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a b s t r a c t

This work presents the application of Variable Neighborhood Search (VNS) based algorithms to the High
School Timetabling Problem. The addressed model of the problem was proposed by the Third International
Timetabling Competition (ITC 2011), which released many instances from educational institutions around the
world and attracted 17 competitors. Some of the VNS algorithm variants were able to outperform the winner
of Third ITC solver, which proposed a Simulated Annealing – Iterated local Search approach. This result
coupled with another reports in the literature points that VNS based algorithms are a practical solution
method for providing high quality solutions for some hard timetabling problems. Moreover they are easy to
implement with few parameters to adjust.

& 2014 Published by Elsevier Ltd.

1. Introduction

The High School Timetabling Problem is faced by many educa-
tional institutions around the world. The basic search version consists
in assigning teacher� class activities to timeslots and rooms in such
a way that no teacher, class or room is involved with more than one
event at time. Generally, this assignment is repeated weekly until the
end of the semester. Many other constraints are considered in real
problems, like availability of teachers, to avoid idle times and to limit
the number of lessons of the same subject taught to a class in a day.

Beyond its practical importance, this problem was proven to be
NP�Hard [1,2]. Progress in heuristic and exact approaches for
tackling these problems is a major goal of current research in
Operations Research and Artificial Intelligence.

Three international competitions (ITCs) were made to bring the
attention of scientists and practitioners for this problem, with the
objective of performing comparisons of different methods in a
controlled computational environment: the first one happened in
2003 [3] and was won by Kostuch [4] with a 3-phase Simulated
Annealing (SA) [5] based approach. In 2007, the second one [6]
started and was composed of three separated tracks, which were
mostly won by Müller [7] also with a Simulated Annealing based
approach. The last one [8] happened in 2012 and was won by a
Simulated Annealing – Iterated Local Search [9] approach.

As the results of the competitions show, local search methods
are defining the state-of-art heuristic solvers for educational

timetabling problems. Specially, the Simulated Annealing meta-
heuristic composed the solver of all winners. The role of exact
methods which employ Integer Programming, such as the pro-
posed in [10–12], appears to be still very limited for tackling the
problems and instances which appeared in these competitions,
considering the absence of these techniques in submissions. This
scenario contrasts with the first International Nurse Rostering
Competition [13], for instance, where two of the first places used
Integer Programming in some form.

This paper presents a computational study of Variable Neigh-
borhood Search and its variants applied to the Third ITC problem.
The results indicate that the proposed method outperforms the
state-of-art method.

The remaining of this work is organized as follows: Section 2
presents the problem considered in this paper, the Third ITC
problem; Section 3 presents our solution approach; Section 4
presents computational experiments and finally, Section 5 con-
cludes our paper and discusses future works.

2. High School Timetabling Problem model

The roots of the School Timetabling model considered in this
paper, the model of the Third ITC, are in the Benchmarking project
for (High) School Timetabling.1 The project, which involved a
group of researchers in this area, started with the ambitious goal
of developing a XML format capable of modeling different school
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timetabling problems arising in diverse institutions around the
world. Initial versions of this project appeared in the PATAT 2008
conference [14], with an improved version named XHSTT pub-
lished later [15]. Nowadays, the project site holds approximately
50 datasets from 11 countries. The project site also includes an
evaluator to validate solutions and the best known solutions are
kept, so that the results of newly proposed methods can be
immediately confronted with previously obtained results. Some
of the previous models which are now in XHSTT are [16–20,10,21].
The model is split into three main entities: Time and Resources,
Events and Constraints. A solution consists of a set of assignments
of times and resources to the events.

2.1. Times and resources

The time entity consists of a timeslot, which is an indivisible
interval of time. Timeslots do not overlap and can be grouped in
timegroups. Resources are entities which attend events. Typical
resources are students, teachers and rooms [21]:

Students: a group of students attends events (lessons); important
constraints associated with students are the control of
their idle times and the number of lessons taken by day.

Teachers: teachers perform their academic tasks in events; the
allocation of teachers for specific teaching activities can
be preassigned or not; when teachers are not preassigned,
they should be assigned according to their qualifications
and workload limits.

Rooms: the usage of rooms for hosting events must be observed:
some events require rooms with a given capacity and/or
a set of special features.

2.2. Events

An event (instance event) is a meeting between resources,
usually representing a simple lesson or a set of lessons (event
group). Each instance event needs to be scheduled into one or
more solution events. Timeslot assignments to events are called
meets and the assignment of resources to events is tasks. The term
course is used to designate a group of students who attend to the
same events. Other kinds of events, like meetings, are allowed by
the model [21]. The following attributes can be specified for
events, the first one is the only obligatory:

Duration: represents the number of timeslots which have to be
assigned to the event.

Course: a course is a grouping of events: events declared in the
same course constitute a course of study in one subject
for one group of students.

Pre-assigned resources: to attend the event.
Workload: that will be added to the total workload of resources

assigned to the event.
Pre-assigned timeslot: some events have only one timeslot in which

they can be assigned.

2.3. Constraints

Post et al. [21] group the constraints into three categories: basic
constraints of scheduling, constraints of events and constraints of
resources. The objective function f ð�Þ is computed considering the
summation of penalties for deviations in different constraints and
events/resources which they refer. The flexibility of XHSTT allows the
inclusion of non-linear terms in the cost function which is used to
compute the penalties [15]. The constraints are also divided into hard

constraints, whose satisfaction is mandatory; and soft constraints,
whose satisfaction is desirable but not obligatory. Costs for violations
in these two types of constraints are summed in two separated costs:
the infeasibility cost and the quality cost, defining a hierarchical
objective function. Each instance can define whether a constraint is
hard or soft, its weight and the type of cost function used (eg. linear
or quadratic). For more details, see [15].

2.3.1. Basic constraints of scheduling

1. ASSIGN TIME: assign timeslots to each event.
2. ASSIGN RESOURCE: assign the resources to each event.
3. PREFER TIMES: indicates that some event have preference for a

particular timeslot(s).
4. PREFER RESOURCES: indicates that some event have preference for a

particular resource(s).

2.3.2. Constraints to events

1. LINK EVENTS: to schedule a set of events to the same starting time.
2. SPREAD EVENTS: specify the allowed number of occurrences for

event groups in time groups between a minimum a maximum
number of times; this constraint can be used, for example, to
define a daily limit of lessons.

3. AVOID SPLIT ASSIGNMENTS: for each event, assign a particular
resource to all of its meets.

4. DISTRIBUTE SPLIT EVENTS: for each event, assign between a mini-
mum and a maximum meets of a given duration.

5. SPLIT EVENTS: limits the number of non-consecutive meets that
an event should be scheduled and its duration.

2.3.3. Constraints to resources

1. AVOID CLASHES: assign the resources without clashes (i.e. without
assign the same resource to more than one event at a timeslot).

2. AVOID UNAVAILABLE TIMES: avoid assigning resources on the times
that they are not available.

3. LIMIT WORKLOAD CONSTRAINT: schedule the workload of the resources
between a minimum and a maximum bound.

4. LIMIT IDLE TIMES: the number of idle times in each time group
should lie between a minimum and a maximum bound for each
resource; typically, a time group consists of all timeslots of a
given week day.

5. LIMIT BUSY TIMES: the number of busy times in each time group
should lie between a minimum and a maximum bound for each
resource.

6. CLUSTER BUSY TIMES: the number of time groups with a timeslot
assigned to a resource should lie between a minimum and a
maximum limit; this can be used, for example, to concentrate
teacher's activities in as few days as possible.

3. Solution approach

Our approach uses the Kingston High School Timetabling Engine
(KHE) [22] to generate initial solutions. Afterwards, we implemented
the Variable Neighborhood Search metaheuristic and some of its
variants to perform local search around this solution. These elements
will be explained in the following subsections.

3.1. Build method

The KHE is a platform for handling instances of the addressed
problem. It also provides a solver, used to build initial solutions in

G.H.G. Fonseca, H.G. Santos / Computers & Operations Research 52 (2014) 203–208204



the presented approach. This solver was chosen to generate the
initial solutions since it is able to find reasonably good initial
solutions in short amounts of time.

The incorporated solver is based on the concept of Hierarchical
Timetabling [23], where smaller allocations are joined to generate
bigger blocks of allocation until a full representation of the
solution is developed. Hierarchical Timetabling is supported by
the Layer Tree data structure [23], consisting of nodes that
represent the required meet and task allocation. An allocation
may appear in at most one node. A Layer is a subset of nodes
having the propriety that none of them can be overlapped in time.
Commonly, nodes are grouped in a Layer when share resources.

The hard constraints of the problem are modeled to this data
structure and then a Matching problem is solved to find the times/
resources allocation. The Matching is done by connecting each
node to a timeslot or resource respecting the property of Layer. For
full details, see [23,22].

3.2. Neighborhood structure

Six neighborhood structures were used:

1. Event Swap (ES): Two events e1 and e2 have their timeslots t1
and t2 swapped respectively.

2. Event Move (EM): An event e1 is moved from timeslot t1 to
another timeslot t2.

3. Event Block Move (EBM): Works like ES, but when moving events
with different durations in contiguous timeslots, keeps these
events adjacent.

4. Resource Swap (RS): Two events e1 and e2 have their assigned
resources r1 and r2 swapped respectively. Resources r1 and r2
should play the same role to allow the swap (e.g. both have to
be teachers).

5. Resource Move (RM): An event e1 has its assigned resource r1
replaced by a new resource r2.

6. Kempe Move (KM): Two times t1 and t2 are fixed and one seeks
the best path at the bipartite conflict graph containing all
events in t1 and t2; arcs are built from conflicting events which
are in different timeslots and their cost is the cost of swapping
the timeslots of these two events.

The set of neighborhoods is quite similar to the one used in
Fonseca [9].

3.3. Variable Neighborhood Search

The Variable Neighborhood Search Method was proposed by
Mladenovic and Hansen [24] and consists in a local search method
that explores the search space by making systematic changes in
the neighborhood structures.

In each iteration, a neighborhood structure k is selected
according to the order presented in Section 3.2. A random neighbor
s0 is generated in this neighborhood. Afterwards, a descent method is
applied to s0. If the best solution found by descent method, s″, is better
than the best known solution, it is updated and the neighborhood
structure is set to the first one. Otherwise, the search continues in the
next neighborhood structure. Whenwe explore the last neighborhood
structure kmax ¼ 6, the search goes back to the first neighborhood. This
process continues until a stop condition is reached.

A key component of VNS algorithms is the descent phase
(Algorithm 1, line 5). The ability to quickly reach good local optima
is critical to the success of the method. Our implementation aims at
the fast generation of high quality solutions which tend to be local
optima with respect to many neighborhoods. Thus, at each iteration of
the descent phase, a different neighborhood can be considered, with
the following probabilities of selection: if the instance requires the

assignment of resources (i.e. there exists at least one ASSIGN RESOURCE

constraint), the neighborhood is chosen based on the following
probabilities: ES¼0.20, EM¼0.38, EBM¼0.10, RS¼0.20, RM¼0.10 and
KM¼0.02. Otherwise, the neighborhoods RS and RM are not used and
the odds become ES¼0.40, EM¼0.38, EBS¼0.20 and KM¼0.02. Since the
union of all these neighborhoods is usually a very large search space,
composed of many flat landscapes, we employed Random Non-
Ascendent (RNA) movements in the descent phase, with the stopping
criterion of 1,000,000 non-improvement iterations. These values were
empirically adjusted.

Algorithm 1 presents the basic implementation of VNS,
denoted here as BVNS. Note that the adopted stop condition is a
timeout, to be discussed in Section 4. Some variations of VNS
implemented are present in the following subsections. Some
successful examples of application of VNS can also be found in
[25–27].

Algorithm 1. Basic VNS (BVNS) algorithm.

Input: Initial solution s.
Output: Best solution s found.

1
2
3
4
5
6
7
8
9
10

while elapsedTimeotimeout do
k’1;
while krkmax do
Generate a random neighbor s0ANkðsÞ;
s″’descentMethodðs0Þ;
if f ðs″Þr f ðsÞ then
s’s″;
k’1;

$

else
k’kþ1;

�

666666666666666664

666666666666666666666664
11 return s;

3.3.1. Reduced Variable Neighborhood Search
A reduction to the original Variable Neighborhood Search

Method was also proposed by Mladenovic and Hansen [24] in
which we do not have a descent phase (Algorithm 1, line 5) to
improve the generated solution s0 at each iteration. This may
improve the VNS performance in cases in which the complete
exploration of the defined neighborhoods is too computationally
expensive. This reduction was called Reduced Variable Neighbor-
hood Search (RVNS).

3.3.2. Sequential Variable Neighborhood Descent
Another variation of the original VNS method is the Sequential

Variable Neighborhood Descent (SVND) [28]. The main difference
between the basic VNS and SVND method is instead of allowing all
neighborhood structures to be explored in the descent phase, we
allow only a subset of the available neighborhood structures at
each iteration. In our implementation, we made the local search at
each iteration considering only one neighborhood structure k
ðs″’descentMethodkðs0ÞÞ.

3.3.3. Skewed Variable Neighborhood Search
Taking larger and larger neighborhoods, the information

related to the best local optimum dissolves and VNS degenerates
into multistart [29]. To deal with these cases a new variant of VNS,
the Skewed Variable Neighborhood Search (SVNS), was proposed.
In this variant, we have a relaxed rule to accept the candidate
solution s″. The relaxed rule uses an evaluation function linear in
the distance from the incumbent: f ðs″Þ is replaced by f ðs″Þ�α
�ρðs; s″Þ, where ρðs; s″Þ is the distance from s to s″ and α a
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parameter. To compute the distance between two solutions we
used the following metric: for each solution we compute a string
with n positions, where n is the number of events. In each position
there is an ordered pair indicating the meeting and tasks which
are associated with this event. Then, ρðs; s″Þ is the Hamming
distance of these two strings. After some experiments, we set
α¼1.0.

In our implementation, we made the local search at each
iteration considering only one neighborhood structure k ðs″’
descentMethodkðs0ÞÞ.

4. Computational experiments

All experiments ran on an Intels Core i5 2.4 GHz computer
with 4 GB of RAM under the Ubuntu 11.10 operating system. The
programming language used was Cþþ compiled with the GNU
Compiler Collection version 4.6.1. All generated solutions were
validated by the HSEval validator (http://sydney.edu.au/engineer
ing/it/� jeff/hseval.cgi). We considered the timeout of the compe-
tition in all experiments, which was 1000 s.2

Results are expressed by the pairs x/y, where x contains the
feasibility measure and y the quality measure. Our solver along
with our solutions and reports can be found in https://sites.google.
com/site/georgehgfonseca/producaoacademica/vns.rar. We invite
the interested reader to validate our results.

4.1. Dataset characterization

The set of instances available from Third ITC http://www.
utwente.nl/ctit/hstt/archives/XHSTT-2012 was originated from
many countries and ranges from small instances to huge challen-
ging ones. Table 1 presents the main features of these problems.

4.2. Obtained results

In the first set of experiments we evaluated the proposed
methods using the same metric employed in the Third ITC :
average results produced in a restricted time limit, as discussed
in the beginning of this section. Table 2 presents the obtained
average results of the basic VNS method (BVNS) and its variations:
RVNS, SVND and SVNS. We also included in this table the results of
the KHE engine [30] initial solutions as well as the results of the
Third ITC winner, a Simulated Annealing-Iterated Local Search
approach [9]. These results are presented in columns KHE and SA-
ILS. Each cell includes the average result of five independent
executions3 of one method on a given instance.

Table 3 presents the ordering of the presented methods
according to the Third ITC rules. Each solver receives a rank in
each instance ranging from 1 (best) to 4 (worst) according to the
average costs of solutions obtained. The solver with the smaller
average rank is considered the best.

Brito et al. [31] presented another VNS based approach to this
problem. In their work, they used the Simulated Annealing
algorithm to perform the local search at each iteration of VNS.
They used the public set of instances from ITC to evaluate their
approach since the hidden set was not released yet.

Table 4 presents the comparison between the SVNS method
and the results presented by Brito et al. [31]. The best result on
each instance is highlighted in bold.

4.3. Discussion of results

For some instances, even the production of feasible solutions
configures a hard task. These instances commonly define most
constraints as hard constraints. The VNS approach and its varia-
tions were able to find 12 out of 18 feasible solutions to the
instance set, one more than the Third ITC winner.

As it can be seen in Table 2, the VNS based approach was able to
outperform the Third ITC winner. More specifically, the SVNS algo-
rithm presented better results in most of the instances. One explana-
tion to this result may be the fact that SVNS has an improved
mechanism to escape from large valleys which does not rely only on
randomness.

To understand the positive effect of the controlled diversifica-
tion in SVNS we plotted in Fig. 1 the evolution in time of the
relative distance (gap) of the cost of the incumbent solution to the
best known solution in BVNS and SVNS for two hard instances.
Considering the incumbent solution cost c and the best known
solution cost cn the gap is computed at each time instant as
ðc�cnÞ=cn. The cost is a fixed point value where the integer part
corresponds to the feasibility cost and the fractional part to the
quality cost. As it can be seen in Fig. 1, while in the beginning of
the search both methods are comparable, SVNS improves solutions
much more often as the search process advances.

The algorithm RVNS presented a poor performance. We believe
that the fact that it does not systematically reach different local
optima contributed to these poor results. Moreover, an excessive
exploration in larger, more expensive neighborhoods, may also
slow down the search in cases where improvement movements
could be found in smaller neighborhoods.

We compared the method which found the best results, SVNS,
to the SA-VNS approach presented by Brito et al. [31]. SVNS was
able to outperform the SA-VNS results in 14 out of 19 instances.
This result points that a descent method may be more effective
than the Simulated Annealing method to perform local search at
each iteration of VNS for this problem. The RNA descent method
which we implemented has a smaller computational cost and has
only one parameter to tune. Note that SA-VNS performed better
than SVNS in the easy instances, since the computational cost of
Simulated Annealing is not a problem in these cases.

5. Concluding remarks

The VNS algorithm showed strong results when applied to the
High School Timetabling Problem, outperforming the Third ITC

Table 1
Features of considered instances from Third ITC.

Instance Times Teachers Rooms Classes Lessons

BrazilInstance2 25 14 6 150
BrazilInstance3 25 16 8 200
BrazilInstance4 25 23 12 300
BrazilInstance6 25 30 14 350
FinlandElementarySchool 35 22 21 291 445
FinlandSecondarySchool2 40 22 21 469 566
Aigio1stHighSchool10-11 35 37 208 532
Italy_Instance4 36 61 38 1101
KosovaInstance1 62 101 63 1912
Kottenpark2003 38 75 41 18 1203
Kottenpark2005A 37 78 42 26 1272
Kottenpark2008 40 81 11 34 1118
Kottenpark2009 38 93 53 48 1301
Woodlands2009 42 40 1353
Spanishschool 35 66 4 21 439
WesternGreeceUniversity3 35 19 6 210
WesternGreeceUniversity4 35 19 12 262
WesternGreeceUniversity5 35 18 6 184

2 The CPU time was adjusted in our computer using the ITC benchmark
software, which suggested 1500 s.

3 Random seeds from 1 to 5.
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winner approach. This result coupled with another recent reports
in literature [25–27,32] points that VNS and its variations are very
good alternatives for the heuristic solution of timetabling and
scheduling problems.

Contrary to the tradition established by the last three timetabl-
ing competitions, where the best timetabling solvers incorporated

Table 2
Average results produced with VNS variants and other approaches in the restricted time limit of the Third ITC.

Instance KHE [30] SA-ILS [9] BVNS RVNS SVND SVNS

BrazilInstance2 4/90 1.0/63.9 0.0/40.6 2.2/71.4 0.6/63.8 0.0/39.6
BrazilInstance3 3/240 0.0/127.8 0.0/113.0 2.4/151.4 1.6/136.8 0.0/119.0
BrazilInstance4 39/144 17.2/99.6 4.8/108.2 21.0/112.8 13.6/103.4 3.8/123.4
BrazilInstance6 11/291 4.0/223.5 0.0/157.4 6.0/271.0 2.2/231.2 0.0/151.4
FinlandElementarySchool 9/30 0.0/4.0 0.0/3.4 2.6/7.4 0.0/4.0 0.0/3.8
FinlandSecondarySchool2 2/1821 0.0/0.4 0.0/0.4 0.6/86.8 0.0/1.0 0.0/0.4
Aigio1stHighSchool10-11 14/757 0.0/15.3 0.4/10.2 11.2/200.0 4.8/259.0 0.2/8.2
ItalyInstance4 39/21,238 0.0/658.4 0.0/409.0 0.4/2666.6 0.0/1271.0 0.0/324.8
KosovaInstance1 1333/566 14.0/6934.4 1.2/20.4 31.6/278.8 2.0/75.6 1.2/17.4
Kottenpark2003 3/78,440 0.6/90,195.8 2.0/10,217.2 2.4/34,766.0 2.8/7937.8 2.0/9694.4
Kottenpark2005A 35/23,677 33.9/27,480.4 33.8/19,059.2 35.0/22,914.0 27.0/10,118.0 33.8/18,547.6
Kottenpark2008 63/140,083 25.7/31,403.7 15.6/23,962.0 36.8/38,936.6 16.8/33,443.6 15.8/24,024.2
Kottenpark2009 55/211,095 36.6/15,4998.5 35.0/8543.0 45.4/148,601.0 31.2/8563.0 33.2/9667.0
Woodlands2009 19/0 2.0/15.8 2.0/8.2 10.8/16.4 2.0/14.4 2.0/6.2
Spanish school 1/4103 0.0/865.2 0.0/907.8 0.0/3068.0 0.0/1126.0 0.0/724.2
WesternGreeceUniversity3 0/30 0.0/5.6 0.0/5.4 0.0/20.4 0.0/15.2 0.0/5.0
WesternGreeceUniversity4 0/41 0.0/7.4 0.0/6.4 0.0/30.0 0.0/23.6 0.0/5.6
WesternGreeceUniversity5 17/44 0.0/0.0 0.0/0.0 2.8/16.2 1.2/3.0 0.0/0.0

Average 91.5/26,816.11 7.5/17,394.4 5.3/3531.8 11.7/14,011.9 5.9/3521.7 5.1/3525.7

Table 3
Solvers ranking.

Instance SA-ILS [9] BVNS RVNS SVND SVNS

BrazilInstance2 4.0 2.0 5.0 3.0 1.0
BrazilInstance3 3.0 1.0 5.0 4.0 2.0
BrazilInstance4 4.0 2.0 5.0 3.0 1.0
BrazilInstance6 4.0 2.0 5.0 3.0 1.0
FinlandElementarySchool 3.5 1.0 5.0 3.5 2.0
FinlandSecondarySchool2 2.0 2.0 5.0 4.0 2.0
Aigio 1st High School 2010-2011 1.0 3.0 5.0 4.0 2.0
Italy_Instance4 3.0 2.0 5.0 4.0 1.0
KosovaInstance1 4.0 2.0 5.0 3.0 1.0
Kottenpark2003 1.0 3.0 4.0 5.0 2.0
Kottenpark2005A 4.0 3.0 5.0 1.0 2.0
Kottenpark2008 4.0 1.0 5.0 3.0 2.0
Kottenpark2009 4.0 3.0 5.0 1.0 2.0
Woodlands2009 4.0 2.0 5.0 3.0 1.0
Spanish school 2.0 3.0 5.0 4.0 1.0
WesternGreeceUniversityInstance3 3.0 2.0 5.0 4.0 1.0
WesternGreeceUniversityInstance4 3.0 2.0 5.0 4.0 1.0
WesternGreeceUniversityInstance5 2.0 5.0 4.0 2.0 2.0
Average 3.08 2.28 4.89 3.25 1.50

Table 4
Comparative between SA-VNS approach [31] and SVNS approach.

Instance SA-VNS [31] SA-RVNS [31] SVNS

AustraliaBGHS98 11/475 11/475 9/411
AustraliaSAHS96 18/52 18/52 19/30
AustraliaTES99 9/187 9/187 9/177
BrazilInstance1 0/21 0/44 0/17
BrazilInstance4 12/123 12/153 1/90
BrazilInstance5 4/148 4/184 0/78
BrazilInstance6 4/213 4/213 0/151
BrazilInstance7 11/267 11/318 0/242
EnglandStPaul 2/48,758 2/48,450 1/26,258
FinlandArtificialSchool 19/12 19/12 6/5
FinlandCollege 1/49 1/77 2/32
FinlandHighSchool 0/16 0/73 0/29
FinlandSecondarySchool 0/114 0/129 1/94
GreecePatras3rdHS2010 0/12 0/20 0/0
GreecePreveza3rdHS2008 0/37 0/33 0/4
ItalyInstance1 0/20 0/31 0/24
Kottenpark2003 1/72,413 0/85,372 0/9365
Kottenpark2005 20/28,710 20/28,482 18/10,052
SouthAfricaLewitt2009 0/78 0/74 0/8
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Fig. 1. Evolution of the distance to the best known solution in the search process
of BVNS and SVNS.
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Simulated Annealing in some form, we demonstrated that a proper
implementation of the Skewed VNS method provides an excellent
heuristic for the High School Timetabling Problem. We consider that
the VNS approach has two important advantages when compared to
SA based approaches: VNS usually has less parameters to tune and
these parameters are not sensible to scales.

Some possible future works are to (1) implement and evaluate
another metaheuristics to this problem, like evolutionary algorithms;
(2) implement other neighborhood movements; and (3) develop a
graphical user interface and allow schools and universities from all
around the world to produce their instances and solve themwith our
solver.
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