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Hub facilities are subject to unpredictable disruptions caused by severe weather condition, natural 

disasters, labour dispute, and vandalism to cite a few. Disruptions at hubs result in excessive 

transportation costs and economic losses as customers (demand) initially served by these facilities 

must now be served by other hubs. In this study, we first present a novel mathematical model that 

builds hub-and-spoke systems under the risk of hub disruption. In developing the model, we 

assume that once a hub stops normal operations, the entire demand initially served by this hub is 

handled by a backup facility.  The objective function of the model minimizes the weighted sum of 

transportation cost in regular situation and the expected transportation cost following hub failure. 

We adopted a linearization for the model and present an efficient evolutionary approach with 

specifically designed operators. We solved a number of small problem instances from the literature 

using CPLEX for our enhanced mathematical model. The obtained results are also used as a 

platform for assessing the performance of our proposed meta-heuristic which is then tested on 

large instances with promising results. We further study and provide results for the relaxed 

problem in which demand points affected by disruption are allowed to be reallocated to any of the 

operational hubs in the network.   
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1. Introduction 

The classical hub location problem deals with locating hub facilities and allocating demand to hubs 

to direct the flow between origin-destination pairs. In hub location literature, it is common to 

assume that there is a link between every hub pair, there is no direct path between non hub nodes, 

and there is economies of scale for using the inter-hub connections [2]. Depending on how non-

hub nodes are allocated to hub facilities, two types of network are constructed namely single and 

multiple allocations. In the former, all the incoming and outgoing traffic of every node is 

transferred through a single hub, while in the latter each node in the network can receive and send 

flow through more than one hub. In this research, we focus on the Single Allocation p-Hub Median 

problem with hub unavailability consideration which we term SApHM-HU. 

The hub location problem has various applications in the area of transportation e.g., air passenger 

and cargo [5, 28, 29, 35], less-than-truckload freight [11], rail freight [19], urban public 

transportation and rapid transit [31]. Other applications areas include postal delivery [15, 8], 

express package and cargo delivery [24, 39, 3], telecommunications [22, 7] and supply chains [25]. 

Hub-and-spoke systems have been the subject of many studies in the past three decades. O’Kelly 

[32, 33] presented the first mathematical model for the single allocation p-hub median problem. 

Campbell [6] developed a linear integer formulation for the problem. Examples of other 

formulations that have been proposed in the literature include Ernst and Krishnamoorthy [15], 

Skorin-Kapov et al. [36], and Ebery [13]. The objective of the p-hub median problem is to 

determine the location of a predetermined number of facilities (p) and the allocation of the non-

hubs to these open hubs such that the total transportation cost is minimized.  

Traditional approaches to hub location problem assume that hub facilities are always available. In 

practice, however, one or more of these facilities may become unavailable from time to time due 

to, for example, weather conditions and/or natural disasters.  To manage hub failure, two strategies 

are usually adopted in air transportation which include reactive (e.g., cancelling, delaying, 

rescheduling, and etc. [18]) and proactive strategies (e.g., investment in reliability improvement 

of existing facilities). Nevertheless, a disruption at a hub may significantly affects service level 

and result in excessive transportation cost as customers (demand) initially served by these facilities 

must now be served by other hubs.  
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1.1. Illustrating the impact of hub failure via an example 

To evaluate the impact of hub failure on operating cost, we simulate service disruptions in a 

problem instance with 10 nodes and 3 hubs taken from the U.S. Civil Aeronautics Board which is 

known as CAB dataset [32]. The data set is based on the airline passenger interactions between 25 

US cities in 1970 and has been frequently used by hub location researchers. Figure 1 illustrates the 

optimal network configuration for this problem where inter-hub discount factor i.e., α is 0.2. The 

total transportation cost of the network presented in Figure 1 in regular situation is 491.93 units 

[36]. 

 

We assume that once a hub becomes unavailable, the flow initially passing through this facility is 

rerouted via one of the operating hubs in the network. In Figure 1, for instance, if hub 6 (Cleveland) 

is disrupted then the entire flow that uses this hub as the first or the second hub in the path from 

origin i to destination j are rerouted via either hub 4(Chicago) or hub 7(Dallas-Fw). This rerouting 

strategy is important as in some applications a group of spokes need to communicate via a single 

hub to which they are allocated. For instance, in postal service hub facilities are major sorting 

centres equipped with sorting machinery, optical recognition units and etc. These facilities provide 

a service to nearby regional offices. In such a system instead of assigning one vehicle between 

spoke-hub pair, a small fleet will operate for each hub region and each vehicle will visit a subset 

of cities on their own tours [8, 30]. 

 

In the simulation, we examine three cases where one of the existing hubs in the network is assumed 

to be disrupted at a given time. The total network cost corresponding to each case, that includes 

the following cost elements, is then calculated.  The first element of the resulting network cost is 

the rerouting cost of the flow through a backup facility. The rerouted flow initially uses the 

disrupted hub as either its first or second hub in the path from origin i to destination j.  The second 

element is the demand loss cost that measures the cost of not meeting the demand at a disrupted 

facility (i.e., cost of the flow that either initiates or ends up at the disrupted hub). The third and the 

final element is the cost of transporting the flow between nodes that are not affected by the hub 

disruption (routing cost). The above three types of cost (i.e., routing, rerouting and demand loss 

costs) when summed up together make up the new network cost.  
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The total cost of the three new networks corresponding to the above three cases is summarized in 

Table 1 where “Min” sums the demand loss cost and the smaller of the two routing-rerouting costs 

associated with each scenario. Each of the two routing-rerouting costs in Table 1 corresponds to 

the case in which one of the operating hubs in the network is utilized as the backup facility for the 

disrupted hub. The lower of the two costs associated with the case where the most (economically) 

attractive rerouting path (i.e., the best backup facility) is utilized to maintain network operations; 

“Max” represent the network cost when the least attractive backup is utilized to transfer the flow. 

 

 Table 1: New network costs following a single hub failure  

Disrupted 

hub 

Backup 

hubs 

Routing-

rerouting cost 

Demand 

loss cost 

New network cost 

Min Max Average 

6 
4 549.72 

989.56 
159.69 709.41 1149.25 929.33 

7 

       
4 

6 317.94 

317.94 
540.48 858.43 858.43 858.43 

7 

       
7 

4 484.80 

535.90 
273.01 757.81 808.92 783.37 

6 

 

Comparison of “Min” network costs for all three scenarios in Table 1 indicates that scenario 1 in 

which hub 6 is assumed disrupted and hub 4 is utilized as its backup has the lowest cost. The 

highest cost belongs to the case where hub 4 is assumed disrupted and any of the two other 

operating hubs in the network (i.e., hub 6 or hub 7) is utilized as the backup facility.  

1 Atlanta 2 Baltimore 3 Boston 4 Chicago 5 Cincinnati 

6 Cleveland 7 Dallas-Fw 8 Denver 9 Detroit 10 Houston 

Figure.1. Optimal solution to a problem with 10 nodes and three hubs (CAB dataset)-single allocation. 

: Hub facility 
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The results presented in Table 1 show that in the event of hub failure, deciding on backup facility 

largely affects the operating cost. For instance, in Case 1 if hub 7 is utilized as the backup for the 

assumed disrupted hub 6, the resulting network cost is estimated to be 1149.25 units. However, 

the network cost significantly reduces (709.41 unit) if hub 4 is used as the backup for hub 6 in the 

event of hub failure. Our results for the relatively small problem described above further indicates 

that hub failure causes an excessive cost which on average could increase the regular transportation 

cost by nearly 89%.  

With regard to routing and rerouting costs, our analysis of the results presented in Table 1 shows 

that the most expensive hub in the network is hub 6. If disrupted, it will impose the largest amount 

of routing-rerouting cost to the system. This is understandable as more flow is transferred through 

this hub (i.e., hub 6) in comparison to the other two (hub) facilities in the network (see Figure 1). 

One way to guard against such a scenario is to protect such a facility by increasing the level of 

security which obviously will require extra investment. There are however studies that incorporate 

these aspects into the modelling. Concerning the demand loss cost, results in Table 1 show that the 

most expensive facility is hub 4. This hub is the origin/destination of a significant amount of flow 

which is much higher than that in any of the two other hubs in the network. Therefore, the penalty 

for not meeting the demand in hub 4 is expected to be relatively high. 

Using the data presented in Table 1, the lowest Expected Transportation Cost of the network is 

calculated by multiplying the minimum network costs (under column “Min” in Table 1) and their 

corresponding hub failures probabilities.  For instance, if probabilities of failures for hubs 6, 4, and 

7 are 0.28, 0.15, and 0.1 respectively, then the expected transportation cost of the network would 

be 403.3 units. 

In summary, the above analysis confirms that hub failure may largely increase the operating cost 

even if the most economically attractive backup facility is used to maintain network operations. It 

also shows that in the event of service disruption, the magnitude of excessive cost depends 

primarily on the amount of demand initially served by the disrupted hub and the selection of the 

backup facility.  

 

1.2. A brief literature review  

A number of papers addressed facility location problem with random disruptions. Few examples 

of such studies include Cui et al. [10], Li et al. [26], Peng et al. [34], Church and Scaparra [9], Li 
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et al. [27], Eiselt et al. [14], and Berman and Krass [4]. In this paper, our focus is on hub-and-

spoke systems with possible hub failure for which a few models have been proposed in the 

literature [21]. Furthermore, a large portion of the literature on location problem concentrates on 

robustness to changes in demand or costs [37]. Our approach however, looks for robustness to 

changes in the supply network itself. This view of “network robustness” has some similarities with 

the work by Snyder and Daskin [37].  

This study attempts to investigate a new methodology to design hub-and-spoke networks with 

“hub unavailability” consideration. More precisely, we propose models that build reliable 

networks by explicitly considering possible disruption at hub facilities at the design stage. Among 

others, our models aid to verify (1) if topologies of the networks with and without hub 

unavailability consideration are identical and (2) if failure cost could be reduced without a large 

increase in the regular transportation cost by incorporating hub unavailability as part of the 

classical hub location model.  While the first goal aims to determine whether the issues of hub 

unavailability and hub location-allocation could be dealt with separately, the second goal targets 

the amount of cost-saving that might be achieved by simultaneously addressing the two problems 

namely the hub location-allocation and the backup selection.  To the best of our knowledge, our 

research is one of the first studies to consider hub unavailability in the context of hub-and-spoke 

systems. 

The remainder of this paper is organized as follows. Problem description and model formulation 

including our linearization scheme are presented in section 2. Section 3 describes the proposed 

evolutionary solution technique with its specific ingredients that we designed for the single 

allocation p-hub median problem with hub unavailability consideration. Computational results are 

reported in section 4 followed by concluding remarks in section 5.  

 

2. Problem description and model formulation 

In the single allocation p-hub median problem, each node is assigned to a particular hub and all 

the incoming and outgoing flow are routed through that hub. The total number of nodes in the 

network is assumed to be n, each node is considered a potential site and the number of hubs to 

open is p(𝑝 < 𝑛) . A path from origin spoke i to destination spoke j includes three parts: collection 

from spoke i to the first hub k, transfer between first hub k and the second hub m, and distribution 

from hub m to destination j. The cost per unit flow along this route, 𝑖 →𝑘 → 𝑚→j, is calculated as 
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𝜒 × 𝑐𝑖𝑘 + 𝛼 × 𝑐𝑘𝑚 + 𝛿 × 𝑐𝑚𝑗  where χ and δ are coefficients of collection and distribution 

respectively and α is the inter-hub discount factor. Let 𝜆𝑖𝑗 be the amount of flow to be routed from 

origin i to destination j, the transportation cost from i to j routed via hubs k and m, 𝐶𝑖𝑘𝑚𝑗 , is then 

calculated as  𝐶𝑖𝑘𝑚𝑗 = 𝜆𝑖𝑗(𝜒 × 𝑐𝑖𝑘 + 𝛼 × 𝑐𝑘𝑚 + 𝛿 × 𝑐𝑚𝑗). 

 

2.1. Notation  

The three decision variables: hub location and allocation variable z, the route selection x, and the 

backup selection variable u are defined as follows:  

𝑧𝑖𝑘 = 1 if node i is assigned to hub k and =0 otherwise;  

𝑥𝑖𝑘𝑚𝑗 = 1 if flow from i to j passes through hub k and m and = 0 otherwise;  

𝑢𝑘𝑙 = 1 if l is the backup for hub k and =0 otherwise.  

Each hub k has a probability of failure 𝑞𝑘  and we assume that only one hub will be disrupted at 

any given time. We further assume that hubs are uncapacitated. 

 

In our formulation, FFCk calculates the total cost of transporting flow from origin i to destination 

j via “the first hub” k, and BFCm computes the total transportation cost from origin i to destination 

j through “the second hub” m. They are represented by the following expressions  

𝐹𝐹𝐶𝑘 = ∑ ∑ ∑ 𝐶𝑖𝑘𝑚𝑗

𝑗𝑚𝑖

𝑥𝑖𝑘𝑚𝑗                               (1)     

𝐵𝐹𝐶𝑚 = ∑ ∑ ∑ 𝐶𝑖𝑘𝑚𝑗

𝑗𝑘≠𝑚𝑖

𝑥𝑖𝑘𝑚𝑗                                   (2) 

Given the above definition of  𝐶𝑖𝑘𝑚𝑗, the Regular Transportation Cost (RTC) is expressed as  

𝑅𝑇𝐶 = ∑ ∑ ∑ ∑ 𝐶𝑖𝑘𝑚𝑗

𝑗𝑚𝑘𝑖

𝑥𝑖𝑘𝑚𝑗                      (3) 

Using equations (1) and (3), the RTC could be re-written as  

𝑅𝑇𝐶 = ∑ 𝐹𝐹𝐶𝑘

𝑘

                                               (4)    

In a network with a single disrupted hub, three types of flow are identified:  

(a) flow that are initially planned to be transferred via the disrupted hub to reach their final  

        destinations  
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(b) flow that are not affected by the disruption and  

(c) flow that originate from or end up at a disrupted hub.   

 

For the type (a) flow, the disrupted hub is either its first or the second hub in the path from origin 

i to destination j. To maintain network operations, this type of flow (i.e., flow passing through a 

disrupted hub) is rerouted via a backup facility. FFCBkl accounts for the transportation cost of 

rerouting the flow through backup hub l when the first hub k is disrupted. FFCBkl is expressed as 

follows 

𝐹𝐹𝐶𝐵𝑘𝑙 = ∑ ∑ ∑ 𝐶𝑖𝑙𝑚𝑗

𝑗≠𝑘𝑚≠𝑘𝑖≠𝑘

𝑥𝑖𝑘𝑚𝑗 + ∑ ∑ 𝐶𝑖𝑙𝑙𝑗

𝑗≠𝑘𝑖≠𝑘

 𝑥𝑖𝑘𝑘𝑗        (5) 

 

The first term of the above expression calculates the rerouting cost where the path from origin i to 

destination j includes two hubs; the second term computes the cost where there is only one hub in 

the path from i to j. 

 

BFCBml deals with the cost of the rerouting part of the flow (via backup hub l) for which the 

disrupted facility is the second hub in the path from origin i to destination j. The expression for 

BFCBml is as follows 

𝐵𝐹𝐶𝐵𝑚𝑙 = ∑ ∑ ∑ 𝐶𝑖𝑘𝑙𝑗

𝑗≠𝑚𝑘≠𝑚𝑖

𝑥𝑖𝑘𝑚𝑗                                             (6)    

In equations (5) and (6) the purpose of imposing restrictions on index i and j is to exclude the 

transportation cost of the flow that initiate and/or end up at hub facilities. The cost of transporting 

this type of flow is dealt with separately in the last term of the following objective function. The 

limitation on index k and m prevents double-counting the cost of rerouting where the path from i 

to j include only one hub facility. 

 

2.2. Initial mathematical formulation 

We formulate the problem as a bi-objective optimization problem where the objectives are as 

follows 

𝐹1 = ∑ ∑ ∑ ∑ 𝐶𝑖𝑘𝑚𝑗

𝑗𝑚𝑘𝑖

𝑥𝑖𝑘𝑚𝑗                                                                                                   (7) 



9 
 

𝐹2 = ∑ ((∑ 𝐹𝐹𝐶𝑘

𝑘

𝑧𝑙𝑙) − (𝐹𝐹𝐶𝑙 + 𝐵𝐹𝐶𝑙))

𝑙

 𝑞𝑙                           

+ ∑ ∑ 𝐹𝐹𝐶𝐵𝑘𝑙

𝑙𝑘

𝑢𝑘𝑙𝑞𝑘 + 

+ ∑ ∑ 𝐵𝐹𝐶𝐵𝑚𝑙

𝑙𝑚

𝑢𝑚𝑙𝑞𝑚 + 

+ ∑ ∑ 𝜑𝑖𝑗

𝑗𝑖

𝜆𝑖𝑗(𝑞𝑖𝑧𝑖𝑖 + 𝑞𝑗𝑧𝑗𝑗)                                                                                                     (8)  

Objective F1 computes the transportation cost in a regular situation while objective F2 calculates 

the expected transportation cost (ETC) resulted from hub failures. More specifically, the first term 

in objective F2 computes the transportation cost of the flow in part of the network(s) that is not 

affected by a disruption. This is achieved by subtracting the transportation cost of the flow that 

(initially) uses the disrupted hub (either as the first or the second hub) from the (total) 

transportation cost of the network in a regular situation. The second term accounts for the 

transportation cost of rerouting the flow through the backup hub when the first hub in the path 

from origin i to destination j is disrupted; the third term calculates the rerouting cost of the flow 

for which the disrupted facility is its second hub in the path from i to j. As mentioned earlier, it is 

assumed that when a hub is disrupted, it cannot send or receive any flow to or from other nodes in 

the network. Therefore, the last term in the objective F2 (i.e., the forth term) penalizes the loss of 

flow/demand in disrupted situations where the source or destination of the flow is a hub. In our 

study, the penalty cost of losing a unit flow, φij , is considered twice as much as the transportation 

cost of a unit flow between origin i and destination j.  

The proposed model minimizes a weighted sum of the two objectives, 𝑤𝐹1 + (1 − 𝑤)𝐹2  where 

 0≤ w ≤1. The nonlinear formulation of the Single Allocation p-Hub Median problem with Hub 

Unavailability (SApHM-HU) is presented as follows 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑤𝐹1 + (1 − 𝑤)𝐹2                                                                                                      (9) 

Subject to: 

∑ 𝑧𝑖𝑘

𝑘

= 1         ∀𝑖                                                                                                                           (10) 
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∑ 𝑧𝑘𝑘

𝑘

= 𝑝                                                                                                                                        (11)    

𝑧𝑖𝑘 ≤ 𝑧𝑘𝑘         ∀𝑖, 𝑘                                                                                                                          (12) 

∑ 𝑥𝑖𝑘𝑚𝑗

𝑚

= 𝑧𝑖𝑘         ∀𝑖, 𝑗, 𝑘                                                                                                            (13) 

∑ 𝑥𝑖𝑘𝑚𝑗

𝑘

= 𝑧𝑗𝑚          ∀𝑖, 𝑗, 𝑚                                                                                                          (14) 

∑ 𝑢𝑘𝑙 = 𝑧𝑘𝑘        ∀𝑘 

𝑙≠𝑘

                                                                                                                     (15) 

𝑢𝑘𝑙 ≤ 𝑧𝑙𝑙           ∀𝑘, 𝑙 ; 𝑘 ≠ 𝑙                                                                                                             (16) 

𝐹𝐹𝐶𝑘 = ∑ ∑ ∑ 𝐶𝑖𝑘𝑚𝑗

𝑗𝑚𝑖

𝑥𝑖𝑘𝑚𝑗         ∀𝑘                                                                                           (17)  

𝐵𝐹𝐶𝑚 = ∑ ∑ ∑ 𝐶𝑖𝑘𝑚𝑗

𝑗𝑘≠𝑚𝑖

𝑥𝑖𝑘𝑚𝑗         ∀𝑚                                                                                       (18)   

𝐹𝐹𝐶𝐵𝑘𝑙 = ∑ ∑ ∑ 𝐶𝑖𝑙𝑚𝑗

𝑗≠𝑘𝑚≠𝑘𝑖≠𝑘

𝑥𝑖𝑘𝑚𝑗 + ∑ ∑ 𝐶𝑖𝑙𝑙𝑗

𝑗≠𝑘𝑖≠𝑘

 𝑥𝑖𝑘𝑘𝑗        ∀𝑘, 𝑙                                                  (19)    

𝐵𝐹𝐶𝐵𝑚𝑙 = ∑ ∑ ∑ 𝐶𝑖𝑘𝑙𝑗

𝑗≠𝑚𝑘≠𝑚𝑖

𝑥𝑖𝑘𝑚𝑗         ∀𝑚, 𝑙                                                                                  (20)       

𝑥𝑖𝑘𝑚𝑗  , 𝑧𝑖𝑘, 𝑢𝑘𝑙   ∈ {0,1}      ∀𝑖, 𝑗, 𝑘, 𝑚, 𝑙                                                                                          (21)   

𝐹𝐹𝐶𝑘 ,  𝐵𝐹𝐶𝑚 , 𝐹𝐹𝐶𝐵𝑘𝑙 , 𝐵𝐹𝐶𝐵𝑚𝑙   ≥ 0   ∀𝑘, 𝑚, 𝑙                                                                            (22)     

 

Constraints (10)-(14) are the classical constraints for the single allocation p-hub median problem 

[36]. Constraint (10) ensures every node is assigned to only one hub. Constraint (11) limits the 

number of hubs to be opened to a given number “p”. Constraint (12) guarantees a node is assigned 

to exactly one hub. Constraints (13) and (14) ensure all the traffic between an origin-destination 

pair has been routed via the hub sub-network.  

Constraint (15) guarantees the disrupted node is a “hub” and it has only one backup. Constraint 

(16) ensures the backup node is a “hub” and it differs from the disrupted hub. Constraint (17) 

calculates the total transportation cost for part of the flow that utilizes hub k as the first hub; 

constraint (18) calculates the total transportation cost for part of the flow that utilizes hub m as the 

second hub. Constraint (19) accounts for the rerouting cost of the flow from origin i to destination 
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j via backup l when the first hub k is disrupted; constraint (20) deals with the rerouting cost when 

the second hub m is disrupted. Constrains (21) and (22) are standard integrality constraints. 

The proposed model for SApHM-HU described above is a Mixed Integer Quadratic Program 

(MIQP). The resulting formulation for SApHM-HU has 2n+4n2+n4 variables and 1+4n+4n2+2n3 

linear constraints. In the next sub-section, we present a mixed integer linear formulation (MILP) 

for the problem and show that a standard linearization will not significantly increase the problem’s 

complexity with respect to the additional number of variables and/or constraints. 

 

2.3. Linearization and models complexity comparison 

The non-linear terms in the above objective function resulted from the multiplication of binary and 

non-binary variables of 𝑢, 𝑧, 𝐹𝐹𝐶𝑘, 𝐹𝐹𝐶𝐵𝑘𝑙 and  𝐵𝐹𝐶𝐵𝑚𝑙 . To linearize the model, these terms are 

substituted by three continuous variables   𝜓𝑘𝑙  , Г𝑘𝑙  and  𝜉𝑚𝑙  as follows. 

𝜓𝑘𝑙 = 𝐹𝐹𝐶𝑘𝑧𝑙𝑙                                                                                                                                   (23)    

Г𝑘𝑙 = 𝐹𝐹𝐶𝐵 𝑘𝑙  𝑢𝑘𝑙                                                                                                                             (24)  

𝜉𝑚𝑙 = 𝐵𝐹𝐶𝐵 𝑚𝑙𝑢𝑚𝑙                                                                                                                            (25)    

     

To enforce the above equations, constraints (27)-(39) are added to the formulations. 

The resulting linear model is then presented as follows 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑤𝐹1 + (1 − 𝑤)𝐹2                                                                                                      (26)    

Subject to: 

(10) - (20) 

𝜓𝑘𝑙 ≤ 𝑣1 × 𝑧𝑙𝑙          ∀𝑘, 𝑙                                                                                                                  (27)    

𝜓𝑘𝑙 ≤ 𝐹𝐹𝐶𝑘         ∀𝑘, 𝑙                                                                                                                       (28)      

𝜓𝑘𝑙 ≥ 𝐹𝐹𝐶𝑘 −   𝑣1(1 −  𝑧𝑙𝑙)    ∀𝑘, 𝑙                                                                                               (29)      

Г𝑘𝑙 ≤ 𝑣2 × 𝑢𝑘𝑙         ∀𝑘, 𝑙                                                                                                                  (30)   

Г𝑘𝑙 ≤ 𝐹𝐹𝐶𝐵 𝑘𝑙          ∀𝑘, 𝑙                                                                                                                   (31)     

Г𝑘𝑙 ≥ 𝐹𝐹𝐶𝐵 𝑘𝑙 −   𝑣2(1 −  𝑢𝑘𝑙)     ∀𝑘, 𝑙                                                                                         (32)     

𝜉𝑚𝑙 ≤ 𝑣3 × 𝑢𝑚𝑙          ∀𝑚, 𝑙                                                                                                               (33)    

𝜉𝑚𝑙 ≤ 𝐵𝐹𝐶𝐵 𝑚𝑙          ∀𝑚, 𝑙                                                                                                                (34)    

𝜉𝑚𝑙 ≥ 𝐵𝐹𝐶𝐵 𝑚𝑙 −   𝑣3(1 −  𝑢𝑚𝑙)     ∀𝑚, 𝑙                                                                                      (35) 
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0 ≤ 𝜓𝑘𝑙   ≤ 𝑣1       ∀𝑘, 𝑙                                                                                                                     (36)  

0 ≤ Г𝑘𝑙   ≤ 𝑣2       ∀𝑘, 𝑙                                                                                                                      (37)   

0 ≤ 𝜉𝑚𝑙   ≤ 𝑣3       ∀𝑚, 𝑙                                                                                                                    (38)       

𝜓𝑘𝑙  , Г𝑘𝑙  , 𝜉𝑚𝑙 ≥ 0       ∀𝑘, 𝑙, 𝑚, 𝑙                                                                                                       (39)   

𝑥𝑖𝑘𝑚𝑗  , 𝑧𝑖𝑘, 𝑢𝑘𝑙   ∈ {0,1}      ∀𝑖, 𝑗, 𝑘, 𝑚, 𝑙                                                                                          (40)   

𝐹𝐹𝐶𝑘 ,  𝐵𝐹𝐶𝑚 , 𝐹𝐹𝐶𝐵𝑘𝑙 , 𝐵𝐹𝐶𝐵𝑚𝑙   ≥ 0   ∀𝑘, 𝑚, 𝑙                                                                            (41)     

where  

𝐹1 = ∑ ∑ ∑ ∑ 𝐶𝑖𝑘𝑚𝑗

𝑗𝑚𝑘𝑖

𝑥𝑖𝑘𝑚𝑗                                                                                                                  (42)      

and 

𝐹2 = ∑ (∑ 𝜓𝑘𝑙
𝑘

− (𝐹𝐹𝐶𝑙 + 𝐵𝐹𝐶𝑙))

𝑙

 𝑞𝑙   

+ ∑ ∑ Г𝑘𝑙

𝑙𝑘

𝑞𝑘 

+ ∑ ∑ 𝜉𝑚𝑙
𝑙𝑚

𝑞𝑚 

+ ∑ ∑ 𝜑𝑖𝑗

𝑗𝑖

𝜆𝑖𝑗(𝑞𝑖𝑧𝑖𝑖 + 𝑞𝑗𝑧𝑗𝑗)                                                                                                        (43) 

The above linear model has 2n+7n2+n4 variables and 1+4n+13n2+2n3 constraints. A comparison 

of the linear and nonlinear models for SApHM-HU shows that the standard linearization does not 

significantly increase the number of variables (see Table 2). In other words, both mixed integer 

quadratic and mixed integer linear programming formulations have to deal with O(n4) and O(n3) 

variables and constraints respectively.  The total number of variables and constraints in the two 

proposed models are presented in Table 2 alongside the classical Single Allocation p-Hub Median 

Problem (SApHMP) formulation developed by Skorin-Kapov et al. [36]. 

Table 2. Models complexity comparison 

Problem Number of 

variables 

Additional 

variables 

Number of 

constraints 

Additional 

constraints 

SApHMP* n2+ n4 - 1+n+n2+2n3 - 

SApHM-HU (MIQP) 2n+4n2+ n4 2n+3n2 1+4n+4n2+2n3 3n+3n2 

SApHM-HU (MILP) 2n+7n2+ n4 2n+6n2 1+4n+13n2+2n3 3n+12n2 

*The classical p-hub median problem formulation proposed by Skorin-Kapov et al.[36] 
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Despite a moderate increase in the number of variables and constraints, it is still difficult to solve 

the linear version of SApHM-HU by exact methods as will be shown in the computational result 

section. Therefore, the best way forward would be to design a metaheuristic for this purpose. In 

our study, we opted for an evolutionary approach namely a Genetic Algorithm which is described 

next. 

3. A  Genetic-based algorithm 

Genetic Algorithms (GAs) simulate the evolution process of species reproduction [17]. Unlike 

other metaheuristics such as simulated annealing [20] and tabu search [16] that work with a single 

solution, GA deals with a population of solutions. Various types of genetic algorithms have been 

successfully applied to optimization problems including location-allocation, assignment and etc. 

Examples of such studies are Cunha and Silva [11], Topcuoglu et al. [38], Kratica et al. [23] and 

Helm [1]. For a comprehensive study of hub-and-spoke problems and solution techniques the 

reader is referred to Alumur and Kara [2]. 

In this study, we present a GA-based algorithm to solve the SApHM-HU. The main characteristics 

of the proposed method are the introduction of an efficient solution representation and a crossover 

operator that jointly aim to maintain solution feasibility during the reproduction phase.  

 

3.1. Solution representation (hub-based approach)  

In the context of hub-and-spoke problem, the commonly used chromosome representation is the 

binary representation in which solutions are encoded as strings of zeros (0) and ones (1) [11,38]. 

However, a chromosome represented this way may yield an infeasible solution if it is subjected to 

even a minor perturbation. To alleviate this deficiency, a repair mechanism is often introduced to 

transform such an infeasible solution into a feasible one. This additional requirement is one of the 

key factors for a low performance including the excessive computational time associated with 

some GAs reported in the literature. In this study, we propose an efficient solution representation 

and crossover operator that jointly aim to maintain solution feasibility during the reproduction 

phase. 

 

We term our solution representation scheme a hub-based approach. This uses an array (or string) 

with the length of 1×n where the length of the array, n, corresponds to the total number of nodes 

in the network. Decoding the string from left to right, the first location corresponds to node number  
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1, the second location to node number 2, and so on. Each location on the string (i.e., a gene) 

contains a number which may or may not be the same as the "column number". These numbers 

represent the hub facilities in the network to which one or more nodes (i.e., column number) are 

allocated. Each hub node is allocated to itself; this is shown where a column number matches a 

hub number. Figure 3 illustrate a typical solution to the problem with ten nodes and three hubs. 

Nodes 5, 7, and 9 are assumed to be hub facilities. The three nodes are allocated to themselves but 

the other nodes in the network are assigned to one of these hubs. 

 

 

Parent population  

Crossover 

approved? 

Select two 

individuals 

Mutation 

approved? 

Apply crossover 

& Mutation 

Apply 

mutation 

Select one 

of the two 

individuals 

Offspring population  

Population 

completed? 

Exit 

Yes 

No 

Yes Yes 

No 

No 

Figure 2. Flowchart of the proposed genetic algorithm.  
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3.2. Crossover operator 

Given the solution representation described above, we present a special type of crossover operator 

to generate new offspring solutions. The proposed crossover operator ensures feasibility of the 

resulting solutions and its main steps are given in Figure 4.  

 

Step 1: Construct a template array with the length of n 

Step 2: Select two parent chromosomes form the current population 

Step 3: Choose one of the two parents randomly (e.g., parent 1) 

DO 

Step 4:  Scan the parent chromosome in hand and transfer the first available gene 

(i.e., a hub) and its counterparts (i.e., all nodes that are assigned to that 

particular hub) to the offspring chromosome 

Step 5: Select the other parent  

UNTIL  the offspring chromosome is completely constructed or no further gene could be   

              transferred to the offspring chromosome from any of the two parents 

Step 6: If the offspring chromosome is completed, Stop; otherwise ignore the current 

offspring and GO to Step 1 

Figure 4. A pseudo code for the proposed crossover operator 

 

In transferring genes from each of the parent chromosomes, the following cases may arise: 

Case 1: The corresponding location of the selected gene in the offspring chromosome has been 

already occupied by another gene. In this case, the selected gene is discarded and the donor 

chromosome is further scanned to find another candidate gene to transfer. 

5 7 7 9 5 9 7 9 9 5 

5 7 

9 

1 

10 

4 

3 

8 

6

6 

2 

Figure 3. Solution representation scheme. 
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Case 2: All transferable genes in two parent chromosomes have been transferred to the offspring 

chromosome but the new solution is not being completely constructed. In other words, there are 

one or more locations (nodes) in the offspring chromosome for which no hub centre have been 

decided. In this case, if the offspring chromosome contains p hubs then the empty locations in the 

offspring chromosome are filled by randomly allocating the undecided nodes (nodes with no 

assigned values) to the existing hub centres. Otherwise, the solution is discarded and another 

offspring is generated using a new template array and a new pair of parents. 

 

3.2.1 An illustrative example of our crossover operation 

An illustrative example of a crossover operation is presented in Figure 5. In parent1 chromosome, 

the hub centres are node 1, 4, and 7 while in parent2 they are assumed to be node 3, 5 and 7. 

Parent1 is selected to donate the first gene. The crossover operation begins with constructing an 

empty array with the length of 10. Parent1 chromosome is then scanned from left to right and the 

first gene (i.e., the first hub centre) is selected. The first selected gene is “1” which is placed in the 

“first” position (from the left side) of the offspring chromosome. Next the other genes with the 

same value of “1” (i.e., second and third genes) are transferred to their corresponding places in the 

offspring chromosome. Once the first gene is successfully transferred from parent1 into the 

offspring chromosome, the second parent (i.e., parent2) is scanned from left to right to search for 

a candidate gene that could be transferred into the offspring chromosome. In this case, the first 

candidate to be examined is hub centre “3”. The gene with value “3” should be placed in the third 

position of the offspring chromosome. However, as the third column in the offspring chromosome 

has been already occupied by hub centre “1”, this gene is discarded and values of all genes that 

contain the same value, “3”, in parent2 are set to zero. As the gene with value “3” could not be 

transferred to the offspring’s template chromosome, parent2 chromosome is scanned again to 

search for a new transferable gene; the next candidate is gene “5”. The fifth position in the 

offspring chromosome is free then hub centre “5” (gene with value 5) could be placed in the fifth 

location of the offspring chromosome. Subject to availability of space in the offspring 

chromosome, other genes with value “5” in parent2 are next transferred to their corresponding 

locations in the offspring chromosome. The offspring chromosome has not been completed yet, 

therefore, parent1 is re-examined to find another gene that could be transferred into the offspring 

chromosome. Similar to gene “3” of parent 2, gene “4” in parent 1 chromosome could not be 
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transferred as its corresponding location in the offspring chromosome has been occupied by 

another gene i.e., gene “5”. Copying the next transferable gene from parent1 chromosome (i.e., 

gene “7”) to the offspring chromosome ends the crossover operation. It is worthwhile to mention 

that selecting each one of the two parents as the first donor at the beginning of the crossover 

operation will likely lead to a structurally different offspring chromosome. 

 

  

 

 

 

 

 

 

 

3.3. Mutation operator 

In our GA, the mutation operation is performed by randomly selecting two unidentical genes that 

represent non-hub nodes in the network and swapping their positions. The selected genes must be 

unidentical to insure population diversity and they have to be non-hub to avoid generating 

infeasible solutions. 

 

3.4. Backup hub selection 

The objective of SApHM-HU is to select the location of the hubs, allocate non-hub nodes to the 

hub facilities, and determine a backup facility for each hub in the network. The first and the second 

decisions are explicitly modelled in the solution representation described above. To decide on the 

backup facilities, we examined the following two approaches:  

(i) In the first method, once a new solution is generated a backup facility is selected randomly  

for every hub in its corresponding network.  

(ii) In the second approach, upon the generation of a new solution, p-1 candidate solutions are 

generated by assigning one of the existing hubs as the backup facility for the first hub in the 

network. Note that for each hub in the network there exist p-1 candidate backup facilities. The 

total cost associated with each candidate solution is then calculated and the one with lowest cost 

is selected.  

1 1 1 4 7 7 7 4 4 7 

1 1 1 5 5 7 7 5 5 7 

3 3 3 5 5 7 7 5 5 7 

1 1 1 7 7 7 

5 5 5 5 

Parent1: 

Offspring: 

Parent2: 

Figure 5. Example of crossover operation. 
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To further clarify the second backup selection approach, consider a typical solution for the 

previous problem in Figure 6. Here if hub “5” is disrupted, either hub “7” or hub “9” could be used 

as the backup hub for the assumed disrupted hub “5”. To decide on the backup, the transportation 

costs of the two available options are calculated and compared. The backup node with the lower 

cost is selected. This process continues to select a backup for the other two hubs in the network 

(i.e., hubs “7” and hub “9”).  

 

 

 

 

 

 

 

In this study, we performed a small experiment to evaluate and compare the performance of the 

above two strategies in selecting backup hubs.  The results of our experiment for the problem 

instances with up to five hubs show that the second approach provides better solutions without 

significantly increasing the computational times. However, as the number of hubs increases (e.g., 

greater than 5) the first approach which randomly selects backup hubs is expected to be 

computationally more efficient as the second one enumerates all the existing hubs (i.e., p-1). 

 

4. Computational Results 

4.1. Experimental design 

We tested our algorithm on 144 benchmark problems with 10, 15, 20, 25, 55 and 81 nodes derived 

from U.S. Civil Aeronautics Board (CAB) [32] and Turkish Postal System (TR) datasets [12]. The 

problem instances are generated by setting the number of nodes n to 10, 15, 20, 25 55 and 81; 

number of hubs p to be opened to 3 and 5; the discount factor α to 0.2, 0.4 and 0.8; and the objective 

weight w to 0.3, 0.5, and 0.7. The coefficients of collection χ and distribution cost δ are set to 1 

per unit for all test problems (χ = δ =1). The probability of hub failures, qi, for all nodes in the 

network i =1, …, n are generated randomly and selected from uniform distribution [0.1, 0.3].  
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Figure 6. Backup selection. 
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The GA parameters are decided as follows. The population size is set to 150 for all test problems; 

the probabilities of crossover and mutation are set to 0.85 and 0.9 respectively. The computational 

time for problem with 10 and 15 nodes is set to 10 and 20 seconds respectively; for problems with 

20 nodes and three hubs it is set to 20 seconds; for 20 nodes and five hubs it is 30 seconds; for 

problems with 25 nodes and three hubs it is set to 40 seconds; for 25 nodes and five hubs the 

computational times is set 60 seconds; for 55 nodes (three and five hubs) it is set to 90 and 120 

seconds; for 81 nodes it is set to 150 seconds . Each test problem is run 20 times and the best 

results are reported. The MIP version of SApHM-HU model is coded in AIMMS and solved using 

CPLEX 12.4 with CPLEX options set to their default values. The algorithms are run on a Dell 

Intel Core PC with 2.40 GHz processor with 2 GB of RAM. 

 

4.2. Comparison vs optimal solution (small instances)  

The computational performance of the proposed GA and CPLEX is presented in Tables 3. In Table 

3, we present the computational results for 36 problems with 10 nodes and three and five hubs 

derived from both CAB [32] and TR [12]datasets. In this Table, we report the Total Cost (TC) 

which sums the Regular and the Expected Transportation Costs (RTC and ETC), location of the 

hubs, backup hubs, and the processing time to obtain the optimal/best solutions. For instance, in 

the first benchmark problem where n=10, p=3, α=0.2, w=0.3 the total cost of the optimal solution 

is 367.24 units. The hub facilities to be opened are located at nodes 4, 2, and 7 and the backup hubs 

are 2, 4, and 4 respectively (hub 4 serve as the backup up for both hub 2 and hub 7). We use the 

same parameters and input data including the inter-hub discount factors (α), objective weights (w) 

, coefficients of collection and distribution (χ and δ) and probability of hub failures (qi) in both GA 

and CPLEX.   

 

Using CPLEX we solved all 36 benchmark problems to optimality. However, our results show that 

the algorithm requires significantly longer computing time when compared against that of the GA. 

The average computing times returned by CPLEX and the GA over all 36 instances presented in 

Table 3 is 1030.47 and 1.97 seconds respectively. The GA solved 35 (out of 36) instances to 

optimality in a very short computing time while a near optimal solution was located within a 0.3% 

duality gap only. 
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 Table 3: Computational results for the GA and CPLEX  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

(1): Number of nodes;(2):Number of hubs;(3)Discount factor;(4):Objective weight;(5):Total cost 

 

4.3. The GA performance (large instances) 

Tables 4 and 5 present the computational performance of the GA on problem instances with 15, 

20, 25, 55 and 81 nodes which are taken from CAB and TR datasets. The average times to obtain 

the best solutions for problems with 15, 20, and 25 nodes (CAB instances) are 10.7, 18.1, and 39.8 

seconds respectively; for problems with 25 (TR instances), 55 and 81 nodes are 30.9, 97.3 and 

139.7 seconds respectively. The average computational time to obtain the best solutions over all 

n(1) p(2) α(3) w(4) 

GA best  CPLEX  %GAP 

Hub 

 locations 

Backup 

 hubs 

TC(5) Time  
(sec) 

 TC(5) Time  
(sec) 

  

10 (CAB) 

3 

0.2 

0.3 4,2,7 2,4,4 367.24 0.98  367.24 6160  0.00 

0.5 4,2,7 2,4,4 409.89 0.45  409.89 460  0.00 

0.7 4,2,7 2,4,4 452.54 0.64  452.54 434  0.00 

0.4 

0.3 4,2,7 2,4,4 401.54 0.72  401.54 3140  0.00 

0.5 4,2,7 2,4,4 457.13 0.97  457.13 714  0.00 

0.7 4,2,7 2,4,4 512.72 1.20  512.72 336  0.00 

0.8 

0.3 4,2,7 2,4,4 470.15 1.30  470.15 3700  0.00 

0.5 4,2,7 2,4,4 551.62 0.62  551.62 862  0.00 

0.7 4,9,7 9,4,4 621.87 1.40  621.87 329  0.00 

5 

0.2 

0.3 1,2,4,7,8 8,4,2,1,7 375.46 4.20  375.46 1970  0.00 

0.5 1,2,4,7,8 8,4,2,1,7 369.16 6.10  369.03 322  0.00 

0.7 1,2,4,7,8 8,4,2,1,4 362.78 3.60  362.78 401  0.00 

0.4 

0.3 1,2,4,7,8 8,4,2,1,7 432.36 3.20  432.53 2316  0.00 

0.5 1,2,4,7,8 8,4,2,1,2 437.50 3.00  437.50 373  0.00 

0.7 1,2,4,9,7 7,9,7,4,4 443.94 7.60  442.46 276  0.33 

0.8 

0.3 1,2,4,7,8 7,4,2,1,2 547.03 2.20  547.03 2924  0.00 

0.5 1,2,4,7,8 2,4,2,1,2 574.43 5.90  574.43 832  0.00 

0.7 1,9,4,7,8 8,4,8,1,7 588.80 2.80  588.85 684  0.00 

10(TR) 

3 

0.2 

0.3 1,2,7 2,1,1 293.24 5.84  293.24 925  0.00 

0.5 1,2,7 2,1,1 316.79 0.30  316.79 253  0.00 

0.7 1,2,7 2,1,1 340.35 0.47  340.34 178  0.00 

0.4 

0.3 1,2,7 2,1,1 331.74 0.50  331.74 1436  0.00 

0.5 1,2,7 2,1,1 371.96 0.30  331.74 241  0.00 

0.7 1,2,7 2,1,1 412.18 0.56  412.18 208  0.00 

0.8 

0.3 1,2,7 2,1,2 405.72 0.27  405.72 2660  0.00 

0.5 1,2,7 2,1,1 475.58 0.42  475.58 350  0.00 

0.7 1,2,7 2,1,2 543.38 0.61  543.38 206  0.00 

5 

0.2 

0.3 1,2,4,7,8 8,8,7,8,2 333.59 1.02  333.59 867  0.00 

0.5 1,2,4,7,8 8,8,7,8,2 324.55 1.06  324.55 146  0.00 

0.7 1,2,4,6,7 2,6,7,2,6 288.63 1.37  288.63 97  0.00 

0.4 

0.3 1,2,4,7,8 8,8,1,8,2 393.88 0.46  393.88 712  0.00 

0.5 1,2,4,7,8 8,8,1,8,2 395.74 3.18  395.74 248  0.00 

0.7 1,2,4,6,7 2,6,1,1,6 391.22 2.61  391.22 151  0.00 

0.8 

0.3 1,2,4,7,8 8,1,1,8,1 513.05 0.90  513.05 1516  0.00 

0.5 1,2,4,7,8 8,1,1,8,1 537.11 2.50  537.11 382  0.00 

0.7 1,2,4,7,8 8,1,1,8,1 561.18 1.64  561.18 288  0.00 
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108 instances is 56.1 seconds. For relatively larger problem instances i.e., problems with 15, 20, 

25, 55 and 81 nodes CPLEX fails to produce solutions due to excess of memory.  

 

A further examination of the final solutions to the benchmark problems presented in Tables 3, 4 

and 5 shows that, especially for low values of  the objective weight (e.g., w=0.3), the algorithm is 

more likely to locate hub facilities in areas with low probability of failure as long as the regular 

transportation cost (RTC) is not substantially high. For instance, for the problem with 15 nodes 

and three hubs (α=0.2; w= 0.3), the hub facilities are located at nodes 6 (with probability of failure 

= 0.12), 10(0.10), and 15 (0.11). However, as the value of the objective weight increases to 0.7 

(w=0.7) the new location of the hubs found to be at nodes 4(0.16), 10(0.10) and 12(0.24). This is 

not surprising as a high probability of hub failures elevates the expected transportation cost which 

is the primary concern when the objective weight is low.  

 

Figure 7 illustrates approximate locations and names of the 25 US cities of CAB dataset. For the 

TR dataset, this information could be found in the Appendix. 

 

 

 

 

 

 

 

 

 

 

 

1 Atlanta 6 Cleveland 11 Kansas City 16 New Orleans 21 St. Louis 

2 Baltimore 7 Dallas-Fw 12 Los Angeles 17 New York 22 San Francisco 

3 Boston 8 Denver 13 Memphis 18 Philadelphia 23 Seattle 

4 Chicago 9 Detroit 14 Miami 19 Phoenix 24 Tampa 

5 Cincinnati 10 Houston 15 Minneapolis 20 Pittsburgh 25 Washington 

Figure.7. The 25 US cities names of the CAB dataset and their approximate locations. 

on the US map 

 



22 
 

Table 4: Computational results for the GA: CAB dataset 

 

(1): Number of nodes;(2):Number of hubs;(3)Discount factor;(4):Objective weight;(5):Regular transportation cost;(6):Expected transportation 

cost;(7): Total cost 

 

 

n(1) p(2) α(3) w(4) RTC(5) ETC(6) TC(7) Time 
(sec) 

Hub 

 locations 

Backup 

hubs 

15 

3 

0.2 
0.3 318.70 298.07 616.77 13.9 6,10,15 15,15,10 
0.5 495.65 238.35 734.00 8.2 6,4,10 4,6,4 
0.7 583.33 207.88 791.21 10.8 4,10,12 10,4,10 

0.4 
0.3 344.97 322.28 667.25 16.2 9,10,15 15,15,10 
0.5 538.93 248.81 787.74 11.6 6,4,10 4,10,4 
0.7 713.62 179.20 892.82 2.8 4,6,7 6,4,4 

0.8 
0.3 373.96 377.98 751.94 2.6 4,6,10 6,4,4 
0.5 577.87 302.28 880.15 3.9 9,4,11 4,11,4 
0.7 806.52 176.46 982.98 2.3 6,4,11 6,4,6 

5 

0.2 
0.3 199.67 533.37 733.04 10.0 6,4,10,15,12 4,10,4,4,15 
0.5 283.18 409.06 692.24 16.6 6,4,10,12,14 4,10,4,14,12 
0.7 373.60 261.22 634.82 12.1 6,4,7,12,14 4,7,4,7,7 

0.4 
0.3 289.72 516.61 806.33 18.0 6,4,11,10,15 4,15,10,15,10 
0.5 388.84 426.48 815.32 17.7 6,4,10,11,12 4,11,11,4,11 
0.7 489.61 293.90 783.51 11.2 6,4,7,12,14 4,7,4,7,4 

0.8 
0.3 334.08 566.51 900.59 13.6 6,4,10,11,15 4,11,11,15,11 
0.5 556.77 407.91 964.68 11.1 6,4,11,10,15 4,11,10,15,10 
0.7 751.80 262.50 1014.30 9.5 5,6,4,10,11 6,4,11,11,4 

20 

3 

0.2 
0.3 247.04 281.97 529.01 22.2 4,17,10 17,4,4 
0.5 382.88 226.62 609.50 8.9 4,17,19 17,4,4 
0.7 507.18 162.64 669.82 7.2 4,17,12 17,4,4 

0.4 
0.3 284.21 296.09 580.31 15.9 4,17,10 17,4,4 
0.5 466.49 210.99 677.49 8.7 4,17,10 17,4,4 
0.7 593.44 170.16 763.60 6.8 4,17,12 17,4,4 

0.8 
0.3 332.00 333.13 665.12 26.6 1,17,4 4,4,1 
0.5 548.63 237.37 785.99 6.4 1,17,4 4,4,1 
0.7 773.36 141.82 915.18 8.6 1,17,4 17,4,1 

5 

0.2 
0.3 164.80 389.92 554.72 25.1 1,17,4,7,19 4,4,17,19,7 
0.5 288.34 267.14 555.47 23.8 1,17,4,10,19 4,4,1,1,10 
0.7 360.36 191.88 552.24 25.7 1,17,4,7,12 17,4,1,4,7 

0.4 
0.3 210.70 414.85 625.55 20.8 1,17,4,10,19 4,4,1,1,10 
0.5 356.61 329.31 685.92 22.8 1,17,4,20,19 4,20,20,4,4 
0.7 483.55 231.95 715.50 25.6 1,6,17,4,12 4,17,6,6,4 

0.8 
0.3 318.79 488.56 807.35 26.8 1,17,3,4,10 17,4,10,1,4 
0.5 536.79 351.46 888.24 20.1 1,17,3,4,10 4,4,10,1,4 
0.7 727.32 224.20 951.53 23.5 1,17,3,4,7 17,4,7,1,4 

25 

3 

0.2 
0.3 262.85 305.82 568.67 39.5 5,25,19 25,5,5 
0.5 447.82 219.84 667.66 42.1 5,25,19 25,5,5 
0.7 581.29 160.90 742.19 26.7 5,25,12 25,5,5 

0.4 
0.3 316.12 301.25 617.38 23.2 5,25,8 25,5,5 
0.5 511.21 214.87 726.09 15.3 5,25,8 25,5,5 
0.7 662.44 168.46 830.90 31.4 5,25,12 25,5,5 

0.8 
0.3 365.17 328.24 693.40 32.7 5,25,8 25,5,5 
0.5 628.86 238.94 867.80 29.2 5,25,8 25,5,5 
0.7 862.89 150.93 1013.82 31.9 5,20,8 20,5,5 

5 

0.2 
0.3 239.60 391.36 630.96 55.2 25,5,3,10,19 5,25,25,5,10 
0.5 399.23 299.10 698.33 54.3 5,25,3,21,19 21,5,25,5,21 
0.7 431.13 246.87 678.00 59.1 25,17,4,10,12 17,25,25,4,10 

0.4 
0.3 289.11 435.57 724.68 35.3 25,5,10,8,20 20,25,5,10,5 
0.5 483.24 307.87 791.11 53.6 5,25,20,10,8 20,20,5,5,10 
0.7 595.26 248.37 843.63 50.4 5,17,10,12,25 25,25,5,10,17 

0.8 
0.3 359.10 509.39 868.49 47.9 25,20,5,10,8 20, 5,20,5,10 
0.5 571.44 393.21 964.65 39.1 21,25,5,20,8 5,21,21,21,21 
0.7 794.99 259.60 1054.59 49.1 5,25,4,20,8 20,20,5,5,20 
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Table 5: Computational results for the GA: TR dataset 

 
(1): Number of nodes;(2):Number of hubs;(3)Discount factor;(4):Objective weight;(5):Regular transportation cost;(6):Expected transportation 

cost;(7): Total cost. 

 

 

n(1) p(2) α(3) w(4) RTC(5) ETC(6) TC(7) Time 
(sec) 

Hub 

 locations 

Backup 

hubs 

25 

3 

0.2 
0.3 205.12 214.00 419.13 13.9 14,16,17 16,17,16 
0.5 270.83 196.73 467.56 13.3 19,16,15 16,15,16 
0.7 382.27 124.26 506.53 9.8 11,3,15 3,11,3 

0.4 
0.3 224.33 224.37 448.71 27.0 14,16,17 16,17,16 
0.5 340.73 186.90 527.63 11.8 14,16,15 16.15.16 
0.7 437.73 133.75 571.48 23.1 11,3,15 3,15,3 

0.8 
0.3 256.49 239.95 496.43 6.6 16,17,13 17,16,17 
0.5 435.51 172.65 608.16 12.2 16,17,13 17,16,17 
0.7 598.47 102.83 701.30 12.9 16,17,13 17,16,17 

5 

0.2 
0.3 133.16 304.95 438.11 37.4 19,16,17,15,13 16,17,15,17,17 
0.5 205.71 238.39 444.10 48.1 19,3,16,13,15 16,15,3,15,3 
0.7 274.31 140.41 414.72 36.5 19,3,16,13,15 16,15,3,15,3 

0.4 
0.3 178.66 325.31 503.97 51.0 14,16,13,15,17 16,17,17,17,15 
0.5 258.59 262.76 521.35 57.2 11,3,16,15,13 16,15,3,3,15 
0.7 353.54 162.29 515.83 41.1 19,3,17,15,13 3,17,13,17,17 

0.8 
0.3 233.02 396.66 629.68 51.2 16,14,17,15,13 14,16,15,17,17 
0.5 359.14 307.15 666.29 57.1 16,14,3,15,13 3,16,15,3,15 
0.7 472.99 211.39 684.38 45.8 1,3,16,15,13 16,16,3,3,15 

55 

3 

0.2 
0.3 205.13 223.78 428.91 71.4 55,18,26 18,26,18 
0.5 325.92 159.68 485.60 81.1 55,18,26 18,26,18 
0.7 469.51 109.17 578.68 85.4 19,18,26 18,26,18 

0.4 
0.3 240.28 222.15 462.43 85.9 55,14,18 14,18,14 
0.5 368.81 168.52 537.33 89.4 55,18,26 18,26,18 
0.7 554.71 123.14 677.85 86.6 55,45,26 45,26,45 

0.8 
0.3 284.93 252.30 537.23 81.9 29,18,14 14,29,29 
0.5 468.18 176.17 644.35 87.1 55,18,14 14,14,18 
0.7 645.15 116.11 761.26 69.2 29,18,26 18,26,18 

5 

0.2 
0.3 191.80 313.57 505.37 113.8 55,14,7,33,26 14,26,26,7,33 
0.5 306.39 214.93 521.32 97.2 55,18,14,26,33 14,26,55,33,18 
0.7 434.87 129.28 564.15 111.2 55,14,18,33,26 14,18,26,18,18 

0.4 
0.3 222.74 336.55 559.29 113.7 25,55,18,26,14 55,25,26,18,18 
0.5 360.81 250.00 610.81 114.4 34,29,18,26,14 29,14,29,18,18 
0.7 497.35 173.84 671.20 112.0 55,2,31,32,26 2,55,32,26,32 

0.8 
0.3 278.56 404.40 682.96 117.3 25,34,9,18,14 34,25,14,14,18 
0.5 464.34 285.35 749.69 119.2 25,18,14,9,26 14,26,18,14,18 
0.7 649.52 181.94 831.46 113.8 29,7,18,26,33 18,26,26,29,7 

81 

3 

0.2 
0.3 257.17 275.59 532.75 137.7 42,44,14 14,42,42 
0.5 426.98 210.62 637.60 148.2 51,44,6 44,51,51 
0.7 567.18 142.81 709.99 143.9 51,16,6 6,6,51 

0.4 
0.3 277.83 289.78 567.61 141.5 51,6,9 6,51,6 
0.5 452.04 219.60 671.64 142.4 42,44,6 6,6,42 
0.7 630.38 132.19 762.57 149.5 50,6,9 6,50,6 

0.8 
0.3 311.10 287.14 598.25 118.0 51,71,4 71,51,71 
0.5 506.39 215.59 721.99 141.4 51,6,4 6,51,51 
0.7 710.11 129.42 839.53 125.2 51,6,4 6,51,51 

5 

0.2 
0.3 278.43 409.11 687.54 150.0 42,14,47,5,9 5,42,5,42,42 
0.5 460.41 285.55 745.96 145.5 71,4,42,9,47 42,47,9,42,71 
0.7 555.43 215.57 771.00 124.9 58,6,18,34,45 6,18,6,6,6 

0.4 
0.3 290.47 446.37 736.84 133.7 71,14,4,5,69 14,71,69,71,5 
0.5 448.83 338.47 787.30 150.1 50,71,4,9,34 71,50,71,71,71 
0.7 630.70 214.54 845.24 148.2 71,51,6,9,34 6,71,71,6,6 

0.8 
0.3 316.53 454.26 770.79 122.9 71,42,4,5,9 42,71,5,71,71 
0.5 512.14 329.28 841.42 150.0 6,4,5,9,51 51,51,6,6,6 
0.7 717.64 201.67 919.32 142.0 6,4,5,9,71 71,71,71,6,6 
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4.4. A general discussion 

To learn more about the pros and cons of considering hub unavailability at the design stage, we 

examine the two optimal solutions provided by SApHM-HU and SApHM models for the problem 

with 10 nodes and 3 hubs. Here, the inter-hub discount factor and the objective function weight 

are 0.2 and 0.3 respectively. As presented in Table 3, the optimal solution to the SApHM-HU 

problem suggests a network in which Chicago (nodes 4) , Baltimore (node 2), and Dallas-Fw (node 

7) are hubs (see Figure 8). The (unweighted) regular and expected transportation costs of the 

network are 516.52 and 303.26 units respectively. With regard to backup facilities, a solution 

suggests hub 2 (i.e., Baltimore) as the backup for hub 4 (Chicago) and hub 4(Chicago) as the 

backup for facilities 2 (Baltimore) and 7 (Dallas-Fw).  

 

The optimal solution to the same problem where the objective is merely to determine the ideal hub 

locations and the allocation of non-hubs (i.e., the optimal solution to the SApHM problem) is 

depicted in Figure 1. The regular transportation cost of this network is 491.93 [36]. To calculate 

the expected transportation cost of the network presented in Figure 1, we simulate the situations 

in which one hub at a time becomes unavailable and the most economically attractive hub in the 

network is employed as the backup facility. The expected transportation cost is then calculated by 

measuring the routing and rerouting as well as the demand loss costs. For a fair comparison, the 

same probability of hub failures are utilized to calculate the expected transportation costs of the 

two solutions provided by SApHM-HU and SApHM models.  

 

Our simulation results indicate that in the network without hub unavailability, the consideration of 

the minimum expected transportation cost incurs when hub 4 (Chicago) serves as the backup for 

hubs 6 (Cleveland) and 7 (Dallas-Fw), and hub 7 (Dallas-Fw) supports hub 4 (Chicago). The 

expected transportation cost of the network is then 403.32 units. 

 

The above analysis shows that the regular transportation cost of the solution provided by SApHM-

HU (516.52 unit) model is 4.8% higher than that of the solution provided by the model without 

hub unavailability consideration (491.93 units). Its expected transportation cost however, is in fact 

25% lower (303.26 vs 403.32). Managers may hesitate to undertake such a large increase in the 

regular transportation cost but they may be willing to spend 4.8% more in order to reduce the 
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expected transportation cost which may result from possible hub failures. This accounts for about 

25% as shown in the above problem instance. 

 

 

 

 

 

 

 

 

 

 

 

 

The optimal/best solutions we report for SApHM-HU and those presented in the literature for the 

single allocation p-hub median problem [36] show that the topology of the networks provided by 

the two models differ either with regard to the location of the hubs, or the allocation of  the non-

hubs or both (see for instance, Figure 1 and Figure 8).  Nevertheless, for the high objective weight 

values (e.g., w ≥ 0.7) where the minimization of the regular transportation cost has relatively more 

priority, we expect an increase in similarities between the final solutions provided by the two 

models namely SApHM and SApHM-HU.     

 

4.5. Practical consideration: the case of multiple backups  

In this section we investigate the case where the total demand at a disrupted hub is not necessarily 

allocated to one single operational hub only. This situation arises especially in the airline industry. 

To cater for such a scenario, we adapt our methodology accordingly. We refer to this relaxed 

problem in which demand points affected by disruption are allowed to be reallocated to any of the 

operational hubs in the network as the single hub failure -multiple backups problem. 

 

 

 

1 Atlanta 2 Baltimore 3 Boston 4 Chicago 5 Cincinnati 

6 Cleveland 7 Dallas-Fw 8 Denver 9 Detroit 10 Houston 

Figure.8. Optimal solution to the problem with 10 nodes and three hubs: hub failure consideration. 

: Hub facility 
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4.5.1  An illustrative example of networks with single and multiple backups  

Our preliminary analysis shows that the solution topology of a problem with single backup might 

be different than that of the same problem with multiple backups consideration. To investigate 

this, we examine the two solutions to a problem with 10 nodes with single and multiple backups 

considerations.  

 

Figure 9 compares the topologies of a problem from CAB dataset with 10 nodes, 3 hubs, discount 

factor α  of 0.2 and objective weight factor of 0.3 (i.e., 10n3H0.2 α 0.3w) when single and multiple 

backups are considered. As shown in Figure 9, the location of hub facilities in both networks are 

the same but the two networks differ in terms of demand allocation (i.e., node 8 is now assigned 

to hub 4 instead of hub 7).  

 

 

 

   

 

 

 

 

 

 

With regard to the selected backup hubs, examining the two solutions indicate that when a single 

backup is considered for the entire demand affected by a disruption, hub 2 is recommended as the 

backup for hub 4 and hub 4 as the backup for both hub 2 and hub 7. However, when it comes to 

the case of considering multiple backups, the solution recommends that demand points 1, 5, 6 and 

9 to be allocated to hub 2 and hub 7 to act as the backup for node 8. In this case hub 4 is considered 

as the backup for demand nodes 3 and 10. 

In the above example problem, the differences between the corresponding topologies and backups 

of the two solutions resulted in a cost difference as well. In case of multiple backups, the cost of 

the best solution found for the problem is 1.07 unit lower than the cost of the optimal solution to 

the same problem with single backup consideration.  

2 7 

4 3 

5 

10 

1 

6

6 

8 

a): single backup consideration 

 

9 

2 7 

4 3 

5 

10 

1 

6

6 

8 

b): multiple backups consideration  

 

9 

Figure. 9. A network topology comparison between single and multiple backup strategies. 
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4.5.2  Methodology 

The proposed mathematical formulation for the single hub failure-single backup, as described 

earlier, can be extended to represent multiple backups by implementing some adjustments and 

introducing new binary variables such as, 𝑢 𝑖,𝑘,𝑛  and 𝑢 𝑗,𝑘,𝑚 , to account for backup hubs for 

demand points i and j. This modified non-linear and mixed integer problem is significantly more 

complex than the one developed for the single hub failure-single backup. This problem is larger in 

terms of both the number of variables and constraints and hence not appropriate for the exact 

methods as previously shown in the first case namely the single hub failure-single backup.  

Our meta-heuristic namely the proposed GA has shown to be powerful and flexible enough to 

accommodate the necessary changes without incurring a considerable extra computational burden. 

This flexibility of the GA proved that meta-heuristics are the best way forward in tackling, and 

adapting to, complex decision problems. The following changes to our initial GA algorithm are 

made. 

In the proposed GA, the fitness value of an offspring for single hub failure-multiple backups case 

includes three terms. The calculation of the regular transportation cost (i.e., the first term) and the 

penalty cost of losing the demand at (assumed disrupted) hubs (i.e., the second term) are straight 

forward; these costs are calculated using the extracted data from the solution representation e.g., 

locations and allocations data. To calculate the third term (i.e., the re-routing cost), one of the p-

hubs in the network is first selected and then a backup facility is assigned (randomly) to each 

demand point allocated to that particular hub. The entire flow originated from each demand point 

(initially passes through the disrupted hub) is then rerouted via the backup facilities assigned to 

that node and the rerouting cost is calculated. The above steps are repeated for all selected hubs in 

the network and the rerouting cost are summed to represent the third term of the fitness value for 

the generated offspring. The rest of the steps of the modified GA are similar to that of the initial 

GA described earlier for the single hub failure -single backup case. 

 

4.5.3  Computational results for the single hub failure -multiple backups case 

We tested the new GA on 36 instances with 10 nodes and 3 and 5 hubs. The computational results 

are presented in Table 6. In this table, the “network” represents the location of the hubs and the 

allocation of non-hubs to these hubs; “backup hubs” denote the selected backup facilities for all 
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non-hub nodes in the network. For instance, in the first row of Table 6, network 4224447747 shows 

that nodes 4, 2 and 7 are selected as hubs where node 1, 4, 5, 6 and 9 are being allocated to hub 4; 

nodes 2 and 3 are allocated to hub 2; and nodes 7, 8, and 10 are being assigned to hub 7.  The 

associated “backup hubs” for the described network (i.e., 2◌4◌22◌424) recommend hub 2 as the 

backup for nodes 1, 5, 6, and 9; and hub 4 as the backup for nodes 3, 8 and 10.  

It is worth noting that the optimal solution to the problem with single hub failure multiple backups 

is either equal or less than that of the single hub failure-single backup case. In other words, the 

optimal solution to a single hub failure-single backup problem provides an upper bound to the 

same problem with single hub failure -multiple backups. This is mainly because the solution space 

of the problem with single hub failure multiple backups is relatively larger and obviously includes 

the optimal solution of the problem with single hub failure-single backup. Note that this claim is 

valid only if the problem is solved to optimality. 

The above statement is illustrated in our computational results presented in Table 6. Here, in some 

cases the best solutions to the instances with multiple backups have lower cost compared to that 

of the same problem with single backup consideration.  

Finally, comparisons of the costs and computational times for instances with single and multiple 

backups in Table 6 also show that the GA has difficulties when solving such problems.  This is as 

one may expect given that the modified GA should deal with a larger solution space and hence a 

larger number of combinations to consider. According to Table 6, allowing such flexibility 

provides a cost saving up to 1.9 units.  

In summary, our computational results for small problem instances show that (1) the topology of 

optimal networks for a problem with single and multiple backup considerations might be  

Table 6: GA results for the single hub failure multiple backup  
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(1): Number of nodes;(2):Number of hubs;(3)Discount factor;(4):Objective weight;(5):Total cost 

 

different in terms location of hubs, demand allocations and/ back up selection (2) in the absence 

of a constraint to allocate the entire affected demand to a single backup, a network with multiple 

backups is likely to be less costly than that with single backup consideration and (3) solving 

problem instances of the relaxed problem is computationally more expensive than those with single 

backup consideration. 

 

 

 

n(1) p(2) α(3) w(4) 

Case I:single hub failure- single 

backup 

 Case II:  single hub failure -multiple 

backups 

Hub 

 locations 

Backup 

 hubs 

TC(5) Time  
(sec) 

 Network Backup 

 hubs 

TC(5) Time  
(sec) 

10 (CAB) 

3 

0.2 

0.3 4,2,7 2,4,4 367.24 0.98  4224447747 2◌4◌22◌424 367.24 3.14 

0.5 4,2,7 2,4,4 409.89 0.45  4224447747 2◌4◌22◌424 409.89 0.47 

0.7 4,2,7 2,4,4 452.54 0.64  4224447747 2◌4◌22◌424 452.54 4.96 

0.4 

0.3 4,2,7 2,4,4 401.54 0.72  4224447747 2◌4◌22◌424 401.54 0.87 

0.5 4,2,7 2,4,4 457.13 0.97  4224447747 2◌4◌22◌424 457.13 6.46 

0.7 4,2,7 2,4,4 512.72 1.20  4224447747 2◌4◌22◌424 512.72 3.12 

0.8 

0.3 4,2,7 2,4,4 470.15 1.30  4224447447 2◌4◌22◌724 469.08 1.80 

0.5 4,2,7 2,4,4 551.62 0.62  4224447447 2◌4◌22◌724 550.10 4.60 

0.7 4,9,7 9,4,4 621.87 1.40  4994497497 944◌94◌7◌9 621.00 1.91 

5 

0.2 

0.3 1,2,4,7,8 8,4,2,1,7 375.46 4.20  1224447847 ◌◌1◌22◌◌21 378.24 1.95 

0.5 1,2,4,7,8 8,4,2,1,7 369.16 6.10  1224997797 ◌◌9◌42◌4◌1 373.39 7.59 

0.7 1,2,4,7,8 8,4,2,1,4 362.78 3.60  1224447847 ◌◌4◌11◌◌21 364.07 0.85 

0.4 

0.3 1,2,4,7,8 8,4,2,1,7 432.36 3.20  1224447847 ◌◌4◌12◌◌24 433.69 4.33 

0.5 1,2,4,7,8 8,4,2,1,2 437.50 3.00  1224447847 ◌◌4◌22◌◌21 437.50 4.70 

0.7 1,2,4,9,7 7,9,7,4,4 443.94 7.60  1224497797 ◌◌9◌24◌4◌4 445.72 7.49 

0.8 

0.3 1,2,4,7,8 7,4,2,1,2 547.03 2.20  1224447847 ◌◌4◌22◌◌21 547.03 7.9 

0.5 1,2,4,7,8 2,4,2,1,2 574.43 5.90  1994497897 ◌44◌94◌◌◌4 575.94 5.88 

0.7 1,9,4,7,8 8,4,8,1,7 588.80 2.80  1994497897 ◌44◌94◌◌◌1 589.97 4.35 

10(TR) 

3 

0.2 

0.3 1,2,7 2,1,1 293.24 5.84  1227127172 ◌◌1121◌211 293.24 8.73 

0.5 1,2,7 2,1,1 316.79 0.30  1227127171 ◌◌1121◌212 319.34 2.20 

0.7 1,2,7 2,1,1 340.35 0.47  1227127171 ◌◌1121◌722 344.67 0.71 

0.4 

0.3 1,2,7 2,1,1 331.74 0.50  1227127172 ◌◌1121◌211 332.69 3.74 

0.5 1,2,7 2,1,1 371.96 0.30  1227127171 ◌◌1121◌212 373.83 2.66 

0.7 1,2,7 2,1,1 412.18 0.56  1227127172 ◌◌7121◌211 413.96 0.87 

0.8 

0.3 1,2,7 2,1,2 405.72 0.27  1221127111 ◌◌1721◌272 404.10 3.53 

0.5 1,2,7 2,1,1 475.58 0.42  1221127111 ◌◌1721◌222 473.68 1.96 

0.7 1,2,7 2,1,2 543.38 0.61  1221127111 ◌◌1721◌272 542.68 3.79 

5 

0.2 

0.3 1,2,4,7,8 8,8,7,8,2 333.59 1.02  1224127848 ◌◌8◌88◌◌72 333.59 5.20 

0.5 1,2,4,7,8 8,8,7,8,2 324.55 1.06  1224127848 ◌◌8◌88◌◌82 325.24 6.59 

0.7 1,2,4,6,7 2,6,7,2,6 288.63 1.37  1224167146 ◌◌6◌2◌◌211 289.09 2.60 

0.4 

0.3 1,2,4,7,8 8,8,1,8,2 393.88 0.46  1224127848 ◌◌8◌88◌◌12 394.24 4.78 

0.5 1,2,4,7,8 8,8,1,8,2 395.74 3.18  1224127848 ◌◌8◌88◌◌82 396.13 7.05 

0.7 1,2,4,6,7 2,6,1,1,6 391.22 2.61  1224167146 ◌◌6◌2◌◌272 391.18 1.55 

0.8 

0.3 1,2,4,7,8 8,1,1,8,1 513.05 0.90  1224127848 ◌◌1◌81◌◌12 513.77 1.20 

0.5 1,2,4,7,8 8,1,1,8,1 537.11 2.50  1224127848 ◌◌1◌21◌◌71 538.93 7.21 

0.7 1,2,4,7,8 8,1,1,8,1 561.18 1.64  1224127848 ◌◌8◌88◌◌12 561.53 2.07 
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4.6. GA performance on the classical p-hub median problem (special case) 

The proposed model for SApHM-HU, can be easily tailored for the single allocation p-hub median 

problem by setting the objective function weight to one (i.e., w=1) and removing constraints (15) 

to (22). A number of problem instances derived from CAB dataset [32] are used as a platform to 

evaluate the performance of the proposed GA on this special case.  

 

Table 7. Computational results for single allocation p-hub median problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (1): Number of nodes;(2):Number of hubs;(3)Discount factor 

 

 

 n(1) p(2) α(3) 
Optimal 

solution 
GA best Time (sec) %Gap 

10 

3 

0.2 491.93 491.93 0.11 0 

0.4 567.91 567.91 0.16 0 

0.8 716.98 716.98 0.19 0 

4 

0.2 395.13 395.13 0.15 0 

0.4 493.79 493.79 0.19 0 

0.8 661.41 661.41 0.16 0 

15 

3 

0.2 799.97 799.97 0.50 0 

0.4 905.10 905.10 0.22 0 

0.8 1099.51 1110.52 0.19 1.0 

4 

0.2 639.77 639.77 0.40 0 

0.4 779.71 782.70 0.70 0.4 

0.8 1026.52 1044.45 0.76 1.7 

20 

3 

0.2 724.54 724.54 1.20 0 

0.4 847.77 853.42 3.90 0.7 

0.8 1091.05 1102.34 4.10 1.0 

4 

0.2 577.62 585.04 3.98 1.3 

0.4 727.10 727.10 2.19 0 

0.8 1008.49 1036.43 1.40 2.8 

25 

3 

0.2 767.35 786.44 3.86 2.5 

0.4 901.70 909.19 7.88 0.8 

0.8 1158.83 1175.21 8.21 1.4 

4 

0.2 629.63 635.82 4.17 1.0 

0.4 787.51 819.67 3.06 4.1 

0.8 1087.66 1126.60 7.57 3.6 

Mean   786.96 795.50 2.23 0.93 
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Table 7 summarizes the computational results for the classical single allocation p-hub median 

problem. Computational time for each problem is fixed at 10 seconds. The proposed GA solved 

11 out of the 24 instances (46 %) to optimality in a very short computing time. For the rest of the 

problems near optimal solutions are also reported. The average computational time to find an 

optimal/best solution is 2.23 seconds with an average percentage gap of 0.93. 

 

5. Conclusion and Future Work 

In this paper, we present models that incorporate hub unavailability into the classical single 

allocation p-hub median problem. In this work, we allocate a “backup facility” to each hub centre 

in the network in order to reduce the effects of hub failures on the operating cost.  In the event of 

hub failure, the demand initially served by the disrupted hub is reallocated to its backup facility. 

To capture real world situations, we assume that the hub failure probabilities are independent and 

location specific (i.e., heterogeneous hub failure probabilities).  The objective function of the 

proposed formulation minimizes the weighted sum of regular and expected transportation costs. 

 

We first formulate the problem as a mixed integer quadratic problem followed by our linearization 

scheme.  Though our enhanced formulation is more efficient, it is found to be inappropriate to 

solve larger instances. To alleviate this drawback, we opted for the design of an evolutionary 

approach such as GA where a chromosome representation and an efficient crossover operator were 

specifically developed. 

 

To show the difficulty in solving SApHM-HU using commercial softwares, we solved 36 instances 

by CPLEX 12.4. Comparison of the results obtained by our GA and those provided by CPLEX 

show that the proposed meta-heuristic significantly outperforms CPLEX in computing time while 

providing the same quality solutions (i.e., optimal solution) for the smaller instances. In addition, 

108 larger benchmark problems from CAB [32] and TR [12] datasets are also generated and solved 

using our efficient GA with promising results. As a special case, we further examined the 

performance of our algorithm on the conventional single allocation p-hub median problem where 

our GA-based heuristic provided good quality solutions for the 24 problem instances from the 

literature while requiring very short computing times.    
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In brief, we observed that, for moderate and low objective weights, configuration of hubs and 

spokes in solutions to the single allocation p-hub median problem with and without hub 

unavailability consideration (i.e., SApHM and SApHM-HU) are different. This finding suggests 

that a hierarchical solution approach to SApHM-HU (i.e., optimizing the location-allocation 

problem and then solving the backup assignments problem) may not lead to the same (optimal) 

solution as the integrated solution approach. Using the problem with 10 nodes, we also show that 

if hub unavailability is taken into consideration at the design stage, a considerable reduction in 

expected transportation cost could be achieved without a substantial increase in regular 

transportation cost. In this study, we also investigated the relaxed problem in which the affected 

demand nodes are allowed to be reallocated to any of the operational hubs in the network. To this 

end, the proposed genetic algorithm is adapted to account for multiple backups selection in the 

case of single hub failure. 

 

Our research paves the path for a thorough study of the impact of hub failure in the context of hub-

and-spoke. The problem of multiple backups is an important strategic issue that needs to be 

considered seriously when locating hubs even though extra inconvenience may arise due to 

allocating all the disrupted total demand not to one backup hub only. An in depth study for this 

new logistical problem would be challenging to academics but practically useful to practitioners.  
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Appendix 
Cities names in TR dataset 
81 nodes problem instance 
1 ADANA 18 ÇANKIRI 35 İZMİR 52 ORDU 69 BAYBURT 

2 ADIYAMAN 19 ÇORUM 36 KARS 53 RİZE 70 KARAMAN 

3 AFYON 20 DENİZLİ 37 KASTAMONU 54 SAKARYA 71 KIRIKKALE 

4 AĞRI 21 DİYARBAKIR 38 KAYSERİ 55 SAMSUN 72 BATMAN 

5 AMASYA 22 EDİRNE 39 KIRKLARELİ 56 SİİRT 73 ŞIRNAK 

6 ANKARA 23 ELAZIĞ 40 KIRŞEHİR 57 SİNOP 74 BARTIN 

7 ANTALYA 24 ERZİNCAN 41 KOCAELİ 58 SİVAS 75 ARDAHAN 

8 ARTVİN 25 ERZURUM 42 KONYA 59 TEKİRDAĞ 76 IĞDIR 

9 AYDIN 26 ESKİŞEHİR 43 KÜTAHYA 60 TOKAT 77 YALOVA 

10 BALIKESİR 27 GAZİANTEP 44 MALATYA 61 TRABZON 78 KARABÜK 

11 BİLECİK 28 GİRESUN 45 MANİSA 62 TUNCELİ 79 KİLİS 

12 BİNGÖL 29 GÜMÜŞHANE 46 KAHRAMANMARAŞ 63 ŞANLIURFA 80 OSMANİYE 

13 BİTLİS 30 HAKKARİ 47 MARDİN 64 UŞAK 81 DÜZCE 

14 BOLU 31 HATAY 48 MUĞLA 65 VAN  

15 BURDUR 32 ISPARTA 49 MUŞ 66 YOZGAT  

16 BURSA 33 İÇEL 50 NEVŞEHİR 67 ZONGULDAK  

17 ÇANAKKALE 34 İSTANBUL 51 NİĞDE 68 AKSARAY  

 
55 nodes problem instance 

 
25 nodes problem instance 

 

 
10 nodes problem instance 

 

1 ADANA 12 BURSA 23 HATAY 34 KAHRAMANMARAŞ 45 AKSARAY 

2 ADIYAMAN 13 ÇANAKKALE 24 ISPARTA 35 MARDİN 46 BAYBURT 

3 AĞRI 14 ÇORUM 25 İÇEL 36 MUŞ 47 KARAMAN 

4 ANKARA 15 DİYARBAKIR 26 İSTANBUL 37 SAMSUN 48 BATMAN 

5 ANTALYA 16 EDİRNE 27 İZMİR 38 SİİRT 49 BARTIN 

6 ARTVİN 17 ELAZIĞ 28 KAYSERİ 39 SİNOP 50 ARDAHAN 

7 BALIKESİR 18 ESKİŞEHİR 29 KIRŞEHİR 40 TEKİRDAĞ 51 IĞDIR 

8 BİLECİK 19 GAZİANTEP 30 KOCAELİ 41 TUNCELİ 52 YALOVA 

9 BİNGÖL 20 GİRESUN 31 KONYA 42 ŞANLIURFA 53 KARABÜK 

10 BİTLİS 21 GÜMÜŞHANE 32 KÜTAHYA 43 YOZGAT 54 KİLİS 

11 BURDUR 22 HAKKARİ 33 MANİSA 44 ZONGULDAK 55 OSMANİYE 

1 ADANA 6 BURSA 11 İÇEL 16 KONYA 21 SAMSUN 

2 ADIYAMAN 7 DİYARBAKIR 12 İSTANBUL 17 KÜTAHYA 22 TEKİRDAĞ 

3 ANKARA 8 ESKİŞEHİR 13 İZMİR 18 MANİSA 23 ŞANLIURFA 

4 ANTALYA 9 GAZİANTEP 14 KAYSERİ 19 KAHRAMANMARAŞ 24 YOZGAT 

5 BALIKESİR 10 HATAY 15 KOCAELİ 20 MARDİN 25 ZONGULDAK 

1 ADANA 6  MANİSA 

2  ANTALYA 7  MARDİN 

3  BURDUR 8  NEVŞEHİR 

4  ELAZIĞ 9  TUNCELİ 

5  İÇEL 10  DÜZCE 


