with a given probability (p,,). The replacement
process decides which individuals will survive to the next generation. In a
conventional MA, a meme (e.g., a hill climber) is applied after the mutation.
An MA requires an evaluation function referred to as fitness function as a
vital component. In a usual mate selection scheme, it is more likely for an
individual being selected as a mate that has a better fitness value.

Generate initial i1|1|0|1|1|0||0|0|1|l|1|i1
populafon i[ol1lolol1] [olol i o] 1]i
Select mates and f=0m

| apply crossover IEII 0 n flin) =0.50

Mutate offspring .nnnn fon =025 =02

(o[[o] om0 "
!

1

0| 1]1 0
Al!Jplg.hill [o]o]o]of0] fen=0
climbing to
offspring nnn 0] flea=0

iS:(;;:\(/:i[dualsfor fi1|0|0|0|0|0||0|0|0|0|0|i3
survival

fofiTofol 1] [ool 1 o] 1]w

termination
criteria satisfied?

the best
il jonnon

Figure 1: Flowchart of the conventional memetic algorithm and illustration of a single
iteration for solving a sample problem

Figure 1 also provides a snap shot of how each component of an MA is
employed in a single iteration using a toy problem of minimizing the number

of 1s. The chromosome length is set as five. Four individuals are randomly
generated at first. The fitness function in the example multiplies each bit
by 0.25 and accumulates all results. Mate selection method chooses the
first and second individuals for crossover. Then the traditional one-point
crossover is applied to them. A random crossover locus is generated. At
the second position, genetic materials are swapped producing two different
offspring. The mutation probability is taken as 0.2. A single bit is inverted
in each offspring in the example. Then, the fitness values of the offspring are
computed. Hill climbing systematically searches neighborhoods for a given
offspring to obtain better solutions. In the example, the same solutions are
achieved.

2.2. High-school course timetabling and metaheuristic solutions

The university and high-school course timetabling problems are the sub-
sets of CTPs that are commonly dealt with by numerous researchers. In both
cases, a set of courses is to be scheduled using a discrete timetable having a
fixed number of periods at each weekday. A group of students belonging to
the same group; i.e., grade (department-term), has to attend the same set of
lessons (classes, courses). This grouping can be considered as a curriculum.
As a hard constraint no clash should occur for the scheduled courses of a
student. Similarly, a teacher (or a lecturer) clash must not be allowed. The
availability of teachers must be considered. PSTPs form another subset of
CTPs that carry many similarities with the high-school course timetabling
problems, since the students in a university examination preparation school
are in fact high school students. Moreover, the offered courses are arranged
according to their curriculums. There are exact and inexact approaches for
solving the high-school timetabling problems. The exact methods guarantee
to find a solution, such as graph search, while inexact approaches seek for
the best solution which is feasible having no hard constraint violations and
lowest possible soft constraint violations.

Most of the single point based search metaheuristics applied to high school
course timetabling are based on either tabu search or simulated annealing.
Abramson (1991) [15] used simulated annealing for course timetabling and
proposes a simple parallel algorithm. Herz (1992) [16] utilised tabu search
for obtaining course schedules. Schaerf (1996) [17] tested tabu search for
high-school course timetabling on different school data using a tool with
an interactive interface. Abramson, Dang and Krisnamoorthy (1999) [18§]
compared different cooling schedules used in simulated annealing for course

timetabling. Marte (2004) [19] utilised a constraint programming approach
for solving a timetabling problem at German secondary schools of Gymna-
sium type. Jakobsen, Bortfeld and Gehring (2006) [20] compared their tabu
search algorithm to the results obtained during this previous study. Both
approaches have a matching performance considering the share of instances
solved to feasibility. A hyper-heuristic performs a search based on a set of
heuristics. Most of the existing selection hyper-heuristics combine two deci-
sion making strategies. A heuristic selection mechanism is used for choosing
a heuristic from a lower set of heuristics, while an acceptance mechanism is
used for deciding whether to accept or reject a candidate solution [21], [22].
Burke et al. (2007) [23] suggested a tabu-search hyper-heuristic that oper-
ated on top of five low level graph heuristics, such as, largest degree first to
construct timetables. The representation scheme allowed compaction. Each
selected low level heuristic was used to schedule a fixed number of events. The
experimental results over a variety of timetabling problems, including course
timetabling, showed that the approach had a good average performance.
There are many studies which apply population based metaheuristics,
particularly memetic algorithms to high school course timetabling. Ross et al.
(1994) [24] and [25] proposed a fast evolutionary algorithm for timetabling.
A set of violation directed mutation operators based on selecting a gene to
mutate and an allele to mutate to, for genetic algorithms were tested on
a set of real and syntactic data for lecture and examination timetabling.
Their tests showed that the random selection of a gene and then the se-
lection of an allele by using tournament performed the best. This study
extends the idea behind the violation directed mutation to design an effec-
tive hill climber using multiple operators given the underlying structure of
a problem. Erben and Keppler (1995) [26] generated a weekly timetable
for a heavily constraint problem instance using Genetic Algorithms with in-
telligent operators and binary encoding as a representation. Colorni, et al.
(1998) [27] compared various metaheuristics based on GA, simulated anneal-
ing and tabu search using an Italian high-school data. Their results indicate
that GAs combined with local search is promising. Filho and Lorena (2001)
[28] considered a timetabling problem as a clustering problem and applied a
modified genetic algorithm, named as constructive genetic algorithm for solv-
ing timetabling problems of public schools in Brazil. Wilke et al. (2002) [29]
proposed a hybrid genetic algorithm using multiple repair operators and a
parameter configuration strategy that operated whenever the search process
stagnated. This genetic algorithm included multiple crossover and mutation

6

operators. Any parameter value or operator was chosen randomly whenever
needed. The authors reported that this algorithm performed better than the
generic genetic algorithm over a large German high school problem instance.
Beligiannis et al. (2008) [30] applied a genetic algorithm with multiple mu-
tation operators to a Greek school course timetabling problem. The authors
observed that the crossover operator was not as effective as expected, so
they discarded it. GA performed better than some previously proposed ap-
proaches; column generation and constraint programming. Raghavjee and
Pillay (2008) [31] compared the performance of a genetic algorithm, neural
network, simulated annealing, tabu search and greedy search on five problem
instances. The results showed that GA delivers either a matching perfor-
mance or it was superior. Raghavjee and Pillay (2010) [32] introduced a
South African high school course timetabling problem and used a two-stage
genetic algorithm hybridised with a hill climber for solving it. In the first
stage, the algorithm aims to satisfy the hard constraints, while in the last
stage, the genetic algorithm aims to reduce the soft constraint violations. A
different hill climber was used after mutation at each stage.

Most of the genetic algorithms described in this section can be consid-
ered as memetic algorithms, since they are all hybridised with either a hill
climber or a repair operator that improves a solution, acting effectively as
a hill climber. Comparisons to the other approaches indicate that memetic
algorithms are successful approaches in high school course timetabling. None
of the previous approaches discussed in here attempts to exploit the under-
lying (hierarchical) structure of the problem. Moreover, the experimental
data used in almost all previous studies contained less than hundred events
to be scheduled. For example, there were at most 13 classes to be scheduled
into 35 teaching hours (time-slots) and 35 teachers in the data set used by
Beligiannis et al. (2008) [30]. In this study, we describe a memetic algorithm
to solve a course timetabling problem containing more than 1100 events to
be scheduled into 96 time-slots and at least 41 teachers (see Section 6.1).

The literature review shows that the researchers working in the area
of high school course timetabling do not have an agreement on a set of
benchmark instances to compare the performance of approaches. Some of
the data sets are publicly available (e.g., [30] and), but we still cannot
compare the performance of our approach to the previously proposed ones,
even indirectly discarding the differences in the experimental design. This
is simply because these data sets contain flat set of events ignoring any
(hierarchical) structure for timetabling. Competitions, such as, ITC2007

7

(http://www.cs.qub.ac.uk/itc2007/) [34], take an active role in setting the
state of the art for different problems including course timetabling. Two
tracks of this competition covered two different CTPs: post enrollment course
timetabling and curriculum based course timetabling and a third track cov-
ered the examination timetabling problem. Bonutti et al. [35] describe for-
mulations for the curriculum based course timetabling problem introducing
new problem instances additional to the ones provided in the competition.
The best performing curriculum based course timetabling and examination
timetabling approach turned out to be a multi-stage hybrid algorithm as
described in Miiller (2009) [36]. First, a feasible solution is constructed,
then a hill climbing algorithm is invoked for improving this initial solution.
Whenever there is no improvement, great deluge with oscillation and sim-
ulated annealing with reheating are invoked successively. Kingston (2010)
[37] presents a set of algorithms for room and teacher assignment based on
a bipartite matching model in high school course timetabling. More on ed-
ucational timetabling and recent contributions can be found in the PATAT
conference series:

http://www.asap.cs.nott.ac.uk /patat/patat-index.shtml.

ITC2007 did not include high school course timetabling problem. The
post enrollment course timetabling and examination timetabling data files
are flat, containing no information about the underlying structure of the
problem, consequently our algorithm cannot be tested on them. PSTP
can be considered as a curriculum based course timetabling problem with
different constraints. For example, I'TC2007 problem formulation for the
curriculum based course timetabling does not consider load fairness (max-
imum and minimum load per day) for lecturers (teachers), whereas this is
a vital soft constraint in PSTP (see Section 3). Also, ITC2007 contains
MinimumW orkingDays as a soft constraint to assure that the lectures of
each course spreads into a minimum number of days and the closest equiv-
alent constraint is a hard constraint in PSTP. On the other hand, PSTP
does not deal with any resource constraints, whereas I'TC2007 curriculum
based course timetabling problem contains many room constraints, such as
RoomClapacity to assure that the number of students taking a lecture in a
room does not exceed its capacity. Another observation is that from the
point of view of a student, the timetable at a high-school is tightly packed as
compared to the one at a university. Because of these distinctive constraints
and problem features, our solver cannot be applied to the ITC2007 curricu-
lum based course timetabling problem as it is. This study shows that some

8

algorithms can usefully exploit the underlying structure of a problem. We
are hoping that the real world high school course timetabling as well as the
examination timetabling benchmarks preserving the hierarchical structure
will be included in the next competition.

3. University examination preparation school timetabling problem
(PSTP)

‘ —— Applicants - Placed Applicants ‘

Figure 2: The number of OSS applicants and the placed students versus years

High-school graduates in Turkey enter a country-wide annual Student
Selection Examination (OSS), in order to obtain admission to a higher ed-
ucation program at a university. The students are placed into the higher
education programs according to their OSS score and set of choices. Less
than 40% of the applicants can continue their education in an undergraduate
degree program as illustrated in Figure 2. This data is obtained from the
website (http://www.osym.gov.tr) of the Student Selection and Placement
Center (OSYM) that has been providing a centralized system for fair access
and placement of students to higher education programs since 1974, and cur-
rently administers the OSS. This situation causes a fierce competition among
students, and so there are many private OSS preparation schools in Turkey
established as a support mechanism for the candidates. Such schools need
to handle the difficult problem of scheduling the course meetings properly
subject to a set of constraints.

The organisational and hierarchical structure of the OSS and the school
has consequences for the representations and algorithms used to solve the
problem. Indeed, in the next section, our ICMA explicitly makes use of this

structure. We believe that explicitly using such known structure will be often
better than leaving an algorithm to compute it. Hence, here we describe the
system and organisation in some detail.

The OSS is a single stage exam having two parts, in which two aptitudes
of the entering candidates are assessed: verbal and quantitative. Computing
the score of a candidate’s exam requires some transformations of the raw
result by taking into account the grade-point average of the student at school,
the difficulty level of each question that is determined statistically, etc. After
the transformations are applied, three different composite score types can be
computed: wverbal, quantitative and equally weighted OSS scores. One of these
scores is used in the selection of those candidates who will be considered
for the placement to the undergraduate programs. Each department at a
Turkish university admits students according to a specific OSS score type.
For example, a computer engineering department accepts students based on
their quantitative OSS scores. Hence, the students aim to maximize one of
those OSS score types to get admitted to a department according to their wish
at a university by correctly answering the relevant questions. The private
preparation schools (PPSs) act as a support mechanism for the students who
will enter the OSS. A student can be admitted to a PPS at any time during
his/her high-school education. The high-school education has been extended
from 3 to 4 years in Turkey.

In a PPS that has several branches at different locations, there are teach-
ers that circulate around these branches, where each registered student at-
tends a set of courses at a specific branch. A student gets prepared to max-
imize one of the scores, verbal, quantitative or equally-weighted. A division
indicates the score type that a student aims to collect during OSS. The cur-
riculum of a verbal second-grade (year) high-school student in a PPS differs
from that of a verbal or quantitative third-grade high-school student. Hence,
the set of courses offered for each student differs according to his/her division
and grade. At a branch, depending on the number of registered students,
several sections might be arranged to cover them all. Depending on the high-
school, the classes might be held before noon, in the afternoon or during the
whole day. Moreover, some OSS applicants are high-school graduates. Con-
sequently, PPSs have to arrange course meetings accordingly. For example,
eight different sections might be required for all quantitative second-grade
high-school students. Some of these sections might require the courses to
be scheduled in the morning and some of them in the afternoon during the
weekdays. So, all grades are further divided into grade sections. The third-

10

year high-school students that are in the quantitative division must take
mathematics, natural sciences and Turkish language courses. All the stu-
dents that are in the verbal or equally weighted divisions must take some
courses in social sciences such as geography and history as well as mathe-
matics and Turkish language courses. But, the number and length of the
meetings that must be assigned to the grade sections (of different divisions)
can differ. For example, a student in a grade section of an equally weighted
division must attend four meetings of the geography course, whereas a stu-
dent in a grade section of a verbal division must attend six meetings of the
geography course. Each grade section groups a set of course sections that a
student must attend. A course section denotes a set of meetings for a course.
As an example. “BIOL.02[243]” might represent the 2nd section of a biology
course, and that consists of two meetings of 2 and 3 hours each. The same
teacher teaches both meetings. The resulting hierarchical system and logical
organisation is illustrated in the top part of Figure 3.

Logical organisation of course section meetings

Branches [Branch;] ______ [Branchy,] ______ [Branchg]
fﬁrse [bDivision] { bDivisiono]
Grades [bdGrade+] [bdGradeg |...... [bdGradeg]

Grade [bdgG. Section;] _____ [bdgG. Sections] [bdgG. Sections]

sections

v e .

' Teachers!
: Course [bdgs C. Sectionc] i
sections

Meetings bdgscMeeting; bdgscMeeting,

1111 C. Sectiony bdgs C. Sectionc BDGS C. Sectiong

MA representation
Figure 3: The logical organisation of the course (section) meetings in a PSTP and the
representation used in the MAs, where “bdsg C. Section.” denotes all course meetings of

the ¢! course section of the s grade section from the ¢*" grade of the d** division in the
bt branch of a school.

In a University Exam Preparation School Course Timetabling Problem

11

(PSTP), the events are the meetings of the course sections. All events must
be assigned to some period of p available, within a timetable of d days and ¢
time-slots per day. Note that, the assignment of teachers to events is given
by the school, and so is not part of the search problem. Also, the sections
are designed by the schools so as to fit within the rooms available, hence
there are no capacity constraints: The sizes of events and rooms are not
needed. However, there are still strong constraints arising from potential
clashes between events, and from the teachers and administration.

Most of the teachers in a PPS are part time having preferences that are
treated as hard constraints. There can also be inexperienced teachers who are
organized to enter some courses together with the experienced teachers. Each
teacher is assigned to a course section beforehand and can take responsibility
for more than one course-section. Some of these course sections might be held
in different branches. Hence a solution for the PSTP is an assignment for
every x € E (set of events, the course-section meetings) to some y € T
(domain, set of periods), meaning “Course section meeting x starts at time

7

Y.
Any acceptable solution must satisfy the following hard constraints:

e HO1. Meetings from within a grade section cannot overlap. (Teacher
and students must attend all the meetings of a grade section).

e HO2. Meetings of a teacher cannot overlap.

e HO3. For each course section, the associated meetings must be assigned
to different days from each other. That is, within a course section, we
cannot have more than one meeting per day.

e HO4. Teachers can express availability requirements for certain days
and/or periods, and these must be respected.

e HO5. The administration can have requirements for certain days and /or
periods for some course meetings, and these must be respected.

e HO06. Each grade section excludes some periods from before or after
noon, and these exclusions must be satisfied.

e HO7. Some course meetings can be required to be scheduled at the
same time as some other event, and these ‘sameTimeAs’ constraints
must be satisfied

12

e HO8. Sometimes more than one teacher is given as being assigned to
a section of a course, and the resulting non-overlap, and other require-
ments, must be satisfied.

(In practice, only a small number, less than ten or so of the H05, HO7
and HO8 constraints as a total appear in a problem instance.)
In addition there are two soft constraints:

e S01. The administration specifies a preferred maximum gap in the
daily timetables of teachers. A gap for a teacher being an unassigned
number of periods between two assigned periods. Gaps over the maxi-
mum are penalised, because they are inconvenient and cause the teacher
to waste time by having to wait around for the next meeting, and so
are not liked.

e S02. There are given preferred minimum and a maximum load per day
for teachers, and loads outside these bounds are penalised.

Solving the PSTP requires the generation of a assignment to all events,
satisfying all the hard constraints and minimimising the total number of soft
constraint violations.

4. General ICMA motivations and methods

Genetic and memetic algorithms have successfully used in solving many
difficult search and optimization problems, including real-world timetabling
problems ([3], [38], [39], [40], [45], [46]). On practical problems, the usual
goal is that reasonable amount of time should be spent on obtaining a rea-
sonable schedule for the timetabling of large problem instances, and this mo-
tivated Carter (1983) [47] to use divide-and-conquer approach. Traditional
approaches such as integer programming are suggested for solving sufficiently
small problem instances during the conquering step. Burke and Petrovic
(2002) [48] discussed the potential in applying a multistage approach for
solving timetabling problems and more.

There are some approaches making use of decomposition in a single stage
setting. Qu et al. [41] described an adaptive method which decomposed
the events into two subsets as easy and difficult (to schedule) and reordered
the examinations in the easy set for constructing high quality timetables.
Rahmna et al. [42] investigated the performance of different decomposition

13

and event ordering methods in a similar framework. The decomposition
methods in these studies are not based on an underlying static substructure
of the problem.

Meisels et al. [50] describe a decomposition approach based on prior-
ity functions for assigning teachers to classes subject to mutual exclusion
constraints only. A solution was represented in terms of grids which were
decomposed into smaller and easier to solve subgraphs (binary Constraint
Satisfaction Problem instances). This approach can be considered as a mul-
tistage approach in which the stages overlap, since the algorithm backtracks
if a consistent solution is not achieved for a given subgraph. The authors,
observed that good heuristics existed and consistent solutions were found, in
general, without backtracking.

In a recent study, De Causmaecker et al. [49] described a multistage
approach in which they used a complete candidate solutions during the search
process for solving a university course timetabling problem. A solution is
obtained using a subset of constraints at each stage. This solution is fed into
the next stage as an initial solution and a new constraint is turned on for the
local search algorithm to deal with.

In an other multistage decomposition setting, the data is decomposed into
smaller parts and a subset of the data is processed at each stage. McCollum
(2006) [51] pointed out that the investigation of approaches involving de-
composition is still awaiting attention of the researchers. Qu et al. [43] and
Schaerf [44] provides a survey on examination and automated timetabling,
respectively. In this section we discuss related multistage approaches and the
version that we use. In particular, the hybrid method, ICMA, that adapts
this strategy for solving a general timetabling problem is presented.

4.1. Previous multistage strategies

Most of the approaches for timetabling can be converted into a multistage
approach based on a strategy that somehow selects and handles a subset of
events during each stage. Three different types of such strategies can be
identified and are illustrated in Figure 4 and 5. Figure 4 illustrated the first
and second strategies that have been used previously.

In the first type, the stages can be arranged such that the approach is
applied only to a selected subset of events. Once a satisfactory solution is ob-
tained, based on some criteria only for these events subject to the constraints,
the assignment for each event is fixed. Then the next subset is processed as
shown in Figure 4(a). Carter (1983) [47] described such a scheme. At each

14

------------- ‘—------------\ l’------------‘
Stage 1 Subset 1 Subset2 | Subset3 | > ! SubsetJ |
i ' : ;

Stage 2 [Subset 1 I Subset 2] Subset3 ettt > i SubsetJ |

Stage 3 [Subset 1 I Subset 2 I Subset 3] """""" > i SubsetJ |

Stage J [Subset 1 I Subset 2 I Subset 3] """""" >
(a)

""""""" Y TTTTTTTTT T SCTTTTTTTTT T T N

Stage 1 Subset2 | Subset3 |ttt > ! SubsetJ

] ! ' /I

Subset 2] Subset3 Tttt > E Subset J E

i SubsetJ |

Stage 3

Stage J Subset 1

Stage 2 [Subset 1
[Subset 2

Subset 1 I Subset 2 I Subset 3] >
o o) (8

(b)

Figure 4: Previously proposed multistage strategies for timetabling. The dashed boxes
are the events that are not yet considered. The gray boxes denote the active subset of
events on which the algorithm operates and for which it is currently trying to find /improve
an assignment. The solid outlined boxes represent the events whose assignment has been
found and fixed.

stage, a conventional approach is proposed on a small number of events that
will generate a result in a short amount of time. Weare (1995) [33] also in-
vestigated this idea for considering different number of events at each stage.
This approach has the advantage of only studying a much reduced set of
variables at every stage, but also can make some solutions unreachable.

As a second type of strategy, the approach can be applied to the union
of an unprocessed subset indicating some unscheduled events and a subset
of some previously processed events as illustrated in Figure 4(b). Still, some
scheduled events are fixed in this strategy and they are not processed fur-
ther by the approach. Burke and Newall (1999) [52] tested this strategy by
considering pairs of events and then fixing one at each stage using a memetic
algorithm. Di Gaspero and Schaerf (2001) [53] compared performances of
a constructive heuristic, tabu search approaches and MAs. The multistage
MA turned out to generate the best results over four examination timetabling
problems.

Neither of these multistage methods have been shown to work for most
of the real-world heavily constrained large timetabling problems, such as,

15

nurse rostering, or course timetabling. They both have the disadvantage
that whenever a solution to a subset is fixed, some part of the search space
is excluded, and so good solutions can be missed.

4.2. Our multistage strategies

Carter (1983) [47] studied a multistage strategy as illustrated in Figure
4(a) within a divide and conquer heuristic. Burke and Newall (1999) [52]
investigated another one as illustrated in Figure 4(b) within a memetic algo-
rithm framework. A third strategy within a memetic algorithm framework
is used in this work as an extension to the previous studies: No assignment
of events is fixed. At each stage, a subset of unscheduled events is incre-
mentally added to be processed by the approach along with the previously
processed subset of events as in Figure 5, but the previous assignments remain
changeable. The aim of this study is to inquire whether such an incremental
multistage approach can provide a better performance as compared to its
single stage version.

""""""" NTTTTTTTTTTTT '
Stage 1 Subset2 | Subset3 e > ! SubsetJ
| ' :

__

Stage 2 [Subset 1 1 Subset 2] Subset3 et > i SubsetJ |
Stage 3| Subset 1 I Subset 2 I Subset 3] """""" > | SubsetJ |
Stage J [Subset 1 I Subset 2 I Subset 3] """""" >

Figure 5: Proposed multistage strategy (see Figure 4 for explanation).

There are two main components of the proposed incremental approach
for scheduling events:

e subset selection

e stage termination criteria

4.2.1. Subset selection

Selecting the subset of unscheduled events for addition to the current
active set can be done either in a deterministic or randomised method fash-
ion. In a simple case, the size of the added subset can be fixed and the
events chosen randomly from the unscheduled events. However, the logical
arrangements (groupings) of events in a given problem are very valuable in

16

generating subset selection mechanisms. Consider a term based university
course scheduling problem, then there is a subset of courses for each term
to be scheduled. As a deterministic mechanism, at each stage, unscheduled
courses of a term starting from the first towards the last term can be added
for searching a solution. In such a problem, each lecturer is responsible for
a subset of courses. As another deterministic strategy, unscheduled courses
of a lecturer can be used to increment the number of events to be scheduled
based on a specified order. Common events do not cause any problem in any
case. For example, there can be two lecturers responsible for a single course.
Only the unscheduled events should be added at each stage.

4.2.2. Termination Criteria

After events are added, then the interleaving will run MA until termi-
nation criteria cause it to stop. Simple options are a simple limit on the
number of iterations at each stage, or achieving an expected solution quality,
or a combination. For example, in Burke and Newall (1999) [52], a stage
terminates whenever the maximum number of iterations is exceeded.

4.3. General ICMA timetabling

Repeat
Sel ect a group (subset) of new events based on sone criteria
Generate random assi gnnents for the new events in all individuals
Repeat

Apply Crossover, Miutation and then H Il dinbing
Until stage termnation criteria are satisfied
Until all events are scheduled and ICVMA termination criteria are satisfied

Figure 6: Pseudo-code for ICMA for timetabling

Our interleaved multistage method, ICMA, for solving timetabling prob-
lems is shown in Figure 6. It might not be possible to timetable all the events,
hence the algorithm should still terminate. Also, it might be desirable to run
the algorithm even after all events are scheduled for improving the quality of
the solutions at hand. ICMA termination criteria control this functionality
and for example, a maximum number of iterations could be used as termina-
tion criteria. At each stage, a subset of new (unscheduled) events is selected
using certain criteria. The assignment for the selected subset of events are

17

randomly generated within a population of candidate solutions. This popula-
tion is then exposed to the traditional MA operators. Whenever some stage
termination criteria is satisfied, then another subset of new events is chosen
and again added. This process is repeated until all events are scheduled and
some additional termination criteria are satisfied. After the first pass, each
individual in the initial population is a partial solution. At each stage, the
size of individuals incrementally grows as the new subset of events is added.
In this way, no portion of the search landscape is excluded.

A consequence of this scheme is that the genetic operators in the MA
must be able to handle the partial solutions. Usually this is straightforward
to arrange. At any stage, the genes that are not mapped to any allele do not
cause any problem. The fitness computation proceeds as if those events do
not exist. Depending on the choice, a gene or a set of genes in a chromosome
is allowed to be partially mapped, only if this situation does not disturb
the fitness computation. In such cases, genetic operators can ignore the
remaining unassigned part. For example, crossover can still exchange the
genetic material between mates and mutation can perturb only the mapped
portion of the gene.

5. Application of ICMA to the PSTP

In order to show how ICMA is applied to the specific case of PSTP, there
are three main components to describe:

A. The MA itself.

B. The construction steps that give the movement to the next stage by
the inclusion of more events.

C. The VDHC aspect that controls the application of the constraint-
directed hill-climbers within the MA.

and we treat each in turn.

5.1. The MA itself

As an interleaved multistage approach, an MA is used for solving PSTPs
as illustrated in Figure 4. An individual in the population contains all
(course-section) meetings to be scheduled and its physical implementation
reflects the same logical arrangement in Figure 3. A gene corresponds to a
course section in the representation used. The initial population is randomly
generated in a particular way. The meetings of a given course section are

18

assigned to random timeslots, assuring that each meeting is scheduled on a
randomly selected separate day for an individual. Similarly, mutation ran-
domly reschedules the meetings of a course section with no day clash using
a probability of 0.25. In this way, the constraint HO3 is satisfied at all times.
As a mate selection method linear ranking is used, all individuals are sorted
with respect to their fitness values. Then a linearly changing rank is assigned
based on their position within the population using a selective pressure in
the range of [1.0, 5.0]. The probability of choosing the best individual be-
comes five times larger than choosing the worst individual as a mate from
the population. Two crossover operators are implemented forming two new
individuals. Modified one-point crossover (m1PTX) swaps parts of selected
individuals at a selected point. As a crossover point, one of the start points of
the grade sections is randomly chosen. A modified uniform crossover (mUX)
exchanges course meetings in each grade section as a whole with a probabil-
ity of 0.5. Such promising operators derived from the logical arrangement of
events are proposed and tested by Alkan and Ozcan (2003) [3], previously.

As is common practice, feasibility is relaxed during the search process
itself, though not for the final solutions. However the algorithm is such that
only HO1 and HO2 are violated during search, HO3-HO8 can be preserved
during the ICMA process. Hence, the fitness function is a weighted sum of
the number of all constraint violations as shown in Equation 1:

f(S) = Z viol(S, 1) * w; (1)
ie{HO1,H02,501,502}

where S represents a candidate solution, viol(S,7) counts the violations S due
to the constraint i and w; is the weight for viol(S,4). Each conflict counts
as one violation in HO1 and H02, while the number of violations is the total
deviation from the limits for SO1 and S02. For example, if a teacher has a
load of 1 in a day and the minimum load is per day is 3; this generates a
violation of 2.

5.2. The construction step

In the constructive step, all grade sections receive an additional selected
course section meeting simultaneously at a stage. Notice, that this intrinsi-
cally exploits the structure of the relationships between meetings. One could
have just 'compiled down’ the problem so as to only contain constraints be-
tween sets of meetings, however, this would have made it difficult to exploit
the overall structure during the construction step.

19

A deterministic mechanism is used as a subset selection method. Largest
degree first heuristic [54] is adapted for choosing a course meeting to be
added to each grade section. The selection within a grade section is per-
formed using a standard heuristic, but the way it works evenly on all grade
sections is important, and novel. The course section with the largest num-
ber of meetings and in case of equality with the largest number of duration
(largest degree) in each grade section is determined. Then the corresponding
course meeting is added to each grade section. For example, assume that in
the first grade section, following course section meetings are to be scheduled;
BIOL.01[3+2], GEO.01[2+2], MATH.01[4+34-2]. During the stage transi-
tion, the first meeting of MATH.01 with duration of 4 is added to the first
grade section, since MATH.01 has three meetings to be scheduled, while the
rest of them have two meetings. In the next stage, either the second meeting
of MATH.O1 or the first meeting of BIOL.01 with duration 3 will be added.
A random decision is made for such a case. The number of events added
at the beginning of a stage is parameterized with respect to the number of
grade sections. This parameter is referred to as the growth factor (gf). For
example, if there are 30 grade sections and gf is 2, then 2 events are added
to each grade section yielding an increment of 60 in the overall size of a
candidate solution. Due to the choice of subset selection mechanism and
the definition of a gene, partially mapped genes occur within the individuals
during evolution. Both of the genetic operators handle the partially mapped
genes. Moreover, the fitness of an individual can still be computed. The MA
at a stage terminates whenever a ratio of all hard constraints (H01-H08) are
satisfied by an individual or a maximum number of steps is exceeded. Then
the next stage starts. This ratio is referred to as violation elimination ratio.
As an example, the value of 0.5 indicates that if 50% of all hard constraint
violations in an individual are eliminated, then the current stage ends.

5.83. The VDHC aspects

For HO7, the course sections that should be scheduled to the same periods
have just a single gene in the representation pointed by them. Similarly,
each course section that will be taught by more than one teacher has a single
gene pointed by the related teachers for HO8. The relevant violations are
detected by using the list of each teacher and course section assignments. No
assignment, outside of the restricted domain of each course meeting forced
by H04-HO06 is allowed during the evolution.

20

The MAs use a set of constraint-based hill climbers for HO1, H02, S01 and
S02. Each hill climber attempts to remove the violations due to a constraint
by random rescheduling. A limited number of possibilities are tested and the
best one is accepted. The hill climber (repair operator) for HO1 is applied
after all genetic operators. None of the course meetings in a grade section is
allowed to overlap by employing the hill climber for HO1.

I nput: Candidate Solution S

0. 1:=1

1. Repeat

2 If (no violations of any constraint)

3 br eak

4 Sel ect a constraint type i based on the individual violations in S
5. Forma list L:=[course neetings that violates the selected

6 constraint type in S|

7 If (L is not enpty)

8 Shuffle L randonly

9 Repeat

10. Renmove the next course neeting e fromL

11. Apply the constraint oriented hill clinber HG to e

12. l:=1 +1

13. If (no overall inprovenment in the quality of S)

14. Set the assignnent of e to its previous val ue
15. Until (there is inprovenent) or (L is enpty) or (I>upperBound)
16. If (Lis enpty) and (no overall inprovenment in the quality of S)
17. Mitate a randomly sel ected course meeting

18. Until (I>upperBound)

Figure 7: Pseudo-code of the violation directed hierarchical hill climbing utilised within
the MA

The idea of using a violation directed mutation operator as a genetic
algorithm is tested over a set of real and syntactic data for lecture and exam-
ination timetabling in [24], [25]. Their results show that the random selection
of a gene and then the selection of an allele to be assigned by using tourna-
ment perform the best. The tournament strategy favors the assignment that
produces the smallest number of violations. [3], [6] and [5] extend this idea
for designing different types of operators, including hill climbers to be used
in metaheuristics.

21

In this study, a similar heuristic to the one described in [5] is used to
manage the hill climbers for H02, SO1 and S02 as a single hill climber (Figure
7). In the first phase, the number of violations due to a constraint type is
computed and a hill climber is randomly selected using a ranking strategy
(with a virility of 5) based on this information (Line 4). The hill climber
selection process is similar to the mate selection process. Instead of the
fitness of individuals, the number of violations due to the constraint types is
evaluated for selection. It is more likely that the constraint type causing more
violations will be selected; hence, the relevant hill climber will be invoked
(Line 11). Each hill climber aims to correct the violations of the related
constraint type.

After deciding on the constraint type to be repaired, a new phase starts.
A meeting should be chosen for removing the selected constraint type vio-
lations, hence a list of events is formed that violates the selected constraint
type (Lines 5-6). A random permutation of these events is formed (Line 8)
and each event is processed consecutively by the hill climber as long as the
solution does not improve without exceeding the maximum number of steps
(Lines 9-15). If an improving move is detected (Line 15) before reaching the
end of the list, then the hill climber goes to the first phase again and the same
steps are repeated. If all items in the list are processed and no improvement
in the quality of the candidate solution is detected, then mutation is invoked
for a randomly selected event from the list (Lines 15-16). The hill climber
terminates whenever there is no violations of any constraint left (Lines 2-3)
or a maximum number of steps are exceeded (Line 18).

6. Computational Results

Pentium IV 3 GHz. windows machines having 2 Gb of memory are used
during the experiments. All runs are repeated fifty times. Initially, some
parametric fine tuning experiments are held. Then, ICMA is compared to
the conventional MA, which attempts to schedule all course meetings simul-
taneously. For a fair comparison between the approaches, the experiments
are terminated if the expected global optimum is achieved or the execution
time exceeds 600 CPU seconds (unless it is mentioned), considering that MA
operates on the complete solutions whereas ICMA on the partial solutions. If
there are no constraint violations, 0 fitness value is expected. Equal weights
are used within the fitness function. As a replacement strategy, the best
two individuals in a generation are passed to the next one. The rest of the

22

population is generated using the genetic operators. Success rate (s.r.) indi-
cates the ratio of successful runs, achieving the expected fitness to the total
number of runs. The success rate, average number of violations and ranking
based on these measures are used as performance comparison criteria.

6.1. Experimental data

A real data obtained from Final Dershanesi, a private PPS is used during
the experiments. This data referred to as fdm11 is composed of four smaller
subsets. Ten more problem instances are formed by concatenating the sub-
sets in different ways as summarized in Table 1. All the problem instances
having “fdm” prefix are modified from the raw data, in which each instance
is denoted by “fd” prefix. Some events from the raw data are discarded that
causes obvious constraint violations. It is more likely that there might be an
optimal solution for the modified data as compared to the raw data. Both
the raw and modified data sets can be reached from
http://cse.yeditepe.edu.tr/~eozcan /research/ TTML/.

Three sets of preliminary experiments are performed for fine tuning ICMA
using the first six problem instances (fdm1-fdm6). Each problem instance re-
quires an optimal schedule to be generated for more than 1100 course meet-
ings. There are 8 days and 12 hours per day in the timetable. For most of
the courses, one hour is required for each meeting. The students in a grade
section attend 45 to 48 course meetings. Fach course section requires 2 to 8
course meetings. The interleave in SO1 is fixed as two. The minimum and
maximum load of a teacher imposed by S02 is set to 2 and 6 hours per day,
respectively. At each stage, the number of events added is the number of
grade sections for each problem.

6.2. Preliminary experiments using I[CMA

The performances of crossover operator (m1PTX, mUX) and population
size (16, 32) combinations within ICMA are tested first (Figure 8). Lower
rank denotes a better value for either the best or mean number of violations.
Ranks are computed by taking ties into account. The violation elimination
ratio is set as 1.0, while the growth factor is set to 1 during the first set of
experiments. The maximum number of generations is fixed as 50 for each
stage. These choices are arbitrary. It is observed that the mUX crossover is
slightly better than m1PTX on average considering the best (offline perfor-
mance) and average best results (online performance). On the other hand,
a population size of 16 is a slightly better choice considering the average

23

best results, but a population size of 32 is a slightly better choice consider-
ing the best results. A pair-wise student’s t-test comparing the effect of the
crossover operator and population size choices on the average performance of
MAs for each problem instance shows that there is no statistically significant
performance variation between them. For this reason, mUX is chosen as the
crossover and a population size of 16 is used during the further experiments.
The rest of the settings are kept the same.

A set of values {0, 0.25, 0.5, 0.75, 1.0} for violation elimination ratio are
tested, secondly. Performance rank of each ratio based on the best number
of violations in 50 runs for each problem instance is provided in Table 2. As
the ratio grows, the performance of ICMA gets better in almost all problem
instances. The experimental results indicate that aiming to satisfy as many
hard constraints as possible is vital as a stage transition criterion. For cases
in which this is not possible, having a limit on the maximum number of
iterations between stages is sufficient as a termination criterion. The violation
elimination ratio is set to 1.0 during the rest of the experiments.

A single course meeting is added to each grade section in the previous
experiments. During the last set of experiments, ICMA is tested on fdm1l-
fdm6 using different growth factors; {1, 2, 3, 4}. Figure 9 summarizes the
results. Different growth factors might deliver different performances. For
fdm3 and fdmb, a growth factor of 4 and 3 generate the best performance,
respectively, while a growth rate of 2 provides either the best performance or
a matching performance to the best for the rest of the problem instances. For
fdm4, an optimal result cannot be achieved in none of the runs and for any
growth factor. Adding two course meetings to a grade section performs the
best with an average success rate of 0.31 over the problem instances. Hence,
a growth factor of 2 is used in the subsequent experiments.

6.3. Comparison of the conventional MA and ICMA

The duration as a termination criterion is set to 600, 900 and 1200 seconds
for the problem instances having a grade section of 30, 45 and 60, respectively.
The performance comparison of the conventional MA and ICMA is presented
in Table 3. A success rate, in a way, indicates the probability of obtaining
a violation free schedule in a single run for the problem. ICMA performs
better than the conventional MA in all cases, except for fdm8, considering the
success rate and the average number of violations of the best individuals over
the runs. A violation free schedule can be obtained for seven out of eleven

24

avr. rank
4
3 [T T
24
1
0
mUX mlPTX P32 Pl6
(a)
avr. rank
5
4 T
3 4
2 4
14
0
mUX mlIPTX P32 Pl6
(b)

Figure 8: Performance comparison of crossover operators and population size parameters
within ICMA considering (a) the best and (b) mean number of violations over fifty runs.
The average values and their standard deviations are obtained by averaging all ranks over
all experiments in which two crossover and two population size combinations are used on
all problems.

problem instances. ICMA delivers the best average number of violations for
the rest of the problems; namely, fdm4, fdm7, fdm10 and fdm11.

Figure 10 shows how the number of violations of the best individual in
a population changes during the evolutionary process as an example. Some
stage transitions might occur before the maximum number of generations
between successive stages is exceeded. That is, the hard constraints might
be satisfied less than 50 generations. This indicates the power of the hill
climber utilised in the MAs. The mutational component within the proposed
hill climber seems to be useful in both MAs. It kicks in whenever the hill
climber gets stuck and can not generate an improved solution by considering
the selected constraint oriented neighborhood.

The experiments are repeated using the raw data fd1-fd6 and tighten-
ing the SO1 constraint. The rest of the settings are kept the same. The

25

S.
0.80
0.70 -
0.60 -
0.50 -
0.40 -
0.30
0.20
0.10 - ’_I_H
0.00 H = : : : :

fdml fdm2 fdm3 fdm4 fdmS5S fdm6

Oegf=1
W of=2
Oef=3
Ogf=4

Figure 9: Performance comparison of ICMA based on success rates (s.r.) for various growth
factors (gf) and for the problem instances fdm1 to fdm6.

results are presented in Table 4. The average performance comparison be-
tween the conventional MA and ICMA based on the student’s t-test and the
%-improvement of the best approach over the other one using the average
number of violations for a given problem instance are provided in Table 5. It
is observed that ICMA delivers a better average performance when compared
to the conventional MA for all problem instances (fd1-6). This performance
variation is statistically significant for fd1, fd3, fd4 and fd6. Considering
the best performance of MAs in fifty runs, still, ICMA performs better than
the conventional MA in all cases, if ties are broken based on the average
number of violation and generations. For none of the problem instances all
constraints are resolved, except for fd5. For fd2, ICMA achieves the same
quality solution as the conventional one by visiting less number of states on
average.

7. Conclusion

A new course timetabling problem is presented in this paper: University
Exam Preparation School Course Timetabling Problem (PSTP), and a set
of such problem instances are made available, each requiring an optimal
schedule for more than 1100 course meetings subject to a set of hard and
soft constraints.

We have also presented a new hybrid, the “Interleaved Constructive
Memetic Algorithm”. This works on an active subset of the events, and
uses an interleaving of

26

50
[|
140 — 30
Lo L
[
120 L ! —
[| ']
[|]
100 P b
g !y
80 !
1
1
60 | |
°h N
S0 . S
v ITEFTEeTIFITSEEIRITERSSITEE
Rl I o I o B e TR e T TR N S T oS 7o S " BN N T o SN - - R -

Figure 10: Number of violations versus generation plot: A sample run of ICMA for solving
fdm11 showing the number of violations (y-axis) of the best individual at each generation
(x-axis).

e A constructive step in which a selection of the currently un-assigned
events are to the active subset and are given initial assignments. This
selection of the events is done heuristically, and exploits the structure
of the problem domain. The novelty of the selection process is in the
way it works which enforces fairness of progress across all same sub-
structures.

e The memetic algorithm, with its set of constraint directed hill-climbers,
is allowed to work on the active set of events so as to improve the
assignments they have been given. It is permitted to change all the
assignments if it desires as a novel feature which extends the previously
proposed strategies in [47] and [52].

On the PSTP, the empirical comparison between the ICMA and its con-
ventional version shows that ICMA achieves better results: Both use the
same operators, including the single hill climber; a heuristic that decides the
most appropriate hill climber to apply whenever necessary from a set of con-
straint based hill climbers. We also note that converting from MA to ICMA
is relatively easy. Although applied here to a particular course timetabling
problem, the proposed incremental strategy is a general strategy that can
be adapted easily by the existing approaches for timetabling and schedul-
ing. There is already strong evidence that some examination timetabling [7],

27

workforce scheduling, particularly nurse rostering [5], [6] problems are highly
hierarchically structured which can be exploited by our method.

Comparing ICMA with other meta-heuristics the primary relevant differ-
ence is that [CMA exploits the explicitly-given hierarchical structure. Quite
possibly other metaheuristics can also exploit that structure and improve
their performance, however, direct empirical comparison is often stymied by
the general propensity for benchmark problems to discard such hierarchical
structure. Note that it is possible that other standard meta-heuristics would
outperform ICMA without using the structure, but even in that case the
point made by this study is that extending such meta-heuristics so as to
exploit the structure might also improve their performance. This also em-
phasises that it would be good practice for those converting real instances to
benchmark ones to ensure that the structure is preserved.

Naturally, we also intend to explore the performance of ICMA on domains
for which structure preserving benchmarks are provided. As a potential
example, the structure of the PSTP is similar to those used in the ITC2007
course timetabling track, [35], and so this suggests that ICMA be also tested
on this domain. We note that [55] uses an integer programming method
(as opposed to a metaheuristic) but that it does exploit the given grouping
structure of the events in the problem; thus re-iterating the general potential
utility of structure exploitation.

Implementation specific mechanisms for the subset selection and the ter-
mination criteria at each stage for the proposed strategy can also be investi-
gated further. Future work will also look into the mechanisms that underlie
the ICMA, and the questions raised by this work. For example, it seems
reasonable that the interleaving acts as an additional diversification mecha-
nism within the MA due to the newly introduced events and their random
scheduling at each stage. Another hypothesis we want to explore arises from
the observation that the ICMA gradually increases the size of the active set of
events. When the active set is small, then search effort is probably not useful
as the problem is too easy. However, if the active set is too large (or includes
all events as in the usual MA) then it is possible that search effort is not effi-
ciently used as the problem becomes too constrained to allow easy movement
within the search space. Possibly the main effectiveness of the ICMA method
arises at intermediate sizes of the active sets; sets that are large enough to
be informative but not so large as to cause the search to stagnate. Also pos-
sibly related, is the commonly held view that many problems contain a core
subproblem that is hard to solve, but once solved then the other variables

28

depend on the core in a fashion that is relatively easy to handle. A potential
problem with methods that work on assignments to all variables (such as
GAs and MAs) is that they can get confused by the dependent variables.
Yet, fixing this by directly identifying the care subproblem is also hard. We
hope that ICMA will lead to methods that have a higher chance of focussing
on the hard core at some stage during the multi-stage construction, and so
can reduce the distracting effects of the easier components of the problem.

Acknowledgment

This research is funded by TUBITAK (The Scientific and Technological
Research Council of Turkey) under the grant number 107E027.

References

[1] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and
multicommodity flow problems,” STAM J. Computing, 5(4), pp. 691-703,
1976.

2] E. K. Burke, and J. D. Landa Silva, “The design of memetic algo-
rithms for scheduling and timetabling problems,” in Studies in Fuzzi-
ness and Soft Computing. Recent Advances in Memetic Algorithms and
Related Search Technologies, W. Hart, J. Smith and N. Krasnogor (ed.),
Springer, vol. 166, pp. 289-311, 2005.

[3] A. Alkan, and E. Ozcan, “Memetic algorithms for timetabling,” in Proc.
of IEEE Congress on Evolutionary Computation, pp. 1796-1802, 2003.

[4] A. Viana J. Pinho de Sousa, M.A. Matos, “GRASP with constraint
neighbourhoods - an application to the unit commitment problem,” in
Proc. of the 5th MIC, 2003.

[5] E. Ozcan, “Memes, self-generation and nurse rostering,” Lecture Notes
in Computer Science 3867, Springer-Verlag, selected papers from the 6th
Int. Conf. on the PATAT, pp. 85-104, 2007.

[6] E. Ozcan, “Memetic algorithms for nurse rostering,” P. Yolum (Eds.):
Lecture Notes in Computer Science 3733, Springer-Verlag, The 20th
ISCIS, pp. 482-492, 2005.

29

[7]

8]

[10]

[11]

[12]

[13]

[14]

E. Ozcan, E. Ersoy, “Final exam scheduler-FES,” in Proc. of 2005 IEEE
Congress on Evolutionary Computation, vol. 2, pp. 1356-1363, 2005.

E. Ersoy, E. (")zcan, S. Uyar, “Memetic algorithms and hyperhill-
climbers,” in Proc. of the 3rd Multidisciplinary Int. Conf. On Schedul-
ing: Theory and Applications, P. Baptiste, G. Kendall, A. M. Kordon,
F. Sourd (ed.), pp. 159-166, 2007.

Ender Ozcan, Alpay Alkan, “A memetic algorithm for solving a
timetabling problem: an incremental strategy,” in Proc. of the 3rd Mul-
tidisciplinary Int. Conf. On Scheduling: Theory and Applications, P.
Baptiste, G. Kendall, A. M. Kordon, F. Sourd (ed.), pp. 394-401, 2007.

E. Ozcan, “Towards an XML based standard for timetabling prob-
lems: TTML,” Multidisciplinary Scheduling: Theory and Applications,
Springer Verlag, 163 (24), 2005.

J. H. Holland, “Adaptation in natural and artificial systems,” Univ.
Mich. Press, 1975.

P. Moscato and M. G. Norman, “A memetic approach for the traveling
salesman problem implementation of a computational ecology for combi-
natorial optimization on message-passing systems,” Parallel Computing
and Transputer Applications, pp. 177-186, 1992.

Y.S. Ong, A.J. Keane, “Meta-Lamarckian learning in memetic algo-
rithms,” IEEE Trans Evol Comp 8(2):99-110, 2004.

Y.S. Ong, M.H. Lim, Z. Ning, K.W. Wong, “Classification of adap-
tive memetic algorithms: a comparative study,” IEEE Trans SMC BC
36(1):141-152, 2006.

D. Abramson, “Constructing school timetables using simulated anneal-
ing, sequential and parallel algorithms,” Management Science, 37(1),
pp. 98-113, 1991.

A. Hertz, “Finding a feasible course schedule using a tabu search,” Dis-
crete Applied Mathematics, 35, pp. 255-270, 1992.

A. Schaerf, “Tabu search techniques for large high- school timetabling
problems,” in Proc. of the Fourteenth National Conference on Al pp.
363-368, 1996.

30

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

D. Abramson, H. Dang, and M. Krisnamoorthy, “Simulated annealing
cooling schedules for the school timetabling problem,” Asia- Pacific J.
of Op. Res., 16, pp. 1-22, 1999.

M. Marte, “Towards constraint-based school timetabling,” in Proc. of
the Workshop on Modelling and Solving Problems with Constraints,
ECAT 2004, pp. 140-154, 2004.

F. Jakobsen, A. Bortfeld, H. Gehring, “Timetabling at German sec-
ondary schools: Tabu search versus constraint programming,” in Proc.
of the 6th Int. Conf. on the PATAT, pp. 439-442, 2006.

B. Bilgin, E. Ozcan, E. E. Korkmaz, “An experimental study on hyper-
heuristics and exam scheduling,” Selected papers from the International
Conference on Practice and Theory of Automated Timetabling 2006,
Lecture Notes in Computer Science, vol. 3867, pp. 85-104, 2007.

E. Ozcan, B. Bilgin, E.E. Korkmaz, “A comprehensive survey of hyper-
heuristics,” Intelligent Data Analysis 12(1):1-21, 2008.

E. K. Burke, B. McCollum, A. Meisels, S. Petrovic and R. Qu, “A graph-
based hyper-heuristic for educational timetabling problems,” EJOR,
176(1), pp. 177-192, 2007.

P. Ross, D. Corne, and H-L. Fang, “Improving evolutionary timetabling
with delta evaluation and directed mutation,” in Proc. of PPSN III, pp.
556-565, 1994.

P. Ross, D. Corne, and H-L. Fang, “Fast practical evolutionary
timetabling,” in Proc. of AISB Workshop on Evolutionary Computa-
tion, pp. 250-263, 1994.

W. Erben and J. Keppler, “A genetic algorithm solving a weekly course-
timetabling problem,” in Proc. of the First Int. Conf. on the Practice
and Theory of Automated Timetabling (ICPTAT), Napier University,
Edinburgh, pp. 21-32, 1995.

A. Colorni, M. Dorigo, and V. Maniezzo, “Metaheuristics for high-school
timetabling,” Computational Optimisation and Applications, vol. 9, pp.
275-298, 1998.

31

[28]

[29]

[30]

[32]

[35]

[36]

G. R. Filho, L. A. N. Lorena, “Constructive evolutionary approach to
school timetabling,” Lecture Notes in Computer Science, Springer, vol.
2037, pp. 130-139, 2001.

P. Wilke, M. Grobner,and N. Oster, “A Hybrid Genetic Algorithm
for School Timetabling,” Lecture Notes in Computer Science 2557,
Springer-Verlag, Advances in Artificial Intelligence, pp. 455-464, 2002.

G. N. Beligiannis, C. N. Moschopoulos, G. P. Kaperonis, and S. D.
Likothanassis. 2008. “Applying evolutionary computation to the school
timetabling problem: The Greek case,” Comput. Oper. Res., 35(4),
1265-1280, 2008.

R. Raghavjee, and N. Pillay, “An application of genetic algorithms to
the school timetabling problem,” Proceedings of the 2008 annual re-
search conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing countries:
Riding the wave of technology, pp. 193-199, 2008.

R. Raghavjee, and N. Pillay, “An informed genetic algorithm for the
high school timetabling problem.” in Proc. of the 2010 Annual Research
Conference of the South African Institute of Computer Scientists and
Information Technologists (SAICSIT ’10). ACM, New York, NY, USA,
pp. 408-412, 2010.

R. F. Weare, “Automated examination timetabling,” Ph.D. dissertation,
University of Nottingham, Department of Computer Science, 1995.

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis,
A.J. Parkes, L. Gaspero, R. Qu, and E.K. Burke, “Setting the Re-
search Agenda in Automated Timetabling: The Second International
Timetabling Competition,” INFORMS Journal on Computing Vol. 22,
pp.- 120-130, 2010.

A. Bonutti, F. De Cesco, L. Di Gaspero, A. Schaerf, “Benchmarking
curriculum-based course timetabling: Formulations, data formats, in-
stances, validation, visualization, and results.” Annals of Operations

Research, to appear. DOI: 10.1007/s10479-010-0707-0

T. Miiller, “ITC2007 solver description: A hybrid approach,” Annals of
Operations Research 172:429446, 2009.

32

[37]

[38]

[39]

[40]

[41]

J.H. Kingston , “Resource assignment in high school timetabling,” An-
nals of OR, 2010, DOI:10.1007/s10479-010-0695-0.

D. E. Goldberg, “Genetic algorithms in search, optimization, and ma-
chine learning,” Addison- Wesley, Reading (MA), 1989.

N. Krasnogor, “Studies on the theory and design space of memetic al-
gorithms,” Ph.D. Thesis, University of the West of England, Bristol,
United Kingdom, 2002.

B. Paechter, R. C. Rankin, A. Cumming, and T. C. Fogarty,
“Timetabling the classes of an entire university with an evolutionary
algorithm,” in Proc. of Parallel Problem Solving from Nature (PPSN
V), pp. 865-874, 1998.

R. Qu and E.K. Burke, “Adaptive Decomposition and Construction
for Examination Timetabling Problems,” in Proc. of the 3rd Multi-
disciplinary International Scheduling: Theory and Applications 2007
(MISTA 2007), pp. 418-425, 2007.

S.A. Rahman, A. Bargiela, E. K. Burke, B. McCollum and E. Ozcan, “A
Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering,” in Proc. of the 8th International Confer-
ence on the Practice and Theory of Automated Timetabling (PATAT
2010), pp. 353-372, 2010.

R. Qu, E.K. Burke, B. McCollum, L.T.G. Merlot, and S.Y. Lee, “A
survey of search methodologies and automated system development for
examination timetabling,” Journal of Scheduling, 12(1): 55-89, 2009.

A. Schaerf, “A survey of automated timetabling,” Artif. Intell. Rev.,
13(2): 87-127, 1999.

E. Ozcan, C. Basaran, “A case study of memetic algorithms for
constraint optimization,” Soft Computing: A Fusion of Foundations,
Methodologies and Applications, 13(8-9), pp. 871-882, 2009.

E. Ozcan, and E. Onbagioglu, “Memetic algorithms for parallel code
optimization,” Int. J. on Parallel Processing, vol. 35, no. 1, pp. 33-61,
2007.

33

[47]

[51]

[52]

[53]

[55]

M. W. Carter, “A decomposition algorithm for practical timetabling
problems,” Dept. of Industrial Engineering, University of Toronto,
Working Paper 83-06, April, 1983.

E. K. Burke, S. Petrovic, “Recent Research Directions in Automated
Timetabling”, EJOR, 140, pp. 266-280, 2002.

P. De Causmaecker, P. Demeester, G. Vanden Berghe, “A decomposed
metaheuristic approach for a real-world university timetabling problem,”
European Journal of Operational Research, vol. 195, no. 1, pp. 307-318,
2009.

A. Meisels, J. Ell-Sana, E. Gudes, “Decomposing and solving
timetabling constraint Networks,” Computational Intelligence, vol. 13,
no. 4, pp. 486-505, 1997.

B. McCollum, “University Timetabling: Bridging the Gap between Re-
search and Practice,” in Proc. of the 6th Int. Conf. on the PATAT, pp.
15-31, 2006.

E. K. Burke, J. P. Newall, “A multistage evolutionary algorithm for the
timetable problem,” IEEE Trans. on Evolutionary Computation, vol. 3,
no. 1, pp. 63-74, 1999.

L. Di Gaspero, A. Schaerf, “Tabu search techniques for examination
timetabling” In E. Burke and W. Erben, editors, Practice and Theory
of Automated Timetabling III, no. 2079 in Lecture Notes in Computer
Science, pp. 104-117, 2001.

M. W. Carter, G. Laporte, “Recent developments in practical
timetabling,” Selected papers from the Second International Conference
on Practice and Theory of Automated Timetabling II, Lecture Notes In
Computer Science; vol. 1408 , pp. 3-19, 1997.

E.K. Burke, J. Marecek, A.J. Parkes, H. Rudova, “A supernodal for-
mulation of vertex colouring with applications in course timetabling”.
Annals of Operational Research, to appear.

34

9. 8 05 09 G i e 965 62 | 11w
79 6 4 cF z s z 9LF €OLT | OTwpy
ST~ 05 cF ¢ i e o gL9T | 6wpy
€9 8 05 cF 7 i z Stai 0cLT || swpj
8¢ 8 05 cF p i Z ixas geLT || Lwapy
9F G 17 o€ I e I cFe 960T | 9uIpy
w6 ¥ o€ z z z G0¢ PeIT || Swpy
9F 9 ¥ o€ z e e F0¢ 91T || pwpy
A 05 o€ ¢ s e dite €Il | gupy
oF 9 6F o€ ¢ s z 16 GgIT | gwpy
9% € 8T o€ ¢ ¢ T €63 €8I || Twpy
[Xew [UIW SIOUDOR], SUOIJIOS SopeIr) SUOISIAI(] SOUDURIE SUONDOG SSUIESN || [oqe]
JOo "ON operr) Jo 'ON JO ‘ON Jo "ON 9sImo)) Jo ‘ON

"A[oAT100dse1 ‘we[qord UOAIS ® 10J SIoyors) aY)
JO PeRO[[B10) WNUWIXRUW PUR WNUWIUIW 97} 9)0Usp [XBUI PUR [UIUI 2I9TM ‘19S BJep [RIUsWLIadXa oY} JO SOI)sLIajoRIRl) T 9[qR],

35

Table 2: Performance comparison of ICMA for various violation elimination ratios (v.e.r)
based on ranking for each problem instance.

Label \ vier | 1 075 0.5 025 0
fdm1 1 2 3 4 d
fdm2 3 3 3 3 3
fdm3 1 3 3 3 D
fdm4 1 2 3 4 d
fdmb 3 3 3 3 3
fdm6 2 1 5 35 35
avr. 1.8 23 33 34 4.1

36

€c'89 99l vae 8 0 [G081 @y <l 0 [Tupg
€009 ¢LaT L0¢ CT 0 1688 GL9T 68°¢ €1 0 OTwpy
GL 06T OLET eve € 8T°0 | 96'8GT 98V1 79y ¢ Lo | 6Wps
€cst 6901 16T T 90 | PP'ITG 0601 a0¢ 1 vv'0 | 8Wpj
g0y oy 1g°¢ 4 0 9¢'cs T1€4T v9¥ ¢l 0 LWpj
61°09 €9¢1 aLe ¢ ¥0'0 | 99°€L G6EET e g ¢0°0 || 9wpy
6C° €TV 861 @90 0 8G'0 | IV'987 8¢8 @90 0 9¢0 || qwWps
IL°Le 0g€cT 617 OT 0 cL'Gv clIEl LYV ST 0 puapj
9¢1 €qot 8T ¢ 8T°0 | 8°L0C 84TI 69'¢c € 0T°0 || €wpj
ay0se 099 80T 0O 89°0 | ¢E€'LTV GEL 8T 0 ¢9°0 || cup}
61°9€€ 988 68T I ov'0 | ¥6°G1€ L9001 69C¢ ¢ 8¢0 || TwWpj
‘pIs ‘uab “uap pIs jow Aap 'S | Cpgs u2b “uaD PIS jow Aap CA'S 199D]
VINOI VN [puoiju2auo;)

“I0YRAI(91} SB SUOIJR[OIA JO IO(UINU 9FRIOAR S} PUR d)RI SSIIONS O ST UOLIOILID
uostredwoon a1y (yoroxdde Sururiopred 4seq oY) syrewW A19us proq o) ‘wejqold yoes 10 “A[eA1309dsel ‘SUOIjRIsULS puR SUOIJR[OIA
‘UOTYRIADD PIRPUR)S ‘SSOUIT] 9SRIDAR ‘D)1 SS90OTS 9J0UdD "Ub PUR *Jo1a ‘(P s PUR) "LaD “".4's dIOYM ‘SYIN Jo uostreduwio)) :¢ o[qe],

37

I've STIT 6¢ 0T Z | g1e 9s8C1 G 0z 1T || (Twpy) ops
665 888 I I 0 | SaLy 1€01 T T 0 (Gupy) ¢py
9'6Z 10TI 8 Sy LT | 67¢ g1el €6 69 6V | (ywpy) ¥pj
9'8C GIIT ¢ 1 L | SLT 6Tl ¥ 61 ¢l || (¢wpy) €py
L07 Tell 61 ¥ ¢ | L9g T0ST e g 4 (cupy) opy
e egel PG 6T 6T | I7¢ V92T s g 6¢ | (owpy) Tpj
‘pas udb cuap cprys o cuap 1s9q | pgs Cuab cuav prps tjora cuaD 959Q 129D
VINOI VN [puouaauo))

“I9Y[RAI() Sk SUOIJR[OIA JO ISQUINU 9FRISAR [} PUR d)RI SSIODNS O ST UOLIOILIO
uostredwoo o) ‘yporeordde Jururniojrod 9soq o) syIewl AIjue proq oy} ‘weiqold yore 10 ‘sisoyjuared ur popraoid SI 9duUR)SUI
we[qord mel Surpuodselrod [ors JO UOISISA POYIPOW o1} JO [oqe[oY, ‘A[oA130adsol ‘SuorjeIousS pue SUOIJR[OIA ‘UOIIRIASDD
pIepue)s ‘ssouly oFeIoA® ‘9)el SS900NS 9j0uULp ‘u2b pur ‘jora ‘(*p-s puw) uap “u4s aIUYM ‘SYIN Jo uostredwo)) : 9[qRT

38

Table 5: Average performance comparison of MAs (see Table 4). X>Y indicates that
the approach X performs significantly better than Y within a confidence interval of 95%
based on the student’s t-test over fifty runs for a given problem, while X~Y indicates
that X performs slightly better than Y and this performance variation is not statistically
significant. %-impr. denotes the percentage improvement that X provides over Y based
on the average number of violations.

label per formance Yo-impr.
fd1 (fdm6) | ICMA > Conventional MA 79.3
fd2 (fdm2) || ICMA ~ Conventional MA 3.4
fd3 (fdm3) || ICMA > Conventional MA 20.7
fd4 (fdm4) || ICMA > Conventional MA 73.4
fd5 (fdmb) || ICMA =~ Conventional MA 0
fd6 (fdml) || ICMA > Conventional MA 34.5

39

