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Abstract7

In this paper we present an integer programming method for solving the Classroom
Assignment Problem in University Course Timetabling. We introduce a novel formula-
tion of the problem which generalises existing models and maintains tractability even
for large instances. The model is validated through computational results based on our
experiences at the University of Auckland, and on instances from the 2007 International
Timetabling Competition. We also expand upon existing results into the computational
difficulty of room assignment problems.
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1. Introduction10

University course timetabling is a large resource allocation problem, in which both11

times and rooms are determined for each class meeting. Due to the difficulty and size of12

modern timetabling problems, much of the academic literature proposes purely heuristic13

solution methods. However, in recent years, integer programming (IP) methods have14

been the subject of increased attention. At the time of writing, MirHassani and Habibi15

(2013) have conducted the most recent survey into university course timetabling, which16

covers some of the IP approaches, as well as the most popular heuristic paradigms.17

Some integer programming studies have been conducted in a practical setting (e.g.18

Schimmelpfeng and Helber, 2007; van den Broek et al., 2009), although inevitably the19

models are only solved for either a small university, or a single department at a larger20

university. These are unsuitable for large universities where the majority of teaching21

space is shared between departments and faculties.22

While it is not yet possible to solve a large practical course timetabling problem to op-23

timality (Burke et al., 2008), the problem can be decomposed into a timetable generation24

problem followed by a classroom assignment problem (also known as “times first, rooms25

second”). In our experience, this decomposition is commonly used in practice. Faculties26
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or departments may prefer to generate a timetable for their courses, and retain control27

over unique requirements and preferences. This is contrasted to the room assignment,28

which must be performed centrally in institutions with shared teaching space. For this29

reason, in some institutions the classroom assignment problem is the only part of course30

timetabling which uses computer-aided decision making.31

The most elementary formulation of the classroom assignment problem attempts to32

find a feasible assignment for a set of classes (or events) to a set of rooms. A simple33

measure of quality may also be used, where a cost is assigned for all possible event-34

to-room assignments. This formulation allows each time period to be modelled as an35

independent assignment problem, which can be solved in polynomial time (Carter and36

Tovey, 1992). This is equivalent to finding a maximum weighted bipartite matching37

between the set of events and the set of rooms, as implemented by Lach and Lübbecke38

(2008).39

The problem becomes more complex if the events vary in duration, and each event40

must occupy only one room for the entirety of this duration (referred to as contiguous41

room stability). Although this is a more practically useful problem, the interdependencies42

between blocks of contiguous time periods cause this problem to be NP-hard even for43

just two time periods (Carter and Tovey, 1992). Glassey and Mizrach (1986) propose44

an integer programming formulation for this problem, yet do not solve it due to the45

prohibitive number of variables (relative to available computational resources), and the46

possibility of non-integer solutions to the LP relaxation. Instead, they propose a simple47

heuristic procedure.48

Gosselin and Truchon (1986) also approach the problem (with contiguous room stabil-49

ity) using an integer programming formulation, and aggregate the variables to reduce the50

problem size. When solving their model, they remark that the simplex method yielded51

integer solutions to the LP relaxation in every test case. Carter (1989) conducts the most52

advanced study into this problem, where the contiguous room stability requirement is53

enforced using an iterative Lagrangian relaxation method. A wide range of quality mea-54

sures are considered which are weighted and combined (scalarised) into a single objective55

function. The author also outlines the experience of satisfying staff and administration56

requirements while implementing this method at the University of Waterloo, Canada.57

The most complex formulations of the classroom assignment problem are able to58

address quality measures which cause interdependencies between any subset of time pe-59

riods, rather than just a contiguous block. The most common example is minimising60

the number of different rooms used by each course (referred to as course room stability),61

which causes the problem to be NP-hard (Carter and Tovey, 1992). As part of a broader62

work, Qualizza and Serafini (2005) propose an integer programme to solve this problem,63

although they do not include results. Lach and Lübbecke (2012) also propose an integer64

programme which models course room stability, as part of their solution to the problems65

posed in Track 3 of the 2007 International Timetabling Competition, or ITC (Di Gaspero66

et al., 2007). Although Lach and Lübbecke (2012) include comprehensive computational67

results, they are only concerned with the abstract problems from the ITC, and only68

consider a single measure of quality. In practice it is often desirable to consider multiple69

measures of quality simultaneously.70

We also acknowledge alternative definitions of the classroom assignment problem71

within the scope of university timetabling. Dammak et al. (2006) and Elloumi et al.72

(2014) use heuristic methods to address classroom assignment in the context of exami-73

2



nation timetabling, where it is possible to assign more than one event to a room (in any74

given time period). Mirrazavi et al. (2003) apply integer goal programming to a similar75

problem where multiple ‘subjects’ are assigned together into rooms.76

In this paper we propose a novel integer programming based method for the classroom77

assignment problem of university course timetabling. Our method is demonstrated to78

be versatile in terms of modelling power, capable of handling multiple competing quality79

measures, and tractable for large practical problems. We validate the method with80

computational results on data from the University of Auckland, New Zealand, and offer81

an insight into the timetabling process used until 2010. We also present computational82

results for the problems from the 2007 International Timetabling Competition (ITC).83

Through this work, we are able to expand upon previous results into the difficulty of84

classroom assignment problems. Although most variants of the classroom assignment85

problem found in practice are NP-hard, we demonstrate why many instances can be86

solved efficiently.87

The remainder of this paper is organised as follows. Section 2 provides a simple88

example of a classroom assignment problem, outlines a general integer programming89

model, and introduces some common quality measures. Section 3 provides an insight into90

the matrix structure of the integer programme and demonstrates how fractions can arise91

in the linear programming relaxation. This allows us to identify which practical situations92

and quality measures will make the integer programme either easier or more difficult to93

solve. Section 4 details a timetabling system used at the University of Auckland and94

explains how practical considerations are modelled within our approach. In Section 5 we95

present the results of our method on data from the University of Auckland, and the ITC96

problems. We also address some shortcomings of the ITC problems which suggest they97

are not representative in size or structure of most practical timetabling problems. Finally,98

Section 6 outlines the main conclusions of our work, and future research directions.99

2. A Set Packing Model for Classroom Assignment100

In this section we introduce the classroom assignment problem using a small ex-101

ample, and demonstrate how this type of problem can be modelled as a maximum set102

packing problem (Nemhauser and Wolsey, 1988). To solve this problem, we propose an103

integer programming based approach, which provides a certainty of the feasibility (or104

infeasibility) of the room assignment and of the solution quality. Integer programming105

for set packing problems has also been applied to small instances of the broader course106

timetabling problem (Avella and Vasil’Ev, 2005).107

To handle different measures for quality, our model is solved sequentially for a pre-108

scribed series of solution quality measures. The quality with respect to each measure109

is preserved in subsequent solutions using an explicit constraint. In the terminology of110

multiobjective optimisation (Ehrgott, 2005), this is a lexicographic optimisation algo-111

rithm, which is guaranteed to find a Pareto optimal solution i.e. no quality measure can112

be improved without reducing the quality of at least one other measure.113

In practical timetabling, it may not always be possible to find a room for all teaching114

events (due to the structure of the timetable) i.e. the room assignment is infeasible. To115

handle this situation, our approach will find an efficient partial room assignment which116

makes the best possible use of the available rooms. It will also identify specifically which117

time periods are over-booked and which sizes (and types) of rooms are in shortage in118
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each period. This information is important when timetablers decide how to modify the119

timetable, and the related analytics may also be of use to other administrative parties120

to understand the bottlenecks in the system.121

2.1. Introductory Example Problem122

A classroom assignment problem arises where a set of teaching events (e.g. lectures),123

each require the use of a suitable room in their prescribed time period. Each event is part124

of a course, which defines the size of the event (i.e. the course enrolment) and the room125

attributes which are required for this event. Table 1 contains this data on the courses126

and events for an example problem. Precise definitions for the terminology and notation127

used in column headers is provided in Section 2.2.128

Course (c) Size (sizec) Room Attributes (attc) Course Events (e) Time Period (Te)

c1 125 e1 t1

c2 60 Demonstration Bench e1 t1
e2 t2

c3 60 e1 t1
e2 t2
e3 t3

c4 60 Demonstration Bench e1 t2
e2 t3

Table 1: Course and Event Data

Table 2 contains the data on which rooms are available. Each room has a size (i.e.129

the maximum student capacity), a set of room attributes, and a set of time periods when130

this room may be used.131

Room (r) Size (sizer) Room Attributes (attr) Available Time Periods (Tr)

r1 150 t1, t2, t3
r2 75 Demonstration Bench t1, t2, t3
r3 75 Demonstration Bench t1, t2, t3

Table 2: Room Data

A simple model for the room assignment problem uses variables corresponding to132

a feasible event-to-room assignment. However, a more general approach models the133

assignment of a set of events, or pattern, to a feasible room.134

Processing the data from Tables 1 and 2, we can generate the core problem data for135

Example 1 in Table 3. For each course, we show which time period each course event is136

held in, the feasible rooms for these events (determined by the room size and attributes),137

and the course patterns (all possible subsets of course events).138

Example 1. A small classroom assignment problem139
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Course (c) t1 t2 t3 Feasible Rooms (Rc) Course Patterns (Pc)

c1 e1 r1 {e1}
c2 e1 e2 r2, r3 {e1}, {e2}, {e1, e2}
c3 e1 e2 e3 r1, r2, r3 {e1}, {e2}, {e3}, {e1, e2},

{e1, e3}, {e2, e3}, {e1, e2, e3}
c4 e1 e2 r2, r3 {e1}, {e2}, {e1, e2}

Table 3: Processed Problem Data

Course (c) Pattern (p) Room (r)

c1 {e1} r1
c2 {e1, e2} r2
c3 {e1} r3

{e2} r1
{e3} r2

c4 {e1, e2} r3

Table 4: A Feasible Solution

Table 4 gives a feasible solution to this problem, where patterns are assigned to feasible140

rooms, and the pattern-to-room assignments uphold that each room is used at most once141

in each time period. If our objective is to maximise the number of events assigned,142

this solution is clearly optimal, with all events assigned. If we also want to minimise the143

number of different rooms used by each course, the solution can be improved by assigning144

pattern {e2, e3} of course c3 to room r1.145

2.2. Notation146

A teaching event e is a meeting between staff and students (e.g. a lecture), which147

requires a room for the duration of one time period in the timetabling domain (typically148

one week). Let E denote the set of events. A course c is a set of related events, which149

require a room of size at least sizec (measured by the number of seats) and also possessing150

at least the room attributes attc. Let C denote the set of all courses. The set of courses151

C partitions the set of events E, i.e. E = ∪c∈Cc, and c1 ∩ c2 = ∅ for all c1, c2 ∈ C.152

A meeting pattern p is defined to be a subset of events for a given course that will153

be assigned the same room. For course c, let Pc denote the set of all its patterns, the154

power set of course events. Let lengthc and lengthp denote the number of events in a155

course and pattern respectively. As a power set, Pc will feature 2lengthc − 1 elements,156

which potentially could be large. However, in practice, the number of events per course157

is usually quite small (for example, averaging between 2 and 3 at the University of158

Auckland). Let P denote the set of all patterns, i.e. P =
⋃

c∈C Pc. Note that while159

each pattern p uniquely identifies a set of events, an event is usually in more than160

one pattern. This is evident in Example 1, where Table 3 shows the events in each161

pattern for all courses. Let Pe denote the set of all patterns which contain event e, i.e.162

Pe = {p ∈ P : e ∈ p}.163
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Let R denote the set of rooms in the pool of common teaching space, where sizer and164

attr correspond to the room size and set of room attributes for a room r. Rc represents165

the set of rooms which are suitable for events of course c, i.e. Rc = {r ∈ R : sizer ≥166

sizec, attr ⊇ attc}. Using this definition, the course and room data from Tables 1 and167

2 respectively can be processed to generate Rc for each course in Table 3. A pattern168

p of course c will have the set of feasible rooms for this pattern Rp, as a subset of Rc.169

For the rooms within Rc, a course’s preference for a particular room is given by some170

preference function Pref (c, r). This is usually used to place courses into buildings as close171

as possible to their teaching department, but may be used for any measure of preference172

e.g. more modern rooms.173

Let A denote the set of all room attributes, i.e. A =
⋃

r∈R attr. In addition to174

physical room attributes, this set may contain abstract auxiliary attributes to assist175

with modelling. For example, a room may possess the attribute of being within a given176

maximum geographical distance from a particular teaching department. Abstract room177

attributes may also be used if a course wishes to avoid an undesirable room attribute.178

In the general case, this can be modelled by generating a complementary room attribute179

which corresponds to ‘not-possessing’ the undesirable attribute. The set of rooms is180

thus partitioned by those with the original undesirable attribute, and those with the181

complementary attribute. In many cases, partitions of the set of rooms already exist (e.g.182

if rooms are designated as one of several types), in which case requesting a room with183

one attribute automatically precludes being assigned a room with the other attributes.184

Let T denote the set of all usable time periods in the timetabling domain, which are185

of a common duration (often one hour) and are non-overlapping. For practical problems186

we also introduce Tr to denote the set of time periods for which room r is available187

for teaching. Due to other prescheduled events, every room may have its unique set of188

available time periods. Each event e ∈ E occurs during a prescribed time period Te189

given by the timetable. For each pattern p ∈ P , let Tp denote the set of time periods190

this pattern features in, i.e. Tp =
⋃

e∈p Te.191

Although many class meetings take place in a single period, some may be two or more192

periods long (e.g. tutorials or labs) which we refer to as long events. Long events require193

one event e ∈ E for each time period they are held in. If a long event requires the same194

room for its entire duration, we refer to this requirement as contiguous room stability.195

This is enforced by pruning the set of patterns for this course, Pc, to only include patterns196

which contain all or none of these events. Because all events of a pattern are assigned to197

the same room, this enforces the contiguous room stability requirement.198

Finally, let Prt denote the set of all patterns which include an event in time period t,199

and for which room r is suitable, i.e. Prt = {p ∈ P : r ∈ Rp, t ∈ Tp)}.200

2.3. Integer Programming Formulation201

Using the notation defined in Section 2.2, we present an integer programming formu-202

lation of a pattern-based set packing model for room assignment. In this formulation, the203

binary variables xpr are indexed by feasible pattern-to-room assignments. Specifically,204

let the variable xpr take the value 1 if pattern p ∈ P is to be held in room r ∈ Rp. For205

a given objective function w (representing some measure of solution quality), an opti-206

mal assignment of patterns to rooms can be determined by solving the following integer207

programme (1)–(5).208
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maximise
∑
p∈P

∑
r∈Rp

wprxpr (1)

subject to
∑

p∈Prt

xpr ≤ 1, r ∈ R, t ∈ Tr (2)

∑
p∈Pe

∑
r∈Rp

xpr ≤ 1, e ∈ E (3)

∑
p∈Pc

xpr ≤ 1, c ∈ C, r ∈ Rc (4)

xpr ∈ {0, 1}, p ∈ P, r ∈ Rp (5)

Constraints (2) ensure that at most one event is assigned to each room in each period,
while constraints (3) ensure that at most one room is assigned for each event. Constraints
(3) do not need to be met with equality, because it is not assumed that a feasible room
assignment for all events will exist. Constraints (4) ensure that each course uses at most
one pattern per room, i.e. all events from a course that are assigned to a room, should
be part of the same (maximal) pattern.

The model is solved in a hierarchical or lexicographic manner i.e. successively for
a prescribed series of solution quality measures. This means that one model is solved
for each of the different objectives, where each objective function appears as a hard
constraint in subsequent optimisations. The particular objectives used and their lexi-
cographic ordering will depend on the needs of a particular institution. For example,
given the objective functions and their values (wl, wl

0), l ∈ {1, . . . , k−1}, the kth integer
programme would include constraints (6).∑

p∈P

∑
r∈Rp

wl
prxpr ≥ wl

0, l ∈ {1, . . . , k − 1}. (6)

The model is referred to as pattern-based because P contains all patterns of events209

for each course. However, depending on the objective function w, we can formulate the210

model with a restricted set of patterns P̄ ⊆ P without losing modelling power.211

If P̄ is restricted to only the patterns which correspond to a single event, i.e. P̄ = E,212

then the event-based model is obtained. This can be used for any measure of solution213

quality which relates to the suitability of a room for a particular event i.e. event-based214

measures. This is in contrast to pattern-based measures which relate to the suitability215

of a room for any set of course events (see Section 2.4).216

For an event-based model, if we consider the additional requirement of contiguous217

room stability, then for each long event we must include the pattern of all constituent218

events together, and remove the single-event pattern for each of the long events. This219

is no longer a purely event-based model, which has implications for its complexity and220

computational difficulty, as explained in Section 3. For purely event-based models, and221

those which require contiguous room stability, we must omit constraints (4) which are222

only valid when an event can be part of more than one pattern.223

If P̄ is restricted to only those patterns corresponding to a complete course, i.e.224

P̄ = C, then the course-based model is obtained. Note that any feasible solution to the225

course-based model requires that each course uses the same room for all events, which226
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is not usually feasible in practice. Constraints (4) should again be omitted, as they are227

redundant in this case.228

2.4. Measures of Solution Quality229

There are many, sometimes conflicting, measures of solution quality which can be230

either event- or pattern-based. We define several common quality measures which are all231

event-based, with the exception of course room stability which is pattern-based. If we232

need to optimise or constrain a pattern-based measure (as in constraint (6)), a pattern-233

based model is required. Event-based measures, however, can apply to either an event-234

or pattern-based model. Note that each event-based objective coefficient includes the235

term lengthp, which provides linear scaling for when p contains more than one event.236

Several measures of solution quality are described below, and defined in (7)–(12) for237

the coefficients wpr in the objective function (1).238

Event hours (EH). Maximise the total number of events assigned a room over all events.
If it is known that a feasible room assignment exists, this is equal to the total number
of events in E, and this quality measure can be omitted. Furthermore, in this case,
an explicit lexicographic constraint (6) is not required in subsequent iterations, because
constraints (3) can be treated as equalities which has the same effect.

wpr = lengthp, p ∈ P, r ∈ Rp (7)

Seated student hours (SH). Maximise the total number of hours spent by students in all
events assigned a room i.e. events are weighted by their number of students. This is only
used when it is not possible to assign a room for all events, and we wish to prioritise
events of large courses to be assigned.

wpr = lengthp ∗ sizec, c ∈ C, p ∈ Pc, r ∈ Rp (8)

Seat utilisation (SU). Maximise the total ratio of the number of students to the room
size over all events assigned a room. This is only used when it is not possible to assign
a room for all events, and we wish to prioritise a close fitting of events into rooms.

wpr = lengthp ∗
sizec

sizer
, c ∈ C, p ∈ Pc, r ∈ Rp (9)

Room preference (RP). Maximise the total course-to-room preference over all events
assigned a room. This may be a teacher’s preference, or it may be used to teach courses
close to the relevant teaching department’s offices, as at the University of Auckland.
Preferences are determined at the department-to-building level (i.e. all courses from each
department have the same preference for all rooms from each building) and may take the
value -1, 0 or 1 to indicate undesirability, indifference, or preference.

wpr = lengthp ∗ Pref (c, r), c ∈ C, p ∈ Pc, r ∈ Rp (10)
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Course room stability (RS). Minimise the total number of different rooms, assigned to
each course, over all courses. The disruption to the room stability of a course by one
of its patterns is given by (lengthc − lengthp)/lengthc. In a feasible room assignment,
the sum of these fractions by patterns of a course will sum to the number of additional
rooms used, relative to the target ‘1 room per course’. For example, a course with 3
events could use just 1 pattern (all events in the same room), 2 patterns (2 events in the
same room, 1 in a different room), or 3 patterns (each event in a different room). Using
the disruption formula, the first case with 1 pattern causes a disruption of zero since no
additional rooms are used. The second case will cause a disruption of 1/3 for the larger
pattern, and 2/3 for the smaller pattern, summing to 1 additional room. The 3 patterns
of the final case disrupt stability by 2/3 each, summing to 2 additional rooms.

wpr = −
lengthc − lengthp

lengthc

, c ∈ C, p ∈ Pc, r ∈ Rp (11)

Spare seat robustness (SR). Maximise the total robustness of the room assignment to
changes in each course’s enrolment size, sizec. Because the room assignment is typically
decided prior to student enrolment, sizec is necessarily an estimate of the number of
students who will enrol. Therefore, a room which is close in size to the expected enrolment
of an assigned course may be considered non-robust to variability in the enrolment size. In
practice, the enrolment variability is likely to be different for each course. For example,
the enrolment for an entry level course (or one with few pre-requisites) may be less
predictable than enrolment for an advanced course on a structured study pathway. An
example of a general robustness function is given below, where the room utilisation
(sizec/sizer) is considered sufficiently robust when below α, and non-robust when above
β.

wpr = lengthp ∗



1
sizec

sizer
< α

β − sizec

sizer

β − α
α ≤ sizec

sizer
< β

0 β ≤ sizec

sizer

c ∈ C, p ∈ Pc, r ∈ Rp (12)

In this paper we use the parameters of 0.7 for α and 0.9 for β, giving the robustness239

function shown in Figure 1.240
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Figure 1: Robustness Function

3. Computational Difficulty241

The computational complexity of the room assignment problem is addressed by Carter242

and Tovey (1992). In this section we review and expand upon their findings, through an243

insight into the structure of the mathematical programmes.244

3.1. Event-based problems245

The simplest class of room assignment problems are those which can be formulated246

with an event-based model (P̄ = E). This requires that long events which span multiple247

time periods do not need the same room for each period (i.e. no contiguous room stability248

requirement). It is also assumed that we are not measuring course room stability. Because249

there are no interdependencies between periods, Carter and Tovey refer to this as the ‘1-250

period’ problem where each period may be solved separately as an assignment problem.251

For any objective function (1), the constraint matrix defined by (2)–(3) (since (4) is252

invalid) of this problem is known to be totally unimodular. Therefore, event-based253

models can be solved in polynomial time using an assignment problem algorithm (e.g.254

the Hungarian algorithm), or solving the event-based linear programme.255

3.2. Event-based problems with contiguous room stability256

A more practically useful class of problems are those which enforce contiguous room257

stability on long events. Carter and Tovey (1992) refer to this as the ‘interval problem’258

and prove it is NP-hard to find a feasible solution even when the problem is limited to259

just two time periods. As introduced in Section 2.2, modelling contiguous room stability260

means we can no longer use a purely event-based model, because patterns are required to261

place the constituent events of a long event into the same room. This alters the matrix262

structure, such that fractions can occur i.e. the LP relaxation is no longer guaranteed to263

be naturally integer. The smallest example of this was presented by Carter and Tovey,264

shown here as Example 2. For each course c in Table 5, events are shown in their265

respective time periods, and the feasible rooms for this course are given as Rc. For our266

formulation defined by (1)–(5), the constraint matrix for this problem is shown in Figure267
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5. This example happens to also be a course-based problem (one pattern corresponding268

to all a course’s events), so variables are generated for each course for each feasible room.269

Constraints (2) are identified by the period & room, and constraints (3) are identified by270

the course they apply to.271

Example 2. A minimal event-based problem with contiguous room stability require-272

ments featuring fractionating 7-order 2-cycles273

c t1 t2 Rc

A e1 r1, r2
B e1 e2 r2, r3
C e1 r3, r4
D e1 e2 r1, r4
E e1 r1, r3
F e1 r2, r4

Table 5: Time Periods and Feasible Rooms

Br2 Ar2 Ar1 Dr1 Er1 Er3 Br3 Cr3 Cr4 Dr4 Fr4 Fr2







t1r2 1 1 1
A 1 1 1
t1r1 1 1 1

t2r1 1 1 1

E 1 1 1

t2r3 1 1 1

t1r3 1 1 ≤ 1

C 1 1 1

t1r4 1 1 1
t2r4 1 1 1
F 1 1 1
t2r2 1 1 1
B 1 1 1

D 1 1 1

Figure 2: Set Packing Constraint Matrix

Solving the IP (with constraint matrix shown in Figure 2) to maximise the number of274

event hours, subject to the contiguous room stability requirements, will find an optimal275

solution which assigns 7 (out of 8) events. However, the LP relaxation is able to assign276

all 8 events, with each variable taking the value of 0.5.277

Early work into the properties of binary matrices (Berge, 1972; Ryan and Falkner,278

1988) shows that odd-order 2-cycles (submatrices with row and column sums equal to279

2) within a binary constraint matrix permit fractional solutions to occur. Conversely, if280
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no such cycles exist, the matrix is said to be balanced and the problem will be naturally281

integer (i.e. solvable as a linear programme). The rows and columns in the Example 2282

constraint matrix (Figure 2) have been ordered to show the odd-order 2-cycles which283

cause the observed fractional LP solution and corresponding integrality gap. A 7-order284

cycle can be formed by starting at any of the ‘B’ or ‘D’ columns (4 in total), and285

connecting to each right-adjacent variable until the other column from this course is286

encountered (treating the right-most column as connected to the left-most). The cycle287

which starts at Dr1 is shaded.288

In order for this type of cycle (Figure 2) to cause an integrality gap, with respect to the289

event hours objective, a very specific structure must be present. Specifically, each of the290

six possible combinations of two rooms (out of the four rooms in total) must be the only291

feasible rooms (Rc) for each of the six courses. Furthermore, there must be no overlap in292

feasible rooms between the courses featuring in t1 only, those in t2 only and those in both293

periods. Course events can typically be held in any room which provides at least enough294

seats for the course size, and possesses at least the requested room attributes. Therefore,295

the set of feasible rooms for a course will be a superset of those for any larger course and296

for any course requiring additional attributes. Because of this nested set relationship, it297

is unlikely that so many different combinations of rooms will occur as the set of feasible298

rooms for different courses. Furthermore, t1 and t2 must be consecutive time periods,299

rather than any two time periods. Any alteration to the feasible rooms or time periods300

for each course will close the integrality gap and potentially break the cycle structure in301

the matrix. For example, if room 1 was removed from the set of feasible rooms for course302

A, this would break the cycle shown in Figure 2, and the optimal LP solution would have303

an objective value of 7, the same as the optimal IP solution. Conversely, if room 3 was304

added to the set of feasible rooms for course A (as well as existing rooms 1 and 2), an305

IP solution would exist at the LP objective value of 8, again closing the integrality gap.306

It is also possible to construct higher order cycles by either extending this cycle307

(Figure 2) through more courses within the 2 time periods, or by extending across more308

contiguous time periods. However, these rely on even greater specific structure to be309

present in the problem.310

When the fractional solutions corresponding to odd-order cycles do not cause an311

integrality gap, they are not precluded from appearing in a solution to the LP, however312

they are less likely to be found by an IP solver. This was confirmed in our tests on313

data from the University of Auckland (for the event-based model with contiguous room314

stability) for all objectives listed in Section 2.4. Solving the LP relaxation returns a315

solution with a very small number of fractional variables (typically corresponding to 1 or 2316

sets of cycles shown in Figure 2), with no integrality gap (for any objective). Interestingly,317

if we solve the IP with Gurobi (Gurobi Optimization, Inc., 2013), a proprietary solver,318

an integer optimal solution is found at the root node even with all presolve, cuts and319

heuristics disabled. This suggests that Gurobi is performing additional ‘integerising’ LP320

iterations when it is solving the LP relaxation of an IP.321

Although our problem from the University of Auckland is clearly not naturally integer,322

the fractions which arise are very limited in number, and do not cause an integrality gap.323

Without using an IP solver, we were able to find an optimal integer solution by adding324

small perturbations to the objective coefficients of the patterns representing long events.325

We were also able to use a cutting plane approach to find an optimal integer solution,326

by applying any violated odd hole inequalities at the LP optimal solution, and then327
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continuing solving the LP. The results from using the Gurobi IP solver, and from using328

these LP-based methods, demonstrate that although this optimisation problem is NP-329

hard, the structure of our practical problems is such that any fractions which arise can330

be easily handled.331

We believe that the improbability of encountering cycles of the nature shown in332

Figure 2, also explains why the earlier work of Gosselin and Truchon (1986) reported333

naturally integer LPs. Both our tests and theirs were performed on real data, and334

branch-and-bound has not been required. Therefore, it seems likely that practical event-335

based problems with contiguous room stability requirements can be solved efficiently.336

3.3. Pattern-based problems337

The most difficult class of room assignment problems are those which require a338

pattern-based model (P̄ = P ), because they consider a pattern-based quality measure339

such as course room stability. We address course room stability as a quality measure to340

be maximised, rather than a hard constraint where all events of a course must be held in341

the same room. Carter and Tovey (1992) address only the latter case, which they refer to342

as the ‘non-interval problem’. In the context of our formulation, the non-interval prob-343

lem is represented by a course-based model, a special case of the pattern-based model,344

which is unlikely to have a feasible solution for practical problems. To model course room345

stability as a quality measure, for each course we must generate a pattern for each subset346

of course events (as per Section 2.2), for each room. For courses with only two events,347

the three patterns generated per room correspond to the first event only (‘pattern 1’),348

the second event only (‘pattern 2’), and both events (‘pattern 3’).349

A minimal example of a difficult pattern-based problem is shown as Example 3. For350

this problem (specification in Table 6) it is not possible to offer a stable room to all351

courses. For our formulation defined by (1)–(5), the fractionating part of the constraint352

matrix is shown in Figure 3. Note that only constraints (2) and variables which relate353

to ‘pattern 3’ (both events) for each course are shown.354

Example 3. A minimal pattern-based problem featuring fractionating 3-order 2-cycles355

c t1 t2 t3 Rc

A e1 e2 r1, r2
B e1 e2 r1, r2
C e1 e2 r1, r2

Table 6: Time Periods and Feasible Rooms

13



Ap3r1 Bp3r1 Cp3r1 Ap3r2 Bp3r2 Cp3r2 ...







t1r1 1 1 1
t2r1 1 1 1
t3r1 1 1 1

t1r2 1 1 ≤ 1

t2r2 1 1 1

t3r2 1 1 1
... ...

Figure 3: Set Packing Partial Constraint Matrix

Solving the IP (with partial constraint matrix shown in Figure 3) to maximise the356

course room stability, will find an optimal solution with quality of -1 (a penalty of 1).357

However, the LP relaxation is able to find an optimal solution with quality of 0 (no358

penalty), with each ‘pattern 3’ variable (those shown in Figure 3) taking the value 0.5,359

and other variables taking the value 0.360

Here, integer solutions incur a penalty because they require at least one of the courses361

to use the undesirable ‘pattern 1’ and ‘pattern 2’ variables, which assign two events362

from the same course to different rooms. The constraint matrix in Figure 3 shows363

how the desirable ‘pattern 3’ variables of each course can form odd-order 2-cycles (as364

shaded). Note that the cycle is entirely contained within constraints (2), meaning that365

two variables need only be connected by both representing patterns occupying the same366

room at the same time. This is unlike the cycles in Example 2 which also involve367

constraints (3).368

The requirements for this type of cycle (Figure 3) to exist are that there must be369

three courses which share two common feasible rooms and each course must feature in370

a different two of the three time periods. To cause an integrality gap with respect to371

the course room stability objective, there must also be a relative shortage of available372

feasible rooms for these courses, in the particular time periods. This could be due to373

a generally high utilisation rate over all rooms, or because particular sizes and types of374

rooms are in shortage. Clearly, if a third room was introduced into Example 3 which375

was feasible for even one of the courses, the same cycles would exist, yet there would no376

longer be an integrality gap.377

Because there is no specific room feasibility requirement (unlike Example 2), and the378

cycles can be formed over any three time periods, there are many more opportunities379

for such cycles to occur. When these cycles are part of a larger problem, note that the380

courses do not need to have the same number of events as one another, because the381

pattern-based model allows any subset of events to be independent (room-wise) from the382

rest of a course’s events. As a result, courses with a large number of events are a major383

contributor to this type of fractionality, as they introduce many patterns which span384

different time periods. Larger cycles with this basic structure can also exist, e.g. using 5385

courses and 5 time periods instead of 3.386

We solved the LP relaxation for the pattern-based model optimising course room387

stability on data from the University of Auckland and the ITC. The LP solutions were388

typically much more fractional than those for the event based model with contiguous389
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room stability, and most problems with a non-zero penalty at the IP optimal solution390

had an integrality gap. A cutting plane approach using odd-hole and clique inequalities391

(mentioned for Example 2) was much less effective due to many opportunities for the392

fractions to re-occur without reducing the gap. Consequently, most practical pattern-393

based problems require the use of a sophisticated IP solver (utilising techniques such as394

presolve, cuts, heuristics and branching), as covered in our main results in Section 5.395

3.4. Lexicographic optimisation constraints396

So far we have considered the difficulty of room assignment problems defined by (1)–397

(5). The remaining factor to address is the effect of adding lexicographic optimisation398

constraints (6). When solving a purely event-based model, recall that the constraint399

matrix (defined by (2)–(3), since (4) is invalid) is totally unimodular. As a consequence,400

the polytope defined by the constraints has integer extreme points. If we solve this model401

to optimality for an event-based objective measure, the solution must lie on a facet of402

the polytope, which itself must have integer extreme points. Therefore, if we add a403

lexicographic constraint (6) to an event-based model, the new feasible region is this face,404

which must remain naturally integer. Although the new constraint matrix may no longer405

be totally unimodular (due to the elements of constraint (6)), it will retain the naturally406

integer property for any number of constraints added through this process. The LP407

relaxation may be slightly more difficult to solve for each lexicographic constraint added,408

however no integer programming is required, so the solve time should be acceptable for409

all practical problems.410

For event-based models with contiguous room stability requirements, and for pattern-411

based models, we have demonstrated that fractional extreme points exist on the polytope.412

Adding a lexicographic constraint will only limit the feasible region to a facet of this413

polytope, which may still include these extreme points. Therefore, adding lexicographic414

constraints will not (necessarily) make the problem easier or remove fractional solutions.415

However, these two models differ in the quantity and nature of fractional solutions which416

appear for practical instances. Due to the limited fractionating structures in the LP417

relaxation for event-based models with contiguous room stability requirements, these418

can typically still be solved in an acceptable time.419

As shown by Example 3, fractionating structures form more readily in pattern-based420

models, which can cause them to be significantly more difficult to solve than event-based421

models. Also, in a lexicographic ordering of objectives, once a pattern-based measure422

is used, all subsequent iterations will require a pattern-based model. Because of the423

fractionating potential, the solve time for different pattern-based problems can vary424

substantially, which is the main focus of Section 5, our practical computational results.425

4. Course Timetabling at the University of Auckland426

In this section we outline the process which was successfully used to find feasible427

course timetables at the University of Auckland, and optimal classroom assignments to428

those timetables, during the years 2005 to 2010.429
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4.1. The Problem430

The academic calendar at the University of Auckland primarily consists of two twelve-431

week semesters. The first semester begins at the start of March, while the second begins in432

mid-July. In each semester, a weekly teaching timetable is repeated which spans the fifty433

core teaching hours, from 08:00 to 18:00, Monday through Friday. Teaching departments434

within the university offer courses, which are often part of one or more curricula, a set435

of courses taken by a common cohort of students simultaneously. Because timetable436

clashes are based on the curricula (rather than student enrolment data), this problem is437

a Curriculum-Based Course Timetabling (CB-CTT) problem.438

The main City Campus has a pool of common teaching space or pool rooms which439

can be utilised in each hour of each weekday. The Lecture Theatre Management Unit440

(LTMU) are responsible for the assignment and booking of these rooms, both ad hoc and441

for timetabled teaching. Statistics relating to pool room requests on the City Campus in442

Semesters 1 and 2 of 2010 are given in Table 7. For the purposes of Table 7, an “event”443

refers to a class meeting of any length (i.e. including long events).444

2010 Semester 1 2

Faculties 10 10
Departments 73 73
Courses 985 911
Events 1965 1866
Total event hours 2383 2231

1 hour events 1561 1516
2 hour events 390 335
3 hour events 14 15

Rooms 72 72

Room attributes

Demonstration Bench
Dual Data Projectors
Dual Image PC
Dual Slide Projectors
Fixed Tier Seating
Moveable Seating
Grand Piano
Radio Microphone
Science Displays
Total Blackout
Wheelchair Access

Table 7: Statistics relating to pool room requests at the University of Auckland City
Campus in Semesters 1 and 2 of 2010.

Note that in order to model our practical problem, we need to consider “courses”445

(as defined by a faculty) which include a lecture component and a tutorial and/or lab446

component. However, events for these components will most likely be different in terms447

of required room attributes and number of students, and so cannot be part of the same448

course c ∈ C by definition. For example, a course may teach three weekly lecture hours,449

which all students attend, and five tutorial hours of which each student will attend one.450

It is desirable for all lectures to be held in the same room, however this is not the case451

for tutorials, as they are each attended by a different group of students. In the notation452

of Section 2.2, we can model this by creating one course c ∈ C for the lecture component453

(with three events requesting a large lecture theatre) and five courses for the tutorial454

component (each with one event requesting a small tutorial room). This contributes six455

courses c ∈ C to the count in Table 7. For the purposes of generating a timetable, the456
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lecture and tutorial components must be in a curriculum together (to avoid time clashes).457

However, for the purposes of room assignment, the components are entirely independent.458

4.2. Solution Process459

There are two distinct phases of the course timetabling process at the University of460

Auckland. Initially, the ‘feasibility phase’ occurs from July to October of the previous461

year. During this time, a feasible timetable is constructed for both semesters and ten-462

tative room assignments are made based upon requested room sizes and requested room463

attributes. This is followed by the ‘enrolment phase’ which runs from November through464

to the second week of teaching in each semester.465

Initially each faculty will generate its own timetable (time periods for each event)466

to meet its unique requirements. This includes finding a high quality solution for its467

students and staff, while respecting non-overlapping requirements for courses within a468

curriculum, and courses which must be taught by a common lecturer. However, this469

is typically not a major task as it is managed by making incremental changes to the470

timetable from the previous year. Guidelines are provided to faculties which help to471

achieve a good spread of events throughout the day and week. Other rules exist, such472

as ‘two-hour events must start on an even hour’ and ‘events of three or more hours are473

accepted only by arrangement’, because they are seen to disrupt the ability to place474

regular one hour events into rooms.475

These faculty timetables are collated by the LTMU who attempt to find a high quality476

feasible room assignment. If no feasible room assignment exists, the timetable must be477

modified such that one can be found. At a meeting chaired by the LTMU, specific478

conflicts are addressed and faculties adjust their timetables and/or requested room sizes479

and attributes. This process repeats until a feasible room assignment can be found. An480

overview of this process is shown in Figure 4.481
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Figure 4: UoA Room Assignment Process

The first room assignment to be solved maximises the the number of event hours482

which can be assigned a room (using an event-based model with contiguous room stabil-483

ity) for the starting timetable. Inevitably, the starting timetable will not permit a feasible484

room assignment to exist (due to overloading of the most desirable time periods). As485

mentioned in Section 2, it is useful to lexicographically optimise several other quality486

measures, which will assist in determining how to modify the timetable. In this case we487

maximise the seated student hours, then seat utilisation and finally room preference to488

ensure that the specific events which are assigned to a room tend to be larger events489

which fit well into their rooms. This lexicographic process will need to occur for each490

timetable modification, however each of these measures is event-based, so a relatively491

fast run-time can be expected (see Section 3).492

Once all events can be assigned to a room (i.e. the objective value from maximis-493

ing the event hours equals the total number of events), a feasible room assignment has494

been found. Following this, the most important quality measures for a feasible room495

assignment are optimised. The first priority is room preference which places events into496

rooms close to their teaching department. Of secondary importance is the course room497

stability which will then attempt to put events of a course into a common room. Finally,498

optimising spare seat robustness is useful to improve the likelihood that this room assign-499

ment will remain feasible, withstanding the inevitable variability in enrolment numbers.500

Course room stability is known to be a computationally difficult measure (see Section 3),501
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however this measure only needs to be optimised for feasible room assignments.502

After publication of the calendar and feasible timetable for the following year, the503

enrolment phase begins. While the University is taking enrolments, the numbers are504

monitored closely, and changes to the timetable and room assignments are considered if505

necessary.506

By involving the faculties directly from the timetable generation through to any ar-507

bitration, staff requests are satisfied as much as possible. In their practical study of508

automating a single department’s timetabling system, Schimmelpfeng and Helber (2007)509

observed that staff appeared to demonstrate knowledge of a timetable which had worked510

in previous years. Until a powerful automated process exists to generate university511

timetables for very large institutions (with complex and internally variable quality mea-512

sures), we believe it is valuable to retain staff involvement as much as possible.513

5. Results514

All our computational experiments were run using Gurobi 5.1 running on 64-bit515

Debian 7, with a quad-core 3.33 GHz processor (Intel i5-2500K). To exploit the well-516

studied structure of set packing problems (Avella and Vasil’Ev, 2005), only zero-half517

and clique cuts were generated, and both were set to ‘aggressive’ generation (Gurobi518

Optimization, Inc., 2013). The time limit was set at 3600 seconds.519

5.1. The University of Auckland 2010520

To validate our method we process the University of Auckland’s timetabling data521

from Semesters 1 and 2 in 2010. We first test on ‘starting’ timetables which have been522

generated by faculties, and for which a feasible room assignment is unlikely to exist. We523

also test on a ‘final’ timetable which has been modified (see Section 4.2) such that a524

feasible room assignment is known to exist. The specific quality measures chosen are525

those shown in the flowchart from Figure 4, and contiguous room stability is enforced.526

Objectives/ Iterations
Semester One EH SH SU RP

Event Hours (total 2400) EH 2374 * 2374 = 2374 = 2374 =
Seated Student Hours SH 252211 253864 * 253864 = 253864 =
Seat Utilisation SU 1769.3 1767.9 2077.6 * 2077.6 =
Room Preference RP 530 571 722 839 *

Solve Time (s) 0.6 1.9 2.1 5.5

Semester Two EH SH SU RP

Event Hours (total 2234) EH 2211 * 2211 = 2211 = 2211 =
Seated Student Hours SH 234828 237579 * 237579 = 237579 =
Seat Utilisation SU 1572.5 1572.9 1940.9 * 1940.9 =
Room Preference RP 466 458 614 727 *

Solve Time (s) 0.5 1.5 1.7 5.1

Table 8: UoA 2010 Starting Timetable Room Assignment
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Table 8 shows the results of our method on the starting infeasible timetable from527

each semester. A column lists the results of solving an iteration of the lexicographic528

algorithm i.e. solving an integer programme (1)–(5) maximising the objective marked529

with an asterisk, subject to any lexicographic constraints (6) marked with an equality530

sign. The first iteration maximises the event hours but is unable to find a room for all531

events, demonstrating that this is an infeasible timetable. This differs from the total532

number of events listed in Tables 7 & 9, as the latter tables relate to the ‘final’ timetable,533

and reflect unrelated changes to planned courses which occur in the interim period.534

The solve time for each integer programme is notably low, because these are all535

event-based solution quality measures. As explained in Section 3, event-based models536

with contiguous room stability requirements have near-integral LP relaxations. After537

solving all four models we have a partial room assignment which is Pareto efficient in538

terms of all objectives. This will provide useful information to assist in modifying the539

timetable to achieve feasibility in the room assignment.540

Objectives/ Iterations
Semester One EH RP RS SR

Event Hours (total 2383) EH 2383 * 2383 = 2383 = 2383 =
Room Preference RP 490 1561 * 1561 = 1561 =
Course Room Stability RS -760 -594 -93 * -93 =
Spare Seat Robustness SR 1086.1 1205.4 1213.9 1415.5 *

Solve Time (s) 0.6 0.7 256.5 815.7

Semester Two EH RP RS SR

Event Hours (total 2231) EH 2231 * 2231 = 2231 = 2231 =
Room Preference RP 463 1435 * 1435 = 1435 =
Course Room Stability RS -730 -546 -80 * -80 =
Spare Seat Robustness SR 884.5 994.5 1043.0 1312.8 *

Solve Time (s) 0.5 0.7 68.5 166.4

Table 9: UoA 2010 Final Timetable Room Assignment

Table 9 shows the results of our method on final feasible timetables, yielding a feasible541

room assignment without any further need for altering the timetable. This is shown by542

the fact that the first iteration is able to find a room for all events, 2383 and 2231,543

respectively. Observe that the first two iterations have a short solve time, while the544

latter two iterations take considerably longer. This is because optimising the course545

room stability uses a pattern-based model which requires the use of integer programming546

techniques (presolve, cuts, heuristics and branching) to find and confirm an optimal547

solution.548

In theory, many iterations of a lexicographic (“optimise-and-fix”) algorithm will even-549

tually tightly constrain the problem. However, in this case we see that significant gains550

continue to be made to later quality measures, and the solve times remain manageable.551

While this does give a Pareto optimal solution, the solve times are low enough to sug-552

gest there may be enough flexibility to apply more complex multiobjective optimisation553

20



methods which generate a “frontier” of many Pareto efficient solutions.554

5.2. International Timetabling Competition 2007555

As previously stated, the main focus of our work is on practical problems which fea-556

ture many room-related solution quality measures. However, we also address instances557

from Track 3 of the 2007 International Timetabling Competition (ITC), as these are558

widely used in the literature as benchmarks. For details on the competition, the reader559

is referred to the competition website (ITC, 2007), official documentation (Di Gaspero560

et al., 2007) and the competition results (McCollum et al., 2010). We particularly rec-561

ommend a follow up-paper (Bonutti et al., 2012) dedicated to benchmarking in course562

timetabling, which gives detailed information about the structure of the ITC problems563

and introduces alternative specifications for measuring timetable quality. These specifi-564

cations are subject to ongoing development, so we offer a discussion into the potential565

shortcomings in Section 5.4.566

It is firstly noted that benchmarking our work directly against ITC entries is not567

possible, due to the fact that we focus solely on the room assignment. However, we are568

interested in finding a room assignment for timetables from the ITC entries, to test the569

performance of the room assignment model on a diverse set of instances. All timetables570

were retrieved from the publicly accessible listing at http://tabu.diegm.uniud.it/ctt571

(Bonutti et al., 2008), where our final solutions have also been uploaded.572

To address the ITC problems, we first solve for the UD2 specification (as used in the573

competition) which treats course room stability as the only room-related solution quality574

measure. To solve the room assignment, we have used the timetables from Tomáš Müller’s575

heuristically-generated solutions, which were the overall winner of the ITC (Müller, 2009)576

and are available for the full set of ITC problems.577
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Problem Müller’s Results Our Room Results
Name Room Util (%) Timetable Room IP LP Nodes Time (s)

comp02 71 35 0 0 0 0 1.0
comp03 63 66 0 0 0 0 0.4
comp04 64 35 0 0 0 0 1.6
comp05 47 294 4 4 4 I 0 0.1
comp06 80 37 0 0 0 0 12.8
comp07 87 6 1 1 0 38491 3600.0
comp08 72 38 0 0 0 0 8.4
comp09 62 100 0 0 0 0 0.9
comp10 82 6 1 0 0 799 82.7
comp11 72 0 0 0 0 I 0 0.2
comp12 55 319 1 1 1 0 0.1
comp13 65 61 0 0 0 0 2.6
comp14 65 53 0 0 0 0 0.4
comp15 63 70 0 0 0 0 0.5
comp16 73 30 0 0 0 0 5.0
comp17 80 70 0 0 0 0 11.3
comp18 43 75 0 0 0 I 0 0.1
comp19 69 57 0 0 0 0 1.7
comp20 82 20 2 1 0 4440 160.9
comp21 73 89 0 0 0 0 4.4

Table 10: Results on Müller’s ITC (UD2 ) Timetables

Our results for all ITC problems except comp01 are shown in Table 10. Column 3578

gives the quality (penalty) from the time-related solution quality measures of Müller’s579

solution, which is a sum of several weighted penalty factors defined in Bonutti et al.580

(2012). Column 4 gives the penalty from room-related solution quality measures from581

Müller’s solution, which is equivalent to the course room stability penalty (for the UD2582

specification). We can compare this to our IP optimal course room stability penalty in583

column 5. Column 6 gives the objective value of the LP relaxation, where an ‘I’ represents584

an integral LP relaxation. Column 7 gives the number of nodes which were explored in585

the solve process, and column 8 gives the run-time to optimality (or the time limit).586

We do not include a result for comp01, because our approach does not model a587

“soft” room size. When constrained to original room sizes, the comp01 room assignment588

problem is infeasible for any timetable, as noted by Aśın Achá and Nieuwenhuis (2012).589

In our method, an infeasible room assignment (for a given timetable) is confirmed when590

the optimal room assignment maximising the event hours is not able to assign all events591

to a room.592

Note that three of the problems had integral LP relaxations, and were very quick593

(<0.5s) to solve. Another fourteen of the problems did not have integral LP relax-594

ations, however were able to find an optimal integer solution at the root node (i.e. with-595

out branching). These problems did contain odd-order cycle induced fractions, however596

Gurobi was able to find an integer solution relatively quickly (<15s) using cuts and/or597

heuristics. Only one problem, comp10, used branching to find an optimal solution when598

there was no integrality gap.599

The remaining two problems, comp07 and comp20, were the only cases of odd-order600
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cycles causing an integrality gap, as demonstrated in Example 3 from Section 3. In these601

cases, there were many ways for the cycles to re-occur (with the same objective value)602

after branching or cuts were applied. For comp20, the solver was able to prove no integer603

solution could exist at the LP objective value, while comp07 required a substantially604

longer time, exceeding the time limit. Because we used Gurobi’s aggressive cut generation605

parameters, significant computational work was expended on attempting to improve the606

lower bound to confirm optimality. However, it should be noted that a good (or even607

optimal) solution can be found more quickly than the time required to confirm optimality,608

particularly when parameters are chosen for this purpose.609

Focussing on the most difficult problems by solve time in our study, it is evident610

that there is a correlation between the difficulty of the room assignment, and the room611

utilisation (given in column 2 of Table 10). In this case, utilisation is measured as the612

total number of events divided by the total number of available time periods for all rooms.613

The five most difficult problems (comp07, comp20, comp10, comp06, comp17 ) are those614

with the five highest utilisations, all at least 80%. This is consistent with our theoretical615

results from Section 3, where we demonstrate how problems with a high room utilisation616

are more likely to exploit the odd order cycles and cause an integrality gap between the617

IP and LP relaxation. Also, a high number of events per course will “link” more time618

periods together, such that there are more opportunities for odd-order cycles to occur.619

The ITC problems have an average of 3.5 events per course, and most problems have a620

course with 7 or even 9 events.621

5.3. International Timetabling Competition Extended Specification622

Although the UD2 specification was used in the ITC, the follow-up/extension by623

Bonutti et al. (2012) introduces three other specifications which have received signif-624

icantly less attention in the literature. Here we address UD5, as it includes a room-625

related solution quality measure, travel distance, which relates to the physical distance626

which students within a curriculum must travel between consecutive events.627
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Problem Shaerf’s Results Our Room Results
Name Timetable Room IP Nodes Time (s)

comp02 128 42 40 0 0.4
comp03 163 28 10 15 1.4
comp04 82 8 2 0 0.6
comp05 606 89 52 0 0.0
comp06 112 36 18 20 7.4
comp07 61 36 16 28 6.5
comp08 77 6 0 0 0.4
comp09 164 12 0 0 0.3
comp10 62 74 30 45 11.8
comp11 0 0 0 0 0.0
comp13 153 16 4 0 0.7
comp14 93 32 16 9 0.8
comp15 168 52 48 0 0.1
comp16 99 30 28 0 1.2
comp17 145 40 36 0 2.2
comp18 122 26 22 0 0.1
comp19 135 18 12 0 0.1
comp21 174 14 4 20 0.7

Table 11: Results on Shaerf’s UD5 Timetables

To solve these problems we have used the timetables from Andrea Shaerf’s heuristically-628

generated solutions (Bellio et al., 2012) for the UD5 specification. To model this measure629

of travel time, we needed to add auxiliary variables and constraints to an event-based630

model. The results are shown in Table 11 (with the same column heading interpretations631

as Table 10).632

Although this extension of the event-based model is no longer naturally integer, the633

results show rapid solve times (column 6). We are able to improve on existing room634

assignment solutions (column 3 vs column 4) in every case where a penalty is incurred,635

often by a substantial margin. As with the tests for the UD2 specification, we have used636

the original room size limits rather than the modified limits from Shaerf’s solutions. This637

allows us to avoid incurring any penalty for exceeding the size of the room. However,638

inevitably some problems (comp12 and comp20 ) have no feasible room assignment for639

the given timetable, without expanding the room size.640

Finally, the online listing contains the best solutions and best bounds found for the641

UD2 problems from any method, with no restrictions on run-time (Bonutti et al., 2008).642

The majority of best known solutions incur no room stability penalty, and we are able643

to generate an equivalent room assignment quickly. However, the previously best known644

solution to comp21 by Moritz Mühlenthaler incurred a timetable penalty of 74, and645

a room assignment penalty of 1 (for a total penalty of 75). For this timetable, our646

model was able to find a room assignment with 0 penalty after 30.4 seconds of run-time,647

yielding a new best solution with a total penalty of 74. The lower bound of 74, which648

was provided by Gerald Lach, confirms our result is an optimal solution to comp21. This649

result is encouraging in terms of validating the co-utilisation of both heuristic methods650

(as used by Mühlenthaler) and optimisation methods for difficult problems.651
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5.4. Comments on ITC Datasets652

Finally, we would like to discuss potential shortcomings of the way the ITC prob-653

lems are designed, in terms of the problem structure and the way quality is quantified.654

Although the problems have been derived from real data at the University of Udine in655

Italy, we find some features to be unusual. We are particularly interested in how these656

widely-used benchmark instances relate to practical problems.657

Firstly, we find that courses in the ITC problems frequently have an extremely high658

number of events. Most problems have several courses with up to 7 events. In our659

experience, it is uncommon for a course to need to hold more than 4 events in the same660

week, all desiring to be in the same room. For example, at the University of Auckland,661

normal size courses typically have 3 lectures and 1 tutorial per week. However, because662

these components are usually treated as separate courses in the model, the largest course663

c ∈ C comprises only the 3 lecture events.664

The utilisation of university resources is another factor which appears to be abnor-665

mally high in the ITC problems. This naturally makes the problems more difficult, as666

the algorithms operate with less flexibility for placements of events. Studies into the667

utilisation of teaching space at real universities (Beyrouthy et al., 2007) suggest that668

rooms are occupied 50% of the time on average, rather than the 60%-80% (see Table 10),669

which is typical for the ITC problems.670

We also find that the scale of ITC problems varies between small to medium size671

problems, but does not cater to problems faced by the very largest institutions. The672

largest ITC problem (comp07 ) features 131 courses with 434 events and 20 rooms, which673

is significantly smaller than the problem faced by the University of Auckland, as shown674

in Table 7.675

As far as solution quality measures are concerned, we find that using a soft limit for676

room capacity (which features in all five specifications), is less realistic than a hard limit.677

The majority of rooms will have a certain number of fixed seats which cannot easily be678

increased, providing a natural hard limit. In the case of the University of Auckland, the679

number of students cannot legally exceed the number of seats. The “soft” undesirability680

of a near-full room can be modelled as an event-based solution quality measure similar681

to spare seat robustness.682

For the UD5 specification addressed in Table 11, the quantification of the travel683

distance penalty is also unusual. A penalty is applied when consecutive events from the684

same curriculum are held in different buildings. However, the penalty is applied for each685

curriculum the events feature in. Because pairs of courses may exist together in more686

than one curriculum, the penalty for a particular set of events is multiplied by the number687

of curricula they both appear in. This weighting is arbitrary, particularly because the688

problems include redundant curricula which are dominated by other curricula i.e. they689

feature a subset of the courses of another curriculum. These dominated curricula have690

no effect on any constraint or quality measure, except to alter the quantification of the691

travel distance penalty. Potentially the travel distance penalty could be weighted by the692

number of students influenced, or the distance between buildings (for a problem with693

more detailed data).694

Finally, we would like to discuss the specific choices of quality measures. It is ac-695

knowledged by the competition organisers (Bonutti et al., 2012), and many researchers696

in the field, that there is no universal measure of timetable quality. Not only do differ-697

ent rankings of importance of commonly-desired timetable features exist, but there can698
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even be contradicting views of whether a given feature is desirable. For example, two699

ITC quality measures relating to curriculum compactness (which favour a “bunching” of700

events) may be considered undesirable by some timetablers, who prefer a wider spread701

of events throughout the day. Furthermore, even for the same set of priorities there may702

be many equally valid ways to define or quantify a quality measure in practice. As men-703

tioned by Burke et al. (2010), if there are many similar rooms in one building or location,704

it may be more important to hold all events of a course in one of these rooms rather than705

measuring stability with respect to a specific room. We are inclined to agree, and note706

that our results demonstrate why optimising room preference (an event-based measure)707

is significantly easier than optimising course room stability (which is pattern-based). In708

our approach, the first priority for a feasible timetable is maximising room preference,709

which can be solved efficiently. Course room stability is then improved, but only without710

reducing the total room preference. It is also likely that maximising room preference711

will implicitly minimise students’ travel distance, since courses within a curriculum are712

typically taught by the same department or faculty.713

We use this example of measuring course room stability to demonstrate how differ-714

ent quantifications of quality may be equivalent from a practical perspective, yet differ715

substantially in difficulty when solving the problem with a particular approach. This716

is consistent with the sentiment of the ITC competition organisers, that although an717

algorithm outperforms another on a certain set of benchmarks, this does not imply that718

it is a superior algorithm in general (McCollum et al., 2010).719

6. Concluding Remarks and Future Directions720

We have introduced a novel pattern-based formulation for room assignment problems,721

that generalises the existing models of interval and non-interval scheduling from Carter722

and Tovey (1992). Most importantly, we have shown how this model can be part of723

a practical process for full size university timetabling. We are able to solve an exact724

integer programming model for room assignment quickly enough to get a Pareto optimal725

solution with respect to several solution quality measures on data from the University of726

Auckland. We are also able to identify the situations where fractional solutions can arise727

in the LP relaxation, causing the problems to become more difficult and require greater728

use of integer programming techniques.729

Our approach has also been applied to the ITC problems. We demonstrate that730

it is possible to improve on many of the heuristically-generated solutions using an ex-731

act approach to the room assignment part of the problem. We hope this study helps732

demonstrate that mathematical programmes can be useful to incorporate into a heuris-733

tic framework.734

To continue this work, we are interested in implementing more sophisticated multi-735

objective optimisation methods, which will allow us to explore the trade-offs between736

objectives more fully. We are also exploring more advanced integer programming tech-737

niques to exploit the structure of the most difficult pattern-based problems.738

To complement the classroom assignment method presented in this paper, we would739

like to develop algorithms for automating the timetable modification process. Whether740

incorporated at the planning stage or post-enrolment stage of university timetabling,741

timetable modifications are commonly required in practice and have not yet been com-742

prehensively studied.743
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