
New Heuristic Algorithms for Solving the Planar

p-Median Problem∗

Zvi Drezner
Steven G. Mihaylo College of Business and Economics

California State University-Fullerton
Fullerton, CA 92834.

e-mail: zdrezner@fullerton.edu

Jack Brimberg
Department of Mathematics and Computer Science

The Royal Military College of Canada
Kingston, ON Canada.

e-mail: Jack.Brimberg@rmc.ca

Nenad Mladenović
LAMIH Laboratory

University of Valenciennes and Hainaut-Cambrsis Universit de Valenciennes
Le Mont Houy, 59313, France.

Said Salhi †

Centre for Logistics & Heuristic Optimization
Kent Business School

University of Kent, Canterbury CT2 7PE, United Kingdom.
e-mail: S.Salhi@kent.ac.uk

Abstract

In this paper we propose effective heuristics for the solution of the planar p-median problem.
We develop a new distribution based variable neighborhood search and a new genetic algorithm,
and also test a hybrid algorithm that combines these two approaches. The best results were
obtained by the hybrid approach. The best known solution was found in 466 out of 470 runs,
and the average solution was only 0.000016% above the best known solution on 47 well explored
test instances of 654 and 1060 demand points and up to 150 facilities.

Key Words: Location Analysis; Planar p-median; Multi-source Weber Problem; Variable Neigh-
borhood Search; Genetic Algorithm.

∗This research has been supported in part by a Natural Sciences and Engineering Research Council of Canada
Discovery Grant (NSERC #205041-2008) and by the UK Research Council EPSRC(EP/I009299/1). The third author
is partly supported by Project number 144010 funded by the Serbiam Ministery of Sciences.

†Corresponding Author

1



1 Introduction

The location-allocation problem in the plane, also known as the continuous p-median or the multi-

source Weber problem, is to find p locations for facilities in the plane to provide service to a set of n

demand points each with an associated weight wi > 0. Each demand point gets its service from the

closest facility to it. The objective is to minimize the total sum of weighted minimum distances to

the facilities. Let di(Xj) be the Euclidean distance between demand point i and facility j located

at Xj = (xj , yj). The vector of unknown locations is X = {X1, . . . , Xp}, and thus, the objective

function to be minimized is:

F (X) =
n∑
i=1

wi min
1≤j≤p

{di(Xj)} (1)

Drezner [18] and Chen et al. [12] developed optimal solution procedures for the location of p = 2

facilities. Schöbel and Scholz [39] optimally solved problems with p = 2, 3 facilities. Krau [31] used

column generation and optimally solved problems with n = 50 and 287 demand points and any

number of facilities. This method is highly sensitive to the quality of the starting solution.

The continuous p-median problem (1) is known to be NP-hard [32], and as a result, many

heuristics have been developed to solve it. Classical heuristics include the famous alternating

procedure by Cooper [14, 15], the projection method of Bongartz et al. [2], and gradient-based

methods such as [35, 13]. Brimberg and Drezner [3] proposed several heuristics for solving the

p-median problem. One of the approaches is IALT which is a modification of Cooper’s alternate

algorithm [14, 15]. Brimberg et al. [5] developed the reformulation local search (RLS) which is

a new local search that iterates between the continuous problem and a discrete approximation.

Drezner et al. [22] also proposed a constructive algorithm START, a decomposition approach,

and a local search IMP that provide better results than the Cooper like approaches [3, 14, 15].

The leading heuristics to date for solving the planar p-median problem are based on variable

neighborhood search (e.g. see [8, 7]). Decomposition strategies apply well to larger scale problem

instances [6, 40]. Further gains may be obtained by using new local searches (e.g., [22]) or variable

neighborhood descent within a general variable neighborhood search [33]. For recent reviews of

solution approaches to the continuous p-median problem the reader is referred to [8, 7, 5, 22].

2



The following algorithm abbreviations are used in this paper.

ALT: Cooper’s alternate algorithm [14, 15].

BVNS: The basic variable neighborhood search developed in this paper.

COMB: The combined approach developed in this paper.

DVNS: The distribution based variable neighborhood search developed in this paper.

GA: The genetic algorithm developed in this paper.

IALT: A modification of Cooper’s alternate algorithm [3].

IDEC3: A decomposition-based heuristic [22].

IMP: A local search based on LD [22]. Used in all the heuristics developed in this paper.

LD: The limited distance location problem [24].

START: A constructive algorithm to generate starting solutions [22].

VNS: The variable neighborhood search [29, 34].

The contributions of the present paper relate to the construction of new metaheuristic-based

algorithms. The IALT, START and IMP procedures were proposed in earlier papers [3, 4, 22].

The decomposition-based local search developed in [22] and the reformulation based local search

in [5] are not utilized in this paper. We designed (i) A basic VNS algorithm using IMP as the local

search (ii) a new distribution based VNS (DVNS) which is a modification of the basic VNS, (iii) a

genetic algorithm (GA), and (iv) a combined approach of both GA and DVNS which provided the

best results. We also note that these algorithms are readily adapted to other continuous location

problems besides the planar p-median problem.

For completeness we review the START and IMP algorithms in the next section. Section 3

describes the basic variable neighborhood search with IMP in the local search step. We also develop

a new approach which we term “distribution based” variable neighborhood search (DVNS). In this

approach the shaking operation selects the next neighborhood according to a prescribed probability

distribution. Comparable results are obtained as in basic VNS but in half the time. A new genetic

algorithm is proposed as well that uses a simple and effective geometric merging process. We

conclude Section 3 with setting parameter values for the various heuristics. The computational

3



experiments are discussed in Section 4, followed by conclusions and suggestions for future research.

2 Procedures Applied in this Paper

In this section We briefly describe the existing procedures START [22] and IMP [22] applied in this

paper.

2.1 The START Algorithm

The outline of START is as follows. For complete details the reader is referred to [22]. The main

idea is to form p initial clusters of the demand points in a greedy constructive way.

Each demand point initially belongs to its own subset defining n facilities. Set vi = wi for

i = 1, . . . , n. Calculate for all pairs i < j

∆ij =
vivj
vi + vj

dij(θ + u) (2)

where dij is the distance between current facilities i and j, and u is a random variable in [0, 1] that

is used as a stochastic perturbation. In our experiments we used θ = 0.25.

Repeat the following until the number of subsets is reduced to p.

1. Find the pair i < j for which ∆ij is minimized.

2. Create a location for a new facility at
viXi+vjXj

vi+vj
with a weight vi + vj .

3. Remove current facilities i and j, and label the index of the new facility and its weight with

i. Calculate for all r ̸= i: ∆ri for r < i and ∆ir for r > i by (2). The number of facilities is

reduced by one.

The START algorithm uses the binary heap data structure ([10, 28]) for faster execution. Once

the p clusters are formed, each defines a facility and the solution is then improved by the IALT

algorithm [3].

4



2.2 The IMP Algorithm

The IMP algorithm was proposed and detailed in [22]. For completeness we describe it briefly

here. Suppose that the starting locations of the p facilities are given. The optimal location for a

facility 1 ≤ k ≤ p while holding the other p − 1 facilities rooted in their present locations can be

found as follows. The shortest distance between demand point i and the p facilities is the minimum

between the unknown distance to facility k and the minimum distance to all other facilities which

is fixed and does not depend on the location of facility k. Define the minimum distance to the fixed

facilities as

Di = min
j ̸=k

{di(Xj)} . (3)

The idea is to find the best location for facility k, Xk, while holding all other facilities fixed by

minimizing:

G(Xk) =
n∑
i=1

wimin {di(Xk), Di} . (4)

where Di are constants defined by (3).

This is the limited distance location problem (LD) that can be formulated in general for any

number of facilities. We apply the single facility version of the problem introduced in [24], which

can be optimally solved by global optimization techniques such as Big Square Small Square (BSSS)

proposed by Hansen et al. [30] and improved by Plastria [36]. The complete solution procedure

is given in [22]. Problems with up to 100,000 demand points are optimally solved in less than 3

seconds of computing time.

The steps of the algorithm are outlined below.

1. Obtain a starting solution by START [22] or any other method.

2. Set index = 0.

3. Repeat the following for each facility k in random order.

(a) Calculate Di by (3) for i = 1, . . . , n.

(b) Relocate facility k by solving the LD problem (4).

(c) If the location of facility k changed, set index = 1.

5



4. If index = 1, return to Step 2; else stop (the current solution is a local optimum).

Note that in Step 3b the value of the objective function (1) must be at least as good as the

present value of the objective function because the algorithm finds the optimal solution of LD for

facility k. Also note that in Cooper-style alternating locate-allocate heuristics it is possible to

obtain a solution where a facility has no demand points assigned to it. This degeneracy problem,

discussed in Brimberg and Mladenović [9], does not occur in the IMP approach.

In our experiments the IMP algorithm provided better results than the Cooper-style alternate

algorithm ALT or IALT [14, 15, 3]. There are two main reasons for the excellent performance of

IMP.

1. When facility k is relocated, the ALT or IALT algorithms hold the set S of demand points

serviced by facility k fixed while LD may add or remove demand points from S. When the

location of facility k is changed, demand points near the periphery of S may become closer to

a fixed facility and thus removed from S, while points not in S may become closer to facility

k and thus added to S.

2. When the removed facility does not serve much demand (i.e., its removal does not affect the

value of the objective function by much), locating the facility in an “optimal” location in a

different region of the solution space may decrease the value of the objective function more

than the increase following its removal. This may be quite common in VNS algorithms when

the perturbed facility is “close” to another facility and thus one of them may be relocated to

another region of the solution space.

3 New Metaheuristic Algorithms

Four metaheuristic algorithms are proposed. The first one is the basic variable neighborhood search

(BVNS) [29, 34] using the powerful IMP local search [22]. We then modified BVNS to a distribution

based VNS (DVNS) by selecting the shaking in random order rather than sequentially. The third

metaheursitc is a genetic algorithm (GA) based on an effective merging process for producing

6



offsprings. We then also tested a combined approach (COMB) applying the distribution based

variable neighborhood search on the solution of the genetic algorithm.

3.1 The Basic Variable Neighborhood Search Algorithm

The basic VNS (BVNS) algorithm is designed as follows. A starting solution is given and serves as

the current solution.

A perturbation is defined as selecting a facility at random and moving it to a random point.

In keeping with current practice (e.g., see [7]), we simplify the procedure by restricting the

relocation of the facility to a random demand point. Alternative procedures consider the set

of grid points obtained by drawing horizontal and vertical lines through the demand points

as the set of relocation sites [8].

The kth neighborhood of the current solution is the result of performing a sequence of k pertur-

bations. A facility or a demand point may be selected at most once during the sequence.

The neighborhoods are tested in order for 1 ≤ k ≤ kmax. For each k a perturbed solution is

randomly generated in the kth neighborhood and subjected to the powerful local search IMP [22].

An iteration is completed when an improved solution occurs or the kmax neighborhood is reached,

whichever comes first. Once an improved solution is found, it replaces the current solution and the

whole process restarts. The algorithm terminates when the current solution (the original starting

solution or a replacement) is not improved in K successive iterations. The procedure requires two

parameters: kmax and K. K controls the run time of the algorithm. Larger values of K provide

better solutions at the expense of a longer computing time.

The BVNS Algorithm

1. Input an initial solution Xc.

2. Set k = 1, j = 1.

3. Select a solution X at random in the kth-neighborhood of Xc (termed shaking).

4. Apply IMP [22] on X to obtain a local minimum XL.

7



5. If XL is a better solution than Xc, set Xc = XL, and go to Step 2.

6. Set k = k + 1. If k ≤ kmax, return to Step 3.

7. Set j = j + 1. If j ≤ K, set k = 1 and return to Step 3, else stop (final solution is Xc).

3.2 The Distribution Based VNS Algorithm (DVNS)

Traditional VNS algorithms set a parameter kmax and shake the best found solution sequentially

in neighborhoods k = 1, . . . , kmax. Once a better solution is found, k is reset to 1. This results

in more shakes for k = 1 and a declining number for higher values of k. Thus, the total number

of shakes to a neighborhood tends to decrease with k. We therefore propose to apply shakes in

approximate proportion to the distribution of neighborhoods that result in improved solutions.

Thus, successive neighborhoods are generated at random according to a specified distribution,

instead of the sequential pattern above. We term this approach as “distribution based” VNS.

Similar ideas are proposed in Xiao et al. [41], Carrizosa et al. [11], and Das and Suganthan [16].

The process generates a random level of shaking k according to a density function ϕ(x), for

x ∈ (0, 1), that is highest near some k
kmax

and lower near 0 and 1. The next k is derived by

multiplying kmax by this random value.

3.2.1 Analysis

Suppose we wish the mode of the density function ϕ(x) to be at some value m ∈ [0, 1]. We look

for a transformation function ψ(x) so that when x is randomly generated by a uniform distribution

in [0, 1], ψ(x) is a random variable with a density function ϕ(x). The density function ϕ(x) of

selecting a value x is proportional to 1
ψ′(x) . We assume that ϕ(x) = 1

α(x−m)2+β
for some values

of α and β. This leads to ψ′(x) = α(x − m)2 + β. We need the transformation ψ(x) to satisfy

ψ(0) = 0;ψ(1) = 1. Adding a parameter θ, the following transformation function satisfies these

three conditions:

ψ(x) =
x

(1− 3
2m)2 + θ

[
(x− 3

2
m)2 + θ

]
(5)

8



For a large enough θ, the function ψ(x) is monotonically increasing for 0 ≤ x ≤ 1 and satisfies

ψ(0) = 0;ψ(1) = 1. The density function is proportional to

1

ψ′(x)
=

(1− 3
2m)2 + θ

9
4m

2 + θ − 3x(2m− x)
=

(1− 3
2m)2 + θ

3(x−m)2 + θ − 3
4m

2
. (6)

Integrating to normalize the density function so that its integral is equal to 1 leads to:

ϕ(x) =

√
3(θ − 3

4m
2)[

3(x−m)2 + θ − 3
4m

2
] [

arctan

√
3(1−m)2

θ− 3
4
m2 + arctan

√
3m2

θ− 3
4
m2

] (7)

The density function is valid (positive) when θ > 3
4m

2.

It is more convenient to specify λ = ϕ(m)
ϕ(0) > 1 rather than θ. By (7)

λ =
θ + 9

4m
2

θ + 3
4m

2

leading to

θ =
3

4
m2λ+ 3

λ− 1
(8)

ψ(x) =
x

1− 3m+ 3λ
λ−1m

2

[
x2 − 3mx+

3λ

λ− 1
m2

]
(9)

ϕ(x) =

m√
λ−1[

(x−m)2 + m2

λ−1

] [
arctan

(
1−m
m

√
λ− 1

)
+ arctan

√
λ− 1

] (10)

Note that in the limit when λ→ 1+, ψ(x) = x and ϕ(x) = 1 (a uniform density function).

The DVNS Algorithm

The parameters kmax and K are given. We have flexibility in selecting the mode m of the density

function and λ which is the ratio between the maximum value of the density function (at m) and

its value at 0. Note that it is much easier to generate a random variable having the density function

ϕ(x) given in (10) by generating x uniformly in (0, 1) and transforming it by ψ(x) taken from (9).

1. A starting solution XC is given.

2. Set j = 1.

9



3. Generate uniformly a random number u ∈ (0, 1) and calculate k = ⌊ψ(u)kmax⌋+ 1 using (9).

4. Randomly select a member of the kth neighborhood and improve it by IMP.

5. If the solution is better than XC , update XC and return to Step 2.

6. Set j = j + 1.

7. If j ≤ K × kmax go to Step 3.

8. Otherwise, stop with the solution XC .

To have a fair comparison between the BVNS and DVNS algorithms, the K applied in DVNS

should be kmax times the K used in BVNS.

3.3 The Genetic Algorithm (GA)

Salhi and Gamal [38] constructed a genetic algorithm for solving the planar p-median problem. We

propose a much simpler genetic algorithm whose success can be attributed to an effective generation

of offsprings.

A population of pop solutions is maintained. For each population member p facility locations

and the value of the objective function are saved. The algorithm is run until G generations do not

improve the best known solution.

1. A starting population is generated by running IMP pop times. The best and worst values of

the objective function among the population members, fmin and fmax, are established.

2. Set the generation counter g = 0.

3. Set g = g + 1. If g > G, stop with fmin as the solution.

4. Two parents are randomly selected.

5. An offspring is created by merging the two parents and its objective value f is calculated.

6. If f ≥ fmax or f is equal to a population member objective, go to Step 3.

7. The offspring replaces the worst population member and fmax is updated.

8. If f < fmin, update fmin = f and go to Step 2.

9. Otherwise, go to Step 3.

10



The success of the genetic algorithm usually depends on the quality of the merging process.

The following merging process exploits the geometry of the problem and is similar to the merging

processes suggested in [25, 19] for the solution of other problems.

The Merging Process

The idea is to draw an imaginary line at a random angle through the center of the cluster of the

facilities and to choose the locations of the facilities on one side of the line from one parent and

those on the other side of the line from the second parent. The expectation is that the configuration

of each parent on its side of the line is a good one and the merge will produce a superior offspring.

To operationalize it, we need to make sure that the total number of selected facilities is p and each

parent contributes about half the facilities. The scheme we came up with is as follows. The local

search IALT used in Step 5 refers to the improved Cooper-style alternating method with transfer

follow-up given in [3].

1. Randomly generate θ ∈ [0, 2π].

2. Calculate vi = xi cos θ + yi sin θ for the locations of each parent. This rotates the axes and

facilities by θ and vi is the projection of facility i on the rotated x-axis.

3. Sort the vector {vi} for i = 1, . . . , p for each parent.

4. Select the smallest p2 = ⌊p2⌋ facilities from the first parent and the largest p − p2 facilities

from the second parent.

5. Apply IALT on the original locations of the selected set of p facilities.

An illustration of the merging process is depicted in Figure 1. The number of facilities is p = 5

and the order of the facilities is irrelevant. Two of the facilities are located at the same point and

the other three of each parent are located at different points. The figure depicts the location of

the facilities after all ten are rotated by θ. The merged solution consists of the two (⌊52⌋) leftmost

facilities of the first parent, and the three rightmost facilities of the second parent. The merged

solution is marked with a “*”.

11



Figure 1: The two parents following rotation by θ

f*f* f
f f*s

s* s*
s

s

f first parent; s second parent;
* merged solution.

3.4 The Combined Approach (COMB)

In this hybrid heuristic we apply DVNS on the final solution of the genetic algorithm. Rather

than selecting the best of 100 IMP solutions as a starting solution for DVNS, we apply the genetic

algorithm on these 100 IMP solutions as a starting population and select the best solution following

the genetic process as a starting solution for DVNS. We selected DVNS rather than BVNS because

it performed slightly better in a shorter run time.

3.5 Parameters for the VNS Algorithms

The BVNS and DVNS procedures require two parameters: kmax and K. We applied kmax =

min{p, 20}, and K = 50. For applying DVNS we found that m = 0.2 and λ = 2 approximate the

distribution values of k leading to an improved solution. The resulting transformation in (9) is:

ψ(x) =
x

16

[
25x2 − 15x+ 6

]
(11)

with a density function (10):

ϕ(x) =
1

[5x2 − 2x+ 0.4]
[
π
4 + arctan 4

] . (12)

This density function is depicted in Figure 2.

12



Figure 2: The density function for m = 0.2, λ = 2

When kmax is used, the probabilities that 1 ≤ k ≤ kmax is selected is

Pr(k) =

k
kmax∫
k−1
kmax

ϕ(x)dx. (13)

The probabilities for kmax = 20 are given in Table 1.

Table 1: Probabilities (in percentages) of selecting the kth neighborhood for m = 0.2, λ = 2

k Pr(k) k Pr(k) k Pr(k) k Pr(k)

1 6.7 6 10.4 11 3.3 16 1.3
2 8.5 7 8.5 12 2.6 17 1.1
3 10.4 8 6.7 13 2.2 18 1.0
4 11.6 9 5.2 14 1.8 19 0.8
5 11.6 10 4.1 15 1.5 20 0.7

Note that small changes in the values of m and λ do not change the probabilities in Table 1 by

much. Therefore, the DVNS algorithm performance is not expected to change much if other values

of m and λ are selected. For example, we also depict the density function and the probabilities for

m = 0.1, λ = 1.5 in Figure 3 and Table 2.

13



Figure 3: The density function for m = 0.1, λ = 1.5

Table 2: Probabilities (in percentages) of selecting the kth neighborhood for m = 0.1, λ = 1.5

k Pr(k) k Pr(k) k Pr(k) k Pr(k)

1 13.6 6 6.9 11 1.7 16 0.7
2 16.7 7 5.0 12 1.4 17 0.6
3 16.7 8 3.7 13 1.2 18 0.6
4 13.6 9 2.8 14 1.0 19 0.5
5 9.8 10 2.2 15 0.8 20 0.4

3.6 Parameters for the Genetic Algorithm

For the genetic algorithm we used pop = 100, G = np
5 . We selected pop = 100 because we selected

the best of 100 IMP solutions as the starting solution for the other algorithms. Therefore, the

starting solution for GA is comparable to the starting solutions of the other procedures. We also

tested G = 100p which replaces n
5 with 100. This results in slightly lower solution quality but a

reduced run time. Details are reported at the end of the computational experiments section that

follows.

14



4 Computational Experiments

Programs were compiled by an Intel 11.1 Fortran Compiler with no parallel processing and run on

a desktop with an Intel 870/i7 2.93GHz CPU Quad processor and 8GB RAM. Only one thread was

used.

We used the method in [21] for solving the single facility Weber problem which is faster than

other approaches. Even though other operations required a high proportion of the run time, it

still saved about 2%-4% of the run time of the genetic algorithm because IALT requires many such

solutions. The overwhelming majority of the run time of the other algorithms is taken by IMP

which does not require solutions of the single facility Weber problem, and thus their run times are

not impacted by the method in [21].

We tested the algorithms on planar p-median problems based on four sets of demand points

given in [8] for various values of p for a total of 111 instances. The first set (n = 50) is the

well-studied 50-customer problem from [26]. The second one (n = 287) is the ambulance problem

from Bongartz et al. [2]; the last two (n = 654, 1060) are taken from the TSP library [37]. Krau

[31] found the optimal solution for all the instances of the first two sets. As reported by Drezner

et al. [22], the best solution of 100 applications of IMP (repeated 100 times for a total of 10,000

applications for each instance) gave the optimal solution for all these instances, and the best known

solution for all p ≤ 15 for the n = 654 instances in all 100 repetitions. Since the starting solution

for the algorithms tested in this paper is the best result of 100 applications of IMP, we did not test

these instances. We did test and report on the results for the remaining 47 instances.

Drezner et al. [22] report 10 new best known solutions, thus improving solutions reported in

[8, 40, 3]. We further improve two of them here, using both BVNS and DVNS, for the n = 654, p =

95 and n = 1060, p = 150 instances. The new best known solutions are marked in boldface in

Table 3.

Comparative results for the n = 654, 1060 instances are reported in Table 3. Run times are

depicted in Figure 4 and the average run times are reported in Table 4. We first report the starting

solutions as a result of running IMP 100 times and selecting the best solution of these 100 runs.

We also report results of solutions obtained with IDEC3 (repeated 100 times), a decomposition-

15



Table 3: Solution Results for n = 654 and n = 1060 Instances

Best 100 IMPs IDEC3 BVNS DVNS GA COMB
n p Known (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)
654 20 63,389.0238 43 0.000 100 0 10 0 10 0 10 0 10 0
654 25 52,209.5106 11 0.001 100 0 10 0 10 0 10 0 10 0
654 30 44,705.1920 9 0.002 82 0.000 10 0 10 0 10 0 10 0
654 35 39,257.2685 3 0.009 58 0.001 10 0 10 0 10 0 10 0
654 40 35,704.4076 0 0.073 25 0.027 10 0 10 0 10 0 10 0
654 45 32,306.9721 0 0.190 42 0.038 10 0 10 0 9 0.000 10 0
654 50 29,338.0106 0 0.238 30 0.073 10 0 10 0 10 0 10 0
654 55 26,699.1208 0 0.189 52 0.031 10 0 7 0.005 10 0 10 0
654 60 24,504.3952 2 0.117 78 0.021 10 0 10 0 10 0 10 0
654 65 22,733.2923 1 0.156 87 0.009 10 0 10 0 10 0 10 0
654 70 21,465.4361 30 0.042 54 0.013 10 0 10 0 10 0 10 0
654 75 20,269.9644 1 0.167 2 0.091 9 0.000 9 0.000 10 0 10 0
654 80 19,193.8610 0 0.365 54 0.072 10 0 10 0 10 0 10 0
654 85 18,313.8703 0 0.436 5 0.119 10 0 9 0.000 10 0 10 0
654 90 17,514.4227 0 0.413 3 0.176 8 0.011 9 0.002 10 0 10 0
654 95 16,770.1973 0 0.330 0 0.183 2 0.003 2 0.003 10 0 10 0
654 100 16,083.5345 1 0.211 12 0.105 10 0 10 0 10 0 10 0
1060 5 1,851,877.3 90 0.000 100 0 10 0 10 0 10 0 10 0
1060 10 1,249,564.8 80 0.000 100 0 10 0 10 0 10 0 10 0
1060 15 980,131.7 35 0.002 100 0 10 0 10 0 10 0 10 0
1060 20 828,685.7 3 0.014 100 0 10 0 10 0 10 0 10 0
1060 25 721,988.2 1 0.017 54 0.003 9 0.001 10 0 10 0 10 0
1060 30 638,212.3 17 0.003 100 0 10 0 10 0 10 0 10 0
1060 35 577,496.7 53 0.033 100 0 10 0 10 0 10 0 10 0
1060 40 529,660.1 1 0.109 62 0.024 10 0 10 0 10 0 10 0
1060 45 489,483.8 0 0.185 38 0.056 9 0.001 10 0 10 0 10 0
1060 50 453,109.6 0 0.146 28 0.027 10 0 10 0 10 0 10 0
1060 55 422,638.7 0 0.071 64 0.024 10 0 10 0 10 0 10 0
1060 60 397,674.5 0 0.050 41 0.016 10 0 10 0 10 0 10 0
1060 65 376,630.3 1 0.065 51 0.029 10 0 10 0 10 0 10 0
1060 70 357,335.1 0 0.087 57 0.032 10 0 10 0 10 0 10 0
1060 75 340,123.5 4 0.027 97 0.001 10 0 10 0 10 0 10 0
1060 80 325,971.3 0 0.033 58 0.004 10 0 10 0 10 0 10 0
1060 85 313,446.6 1 0.103 24 0.044 10 0 10 0 10 0 10 0
1060 90 302,479.1 0 0.161 27 0.021 10 0 10 0 10 0 10 0
1060 95 292,282.6 0 0.187 2 0.045 9 0.000 10 0 7 0.001 10 0
1060 100 282,536.5 0 0.281 1 0.097 9 0.004 7 0.004 7 0.002 9 0.000
1060 105 273,463.3 0 0.325 8 0.047 8 0.000 6 0.001 5 0.001 10 0
1060 110 264,959.6 0 0.291 0 0.044 8 0.000 9 0.000 9 0.000 10 0
1060 115 256,735.7 0 0.310 2 0.063 8 0.001 7 0.001 7 0.002 10 0
1060 120 249,050.5 0 0.327 2 0.075 1 0.008 3 0.005 5 0.004 10 0
1060 125 241,880.4 0 0.297 0 0.078 9 0.000 7 0.002 3 0.008 10 0
1060 130 235,203.4 0 0.317 0 0.108 5 0.006 7 0.003 8 0.002 10 0
1060 135 228,999.2 0 0.339 0 0.101 7 0.001 6 0.001 2 0.006 9 0.001
1060 140 223,062.0 0 0.357 0 0.081 8 0.000 9 0.000 4 0.002 10 0
1060 145 217,462.8 0 0.372 0 0.103 4 0.001 10 0 2 0.007 8 0.000
1060 150 212,230.5 0 0.310 0 0.067 6 0.004 4 0.004 1 0.003 10 0
Average: 8.2% 0.1651 43% 0.0457 89% 0.0009 90% 0.0007 87% 0.0008 99% 0.0000
(1) Number of times best known solution found (2) percentage of average solution above best known one.

based heuristic which is the best heuristic algorithm reported in Drezner et al. [22]. Results are

also reported for both versions of the VNS algorithm, the genetic algorithm, and the combined

16



Figure 4: Total Run Times in Minutes

approach, each repeated 10 times. Note that since a random number generator is used different

times for each run and each method, the starting solutions are not identical for all methods because

the seed for the random number generator is different for each run. For each algorithm the number

of times (out of 100 or 10) that the best known solution was found and the percentage of the

average solution above the best known solution are reported in Table 3. The total run times in

minutes (including the generation of 100 IMP solutions for each run) are reported in Table 4. For

17



Table 4: Average Run Times (minutes)

Procedure n = 654 n = 1060 All

100 IMPs 196.0 589.9 447.4
IDEC3 310.7 1,143.3 842.2
BVNS 202.1 716.3 530.3
DVNS 158.4 564.5 417.6
GA 29.0 182.2 126.8
COMB 143.3 532.2 391.5

example, generating 100 IMP solutions takes an average of 4.47 minutes, and run time for GA is

12.68 minutes per run which means that only an average of 8.21 minutes is spent on Steps 2-9 of

the genetic algorithm.

The average percentage above the best known solution dropped from 0.1651% for the starting

solutions to 0.0457% by IDEC3 and only 0.0009% for BVNS, 0.0007% for DVNS, 0.008% for GA,

and 0.0000% (it is actually 0.000016%) for COMB. COMB found the best known solution in 466 out

of 470 runs. Run times for the BVNS, DVNS, and COMB algorithms are shorter than those required

for IDEC3. Run times for GA are much shorter. The average run time for the DVNS algorithm was

lower by 22.7% than the average for BVNS which is very significant (p− value = 4× 10−26) while

producing slightly better results. The GA gave the best performance when run time is contrasted

with the quality of the solutions. COMB gave the best quality results while requiring the second

shortest run time.

We also tested GA and COMB with G = 100p rather than G = np
5 . The GA and COMB results

reported in Tables 3 and 4 changed as follows: For GA, the percentage of times the best known

solution was found dropped from 87% to 86%, the average above best known solution increased

from 0.0008% to 0.0009%. However, average run time decreased by about 30% from 12.68 minutes

per run to 8.99 minutes per run. This is actually a reduction of about 45% from 8.21 minutes

to 4.52 minutes for the process following the generation of the starting solution. For COMB, the

percentage of times the best known solution was found dropped from 99% to 97%, the average above

best known solution increased from 0.0000% to 0.0001%. However, average run time decreased by

about 10% from 39.15 minutes per run to 35.24 minutes per run.

18



5 Suggestions for Further Improvements of the Heuristics

The tested instances leave very little room for improvement in solution quality (see the COMB

results in Table 3). One avenue for future research is to construct algorithms with similar solution

quality but shorter run times. A second avenue is to solve larger problems.

The selection of kmax = 20 may be too high because few improvements of the solution in the

VNS algorithms occur for k > 10 (see also Tables 1 and 2). One option, that will also reduce

the number of required parameters, is to estimate the mode of the values of k which result in

improved solutions and set kmax as double this value. This entails using m = 0.5 in (9). Since the

performance is not that sensitive to the selection of λ, when using λ = 2, the transformation ψ(x)

and the density function ϕ(x) are:

ψ(x) = x

[
x2 − 3

2
x+

3

2

]
(14)

ϕ(x) =
1

π
[
x2 − x+ 1

2

] (15)

Such a simple approach may be effective for designing DVNS for the solution of other problems

without increasing the number of required parameters. Note that the expression for ϕ(x) is not

required for the implementation of DVNS.

There seems to be a potential for improving the genetic algorithm because the proposed algo-

rithm uses a very basic approach. The success of the proposed genetic algorithm is due, in part,

to the simple and effective merging procedure. If an improved merging procedure is constructed,

it may improve the GA results.

Some of the following suggestions have been tried but so far we were not able to improve the

genetic algorithm without significantly increasing the running time. It is possible that appropriate

fine tuning of the parameters may yield good results.

1. The IALT local search is replaced by the more powerful IMP local search.

2. When a new best solution is found, the more powerful IMP local search is applied on the

newly found best solution before entering it into the population.

19



3. A quick VNS algorithm is applied on the merged offspring rather than applying IALT or IMP.

4. The merging process can be viewed as taking about half the facilities from each parent by

drawing a line through the “center” of the cluster of the facilities. Most of the selected facilities

cover the associated demand points in a good spatial distribution, but there is a “strip” near

the dividing line where the facilities may not be distributed properly. The merging procedure

may be improved by selecting from each parent, for example, about 40% of the facilities

farthest from the dividing line. The remaining 20% of the facilities (about 10% from each

parent) are facilities in the “strip”. Demand points whose closest facility is a facility in the

strip are defined as demand points in the strip. The additional 20% of the facilities which

serve demand points in the strip can be generated by some rule.

5. The genetic algorithm performed better for smaller values of p. The merging process selects

half of the configuration from each parent and when p is large, it is possible that half of the

configuration is too large to capture good parts from each parent. It may be possible to

design a merging process that extracts smaller “chunks” of the configuration. Merging more

than two parents, thus using smaller fragments from each parent, does not seem appropriate.

A scheme can be designed where about a quarter (a parameter) of the facilities are selected

from one parent and three quarters from the other. This is similar to the discussion in [27]

where the authors suggest that it is beneficial that one parent (the male) is smaller than the

other parent (the female) even though they contribute the same number of chromosomes.

This can be done in several ways.

(a) When p > 100 select 50 facilities (rather than p
2) from the first parent and p−50 facilities

from the second parent.

(b) Following the rotation of the system of coordinates the projections on the x-axis and the

y-axis are performed and the median value of each projection is calculated. The area is

divided into four regions by perpendicular lines through the two medians. Each region

contains about one quarter of the facilities. We then can merge one region from one

parent and three regions from the other for a total of eight merged solutions. The best

20



of these eight merged solutions is selected as the offspring. The six pairs of regions, two

from each parent (which includes the currently used merging process), can be added to

the scheme and the best of the 14 merged solutions selected as the offspring.

(c) The facilities of each parent are merged into a set of 2p facilities. The facilities are

matched into p pairs, each pair consisting of one facility from each parent. A facility is

randomly selected from the combined set of 2p facilities. One facility is selected from

each pair. About 1
4p of the facilities closest to the selected facility are selected from the

first parent, and the remaining about 3
4p of the facilities farther from the selected facility

are selected from the second parent. This is similar to the merging process in [19].

6. Another merging process can follow the idea in Alp et al. [1] that was successfully applied

in the genetic algorithm for the solution of the p-median problem in a network environment.

They suggested to merge the two sets of facilities to a combined set of 2p facilities. The

facilities that are located at the same locations in both parents are selected for the offspring.

The number of non-selected facilities is reduced by dropping one facility at a time according

to some criterion (for details see [1]) until the number of facilities is reduced to p. This idea

can be implemented for the planar p-median problem by crafting a similar rule.

We observed that the diversity of the population of the genetic algorithm deteriorates too

quickly. The members of the population become too similar to one another. It is possible to apply

various established techniques to slow down the population’s convergence (for example, [20, 17, 23]).

6 Conclusions

Four heuristic procedures are proposed for solving the planar p-median problem: two versions of

variable neighborhood search, including a new “distribution based” approach, a genetic algorithm,

and a combination of both. The genetic algorithm was the fastest and solved almost perfectly

problems with up to 100 facilities. A problem with 1060 demand points and 100 facilities was

solved in 20.95 minutes (when using fewer generations (100p), run time fell to 14.36 minutes) and

found the best known solution in all 10 runs. Larger problems were solved the best by the hybrid

21



approach combining the genetic algorithm and the distribution based variable neighborhood search,

but required longer run times.

Acknowledgement The authors would like to thank the anonymous referees for their interesting

suggestions that improved the content as well as the presentation of the paper.

References

[1] Alp, O., Drezner, Z., and Erkut, E. (2003). An efficient genetic algorithm for the p-median
problem. Annals of Operations Research, 122:21–42.

[2] Bongartz, I., Calamai, P. H., and Conn, A. R. (1994). A projection method for ℓp norm
location-allocation problems. Mathematical Programming, 66:238–312.

[3] Brimberg, J. and Drezner, Z. (2013). A new heuristic for solving the p-median problem in the
plane. Computers & Operations Research, 40:427–437.

[4] Brimberg, J., Drezner, Z., Mladenovic, N., and Salhi, S. (2012). Generating good starting
solutions for the p-median problem in the plane. Electronic Notes in Discrete Mathematics,
39:225–232.

[5] Brimberg, J., Drezner, Z., Mladenović, N., and Salhi, S. (2014). A new local search for contin-
uous location problems. European Journal of Operational Research, 232:256–265.

[6] Brimberg, J., Hansen, P., and Mladenović, N. (2006). Decomposition strategies for large-scale
continuous location–allocation problems. IMA Journal of Management Mathematics, 17:307–316.

[7] Brimberg, J., Hansen, P., Mladenović, N., and Salhi, S. (2008). A survey of solution methods
for the continuous location-allocation problem. International Journal of Operations Research,
5:1–12.

[8] Brimberg, J., Hansen, P., Mladenović, N., and Taillard, E. (2000). Improvements and compari-
son of heuristics for solving the uncapacitated multisource Weber problem. Operations Research,
48:444–460.

[9] Brimberg, J. and Mladenović, N. (1999). Degeneracy in the multi-source Weber problem.
Mathematical Programming, 85:213–220.

[10] Carlsson, S. (1984). Improving worst-case behavior of heaps. BIT Numerical Mathematics,
24:14–18.

[11] Carrizosa, E., Dražić, M., Dražić, Z., and Mladenović, N. (2012). Gaussian variable neighbor-
hood search for continuous optimization. Computers & Operations Research, 39:2206–2213.

22



[12] Chen, P. C., Hansen, P., Jaumard, B., and Tuy, H. (1998). A fast algorithm for the greedy
interchange for large-scale clustering and median location problems by D.-C. programming. Op-
erations Research, 46:548–562.

[13] Chen, R. (1983). Solution of minisum and minimax location-allocation problems with euclidean
distances. Naval Research Logistics Quarterly, 30:449–459.

[14] Cooper, L. (1963). Location-allocation problems. Operations Research, 11:331–343.

[15] Cooper, L. (1964). Heuristic methods for location-allocation problems. SIAM Review, 6:37–53.

[16] Das, S. and Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art.
IEEE Transactions on Evolutionary Computation, 15:4–31.

[17] Drezner, T. and Drezner, Z. (2006). Gender specific genetic algorithms. INFOR, Information
Systems and Operations Research, 44:117–127.

[18] Drezner, Z. (1984). The planar two-center and two-median problems. Transportation Science,
18:351–361.

[19] Drezner, Z. (2003). A new genetic algorithm for the quadratic assignment problem. INFORMS
Journal on Computing, 15:320–330.

[20] Drezner, Z. (2005). A distance based rule for removing population members in genetic algo-
rithms. 4OR - A Quarterly Journal of Operations Research, 3:109–116.

[21] Drezner, Z. (2013). The fortified Weiszfeld algorithm for solving the Weber problem. IMA
Journal of Management Mathematics. In press.

[22] Drezner, Z., Brimberg, J., Salhi, S., and Mladenović, N. (2013). New local searches for solving
the multi-source Weber problem. in review.

[23] Drezner, Z. and Marcoulides, G. A. (2003). A distance-based selection of parents in ge-
netic algorithms. In Resende, M. G. C. and de Sousa, J. P., editors, Metaheuristics: Computer
Decision-Making, pages 257–278. Kluwer Academic Publishers.

[24] Drezner, Z., Mehrez, A., and Wesolowsky, G. O. (1991). The facility location problem with
limited distances. Transportation Science, 25:183–187.

[25] Drezner, Z. and Salhi, S. (2002). Using hybrid metaheuristics for the one-way and two-way
network design problem. Naval Research Logistics, 49:449–463.

[26] Eilon, S., Watson-Gandy, C. D. T., and Christofides, N. (1971). Distribution Management.
Hafner, New York.

[27] Epelman, M. A., Pollock, S., Netter, B., and Low, B. S. (2005). Anisogamy, expenditure of
reproductive effort, and the optimality of having two sexes. Operations research, 53:560–567.

23



[28] Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, R. E. (1986). Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica, 6:109–122.

[29] Hansen, P. and Mladenović, N. (1997). Variable neighborhood search for the p-median. Loca-
tion Science, 5:207–226.

[30] Hansen, P., Peeters, D., and Thisse, J.-F. (1981). On the location of an obnoxious facility.
Sistemi Urbani, 3:299–317.

[31] Krau, S. (1997). Extensions du problème de Weber. PhD thesis, École Polytechnique de
Montréal.

[32] Megiddo, N. and Supowit, K. J. (1984). On the complexity of some common geometric location
problems. SIAM Journal on Computing, 13:182–196.

[33] Mladenović, N., Dražić, M., Kovačevic-Vujčić, V., and Čangalović, M. (2008). General variable
neighborhood search for the continuous optimization. European Journal of Operational Research,
191(3):753–770.

[34] Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations
Research, 24:1097–1100.

[35] Murtagh, B. A. and Niwattisyawong, S. R. (1982). An efficient method for the multi-depot
location-allocation problem. Journal of the Operational Research Society, 33:629–634.

[36] Plastria, F. (1992). GBSSS, the generalized big square small square method for planar single
facility location. European Journal of Operational Research, 62:163–174.

[37] Reinelt, G. (1991). TSLIB a traveling salesman library. ORSA Journal on Computing, 3:376–
384.

[38] Salhi, S. and Gamal, M. D. H. (2003). A genetic algorithm based approach for the uncapaci-
tated continuous location–allocation problem. Annals of Operations Research, 123:203–222.

[39] Schöbel, A. and Scholz, D. (2010). The big cube small cube solution method for multidimen-
sional facility location problems. Computers and Operations Research, 37:115–122.

[40] Taillard, É. (2003). Heuristic methods for large centroid clustering problems. Journal of
Heuristics, 9:51–73.

[41] Xiao, Y. Y., Zhao, Q. H., and Mladenović, N. (2013). Variable neighborhood simulated an-
nealing algorithm for capacitated vehicle routing problems. Engineering Optimization. In press.

24


