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Abstract

This paper is the first of two papers entitled “Airline PlampBenchmark Problems”, aimed at developing benchmarktdataan

be used to stimulate innovation in airline planning, in jgaitar, in flight schedule design and fleet assignment. Wigterdsation

has made an enormous contribution to airline planning iregEnthe area sters from a lack of standardised data and benchmark
problems. Current research typically tackles problemgumto a given carrier, with associated specification anal diaévailable

to the broader research community. This limits direct comnspa of alternative approaches, and creates barrierstof &ar the
research community. Furthermore, flight schedule design toadate, been under-represented in the optimisatiaatites, due

in part to the dificulty of obtaining data that adequately reflects passertysce, and hence schedule revenue. This is Part | of
two papers taking first steps to address these issues. Isddgsproviding a framework and methodology for generatesistic
airline demand data, controlled by scalable parameterst, i characterisation of flight network topologies andwoek capacity
distributions is deduced, based on analysis of airline.dEtt@n a bi-objective optimisation model is proposed toasdhe inverse
problem of inferring OD-pair demands from passenger loadares. These two elements are combined to yield a methoglolog
for generating realistic flight network topologies and O&irglemand data, according to specified parameters. Thisouetogy

is used to produce 33 benchmark instances exhibiting a raihgearacteristics. Part 1l will extend this work by pauditing the
demand in each market (OD pair) into market segments, eathitwiown utility function and set of preferences for altive
airline products. The resulting demand data will betteerfiecent empirical research on passenger preferences expected to
facilitate passenger choice modelling in flight schedulgneigation.

Keywords: Airline planning, benchmark data, inverse problems

1. Introduction commercial implications. Consequently, obtaining redahds
difficult and often requires the researcher to establish a good
This paper is the first of two papers entitled "Airline Plan- re|ationship with an airline partner over many years. Seh i
ning Benchmark Problems”. The primary goal in these papergyes create a barrier to entry for many prospective rese@rch
is to stimulate and facilitate further research in airlit@ming.  gnd limits potentially fruitful collaboration between ezsch
There has been relatively little work that has addressedirdte groups.
stage of the airline planning process, namely, flight scleedier Some first steps towards addressing these issues are taken
sign. The many algorithms and techniques reported in tee lit j, these two papers by developing a framework for generating
ature for latter stages of the airline planning processiliedt  yegjistic benchmark instances. These instances provige st
to compare because they are evaluated on problem instancggrdised data with which to initiate the airline planning-pr
representative of a particular airline at a particular d&ach g5 Since flight schedule design depends critically ofehar
airline operates a fferent network of airports, afdlerent fleet  gemand, this initial work has focussed on the generatioirof a
in terms of the size and mix of aircraft, hadfdrent passen- |ine demand benchmark data. The addition of airline resmsyrc
ger quantities and itineraries, andfdrent crew requirements, g,ch as aircraft and crew, to these benchmarks is planned for
bases and rules. Furthermore, the data for these instaqicesiie future. By making these instances, and a description of
considered confidential by most airlines due to its significa he methodology used to generate them, publicly available i
is hoped that research engagement in airline planning will b
Coresponding author stim_ulateq in a similar way tq what h'as bee'n o] supcessfully
Email addressest . akartunalions . unimelb . edu. au achieved in areas such as vehicle routing, which flourisfted a
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1987). The DIMACS and ROADEE challenge instances have
had a similar impact.

As a large body of literature attests, optimisation has lzeen
critical part of airline planning for many decades. See eor
ample, Klabjan (2005) or Bazargan (2004). However, as note:
in Klabjan (2005), for the most part, airline schedule piagns
a manual process with only a few manuscripts on flight sched
ule design. Notable among these are two papers, Yan and Tse
(2002) and Yan, Tang, and Lee (2007), on flight scheduling ir
Taiwan, and that of Lohatepanont and Barnhart (2004), combi
ing flight scheduling with fleet assignment. The authors & th
paper believe that the dearth of optimisation research loedsc
ule design is in part due to thefficulty of representing passen-
ger choice, and of collecting adequate data to accuratebsas
schedule revenue. However, there has been a growing body
both empirical and theoretical research seeking to prowide
sight into airline passenger decision processes and tdageve
models of passenger utility. See, for example, Coldren,-Kop
pelman, Kasturirangan, and Mukherjee (2003), Garrow, slone
and Parker (2007), Koppelman, Coldren, and Parker (2008
Walker (2006), and Wojahn (2002). The insights provided in
these papers, combined with an empirical analysis of rich da
sets from a wide range of airlines worldwide, including & a
lines in the Star and oneworld alliances, has led to the deve
opment of a new approach to representing airline demand dat
and a methodology for generating realistic demand data sets

The methodology developed in these two papers is a fouf
step framework. Figure 1 illustrates the four steps in thenf-
work which are:

1.
arcs;

Calculate origin-destination (OD) pair demand;
Define passenger groups;

Allocate OD-pair demand to each passenger group.

2.
3.
4.

Network generation }4—-'7/
I
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Figure 1: Framework for generating sets of realistic airpt@ning benchmark
problem instances

Be of use in its own right. For example, in performing sched-
ule design, Yan and Tseng (2002) work directly from such data
collected from airlines in Taiwan.

The second paper (Akartunall, Boland, Evans, Wallace, and
Waterer, 2010a) presents the methodology behind the thad a

r

Generate the flight network including passenger load offiourth steps in this framework. The third step partitioresiihar-

ket demand intpassenger groupsccording to characteristics
that diferentiate behaviour in terms of airline product selec-
tion. Each passenger group has an origin, a destinatiozea si
(number of passengers), a departure time window, and a de-
parture time utility curve indicating the passengers’ wihess

The flight network connects the set of airports to be servedyg pay for departure in time sub-windows. This data is much

and the network topology defines arcs indicating airportspai
between which direct non-stop services are to fiered. Pas-

richer than simple market demand and can be expected to pro-
vide better estimates of schedule revenue in a form thaeifsilis

senger load on an arc indicates the total number of passengep schedule design optimisation. The integrated airlireede

expected to travel on the direct non-stop service over somnee t
period, for example, a day.

ule design and fleet assignment problem studied in a companio
paper (Akartunali, Boland, Evans, Wallace, Waterer, andifEm

This paper presents the methodology behind the first tw®010b) demonstrates passenger groups to be a potential alte

steps in this framework. The first step generates realiggjiatfl
networks and passenger loads with specified characteribtit
capture the features of a large fraction of existing airlire¢-
works. These networks are scalable so that ffiece of dif-
ferent scheduling strategies, andfeient parameters such as

native to the commonly used spill models (Dumas and Soumis,
2008; Jacobs, Smith, and Johnson, 2008; Barnhart, Fagafuht,
Lohatepanont, 2009) for estimating passenger flow in amairl
network. The fourth step in the framework allocates the pre-
viously determined OD-pair demand to each passenger group

network type and size, or fleet mix, on algorithm performance,sing a standardisetemand profilea generic percentage-wise
and solution cost can be readily compared. The second stefijocation of passengers throughout a day.

of the framework solves an inverse problem to determine OD
pair based demand that is compatible with the passenges loa
on each arc. This data, sometimes catearket demandcan

Ihttp://dimacs.rutgers.edu/Challenges/
?nttp://challenge.roadef .org/

The design of this methodology readily permits the gener-
dtion of realistic airline data “from scratch” in a way thaips
ports experimentation with key characteristics of thabdas
well as providing an approach that other researchers chn sti
use when they have access to partial data. For example,xfan e
isting flight network is already known, and, perhaps, obsgrv
passenger loads are also known for that network.



1.1. Terminology, notation, and assumptions aircraft capacity on each leg was used as a surrogate fagmpass
An airline network consists of a s6tof portsto be served, ~9er load due to the lack of actual passenger data. This sectio

and a sefA C S x S of directedarcsindicating an ordered pair Provides an overview of this characterisation.

of ports between which at least one direct non-stop sergice i  Of the 64 hub-and-spoke networks included in the analy-

offered. An airline’sfleetis denoted by the se of aircraft ~ SiS, 41 were classified as short-haul networks as there veere n

subtypes, and an aircraft from the fidet F has capacitg;.  arcs With a great-circle distance greater than 5000km, 1@ we

The basic time unit used is one day. Zedenote the length of ~ classified as long-haul as there existed arcs with a greeleci
a day in minutes. distance greater than 9500km, and the remaining 13 networks

Let K c S x S denote the set of ordered potential passenere classified as medium-haul. The statistical analystsasfe
ger origin-destination pairs or OD-pairs. For each OD-pair networks focussed on characterising three distributionise
(0,d) € K, theOD-pair demand [ is the total passenger de- first was the greater-circle length of the network arcs, egtle
mand over a day to travel from pato portd. In the case that distance The second characteristic was the capacities of the
an OD-pair is not an arc then the only way passengers can corfiircraft operating within the network, or ttegc capacity Fi-
plete their travel is to connect to successive arcsdmsitingat ~ nally, the third characteristic was the radial directiortfaf arcs
an intermediate port. The passenger logan arc {, j) € Ais ~ and their associated capacity, or theectional capacity
the number of passengers observed traversing the arc aver th The analysis found that the distributions of arc distance fo

course of a day. most networks could be clustered into five groups. Eachidistr
bution in a particular group was found to be statisticallysino
1.2. Overview of the paper similar to the other distributions in that group. Two of thes

groups corresponded to short-haul networks, two to long;ha
and the remaining group to medium-haul. A simple analyti-
cal model of an arc distance cumulative distribution fumicti

Section 2 describes methodology to characterise airlitte ne
works. This is the first step in the framework for generatiets s

gzrrﬁ)aehssﬂfe?ﬁrggaEIan{gncgh:fg;gwferkaﬁ:ﬁg%rgfﬁ;?g@_ | (CDF) was constructed for each group. The CDF was con-
gy 9" structed so that it was a good fit to all of the arc distanceidist

ited data. This is the second step in the framework. A descri . .

. . : : ; utions in that group.

tion of the generated benchmark instances is provided in Sec : LS . C .

. . . o . . Using a similar analysis, the distributions of arc capaftty
tion 4 and an analysis of the instances is given in Section 5,

. . ; . - “most networks could also be clustered into five groups. Simi-
Section 6 presents some conclusions and a brief description . : 4
future work. larly, a simple analytical model of an arc capacity CDF was

constructed for each group. An analysis of the correlatien b

tween arc distance and arc capacity CDFs showed that each arc
2. Characterising airline networks distance CDF was strongly correlated to one of only two arc

capacity CDFs. Short- and medium-haul networks shared the

An airline network’s topology depends on factors such assame arc capacity CDF while long-haul networks shared an-
the geographical positions of the ports serviced by theo®w  other arc capacity CDF.
the desired operating practices of the airline, the strecai To analyse the directional capacity of each network the arcs
the network of any competitors, and also passenger demangere partitioned into radial 15-degree sectors. The first se
This paper concentrates on the commonly occurhing-and- oy included spokes radiating from the hub at anglés1g),
spoketopology. This topology consists of a sindlabairport  \here angles were measured anticlockwise from due eaft, wit
connected by flight legs to a number sffokeairports. The  he remaining sectors continuing in an anticlockwise dioec
spoke airports are only connected to the hub, that is, notflighrpe capacity of a sector is given by the sum of the capacifies o
legs exist between spoke airports. the network arcs in that sector.

Evans, Wallace, and Waterer (2010) analysed data from a The analysis found that there is often a major axis along
wide range of airlines worldwide, including all airlinesoin  \yhich most capacity is concentrated, and this is most often
Star and oneworld alliances, and found that more than 80%joser to an East-West orientation than a North-South erien
of airports are connected in topologies that resemble mab-a t5tion. The position of thgreater lobeof the major axis was
spoke networks. Thus, analysing such networks is a criticajefined to be the angle central to the four contiguous sectors
first step. Moreover, more complex topologies such as thosgith maximum total arc capacity. The position of thesser
consisting of linked hubs, or point-to-point networks, ugg  |ghe of the major axis was defined to be the angle central to the

significantly more analysis. four contiguous sectors with maximum total arc capacity-sub
ject to the angle being at least®9fom the angle of the greater
2.1. Hub-and-spoke networks lobe. These lobes can range from being close to symmetrical

The characteristics of hub-and-spoke networks were anateo being extremely asymmetrical, that is, in some casesstimo
ysed by Evans et al. (2010) using data collected from thedsche all capacity occurs in a lobe towards a single direction fthe
ules operating at the end of 2007 and early 2008 for a widdéaub, with only a small amount of capacity being grouped in a
range of airlines worldwide, including all airlines in théa lobe in an opposing direction. The capacity of the minor axis
and oneworld alliances. Legs included in the analysis were r was taken as the capacity of all slices that were not corddine
stricted to those operated by common turbo-fan aircrafte Ththe greater or lesser lobes of the major axis. The classdicat
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North (90 degrees)
Major axis — greater lobe

Type Example 0

Direction
.

Point-to-point  Australia Domestic ~ 0.77

Minor axis Point-to-point  Southwest Domestic  0.64
East (0 degrecs) Hub United tgfrom LAX  0.58
- .15 degres sice Hub United tgfrom ORD 0.34

Extent (60 degrees) —

West (180 degrees)

Minor axis Hub United tgfrom DEN  0.31
b ", Maior axis ~ lesser lobe Heavy Hub Delta tﬁrom ATL 0.19
9 E;rection
" Extent (60 degrees) Table 1: Values of for a variety of airlines and networks (Evans, 2010)

South (270 degrees)

Figure 2: Classification of a hub-and-spoke network’s diod@l capacity .
(Evans et al., 2010) the passenger load data, knowledge of these passtagsit

ratios is needed. Evans (2010) compares a range of network
topologies and proposes a simple generic methodology ito est
of the directional capacity is illustrated in Figure 2. mate these ratios if they are not known using passenger loads
Two parameters are used to measure the distribution of thend a small number of assumptions. This section provides an
network’s directional capacity. The parame®afnormajor iSde-  overview of this methodology.
fined to be the ratio of the capacity of arcs that are not albag t Let A;; denote the great-circle distance between any two
major axis to those that are along the major axis. The pasmmetportsi, j € S, and note that\; = 0. Lety denote the max-
Ressergreater IS defined to be the ratio of the capacity in the lesseiimum ratio of the total distance a passenger would travel be-
lobe of the major axis to the capacity in the greater lobe ef th tween ports and j to the direct distance between these ports.
major axis. An analysis of the correlation between eachigrc d Note that there may not be any direct flights between the ports
tance CDF and the parameters measuring directional cgpacit and j, that is, {, j) ¢ A.
showed that networks have a range of geometries and that this Consider the arci(j) € A. Let 6; denote the minimum
range varies for each arc distance CDF. Two pairs of direatio expected proportion of single-leg passengersiof).( Evans
capacity parameters that best represented the networkgbf e suggests that, in general, the valuegipfandg; are likely to
arc distance CDF were chosen. be very similar, and, for all practical purposes, that it &&n
The scheduled time for an aircraft leg between push backssumed thafij = 6 where the value of depends upon the
from the originating port gate and arrival at the destimaport  topology of the network. For example, values fr range
gate is known as thblock time This time is the sum of the from around 0.75 for arcs in a point-to-point network, to,0.4
taxi time on departure, flight time, and taxi time on arrival. or even smaller, for arcs in a hubbing network. The value of
Taxi times are relatively constant, and the flight time isragp 6 will decrease, the larger the hub port the arc is incident to.
imately a linear function of the arc distance plus extratime An exception tog;; = 6 is if an airline is not allowed to sell
volved in climbing and descending at lower speed. Preilin single-leg tickets fori( j) in which case;; = 0. For example,
westerly winds mean that flight times for arcs directed west t United Airlines are not allowed to sell single-leg tickets the
east are normally less than those for arcs directed fromteast Melbourne-Sydney leg of the route Los Angeles-Melbourne-
west. Arcs are catagorized into two groups depending upo8ydney-Los Angeles as they are not a domestic Australian air
whether the travel direction is east-west or west-east. nA li line. Table 1 gives typical values @éffor a variety of airlines
ear model of block time in minutes as a function of distance irand networks.
kilometres is fitted to each group. Let oj; denote the expected fraction of passengers who ar-
To model time zonefects, a time zoneftset is applied to  rive at portj from porti and will connect to another leg. If port
ports that are at a large east-west distance from the hub. It ij is a spoke thenj; = 0. If port j is large hub then one would
assumed that the hub is positioned at the equator at theecenxpect thatri; would be very close t0.8(1 - 6;) unless port
of a one hour time zone. Assuming the mean radius of the Earthis a spoke in which casej; = (1 - ¢;j). The actual value of
is 6371km, the width of each one hour time zone at the equatar;; will be strongly influenced by the geographical location of
is 1668km. the destination ports of the legs that the transiting pagssn
In Section 4 it is explained briefly how this analysis is usedconnect to via porj. Let«a;j- denote the fraction of the tran-
to generate flight network topologies and arc passengesjoadsiting passengets;; who in turn transfer to arcj(i’) € A. The
from given parameters; full details can be found in Evand.et a expected fraction of passengers who arrive at pfnwem porti

(2010). and then connect to arg, () is denoted byriji- = aiji-o7j.
Transiting passengers are likely to connect to ajd$)(€ A
2.2. Airline transit passenger ratios when port’ is in some sense geographically “opposite” to port

The percentage of passengers transiting through a port ad Let AS™ = {(j.i) € Az Ajj + Aj- < yA;;} denote the set of
connecting to another arc in the airline’s network is sttpiir ~~ @rcs corresponding to suolitgoingconnections. However, the
fluenced by the geographical location of the ports with respe arc (. j) wont be the sole contributor of transiting passengers to
to each other. To calculate OD-pair passenger demand froffiese connections. The arg§ {) € A that are in some sense

4



-8,5 -

-1 -

-1.5 -1

-2 | | \ | | |

Figure 4: An example hub-and-spoke network

Figure 3: Contour lines for varying values in a normalised Euclidean space

geographically “parallel” to the arg,(j) are also likely to con-
tribute transiting passengers. L& = {(i", J) € A: Ajj + Aij >
YAi-} denote the set of arcs corresponding to simtoming Ports ADL BNE CBR CNS MEL OOL SYD
connections. Note that,(j) € A:;1 The maximum number of DL 1621 971 2132 642 1604 1165
o ’ o oUt e -
passengers transiting from arcsArJﬂ to arcs inA7" is given by BNE 1621 - 956 1302 1381 95 .
CBR 971 956 2076 469 892 237

minf Y mi-ag). > ne-6)|. CNS 2132 1392 2076 - 2313 1485 1971
(v ean (e MEL 642 1381 469 2313 - 1329 706
’ OOL 1604 95 892 1485 1329 - 679

Assuming that the same proportion of passengers over aveéabosyp 1165 752 237 1971 706 679
6y j, for each arci(, j) € A:'J‘ will connect to arcsj(i’) € A?j“t,
then the expected fraction of passengers who traverse,gJc ( Table 2: Great-circle distances in kilometres between aiygigorts in the
and connect to another arc will be example network

oij = Bij(1-6;j) min| 1, Z nji’(l_gji’)/ Z (1 - 6ij)
(ineAst (i".))eA]

whereg;; = 1if arc (, j) € A%" for some arci(,i) € A, and
Bij = 0.5 otherwise.

Following an analysis of available data, Evans claims thatPorts ADL BNE CBR CNS MEL OOL SYD
aiji-, the fraction of transiting passengers who connect to an arg 0 0 0 0 0 975
(J,") € A}, is well approximated by

BNE 0 - 0 480 0 0 1477
A VA A A8 CBR 0 0 - 0o 0 0 486
ay =y (_) / - (_) , CNS 0 519 0 - 0 0 0
Big + &g ] e VBT A MEL 0 0 o o - 0 776
ooL o 0 0 0 0 - 22

Figure 3 illustrates theftect of the choice of onthe sets gyp 1
of incoming and outgoing arcs for an aiicj} in a normalised
Euclidean space where it is assumed that pastlocated at
(0,0) and portj is located at (10). Each line emanating from
port j denotes a contour of the functidy; + Ajir = yA;. for
vy=1{1,12515,...,3}.

[

20 1466 538 0 798 214 -

Table 3: Passenger loads for the example network



Example. Consider the hub-and-spoke network given in Fig-the case that a passenger’s actual origin and destinatioot is

ure 4. Table 2 gives the great-circle distance between ainy paknown to the airline. Even when booked passenger itinerary

of ports regardless of whether there exists an arc in thearktw data is available, from an airline reservation system famex

Table 3 gives the passenger load on each arc in the network. ple, the data will not reflect the true demand in cases where in
The port SYD is a single hub. Each of the ports ADL, CBR, frequent services or bad connections force passengersa# br

MEL, and OOL, have a direct connection to only one other porttheir trip at an intermediate port, and when passengers book

namely the hub SYD. Each of these ports and the hub form &egs separately, or use another carrier for some legs.

simple spoke. The port CNS and the hub form a spoke with an  Whilst a great deal is known about inferring features of OD

intermediate stop, namely BNE, which lies approximately ondemand from observed arc demand in road networks (see, for

the same flight path. example, Florian (1976)), nothing of this type has yet bden a
In the case of a hub-and-spoke network, passengers wishingmpted for airlines.

to travel from one spoke port to another must transit through

the hub. Thus, the percentage of passengers transitinggihro 3.1. Calculating arc passenger data

the hub SYD and connecting to another arc will be high. No  Ajrlines often have data on historical or forecast passenge
passengers arriving at the spoke ports ADL, CBR, CNS, MELnympers for directly connected port pairs. However, if aas-p
and OOL, will connect to another arc. There are likely to be 8enger data is not known, it can often be obtained from data
high number of transit passengers at the intermediate S8 B that is available, and averaging data taken from multipesda

If the distance between spoke ports is much shorter thapgp reduce thefiects of the frequency of services.
the total distance to be travelled when connecting via the hu For example, if complete daily flight schedules with passen-
for example, BNE and OOL, then travellers will not connectger numbers for each flight are available, then passenger loa
between these ports via the hub, instead preferring to use so g pe calculated by averaging the number of passengers over

alternate method of transport. o all days and all flights between the two ports in the directibn
~ Supposey = 2 and6; = 04 forall (,j) € A Con-  the arc. If the number of passengers for a flight is not known,
sider the arc (SYDBNE). The setAg gy = {(SYD.BNE)},  then this can be estimated using the capacity of the airasaft
OL\J(tD,BNE = {(BNE,CNS}), and signed to the flight along with an estimate of the average per-
. ( (1- 0.4)480) centage of occupied seats,load factor
O SYD,BNE = (1 - 04) min{1l, ——=—— ]~ 0.196
(1-0.4)1466 3.2. Calculating OD-pair demand data
Consider the arc (OQISYD). The SeAiOnOL,SYD = {(BNE, SYD), Calculating OD-pair demand that is compatible with the ob-
(OOL, SYD)}, O%L’SYD = {(SYD,ADL), (SYD, CBR), (SYD, MEL}¥grved passenger loads on each arc requires the solution of a
oooLsyp = (1-0.4) = 0.6, type of inverse problem. This problem is modelled as a path-
4 based multicommodity flow problem and requires the identifi-
1120(%&’1‘65) cation of all possible paths passengers may take betweén eac
(OOL,SYD,ADL = 1120(0870) + 538(0974Y + 798(Q960) (_)D-paw. Two objectives are_con_5|dered. The flrst_ls thealevi
641197 tion from th(_e expected trfansn ratios. The second is t_hd =ve
= 1801548 ~ 0.356 asymmetry in the OD-pair passenger demand. As it is not clear
what the trade-d is between these two objectives, a biobjective
andoooLsypapL = 0.214. model is considered.

The transit ratios resulting from the above analysis ate cri Characterising reasonable OD-path&here may be many po-
ical to the deduction of OD-pair demand from observed pasg, - paths between an OD-pa@, §)) € K in the flight net-

Senger loads on arcs, a process discussed in detail in tie n%ork. However, not all of them will be considereghsonable

section. with respect to the distance travelled frorto d, the time taken,
the number of connections required, or the path’s subpaths.
3. Characterising airline demand using limited data The distance travelled on a path between the OD-padf)(

is the sum of the great-circle distances of the arcs on the pat

Accurate passenger demand data is vitally important to th@, na+, b is reasonable with respect to the distance travelled if
design of a good airline schedule and to the subsequent fleet

assignment. Typically airlines only have data about passen Z Aa < ¥Aod

ger numbers on flights at the times that these have occurred in B

the past, rather than information about when passengersiwou

most like to fly. Revenue management initiatives, a lack ef cawhereA, denotes the set of arcs on path

pacity at peak times, and portions of the network with a low  The time taken on a path is estimated to be the average wait-

number of services per day, all contribute to passengeryrot ing time plus the block time. The average waiting time for

ing at their preferred times. an arc {, j) € Ais estimated to be half the expected time be-
A further complication is that it is diicult to infer OD-pair  tween flights. Ifchax denotes the largest aircraft capacity, then

demand from such data for a number of reasons. Often it ia lower bound on the number of aircraft operating on the arc
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(i,j) € Ais Njj = njj/Cmax. Thus, the expected waiting time  s.t. Z Z Xp=Ny, ac€A (2)

between flights i/ Nij, andwi;; = 0.57/Njj. Lett;; denote keK pepk:
the block time. acdp

The time taken between the OD-pait ¢) is measured with Z Xp — Z Xp < Moo (0.d) € K ©)
respect to the timevy,,, + tp,,, taken to travel the great-circle peplod) pepldo
shortest-distance pahin. A pathpis reasonable with respect Xp . .
to the time taken if Giji = Tijir ~ Z a (L) eA(fi)e i

(0.d)eK: peped; N
Z (Wij + tij) < Wpin + tpmin d#j  (i,j)eAp
(i.eAp 4)

For the short- and medium-haul networks considered in this Xy > X,,,, re{l2,..., 1P}, ke K (5)

paper it is assumed that the maximum number of connections Xo. Uk >0, pe PX ke K (6)

on a reasonable path is two. That is, the number of arcs on a

reasonable path is at most three. Note that limiting the mimb  The two objectives (1), asymmetry in passenger flow and
of connections is a practical consideration. The methagiolo deviation from the expected transit ratios, are measurediby
described in this paper works for an arbitrary number of conimising the sum of the squares of the individual terms. Qaticir

nections on a path. rather than linear, penalties are chosen in order to rechece t
A path p is reasonable with respect to its subpaths if alllikelihood of outliers. Constraints (2) ensures that thesga-
subpaths are reasonable. ger load on each arc is met exactly. Constraints (3) and (4} me

Example. Suppose that the arc (MEBNE) with 466 passen- SUré the asymmetry in .passenger_flow and the Qeviation from
gers per day also exists in the example network. Since (\BEIE) the expected transit ratios respectively. Constrainte(sure

is an arc, it is the shortest-distance path for this OD-@im- that more reasonable paths havg a larger number of.passenger
sider the path MEL- SYD — BNE and suppose that the biggest Constraints (6) ensure nonnegativity of tyeandy variables.
aircraft has a capacity for 160 passengers. The expected num The feasible set of solutions to this problem is nonempty.
ber of aircraft on each leg i8/yeLsyo = 776/160 = 4.85, For each feasible solution there is a correspondinéset of
Nsypene = 752/160 = 4.7, NyeLgne = 466/160 = 2.9125. OD-pairs with nonzero passenger demand. The corresponding
The average waiting time in minutes for each ansig sy = feasible set of points in objective space is convex. Theee ar
0.5 x 1440/4.85 = 148, Wsypgne = 0.5 x 1440/4.7 = 153, infinitely many eficient solutions in decision space and, corre-
WieL ene = 0.5x 144(/2.9125= 247. The block times in min- spondingly, infinitely many nondominated points in objeeti

utes for each arc iPMEL,SYD = 65, tSYD,BNE = 68, tMEL,BNE = Space.' . .
112. Since 148 65+ 153+68 > 247+ 112, MEL—SYD-BNE It is not clear what the tradeffois between the two objec-
is not a reasonable path. tive functions. Each decision maker will place dfelient im-
portance on each of the objectives and so identifiedént ef-
A path-based biobjective multicommodity flow mode#tP* = ficient solutions as the best solution for their needs. Ieptd

{P1. P2, - - ., Py} denote all reasonable paths between each ODaid the decision maker in this choice an inner piecewisatine
pairk € K ordered by nondecreasing time taken. Let the paapproximation to the actual frontier can be obtained by sam-
rameterny denote a normalization factor for the demand forpling nondominated points. Each nondominated point can be
OD-pairk € K, so that OD-pair penalties in the optimisation determined by solving the MCF model with a single quadratic
model below are comparable across OD-pairs. The maximurgbjective obtained by taking a weighted combination of e t
number of passengers that can transit from 8rj) € Ato arc  objective functions using regularly spaced weights chésem
(1,") € AR is myjir = min(nyj, N ). the unit interval.

Let the variablex, denote the number of passengers on path

p € PX between OD-paik € K. The variabley,y measures
any excess in demand between OD-pajdj € K over that of
(d. 0), relative toneg. The value ofjoqis setso astobe aguaran-  The penchmark instances consist of thirty single-hub and
teed “tight” upper bound on the OD-pair demand fard). Itis  three two-hub networks. Tables 4 and 5 provide the paraseter

“tight” in the sense that there exists a feasible solutidni@c  seq to generate the networks. In these tables the hub name
ing the bound. This ensures that @lly values will be in the g preceded by either an “s”, “m”, or “I’, indicating whether

range [01]. The variablesj- measures the deviation from the e instance is considered to be a short-, medium-, or lang-h

4. Benchmark instances

expected.tra_nsit. ratioyji. .for arcs (3 j)eAand (,i’) € AF}UT. network, respectively.
The biobjective multicommodity flow (MCF) model is for- To generate a single-hub network having a given number of
mulated as follows. spokes, the network characteristics identified in Sectidrage
Z (Yod + Ydo)? used. Recall that five possible arc distance CDFs and five pos-
(0.d)eK: sible arc capacity CDFs were identified. Which of these is used
min o<d (1) for an instance is indicated in Table 4, by index. Detailshef t
Z eizji, CDF corresponding to each index can be found in Evans et al.
(LDEA (jir)eAg™ (2010). For each spoke, first the length of the spoke is sample



Hub Distance Capacity  Rminormajor Ressergreater Spoke  Spoke capacity Inter-hub capacity  Multi-hub  Inteb-h
name CDF CDF Target Actual Target Actual ports Target Actudbrget Actual spoke ports distance
sHAB 0.2 0.19 0.75 0.75 18 0.4 0.39
sHBB 2 4 0.1 0.07 0.55 0.65 20 0.59 0.600'013 0.013 14 1400
sHCB 0.2 0.25 0.75 0.73 54 0.40 0.42
sHDB 2 4 0.1 0.15 0.55 0.46 60 0.59 0.570'013 0.012 42 1400
sHEB 0.2 0.15 0.75 0.76 90 0.40 0.38
sHFB 2 4 0.1 0.18 0.55 0.5 100 0.59 0.610'013 0.012 70 1400
Table 5: Parameters for generating two-hub benchmark instanc
from the given arc distance CDF, and then its capacity is sam-
pled from the given capacity CDF. Then the directions of all
spokes are determined, so as to match the lobe charactristi
described in Section 2.1, and quantified by Bagor major and
Reessergreater Values given in Table 4. Target and actual values
are given for these directional capacity parameters. Fon ea
combination of arc distance CDF, arc capacity CDF, and tar-
Hub  Distance Capacity Rminor.major Ressergreater ~ Spoke g€t directional capacity parameters, three networks fééint
name CDF CDF  Target Actual Target Actual ports sjzes were generated in order to allow for the investigatibn
SHAA 04 043 04 043 24 scaling dfects.
SHBA 1 4 04 044 04 043 72 The two-hub instances were generated by “glueing” two
SHCA 04 043 04 042 120 : . .
single-hub instances together in an acceptable way. Table 5
SHDA 08 077 04 041 24 contains the additional parameters needed in order to gener
SHEA 1 4 08 079 04 043 72 g b networks. Th K it d inter-hub
SHFA 08 081 04 044 120 e two- Iu ne wor'j. ! e; spoke c:lrﬁ]au y alm mber-al; ca-
SHGA 02 023 04 o043 o4 Pacitycolumns provide the fraction of the total number , pa
SHHA 5 4 02 022 04 042 72 Sengersin thg network that are obse_rved on each hub’s spoke
SHIA 02 023 04 042 120 arcs and the inter-hub arc. The multi-hub spoke ports column
SHIA 04 043 08 081 24 provides the number of spoke ports that the two hubs have in
SHKA 2 4 04 042 0.8 08 72 common. The inter-hub distance is the number of kilometres
SHLA 04 042 08 0.8 120 that the second hub lies to east of the first.
mHMA 02 023 02 023 12 In generating OD-pair demands, the nominal value used for
mg(’\)": 3 4 g-i 8-;3 8-2 8-;2 23 the expected proportion of single-leg passengers on anyasc
’ ' ' ' 6 = 0.3 for short-haul networks anél= 0.6 for both medium-
mHPA 02 023 08 081 12 and long-haul. The maximum ratio of the total distance a pas-
mHQA 3 4 02 023 08 081 24 . )
MmHRA 02 o021 08 079 60 Senger would travel between'ports to the direct distance be-
IHSA 01 0412 05 055 12 tween these ports used fqr all instances was?2. _ o
IHTA 4 5 01 013 05 053 24 The complete set of instances and supporting material is
IHUA 01 012 05 051 60 available at the URLhttp://www.infotech.monash.edu.
IHVA 05 053 08 078 12 au/~wallace/airline_benchmarks/ along with the refer-
IHWA 4 5 05 052 0.8 08 24 ences Evans (2010) and Evans et al. (2010).
IHXA 0.5 0.5 08 078 60
IHYA 02 022 01 014 12 o
IHZA 5 5 02 022 01 012 24 5 Analysisof instances
IH1A 02 023 01 013 72 o
IH2A 01 011 07 067 12 _ Summary statlstlcs_ are presented for all of the benc_hmark
IH3A 5 5 01 014 07 072 24 instances. More detailed results are presented for tha-prev
IH4A 01 013 07 072 T2 ously introduced example instance, three selected shgje-

Table 4: Parameters for generating single-hub benchmasdnioss

instances, one two-hub instance, and a fictitious Austraiza-
rier called Emu Airlines that operates a point-to-pointwak.
For these instances, network and directional capacityraiag,
and plots of a sampledteient frontier and the cumulative dis-
tribution of single-leg passengers, are presented.

On the plots of the sampledfient frontier, open circles
indicate the nondominated points corresponding to weitlatis
are a multiple of 0.1. The dotted line connects the ideal poin
to the closest nondominated point measured usind theorm



Ports ADL BNE CBR CNS MEL OOL SYD Single-hub benchmark instanceshree single-hub instances
are presented. The instance HBA is a short-haul network with

gzll_z 3—0 . 293 ;1;6 3032 fgg 2% 62570 72 spokes. Figure 6 show the network and directional capac-
CBR 38 1;12 0 0 3 284 ity diagrams for this instance. The hub is quite asymmdtrica
GNS 0 395 0 0 o 194 Seventy percent of the arc capacity is concentrated on the ma
MEL 0 210 0 O 3 537 jor axis which has an east-west orientation. Although tie$o

- f th ' i i icall h -
0oL 34 0 3 0 3 - 128 of the major axis are diametrically opposed the east-atedt

greater lobe has more than twice the capacity of the lesker lo
Figure 7 show the frontier and single-leg passenger CDF
plots. Hficient solutions exist in which either there is no de-
viation from the expected transit ratios, or there is no asym
metry in the passenger flows. As a result of the asymmetry
when the frontier is normalised to fit within a unit squareeTh in the network’s capacity there is a significantly large mep
asterisk indicates a point, identified by an industrial parton  tion of single-leg passengers. The average observed girmpor
the dficient frontier that is an acceptable trad@{metween the is nearly 0.55, almost twice the nominal value of 0.3 that was
asymmetry in passenger flow and the deviation from the exused for short-haul networks.
pected transit ratios. The plots of the cumulative distitu The instance HRA is a medium-haul network with 60 spokes.
of single-leg passengers show the fraction of network dras t Figure 8 show the network and directional capacity diagrams
have at most the given fraction of single-leg passengeres@h for this instance. The hub is relatively symmetric. Morertha
are passengers that are flying directly between their osigith  80% of the arc capacity is concentrated on the major axistwhic

SYD 740 673 329 148 575 135 -

Table 6: Passenger demand between OD-pairs in the examplerketw

destination. has an east-west orientation. The lobes of the major axdiare
ametrically opposed with the lesser lobe having nearly 80% o
5.1. Example instance the capacity of the greater lobe. The greater lobe is otiedta

8&5’[.

The nominal value used for the expected proportion of sing| ) _ )
Figure 9 show the frontier and single-leg passenger CDF

leg passengers on any arc was 0.3. The maximum ratio of _ X o . . . :
the total distance a passenger would travel between patheto plots. Hficient solutions exist in which either there is no devi-
direct distance between these ports was 2. Table 6 pro- ation from the expected transit ratios, or there is no asytryme

vides the passenger demand between OD-pairs in the exampikthe Passenger flows. The observed proportion of singje-le
network. These demands are obtained from thieient solu-  PaSSengers is only slightly increased over the nominakvafu

tion corresponding to the nondominated point identified by a 0.6 that was used for rr_ledium-haul networks. _
industrial partner. The instance HXA is a long-haul network with 60 spokes.

Figure 5 shows the frontier and single-leg passenger CDIEI9ure 10 show the network and directional capacity diagram
plots. While there exists anffigient solution with no devia- [oF this instance. The hub is relatively symmetric. Twardsi
tion from the expected transit ratios, there does not exist-a  ©f the arc capacity is concentrated on the major axis whish ha

lution which has no asymmetry in the passenger flows. Th@n east-west orientation. The lobes of the major axis are dia

hub is quite asymmetrical. As a result of the asymmetry in thdnetrically opposed with the lesser lobe having nearly 80% of
network’s capacity there is a significantly large proportiaf the capacity of the greater lobe. The greater lobe is ofiedta

single-leg passengers. The average observed proportjostis east.' ) ,

over 0.6 which is much greater than the nominal value of 0.4. Figure ,11 show 'the froptlgr anq smgle—leg pasgenger C'_:)F

plots. Hficient solutions exist in which either there is no devi-

ation from the expected transit ratios, or there is no asyiryme

. ) ) in the passenger flows. The observed proportion of singje-le
Summary statistics for th_e thirty single-hub and three twofpassengers is only slightly increased over the nominakvafu

hub networks are presented in Table 7. These tables sunemari§ g 14t was used for long-haul networks.

the number of spoke ports, network arcs, OD-pairs with nanze

demand, and passengers in the network. Statistics on tie dis Tywo-hub benchmark instanceZhe instance HCB-HDB is a
bution of the observed number of passengers on an arc, the detwork with two hubs. Figure 12 shows the network and di-
ration of a leg on an arc, the great-circle distance of anthec, agram for this instance. The network has significant asymme-
number of unique passenger itineraries (paths) for an GB-patry. The hub HDB is located 1400km east of the hub HAB
the demand for an OD-pair, and the percentage of passengeyfd just over 1% of the network’s passengers are observed us-
transiting at a port, are also given. The instances are @®up ing this arc. Forty-two of the 70 spokes are shared by the two
into threes. Each group of three networks were generated usi pyps. Forty-two percent of the network’s passengers are ob-
the same parameters except the number of spokes which Wagryed travelling to spokes from HCB, while 57% are observed
varied to provide networks of fierent sizes. travelling from HDB. Eighty percent of the arc capacity of BC

is concentrated on its major axis with the lesser lobe haaing

most three quarters of the capacity of the greater lobe. More

than 80% of the arc capacity of HDB is concentrated on its ma-

5.2. Benchmark instances
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1T

Hub Spoke oD Pax Arc pax load Block time Arc distance Origigrée OD-pair demand Transit pax %
@name ports Arcs pairs  count avg stdev  min max avg stdev  minx maavg stdev min  max avg stdev min max avg stdev. min max avg stdewmin max
sHAA 24 48 450 71410 1487.71 1340.7 124 4860 137.81 46.49 600 217338.83 454.88 249 3079 18.96 2.22 14 24 12355 394.41 0 34B381 11.72 2851 70.51
sHBA 72 144 3374 106474 739.4  821.65 28 4860 135.35 54.42 550 3B04.17 531.7 178 3444 50.88 10.55 10 72 24.38 140.22 0 3546424 8.7 10.53 64.05
sSHCA 120 240 8968 224898 937.08 911.61 68 4860 132.71 53.11 330 1268.03 520.55 178 3846 83.32 15.93 21 120 19.25 131.61 637 348.55 11.66 11.76 75.58
sHDA 24 48 423 71410 1487.71 1340.7 124 4860 137.81 46.49 600 2B38.83 454.88 249 3079 17.84 3.07 13 24 130.01 394.18 0 338007 1293 2292 731
sHEA 72 144 3393 106474 739.4 821.65 28 4860 135.35 54.42 550 3@M04.17 531.7 178 3444 50.6 10.73 7 72 23.84 135.56 0 35714848.9.75 0 68.92
sHFA 120 240 8955 224898 937.08 911.61 68 4860 132.71 53.11 380 1268.03 520.55 178 3846 82.76 16.76 16 120 1891 120.04 358 349.23 8.7 1852 68.95
SHGA 24 48 448 53230 1108.96 1189.57 83 4860 161.04 73.21 705 3563.79 717.68 423 3782 19.12 2.08 16 24 93.11 332.89 0 3461824 1055 28.79 67.67
sHHA 72 144 3254 104278 724.15 808.63 28 4860 163.23 70.57 725 31693.36 691.72 409 3782 48.9 11.2 3 72 25.08 148.78 0 3829334610.43 0 64.64
sHIA 120 240 8353 173132 721.38 789.65 36 4860 161.56 72.02 8680 1670.18 706.43 244 3846 76.53 19.06 6 120 16.01 113.23 G4 387.43 11.06 4.35 70.82
sHJA 24 48 468 53230 1108.96 1189.57 83 4860 161.04 73.21 706 38B63.79 717.68 423 3782 19.76 23 15 24 8577 266.22 0 27651347 5.86 36.67 59.84
SHKA 72 144 3333 104278 72415 808.63 28 4860 163.23 70.57 7@5 31693.36 691.72 409 3782 49.97 11.56 8 72 23.7 12313 0 3226.1 4738 0 57.95
SHLA 120 240 8283 173132 721.38 789.65 36 4860 161.56 72.02 880 1670.18 706.43 244 3846 76.15 21.28 5 120 157  96.26 0 3@3314 7.58 0 60.09
mHMA 12 24 104 17564 731.83 810.76 50 2640 278.33 140.98 70 55295.33 1378.39 401 6857 8.31 2.46 3 12 155.86 447.9 0 2506731911.86 5.04 46.56
mHNA 24 48 426 27824 579.67 643.89 45 2640 259.69 159.29 70 5¥B6.79 1559.24 401 6859 17.76 3.71 7 24 57.67 228.21 0 22030926 6.4 13.87 39.77
mHOA 60 120 1851 51246  427.05 479.21 15 2640 252.96 146.21 680 @941.65 1432.26 300 7748 3239 12.92 1 60 24.47 132.77 05 224.52 10.31 0 44.29
mHPA 12 24 120 17564 731.83 810.76 50 2640 278.33 140.98 70 5553295 1377.96 401 6853 9.69 1.59 7 12 1242 319.38 0 1817 26.9281 320.41 33.32
mHQA 24 48 410 27824 579.67 643.89 45 2640 259.69 159.29 70 G5HE6.88 1559.32 401 6859 17.6 4.34 5 24 5864 2129 0 2026 926.@.02 14.89 33.95
mHRA 60 120 1821 51246 427.05 479.21 15 2640 25296 146.21 680 @941.67 1432.26 300 7747 3233 12.79 1 60 2429 121.89 06 2P4.86 6.93 0 35.2
IHSA 12 24 127 20062 835.92 403.54 253 1472 460.42 231.24 850 7B31.17 2263.04 619 9295 9.85 1.46 8 12 133.04 245.93 0 1100013 4.87 25.32 42.35
IHTA 24 48 435 23740 49458 281.04 30 1472 446.35 240.19 90 848628.5 2353.9 664 10635 17.76 3.49 6 24  46.41 13281 0 12348830.8.68 4 4741
IHUA 60 120 2323 56192  468.27 256.74 155 1472 479.75 217.37 865 6090.78 2127.48 731 10990 41.11 6.3 32 60 20.64  86.58 06 13p.47 6.18 16.03 43.45
IHVA 12 24 136 20062 83592 40354 253 1472 460.63 231.33 850 78831.75 2263.32 619 9295 10.62 1.15 9 12 122.86 229.55 0 133289 5.4 23.02 46.04
IHWA 24 48 441 23740 49458 281.04 30 1472 444.06 237.17 90 88897.75 232497 664 10635 17.92 3.65 6 24 4532 124.89 0 1126493 6.72 7.69 43.24
IHXA 60 120 2466 56192 468.27 256.74 155 1472 4785 215.94 9@5 86074.42 2113.71 731 11226 43.7 6.41 32 60 19.13 78.79 0 188449 3.88 215 41.55
IHYA 12 24 100 14160 590 327.26 212 1472 584.79 144.67 360 8255588 1406.59 4597 10452 7.69 2.61 5 12 130.34 260.62 1 13B241 117 6.66 37.53
IHZA 24 48 298 23232 484 290.63 30 1472 57573 130.72 235 79034.74 1265.08 2819 10008 12.16 5.68 6 24 72.46 190.52 0 1406951612.79 4.48 44.67
IH1A 72 144 2496 72408 502.83 285.21 107 1472 581.01 143.015 1605 7500.85 1385.23 1817 11521 36.3 12.66 10 72 26.8 120.64 1396 18.96 12.43 5.23 4561
IH2A 12 24 106 14160 590 327.26 212 1472 586.88 147.54 360 82%84.3 1433.49 4597 10437 8.15 1.46 6 12 11453 21247 2 12198629 6.31 17.19 39.51
IH3A 24 48 359 23232 484  290.63 30 1472 57594 130.98 235 79(B5.7I2 1265.09 2819 9981 14.64 3.61 7 24 5536 140.01 0 11393929.4.83 20 37.24
IH4A 72 144 2834 72408 502.83 285.21 107 1472 580.59 142.155 1885 7495.57 1376.48 1817 11228 41.12 6.98 25 72 21.89 93.13 1201 29.19 5.06 17.94 39.06
Hub  Spoke oD Pax Arc pax load Block time Arc distance Origigrée OD-pair demand Transit pax %

name ports Arcs pairs count avg stdev  min  max avg stdev. min maxavg stdev. min max avg stdev min max avg stdev. min max avg stde\n mmax

sHAB 22 74 443 94290 1274.19 1030.61 167 4860 175 7559 65 33441 74225 300 3795 19 3.06 12 23 167.98 374.56 0 3530 4018606 2.2 68.31
sHCB 70 226 3340 184406 815.96 888.14 25 4860 168.65 80.25 606 3767.53 786.96 290 4459 50.17 10.6 8 71 4483 210.97 0 3983993 13.98 0 8219
sHEB 118 378 8315 287234 759.88 825.93 35 4860 169.83 78.24 &8 1783.7 767.31 216 4835 7852 19.75 31 119 27.92 157.04 @7 336.35 13.66 0 75.67

Table 7: Summary statistics for single-hub (top) and two-Hditém) benchmark instances
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Figure 12: Network diagram for the HCB-HDB instance
Figure 14: Point-to-point network for the Emu Airlines inste

jor axis with the greater lobe having slighly more than twitve

capacity of the lesser lobe. of the total distance a passenger would travel between firts
Figure 13 show the frontier and single-leg passenger CDRhe direct distance between these ports usedywas2. Fig-

plots. Hficient solutions exist in which either there is no de-ure 15 show the frontier and single-leg passenger CDF plots.

viation from the expected transit ratios, or there is no asymNo eficient solutions exist in which either there is no deviation

metry in the passenger flows. As a result of the asymmetry ifrom the expected transit ratios, or there is no asymmetry in

the network’s capacity there is a significantly large propor  the passenger flows. As a result of the network being predom-

of single-leg passengers. The average observed propestion inantly point-to-point and a quite high nominal value #ptthe

ceeds 0.6 which is twice the nominal value of 0.3 that was usedbserved proportion of single-leg passengers is also bigte

for short-haul networks.

5.3. Point-to-point Emu Airlines instance 6. Conclusionsand futurework

Emu Airlines is a fictitious Australian carrier that opesate This paper is the first of two papers entitled “Airline Plan-
the point-to-point network shown in Figure 14. The observeching Benchmark Problems” that present a four step framework
passenger numbers on each arc used in this instance are ba$sdgenerating realistic airline planning benchmark peoblin-
on proprietary data made available by an industrial partner ~ stances. These instances are a result of analysing riclsetsta

The nominal value used for the expected proportion of singléfom a wide range of airlines worldwide, including all amdis
leg passengers on any arc was 0.75. The maximum ratio inthe Star and oneworld alliances. The methodology belhiad t
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first two steps in the framework, namely, characterisintjn@r  Koppelman, F., Coldren, G., Parker, R., 2008. Schedule delpgcts on air-
networks and OD-pair demand using limited data, were pre- travel itinerary demand. Transportation Research Part B@&2;-273.

. . ohatepanont, M., Barnhart, C., 2004. Airline schedulepiag: Integrated
sented in this paper. The methOdOIOQy of the second two,stepLs models and algorithms for schedule design and fleet assigniransporta-

namely, characterising passenger groups and the allgdn tion Science 38 (1), 19-32.
OD-pair demand, is presented in the second paper (Akartunasolomon, M. M., 1987. Algorithms for the vehicle routing antieguling prob-
et al. 20103)_ lems with time window constraints. Operations Research 3%5;-265.

. . . . Walker, J., 2006. Time of day in airline passenger demandgptason at the
The thirty single-hub and three two-hub instances provide ™|\ c5rMs Annual Meeting, Pittsburgh PA.

standardised data that includes OD-pair passenger denagad dwojahn, 0., 2002. The impact of passengers’ preferencesdiegatime and
which is critical for the first step in the airline planningopess, service quality on airline network structure. Journal arfsport Economics
namely, flight schedule design. It is hoped that the avditgbi __2and Policy 36, 139-162.

. - Yan, S., Tang, C.-H., Lee, M.-C., 2007. A flight scheduling mlddr taiwan
of these instances, and a description of the methodologytose s under market competitions. Omega 35 (1), 61—74.

generate them, will not Only make research in airline plagnl Yan, S., Tseng, C.-H., 2002. A passenger demand model foneiflight
accessible to researchers from outside this area, but lsdl a  scheduling and fleet routing. Computers and Operations Res28, 1559
stimulate existing research by providing data that fa#is the 1581.
accurate and repeatable comparison of the mafiigrdnt algo-
rithms and techniques for the airline planning processntedo
in the literature.
Future work includes extending the characterisation of air
line networks to include other topologies, such as linkedshu
and point-to-point networks, and to generate sets of beadksn
for such networks, as well as incorporating airline resesyc
such as aircraft and crew, into the benchmarks.
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