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Abstract. This paper focuses on the capacitated minimum spanning tree
(CMST) problem. Given a central processor and a set of remote terminals with
specified demands for traffic that must flow between the central processor and
terminals, the goal is to design a minimum cost network to carry this demand.
Potential links exist between any pair of terminals and between the central
processor and the terminals. Each potential link can be included in the design
at a given cost. The CMST problem is to design a minimum-cost network
connecting the terminals with the central processor so that the flow on any arc
of the network is at mostQ. A biased random-key genetic algorithm (BRKGA)
is a metaheuristic for combinatorial optimization which evolves a population
of random vectors that encode solutions to the combinatorial optimization
problem. This paper explores several solution encodings as well as different
strategies for some steps of the algorithm and finally proposes a BRKGA
heuristic for the CMST problem. Computational experiments are presented
showing the effectiveness of the approach: Seven new best-known solutions are
presented for the set of benchmark instances used in the experiments.

1. Introduction

Minimal spanning trees are among the most studied structures in combinatorial
optimization. From a theoretical point of view, the interest of studying minimum-
cost spanning trees (MSTs) lies in their particularity as mathematical objects. Due
to its matroid structure, a MST can be found in polynomial time with greedy
algorithms, like the ones of Prim (1957) or Kruskal (1956). From a practical point
of view, the connectivity property of MSTs is very useful in multiple applications.
For this reason, along with the traveling salesman problem (TSP), MSTs problems
are considered to lie in the core of network systems design and of a wide variety of
scheduling and routing applications.

Often, TSPs and MST problems take into account additional restrictions, being
capacity constraints among the most frequent ones. The problem that consists of
finding an MST that satisfies additional capacity constraints is called the Capac-

itated Minimum Spanning Tree (CMST) problem. From now on, we will refer to
this problem simply as the CMST. The study of the CMST is of interest because
the mere addition of capacity constraints transforms the MST into an NP -hard
problem. The CMST often arises in telecommunication network design, but it also
has applications in distribution, transportation, and logistics. For example, it is
related to vehicle routing problems, due to the influence that MSTs have in con-
structive heuristics: the TSP heuristic of Christofides (1976) is based on spanning
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trees and similar heuristics were developed for arc routing problems in Frederick-
son et al. (1979) and Frederickson (1979). Because vehicle routing problems usually
consider capacity constraints, the design of more effective or efficient algorithms for
the CMST can also play a role in the design of efficient methods to obtain feasible
solutions for the capacitated vehicle routing problem. Amberg et al. (2000) showed
that it is possible to transform a multicenter capacitated arc routing problem (M-
CARP) into a capacitated minimum spanning tree with additional arc constraints.

Many authors have proposed integer programming formulations for the MST and
its extensions (Araque et al., 1990; Gouveia, 1993; 1995; 1996; Hall, 1996; Gouveia
and Martins, 2000; Gouveia and Hall, 2002; Gouveia and Lopes, 2005; Gouveia and
Martins, 2005; Ruiz, 2013). For the particular case of the CMST, lower bounds can
be found in Gavish (1982; 1983; 1985), Gouveia (1995), and Uchoa et al. (2008). To
date, the most successful exact method is the one of Uchoa et al. (2008). However,
due to its NP -hard nature (see Papadimitriou, 1978) the solution of the CMST
with exact methods is usually very time consuming and even impossible, already
for moderate size instances. This explains why heuristic methods, based on the
greedy paradigm (Esau and Williams, 1966; Chow and Kershenbaum, 1974; Gavish
and Altinkemer, 1986), neighborhood exploration (Amberg et al., 1996; Sharaiha
et al., 1997; Ahuja et al., 2001; 2003; Souza et al., 2003), or dynamic programming
(Gouveia and Paixão, 1991), have been widely used. More recent heuristics include
the second-order algorithm of Martins (2007), in which subproblems of the original
problem including a set of constraints are solved with the Essau Williams heuristic,
the heuristic of Rego et al. (2010), which projects dual solutions into the primal
feasible space and obtains primal feasible solutions by simple tabu searches and
metaheuristics such as the ant colony algorithm by Reimann and Laumanns (2006)
or the filter-and-fan algorithm by Rego and Mathew (2011).

In this paper we propose a biased random-key genetic algorithm (BRKGA) for
the CMST, which stems from the Ph.D. Thesis of E. Ruiz (2013). BRKGA is
a metaheuristic for combinatorial optimization first proposed in Gonçalves and
Resende (2011). A BRKGA evolves a population of random vectors that encode
solutions to the combinatorial optimization problem. BRKGA heuristics have been
used to tackle a wide range of problems, such as traffic congestion (Buriol et al.,
2010), telecommunications (Buriol et al., 2005; Noronha et al., 2011; Reis et al.,
2011; Resende et al., 2012), container loading problems (Gonçalves and Resende,
2012), scheduling (Mendes et al., 2009; Gonçalves et al., 2011), and arc routing
(Martinez et al., 2011). In many of these applications, BRKGA was shown to
produce better solutions than other heuristics. It is important to note that capacity
constraints are present in many of these applications, just as they are in the CMST.
These two observations were the main motivations for exploring the suitability of
the BRKGA for the CMST.

The main contributions of this paper are:

• We propose a new BRKGA for the CMST. We test our heuristic on 126 well-
known benchmark instances. We are not aware of any other exact or heuristic
algorithm for the CMST, tested on such an extensive set of instances. Using
a fixed set of parameters values, our BRKGA consistently produces good re-
sults with quite modest computing requirements, independently of the type of
test instance. The numerical results of our extensive computational experiments
indicate that our BRKGA outperforms other heuristics for the CMST both in
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terms of average deviations from best-known solutions and number of best-known
solutions found.
• We study various potential ingredients for the BRKGA and analyze their individ-
ual contribution to the overall algorithm. Two alternative decoders are proposed
to identify the most effective way of transmitting genetic information from par-
ents to offsprings for the CMST. We are not aware of any code in the literature
that represents spanning trees and takes into account capacity constraints. Both
decoders are enhanced with an improvement phase which incorporates a local
search involving four different neighborhoods. Strategic oscillation is applied as
well. In all cases, alternative strategies are considered and compared.
• Our BRKGA is able to improve the best-known solution for seven out of the 25
instances in our benchmark set with unknown optimal solution. This is remark-
able taking into account that these are very well-known benchmark instances,
which have been much-used by different authors.

The paper is organized as follows. In Section 2, we describe the CMST. In Sec-
tion 3, we briefly recall biased random-key genetic algorithms. In Section 4, we
describe the two decoders as well as the improvement phase that we have incorpo-
rated into our BRKGA for the CMST. Different implementation alternatives and
reinforcements for the decoders and search strategies are successively presented.
The individual impact of each of the proposed ingredients is analyzed in the first
part of Section 5. The section concludes with the computational results of the over-
all proposed BRKGA. The paper ends in Section 6 with some concluding remarks.

2. Notation and problem description

Let G = (V,E) be a given simple graph, with V = {0, 1, . . . , n}, where 0 is a
central processor and V + = {1, . . . , n} ⊂ V is a set of n terminals. Associated with
each edge e = (i, j) ∈ E there is a cost cij > 0. Each terminal i, i = 1, . . . , n, has
an associated demand wi ≥ 0.

Given a spanning tree T ⊂ E of G, rooted at 0, the cost of T is naturally defined
as c(T ) =

∑
e∈T ce. We denote by subroot of T any vertex directly connected to the

root vertex 0. A subtree of T rooted at vertex i ∈ V is denoted by Ti. A subtree
Ti ⊆ T where i is a subroot of T is called s-tree. We use the notation V (Ti) ⊂ V
to denote the set of terminals that are part of subtree Ti and w(Ti) =

∑
j∈V (Ti)

wj

to denote the demand of subtree Ti.

Definition 1. Given a graph G = (V,E) with a distinguished vertex 0 ∈ V , a
demand wi associated with each terminal vertex i ∈ V +, a nonnegative cost cij
associated with each edge (i, j) ∈ E, and a capacity Q > 0, the CMST is to find a

minimum-cost spanning tree of G, rooted at 0, such that the demand of no s-tree
exceeds Q.

3. Biased random-key genetic algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were introduced by Bean (1994) for solving combinatorial optimization problems
involving sequencing and other optimization problems where the solution can be
represented as a permutation vector. In a genetic algorithm, solutions are often re-
ferred to as individuals or chromosomes. In a RKGA individuals are represented as
vectors of n random keys, i.e. n real numbers independently generated at random
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in the uniform interval [0, 1). Parameter n is problem dependent. A decoder is a
deterministic algorithm that takes as input a vector of random keys and produces
from it a feasible solution for which an objective value or fitness can be computed.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p vectors of n random
keys. In generation k the fitness of each individual is computed by the decoder.
The population is then partitioned into two groups of individuals: a small group of
pe < p/2 elite individuals, i.e. those with the best fitness values, and the remaining
set of p − pe non-elite individuals. To evolve the population, a new generation of
individuals must be produced. This is done in three steps.

In step 1, all elite individuals of the population of generation k are copied without
modification to the population of generation k+1. RKGAs implement mutation by
introducing mutants into the population. A mutant is simply a vector of n random
keys generated as the individuals of the initial population. The role of mutants
is to inject noise into the population with the goal of avoiding getting stuck at a
locally optimal solution. In step 2, pm mutants are introduced into the population
of generation k + 1. With the pe elite individuals and the pm mutants accounted
for in population k + 1, p− pe − pm additional individuals need to be produced to
complete the p individuals that make up the new population. This is done in step
3 by producing p − pe − pm offspring through the process of mating or crossover.
Bean (1994) selects two parents at random from the entire population and combines
them using parameterized uniform crossover (Spears and DeJong, 1991).

A biased random-key genetic algorithm, or BRKGA (Gonçalves and Resende,
2011; Gonçalves et al., 2014), differs from a RKGA in the way parents are se-
lected for mating and what role each parent plays in crossover. Unlike in a RKGA,
where parents are selected at random from the entire population, in a BRKGA
each offspring is generated combining one individual selected at random from the
elite partition of the population and another from the non-elite partition. As in a
RKGA, repetition in the selection of mates is allowed and therefore an individual
can produce more than one offspring in the same generation. Let ρe be the proba-
bility that an offspring inherits the random key of its elite parent. In order to try
to keep its good quality, this probability is typically taken as ρe > 0.5. If n is the
number of random keys in an individual, then for i = 1, . . . , n, the i-th component
o[i] of the offspring vector o takes on the value of the i-th component a[i] of the
elite parent a with probability ρe and the value of the i-th component b[i] of the
non-elite parent b with probability 1− ρe.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed by the decoder for all of the newly created random-key vectors
and the population is partitioned into elite and non-elite individuals to start a new
generation.

Algorithm 1 shows pseudo-code for a BRKGA. In line 1, the initial population
P of p random-key vectors of size n is generated. Evolution takes place in the
loop from line 2 to line 19. In line 3, each newly generated individual is decoded
and its fitness computed. In the first generation all individuals are decoded. In
subsequent generations, only mutants and offspring need to be decoded. In line 4,
the pe most fit individuals are placed in the elite set Pe while the remaining p− pe
individuals are placed in the non-elite set Pē. In line 5, P+, the population of the
next generation is initialized with Pe, the elite individuals of the current population.
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procedure BRKGA
Input: n, p, pe, pm, ρe
Output: Best individual X ∗

1 Generate population P with p individuals, each having n keys

generated at random in the interval [0, 1);

2 while stopping criterion is not satisfied do

3 Apply decoder to evaluate fitness of each new individual in P ;

4 Partition P into sets Pe with pe most fit individuals and Pē

with p− pe remaining individuals;

5 Initialize next population: P+ ← Pe;

6 Generate set Pm with pm mutants, each having n random keys

generated uniformly at random in interval [0, 1) ;

7 Add mutants to next population: P+ ← P+ ∪ Pm;

8 for i← 1 to p− pe − pm do

9 Select parent a at random from Pe;

10 Select parent b at random from Pē;

11 for j ← 1 to n do

12 Toss biased coin having probability ρe > 0.5 of heads;

13 if Toss is heads then o[j]← a[j];

14 else o[j]← b[j];

15 end

16 Add offspring o to population: P+ ← P+ ∪ {o};

17 end

18 P ← P+;

19 end

20 return X ∗ ← argmin{f(X ) | X ∈ P}

Algorithm 1: Biased random-key genetic algorithm.

In line 6 the pm mutants of set Pm are generated and, in line 7, they are added
to the population of the next generation. Crossover, or mating, takes place in the
loop from line 8 to line 17. A total of p−pe−pm offspring are generated. In lines 9
and 10, parents a and b are selected at random from, respectively, the elite set Pe

and non-elite set Pē. In the loop from line 11 to line 17, uniform parameterized
crossover takes place, combining elite parent a and non-elite parent b to produce
offspring o. The offspring is added to the next population in line 16. In line 18,
the generation counter is incremented by moving P+ to P . In line 20, X ∗, the best
solution in population P is returned.

A BRKGA explores the solution space of the combinatorial optimization prob-
lem indirectly by searching over the continuous n-dimensional hypercube, using
the decoder to map solutions in the hypercube to solutions in the solution space
of the combinatorial optimization problem where the fitness is evaluated. There-
fore, a BRKGA has a problem-independent component, where the random-key
vectors are evolved, and a problem-dependent component, the decoder. Further-
more, BRKGA can easily take advantage of parallel computing environments, since
step 3 of the pseudo-code in Algorithm 1 can be done in parallel with each thread
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decoding a different vector of random keys. An object-oriented application pro-
gramming interface (API) for the BRKGA framework was proposed in Toso and
Resende (2014). This cross-platform library automatically handles a large portion
of problem-independent modules that are part of the framework, including popula-
tion management and evolutionary dynamics. The user only needs to implement the
problem-dependent decoder. The implementation is written in the C++ program-
ming language and can benefit from shared-memory parallelism when available. We
make use of this API in our proposed implementation of the BRKGA for CMST.

A BRKGA only requires the specification of the solution encoding, the decoder,
the parameters that determine population size, size of elite and mutant sets, prob-
ability offspring inherits key of elite parent, and the stopping criterion. The termi-
nation criteria can be defined either in terms of total iterations, iterations without
improvement, time, or a target objective function value. Depending on the problem
one of these criteria is chosen. We next define a BRKGA for the CMST.

4. A BRKGA heuristic for the CMST

In this section we describe the ingredients of our BRKGA heuristic for the CMST.
We start with two alternative decoders, that we call subroot assignment and pre-

decessor assignment, respectively. Then, we describe an improvement phase which
is common to both decoders.

Different codes have been proposed in the literature to represent spanning trees
(Thompson et al., 2007; Rothlauf et al., 2002; Raidl and Julstrom, 2003; Prüfer,
1918; Neville, 1953). To the best of our knowledge, none takes into account the
capacity constraint present in the CMST. Indeed the decoders proposed in this pa-
per produce trees that are feasible to the CMST and, thus satisfy such constraints.
In addition to the instance data (the graph G = (V,E), demands wi, i ∈ |V

+|,
costs cij , (i, j) ∈ E, and capacity Q), both decoders take as input a vector X of
n random keys, where n = |V +| and the i-th random key corresponds to the i-
th terminal, and start by applying an assignment to the components of X . The
main difference between the two decoders is the meaning of the assignment: while
the subroot assignment decoder allocates each component to the subroot of the
s-tree the corresponding terminal belongs to in the decoded solution, the predeces-
sor assignment decoder allocates each component to its immediate predecessor in
the decoded tree. Other decoders for the CMST have also been proposed in the
Ph.D. of E. Ruiz (2013). The numerical results in his thesis indicate that they are
outperformed by the decoders presented below so we omit them from our study.

4.1. Subroot Assignment Decoder. The subroot assignment decoder returns
an n-dimensional integer assignment vector a, where ai = k indicates that vertex
i ∈ V + is assigned to s-tree s-Tk. Therefore, ak = k implies that vertex k is a
subroot. Recall that a subtree Ti is a subgraph of a tree rooted at vertex i ∈ V ,
whereas an s-tree s-Tk is a subtree rooted at subroot k ∈ V . The algorithm uses a
vector s to keep the residual capacities of the partial s-trees; sk = q indicates that
s-Tk can still accommodate another q units before its Q units are fully used up.

Vertices are scanned in increasing order of their random keys in vector X . Each
scanned vertex i is assigned to the closest existing s-tree with sufficient available
capacity. If none exists, the scanned vertex is declared as the subroot of a new
s-tree to which it is allocated. Here, the distance from a vertex i to an s-tree s-Tk

is defined as min{cij : j ∈ V (s-Tk)}.
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procedure subroot assignment

Input: X , G,w, c, Q

Output: Assignment vector with subroots a
1 ai ← 0, si ← Q, for i = 1, . . . , n;

2 Initialize list VERTICES with vertices 1, . . . , n in increasing order of X ;

3 Initialize empty list ASSIGNED;

4 i← FIRST (VERTICES);

5 while i 6= nil do

/* Try to assign i to an existing s-Tree */

6 Sort vertices j in ASSIGNED in increasing order of cij ;

7 j ← FIRST (ASSIGNED);

8 while j 6= nil and ai == 0 do

9 k ← aj ;

10 if sk ≥ wi then

11 ai ← k;

12 sk ← sk − wi;

13 end

14 j ← NEXT(ASSIGNED);

15 end

16 if ai == 0 then

/* Set i as a new subroot */

17 ai ← i;

18 si ← si − wi;

19 end

20 Add i to ASSIGNED list;

21 i← NEXT(VERTICES);

22 end

23 return

Algorithm 2: Pseudo-code for subroot assignment decoder.

Algorithm 2 gives pseudo-code for the subroot-assignment decoder. In line 1,
the assignment vector a and the available capacity vector s are initialized. The
procedure makes use of lists VERTICES, CANDIDATE, and SUBROOT. List VERTICES

is used to scan the vertices in increasing order of the random keys in vector X . It
is initialized in line 2. List CANDIDATE determines the order in which vertices are
considered to become subroot vertices. It is initialized in line 3 and is also ordered
according to the sorted random keys in vector X . List SUBROOT stores the subroot
vertices with nonzero available capacity. It is initialized empty in line 4. The vertex
i to be assigned is scanned in the loop from line 5 to line 22. In line 6 the ordered
list ASSIGNED is built with the vertices which are already assigned. The loop in
lines 8 to 15 assigns vertex i to the s-tree s-Tk containing its closest vertex j among
the ones that can fit its demand. In line 10 the available capacity at s-Tk is verified
and if sk ≥ wi, vertex i is assigned to s-Tk in line 11 and sk updated in line 12. If
there is no s-tree with sufficient capacity to accommodate vertex i, then i is set as
a new subroot in lines 16 to 19. In any case, i is added to list ASSIGNED in line 20.

Sorting the list of already-assigned vertices with respect to their distances to the
vertex being currently scanned (line 6) is computationally expensive, yielding an
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overall runtime complexity O(n2 log(n)). For this reason, in our implementation
of this algorithm, one heap is maintained for each vertex, containing the distances
from that vertex to all already-assigned vertices. For clarity, however, we only
describe the basic version of the algorithm, without heaps.

4.2. Predecessor Assignment Decoder. The predecessor assignment decoder
returns an n-dimensional integer assignment vector a, where ai = j indicates that
the predecessor of vertex i ∈ V +, is vertex j ∈ V , i.e. edge (i, j) ∈ T , and vertex j
is in the only path in T from the root vertex 0 to i.

This decoder has a preprocessing phase in which the possible predecessors of
each vertex i ∈ V + are stored in a list li. This list only considers vertices j ∈ V +

such that cij < c0i, where c0i is the cost of edge (0, i) if (0, i) ∈ E, or c0i = ∞,
otherwise. Therefore, li = {j : cij < c0i}.

We define a function which enables us to identify the predecessor of terminal i
from its random key, Xi. For this, the interval (0, 1] is divided into |li| subintervals,
each of which is assigned to an element of li. Let f(li,Xi) be the function that
selects the ⌈|li| × Xi⌉-th vertex of li.

procedure predecessor assignment

Input: X , G,w, c, Q

Output: Assignment vector with predecessors a
1 ai ← f(li,Xi) for i = 1, . . . , n;

2 Build T using predecessor vector a ;

3 for i = 1, . . . , n do

4 if (Ti is infeasible) then

5 T ← T \ Ti

6 Execute feasibility recovery on Ti;

7 T ← T ∪ Ti

8 end

9 end

10 a← T ;

11 return

Algorithm 3: Pseudo-code for predecessor assignment decoder.

Algorithm 3 shows pseudo-code for the predecessor assignment decoder. In
line 1, the assignment vector a is initialized with the predecessor ai = f(li,Xi) of
each terminal i. In line 2 the assignment vector a is used to build tree T , which, as
we explain below, can be infeasible. In the loop from line 3 to line 9, every subtree
Ti is checked for possible feasibility violations. If needed, feasibility recovery

is applied in line 6 to restore the feasibility of Ti, and T is updated with the restored
Ti in line 7. The assignment vector a is defined in line 10 according to T .

4.2.1. Feasibility Recovery for the Predecessor Assignment Decoder. The structure
T obtained in line 2 of Algorithm 3 can be infeasible because of two reasons. First,
it may not be connected (thus containing some loop). Second, it may contain
some s-tree violating the capacity constraint. For a given i ∈ V +, both types
of infeasibilities are easy to detect. In the first case, ai 6= 0 and when tracing the
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predecessors of i we never reach the root vertex 0 and instead we “return” to vertex
i. In this case we denote by Ti the connected component of T containing terminal
i. In the second case, ai = 0 and

∑
j:aj=iwj > Q.

In addition to the problem data, the input of the feasibility recovery phase is Ti

and T . Its output is a feasible s-tree s-Ti and an updated structure T , which still
may contain some infeasibility associated with some vertex not in V (Ti).

First, if Ti violates the connectivity constraint, i is connected to the root (by
setting ai = 0) so Ti becomes an s-tree s-Ti. Next, the procedure checks if s-Ti

violates the capacity constraint, i.e. w(s-Ti) > Q. If so, subtrees Tj ⊂ s-Ti with
w(Tj) ≤ Q, are repeatedly removed from s-Ti until w(s-Ti) ≤ Q. Every removed
subtree Tj is either connected to the root or to the closest s-tree s-Tk (k 6= i) with
enough capacity to accommodate Tj. The distance from Tj to an s-tree s-Tk, is
defined as the minimum distance between any vertex of Tj and any vertex of s-Tk:

dist(Tj, s-Tk) = min{clm : l ∈ V (s-Tk),m ∈ V (Tj)}.

After identifying the s-tree s-Tk, with d(s-Tk)+d(Tj) ≤ Q, closest to Tj, then Tj is
connected to s-Tk, provided that dist(Tj , s-Tk) ≤ c0j . Otherwise, such s-tree does
not exist or dist(Tj, s-Tk) > c0j , so Tj is connected to the root.

Algorithm 4 shows the feasibility recovery phase. In line 1, the procedure
checks if Ti is an s-tree. If not, Ti is connected to the root in line 2. The loop from
line 4 to line 14 is entered when s-tree s-Ti violates the capacity constraint, to make
it feasible with respect to capacity. Line 5 displays the search for a subtree Tj , with
j ∈ V (s-Ti), and an s-tree s-Tk such that w(s-Tk) + w(Tj) ≤ Q and dist(Tj , s-Tk)
is minimum. If dist(Tj , s-Tk) ≤ c0j (line 8), Tj is connected to s-Tk in line 9 and
the accumulated demand of s-Tk is updated in line 10. Otherwise, Tj is connected
to the root in line 12. Since the complexity of the feasibility recovery procedure
is O(n2), the overall runtime complexity of the predecessor decoder is O(n3).

procedure feasibility recovery

Input: Infeasible subtree G,w, c,Q, Ti, T
Output: Feasible subtree Ti

1 if ai 6= 0 then

2 ai ← 0;

3 end

4 while w(Ti) > Q do

5 Find Tj ⊂ Ti and subroot k ∈ V + such that w(s-Tk) + w(Tj) ≤ Q and

dist(Tj , s-Tk) is minimum;

6 Ti ← Ti \ Tj ;

7 w(Ti)← w(Ti)−w(Tj);

8 if dist(Tj , s-Tk) ≤ c0j then

9 Tk ← Tk ∪ Tj ;

10 w(s-Tk)← w(s-Tk) + w(Tj);

11 else

12 aj ← 0;

13 end

14 end

15 return

Algorithm 4: Pseudo-code for feasibility recovery procedure.
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Figure 1. Neighborhoods N1 , exchange of vertices, and N2 , vertex reassignment

4.3. Local Search. Similar to other BRKGA implementations (e.g., Reis et al.
2011 and Resende et al. 2012), we extended the proposed decoders with an im-
provement phase, which is applied to the solution found in the initial phase. The
main ingredient of the improvement phase is a local search, which consists of a
multi-neighborhood local improvement procedure. Four neighborhoods (N1 , N2 ,
N3 , and N4 ) are explored sequentially until a solution is found which is locally op-
timal in all four neighborhoods. Only when a solution cannot be further improved
using the current neighborhood the algorithm jumps to the next one; after N4 it
jumps back to N1 . The local search finishes when no further improvements can be
attained with any of the neighborhoods.

Below we describe the four neighborhoods. In all of them moves are only allowed
if the resulting solution remains feasible with respect to the capacity constraint.

N1 : involves swapping two vertices in different s-trees, i.e. i ∈ V (s-Tk) and
j ∈ V (s-Tm), with k 6= m. Figure 1a illustrates a move in N1 .

N2 : includes reassignments in which vertex i ∈ V (s-Tk) is reassigned to another
s-tree, say s-Tm. Figure 1b illustrates a move in neighborhood N2 .

N3 : is a generalization of N2 , where a subtree Ti of an s-tree s-Tk is reassigned
to a different s-tree s-Tm. We restrict moves to subtrees Ti which are not
s-trees. Figure 2a illustrates a move in neighborhood N3 .

N4 : merges two s-trees, s-Tk and s-Tm, into a single s-tree s-Tr. The new s-tree
is obtained as the MST on the set of vertices {0}∪V (s-Tk)∪V (s-Tm). This
operation also gives the new s-root r, which need not be either m or k. N4
can be very useful after the feasibility recovery step (see Algorithm 4) in
which “small” s-trees can be created. Figure 2b illustrates a move in N4 .

In the general case, the size of all neighborhoods is O(n2). In our implementation
each neighborhood is explored using a first-improvement policy so, in practice, the
actual size of the explored neighborhoods was usually considerably smaller. The
order in which the neighborhoods are explored and the strategy for exploring them
(sequential vs nested) were decided based on the results of preliminary testing.

Neighborhoods similar to N1 and N2 have been used in Amberg et al. (1996)
and neighborhoods similar to N3 and N4 have been used in Sharaiha et al. (1997).
More sophisticated neighborhoods have been explored in Ahuja et al. (2001; 2003).
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Figure 2. Neighborhoods N3 , sub-tree reassignment, and N4 , s-tree merging

4.4. Minimum Spanning Tree Stage. Any s-tree, s-Tk, can be reoptimized by
computing the MST in the graph induced by V (s-Tk)∪{0}, since w(V (s-Tk)) ≤ Q.
However, with the exception of N4 , the above neighborhoods do not guarantee
that the obtained s-trees are optimal MSTs in the graph induced by their ver-
tices. Since MSTs can be easily computed using, for instance, Kruskal’s algorithm
(Kruskal, 1956), a natural implementation of the above local search leads to termi-
nate the exploration of N1-N3 with a minimum spanning tree stage (MST-stage),
reoptimizing the obtained s-trees. If the solution is improved by the MST, then we
continue exploring the neighborhood. Otherwise, we jump to the next neighbor-
hood. This policy is referred to as MST-at-end. In the exploration of N1-N3, we
have also applied the MST-stage according to the following alternative policies:

MST-at-change: whenever an improvement is found, an MST-stage is executed for
the s-trees involved in the move.

all-MST : every time a movement is considered, an MST-stage is applied to the
involved subtrees. That is, to evaluate each movement we tentatively make
it and then reoptimize the resulting subtrees. If the movement improves
the solution cost, it is kept, otherwise it is discarded.

4.5. Strategic Oscillation. Strategic oscillation (Glover and Laguna, 1997) has
shown to improve the results of many heuristics. It can be especially effective
in problems where feasibility may restrict the exploration of neighborhoods, as it
allows the local search to cross the border between feasibility and infeasibility. We
propose the use of strategic oscillation in our BRKGA, allowing a violation of the
capacity of up to MaxQ , which is penalized in the objective function. In our basic
strategic oscillation, descent-SO, the penalty term is updated at the end of each
iteration using a descent policy. When it reaches zero, no further update is done.

We also propose two alternative policies for updating the penalty term. The first
one, descent-ascent-SO, uses upper and lower bounds on the value of the penalty
term, which decreases when the upper bound is reached and increases when it is
equal to the lower bound. In the second alternative policy, alternate-SO, which
starts as ascent-descent-SO, when the penalty term reaches zero, it is set to either
+α or −α, where the value of α is close to zero. The idea of a negative penalty
value is to encourage moves into the infeasible area to escape from local minima.
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4.6. Neighborhood Reduction. Indeed the most time consuming policy for the
MST-stage is all-MST, especially when exploring neighborhoods N1 and N2 . For
these neighborhoods we implemented a neighborhood reduction policy, in which the
only moves explored for interchange or reassignment are the ones involving vertices
i and j with βcij ≤ c0i + c0j , i.e. the distance between i and j multiplied by a
certain factor β, does not exceed the sum of the distances between each of these
vertices and the root. Otherwise the move is not considered. We are not aware of
any CMST heuristic where a similar neighborhood reduction has been applied.

5. Experimental results

5.1. Benchmark instances. In our computational experiments we use the sets of
well-known CMST benchmark instances available at http://people.brunel.ac.
uk/~mastjjb/jeb/orlib/capmstinfo.html, as well as the instances proposed in
Martins (2007). These test instances are divided into two main classes according
to the type of demand. The first class contains instances with unitary demands
(UD), whereas instances in the second class have non-unitary demands (non-UD).
Instances labeled as tc, te, and td are in the first class, while instances of type cm
are in the second one. Instances of types tc, te and td have Euclidean distances
(EU ). The main difference among them is the location of the root: at the center
of a rectangular region in set tc, at a corner of a rectangular region in set te, and
far apart outside the rectangular region where the rest of the terminals are placed
in set td. Instances of sets tc, and te have a number of vertices, excluding the root,
n ∈ {80, 120, 160}, whereas all instances in set td have n = 80 terminals. Instances
in tc, td, and te have capacity values Q ∈ {5, 10, 20}. Set cm contains instances with
non-Euclidean distances with n ∈ {49, 99, 199}. They have non-unitary demands,
with values ranging from 1 to 100, and capacities Q ∈ {200, 400, 800}. There are
five instances for each combination (n,Q), except for sets with n = 160, which
contain one instance per combination (n,Q). This gives a total of 126 instances. A
summary of the characteristics of these instances can be found in Table 1.

Table 1. Characteristics of test instances.

Set n demand distances root Q

tc80 80 UD EU Center 5, 10, 20
tc120 120 UD EU Center 5, 10, 20
tc160 160 UD EU Center 5, 10, 20

te80 80 UD EU Corner 5, 10, 20
te120 120 UD EU Corner 5, 10, 20
te160 160 UD EU Corner 5, 10, 20

td80 80 UD EU Out of grid 5, 10, 20

cm50 49 non-UD non-EU Center 200, 400, 800
cm100 99 non-UD non-EU Center 200, 400, 800
cm200 199 non-UD non-EU Center 200, 400, 800

5.2. Implementation details. All the tested versions of the BRKGA were im-
plemented in C++ using the BRKGA API of Toso and Resende (2014). Codes were
compiled with g++ with flags “-c” and “-O3”. All runs were executed on a Pen-
tium Core2 at 3.1 GHz computer with 2 GB of RAM. The parameter values for the
BRKGA API were p = 100, pe = 0.25p, pm = 0.10p, and ρe = 0.65. The maximum
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number of generations without improvement was used as stopping criterion. It was
set to n−20

Q
and to 45Q

Q−100 , for UD and non-UD instances, respectively.

This setting was motivated by previous experiments, which indicated that the
number of vertices and the capacity of the instances affected the number of it-
erations without improvement before finding the best solutions. In addition, for
non-UD instances, the average demand also had some influence.

5.3. Preliminary experiments. To test the effectiveness of the possible ingredi-
ents of our BRKGA, we ran some preliminary experiments to evaluate their con-
tribution to the overall performance of the algorithm. All these preliminary tests
were run on the five tc80 instances and on the five cm50 instances with Q = 200.

5.3.1. Decoder comparison. The first experiment was to run the two decoders pro-
posed proposed in Sections 4.1 and 4.2 respectively within a generic BRKGA
API with no further enhancement. For this, each of them was separately em-
bedded in the previously mentioned BRKGA API of Toso and Resende (2014). A
summary of the obtained results is given in Table 2 under columns Without LS.
Entries in columns Subr. and Predec. correspond to subroot assignment and
predecessor assignment, respectively. The numerical results showed that plain
subroot assignment and predecessor assignment are quite similar in terms
of both, quality solution and time requirements. However, on average, subroot
assignment was faster, although predecessor assignment found somehow better
solutions. We believe this is due to the fact that predecessor assignment bet-
ter transmits genetic information: similar keys yield similar solutions. In contrast,
genetic information is not well transmitted with subroot assignment, since small
changes in the key can substantially modify the resulting solution. In any case, we
should note that the above results were obtained by simply embedding the proposed
plain decoders into a generic BRKGA API with no further enhancement.

5.3.2. Performance of Local Search and impact of MST-stage. A summary of the
results obtained when the decoders were extended with the basic local search (with-
out neighborhood reduction) under the MST-at-end policy is given in Table 2 under
columnsWith LS. As can be seen, the local improvement stage significantly reduced
the average gap of both decoders for all instances. The increase of the computing
times is moderate, taking into account the improvement in the quality of the solu-
tions. This confirms the effectiveness of our local search in which relatively simple
neighborhoods are explored efficiently. It is worth noting that the impact of the
local search on the predecessor assignment decoder was substantially larger than
on the subroot assignment decoder. This cannot be attributed to the quality of the
initial solution, since, as we have seen, originally both decoders produced solutions
with quite similar values. On the contrary, this difference highlights the role played
by the employed decoder for providing good starting points to the local search.

Taking into account the results obtained so far, only the predecessor assignment
decoder was used in all remaining experiments.

The results obtained with the predecessor assignment decoder and the MST-at-

change and all-MST policies are summarized under columns MST policies of Table
2. The all-MST strategy produced the smallest gaps, at the expense of much longer
CPU times (about one order of magnitude). These longer CPU times are the result
of the large number of MSTs that are computed (for each movement considered, at
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Table 2. Summary of preliminary results

Without LS With LS MST policies Descent Strat. Osc. Neigh.

Group Subr. Pred. Subr. Pred. change all end change all Red.

tc80

%gap 9.38 8.78 3.52 0.29 0.34 0.00 0.22 0.28 0.00 0.00
CPU 1.59 2.13 17.96 17.82 38.10 341.92 17.98 37.93 361.05 99.05

cm50

Q = 200
%gap 5.27 3.50 1.33 0.53 0.63 0.10 0.42 0.51 0.10 0.10
CPU 2.26 2.52 16.54 12.10 28.18 335.05 14.62 32.18 345.59 103.21

least one MST is computed). On average, the MST-at-change provides the worst
solutions and its CPU times are longer than those of MST-at-end, which showed a
good balance between time and solution quality.

5.3.3. Impact of Strategic Oscillation. After some tuning, the maximum allowed
violation was set to MaxQ = 1.1 × w(V +)/n. Initially, the penalty term is set to
1 + n

Q
. It is updated at the end of each BRKGA iteration by steps of − 10

Q
. In the

descent-SO policy no further update is done when it reaches zero.
The results of descent-SO with the basic local search are summarized under

column Descent Strat. Osc. of Table 2. As can be seen, for the all-MST policy, SO-
descent increased the computing times producing deviations relative to best-known
solutions similar to those without strategic oscillation. In contrast, for both MST-
at-change and MST-at-end, SO-descent allowed to reduce the deviations, although
these gaps were still worse than those of all-MST without strategic oscillation.

5.3.4. Impact of Neighborhood Reduction. None of the experiments described so
far applied the neighborhood reduction in the local search. The results obtained
when applying the neighborhood reduction of Section 4.6 in the local search with
the all-MST strategy (without strategic oscillation) are summarized under column
Neighborhood Reduction of Table 2. As can be seen, by constraining the moves in
the neighborhoods, the CPU times decreased significantly without compromising
the quality of the solutions obtained. Even if these times are still larger than those
of the other two strategies, the solutions obtained are considerably better.

On the other hand, we observed that if the neighborhood reduction was applied
with the other MST-stage policies, the quality of the solutions obtained was seri-
ously deteriorated. This led us to use the all-MST strategy in all the remaining
experiments and, in particular, in the final algorithm.

5.3.5. Strategic Oscillation combined with Neighborhood Reduction. Finally, we an-
alyze the joint effect of strategic oscillation and neighborhood reduction. Because
the results of neighbor reduction without strategic oscillation on instances of sets
tc80 and cm50 with Q = 200 were already quite good, the joint effect of both
ingredients on this instances was not clear. Therefore, these experiments were run
on the larger instances of sets cm100 with Q = 200 and cm200 with Q = 400.

The results obtained are summarized in Table 3. Alternate-SO obtained the best
results for both groups of instances. Surprisingly, the versions of the algorithm
without strategic oscillation where better than both descent-ascent-SO and SO-

descent for the instances in the largest set. This is probably due to the magnitude
of the penalty term, which sometimes is too big relative to the cost of the tree.
This also suggests why alternate-SO does better. In this procedure the penalty
term oscillates between [−α, α], which is very close to zero.
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Table 3. Results of Strategic Oscillation with Neighborhood Reduction

without-SO descent-SO ascent-SO alternate-SO

cm100

Q = 200
%gap 1.04 0.98 1.08 0.95
CPU 365.16 365.13 368.12 366.68

cm200

Q = 400
%gap 0.54 0.84 0.78 0.42
CPU 3,580.03 3,468.41 3,548.88 3,501.86

5.4. Numerical results of the BRKGA and analysis. Below we present and
analyze the numerical results obtained with our BRKGA in the final set of compu-
tational experiments. According to the results of Section 5.3, the ingredients of the
BRKGA used for these experiments are the predecessor decoder with local search
under the all-MST strategy and neighborhood reduction, and Alternate-SO. Now
we used the complete set of test instances described in Section 5.1. To evaluate the
robustness of the BRKGA, it was run seven times on each test instance.

Detailed results of the BRKGA for all the instances can be found in Tables
9, 10, and 11 of Appendix A. The values of best-known/optimal solutions have
been taken from different sources: Ahuja et al. (2001) for instances tc80 and te80 ;
Martins (2007) for instances tc120 , te120 , tc160 , te160 , and td80 ; and Ahuja et al.
(2003) and Uchoa et al. (2008) for the cm instances. The optimality of most of
these solutions was proven in Uchoa et al. (2008), which is the most successful exact
method proposed to date. There are however, 25 instances in our set of benchmark
instances with unknown optimal solutions. These are the instances whose entries
are not in boldface in columns Best-known Solution of Tables 9, 10, and 11.

Table 4 summarizes the results for the different groups of instances. The first
6 columns show deviations of the obtained solutions with respect to best-known
solutions. In particular, figures under mean %gap refer to average values over the
seven runs on each instance, while those under best %gap refer to the run(s) where
the algorithm produced its best solution. In both cases, columns under avg., min.
and max. give, respectively, the average, minimum, and maximum value, over all
the instances in the row group. Column under stdev gives averages of the standard
deviations of the values of the obtained solutions. The last column shows the
average CPU runtime (among both, instances and runs) until termination. Rows
labeled UD and non-UD give the average values over all the UD and non-UD
instances, respectively.

Table 4. Summary of BRKGA results

mean %gap best %gap stdev CPU time
Group avg. min. max. avg. min. max. avg. (secs.)
tc80 0.005 0.000 0.069 0.000 0.000 0.000 0,101 99.77
te80 0.005 0.000 0.035 0.000 0.000 0.000 0,248 217.88
td80 0.004 0.000 0.022 0.000 0.000 0.000 0,216 259.01
tc120 0.040 0.000 0.224 0.000 0.000 0.000 0,392 324.55
te120 0.092 -0.129 0.457 0.013 -0.259 0.245 1,095 694.73
tc160 0.165 0.115 0.197 -0.025 -0.076 0.000 2,656 1,753.70
te160 0.010 0.000 0.025 0.000 0.000 0.000 0,289 1,587.30
UD 0.034 -0.020 0.158 0.001 -0.051 0.045 0.489 419.285

cm50 0.072 0.000 0.524 0.000 0.000 0.000 0,374 98.97
cm100 0.351 0.000 2.072 0.171 0.000 1.541 0,588 459.50
cm200 0.821 -0.107 2.894 0.412 -0.358 2.666 2,342 3,275.26

non-UD 0.415 -0.036 1.83 0.194 -0.119 1.402 1.101 1,277.910
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As can be seen, our results are good. In general, the algorithm was robust in
the sense that there were only small variations in the output of different runs on
each instance. This can be appreciated by comparing columns under mean %gap

and best %gap. Furthermore, for each instance, we computed the percent deviation
from the worst to the best solutions found in the seven runs. This deviation was 0
for 71 out of the 126 considered instances, and on average 0.21%.

The average percent deviation from the best-known solution over all instances
and runs was 0.17%. For the UD instances, the average percentage gap never
exceeded 0.46% and for 50 out of the 81 UD instances the BRKGA found the
best-known solution in all seven executions. The performance of the algorithm
is, however, less predictable on the non-UD instances (see Appendix A). The
algorithm worked remarkably well on instances with larger capacities (Q = 800)
where it also produced a best-known solution in all seven runs for the ten instances
with n ∈ {49, 99}, and improved the best-known solution for two out of the five
instances with n = 199. Similar results were obtained for the instances with medium
capacities (Q = 400) where again it always found a best-known solution for nine
out the ten instances with n ∈ {49, 99}. Furthermore, it improved the value of the
best-known solution for three out of the five instances with n = 199. However, for
the other two instances in this group, it was not able to find a solution with the
best-known value. The performance of the algorithm somewhat declines on some
of the instances with smaller capacities (Q = 200), where BRKGA finds an optimal
solution for all of the small 50-vertex instances, and two out of the five instances
with 100 vertices, but it fails in finding a best-known solution for the remaining
eight instances. Indeed we could improve the performance of our algorithm for this
specific subset of instances by tailoring the values of the BRKGA parameters. In
order to highlight the robustness of our algorithm, we chose not to follow this path
at the expense of not obtaining the best possible results.

The computing times until termination of the BRKGA are quite modest for
instances of these sizes and difficulty. Nearly all UD instances with Euclidean
distances and 80 vertices (tc80, td80, te80) terminated in less than five minutes.
The CPU time to termination for instances in the same class with more than 80
vertices (tc120, te120, tc160, and te160) was on average less than 2, 200 seconds,
which is the CPU time required by the most time consuming instance in this group
(te160 with Q = 10). Overall, the most demanding instances were the non-UD
cm200 instances where the average computing time is slightly over 3, 000 seconds.
Recall that the stopping criterion is a limit on the number of iterations without
improvement. This partially explains the variability on the CPU times required
for instances of the same size (see the Appendix); although the improvement phase
of the decoder plays an important role in the algorithm, in many instances, the
incumbent solution keeps improving generation after generation before stabilizing.
This suggests that the considered CMST instances tend to have multiple poor local
optima with respect to the considered neighborhoods.

For the seven instances listed in Table 5, our best solutions improved the previous
best-known ones. This is remarkable, because there are only 25 test instances for
which the optimality of the previous best-known solution was not proven, so our
improvements affect to 28% such instances. Note also that a number of well-known
heuristics already have been applied to the same instances. Moreover, five such
instances (all but the two with Q = 800) were also used to test the exact algorithm



BRKGA FOR THE CMST PROBLEM 17

of Uchoa et al. (2008), which for these instances had to be aborted after more than
200,000 seconds with solutions outperformed by the ones we have obtained.

Table 5. New best-known solutions.

Instance Q Previous UB New UB % improvement
tc160-1 10 1319 1318 0.08
te120-4 20 773 771 0.26
cm200-2 400 476 475 0.21
cm200-3 400 559 557 0.36
cm200-4 400 389 388 0.26
cm200-2 800 294 293 0.34
cm200-3 800 361 360 0.28

We close this section by comparing our results with those produced by other
heuristics. For this comparison we chose: (i) the VLNS heuristic of Ahuja et al.
(2003) which, in our opinion, is the heuristic which has produced the best results,
(ii) the ant colony heuristic (ACO) of Reimann and Laumanns (2006), (iii) the
enhanced second-order algorithm (ESO) of Martins (2007), and (iv) the RAMP
heuristic of Rego et al. (2010). Tables 6 and 8 summarize the results of the compared
methods, taken from the original papers. The VLNS results for instances tc120,
te120, tc160, and te160 have been taken from Martins (2007; 2014), and the ‘value
of ESO’+1 has been used for the instances labeled as “NI” in Martins (2007).

Table 6. Average gaps and CPU times (in seconds) for different heuristics

VLNS (2003) ACO(2006) ESO (2007) RAMP(2010) BRKGA
Group %gap time %gap time %gap time %gap time %gap time
tc80 0.000 1,800 0.205 6.5 0.078 3,600 0.018 267.3 0.005 99.8
te80 0.000 1,800 0.085 18.8 0.179 3,600 0.217 1,842.7 0.005 217.9
td80 - - - - 0.075 3,600 - - 0.004 259.0

tc120 0.147† - 0.074∗ 66.0 0.474 5,400 - - 0.040 324.6

te120 0.256† - 0.766∗ 178.0 0.458 5,400 - - 0.092 694.7
tc160 0.716 - 0.867 543.3 0.412 7,200 - - 0.165 1,753.7
te160 0.583 - 0.358 545.0 0.216 7,200 - - 0.010 1,587.3

UD 0.284 1,800 0.251 104.2 0.257 4,533 0.118 1,055.0 0.034 419.3

cm50 0.020 1,000 - - - - 0.146 850.5 0.072 99.0

cm100 0.407 1,800 - - - - 0.314† 35,800.0 0.351 459.5
cm200 1.021 3,600 - - - - - - 0.821 3,275.3

non-UD 0.483 2,133 - - - - 0.230 18,325.3 0.415 1,277.9

Computer Pentium 4 Pentium M AMD Athlon Pentium P4 Pentium Core2
CINT2006 11.5(0.52) 9.04(0.41) 12.9(0.58) 11.5(0.52) 22.1(1)
- information not available.
Information for only some instances of the group: * Only 3 instances, †Only 11 instances.

For the UD instances in sets tc80 and te80, the best results are obtained with the
VLNS, although the results of the BRKGA are also very good, since in both cases
the mean percentage gaps are nearly zero (0.005%). On these instances the ACO,
ESO, and RAMP are outperformed by VLNS and BRKGA. For the td80 instances,
the results of the BRKGA are better than those of the ESO, the only heuristic
that can be compared on this set. For the UD instances with n ∈ {119, 159}
(tc120, te120, tc160, and te160) the best gaps are obtained with the BRKGA, with
averages of 0.07% and 0.09% for the 120- and 160-vertex instances, respectively. For
the non-UD set cm50, again, the VLNS outperforms BRKGA as well as the other
algorithms in our study. For non-UD instances in set cm100, the RAMP algorithm
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obtains the best average gaps, although these results are restricted to instances
with Q = 200. For these specific instances, the BRKGA obtains very close results.
Note, in addition, that the average CPU times of the RAMP algorithm for this set
are very large. For the complete set of instances in cm100 with Q ∈ {200, 400, 800},
the BRKGA outperforms the VLNS, which was so far the heuristic with the best
results for the whole set. Finally, for the instances in cm200 the BRKGA obtained
better average results than any other method in our study.

Comparing the BRKGA and the VLNS in terms of the average gaps, it can be
observed that BRKGA performs better for larger instances (100, 120, 160, and 200
vertices) and slightly worse for instances with 80 vertices. The BRKGA always out-
performed the ACO in terms of the average gap. This could be justified by the fact
that the ACO was designed to obtain fairly good results with little computational
effort. As explained in Reimann and Laumanns (2006), the results of the ACO
for the non-UD instances remain unpublished because of ACO’s poor performance.
The average gaps of the BRKGA are also better than those of the ESO. Finally, the
BRKGA, on average, also obtained better solutions than RAMP for all comparable
groups of instances except group cm100 as was previously explained.

To assess the goodness of the results obtained with BRKGA we performed statis-
tical tests comparing the deviations from the best known solution, of the solutions
produced by each algorithm. For the BRKGA we used the solution obtained in the
first of the seven runs with each instance. According to the probability plots of the
corresponding paired samples, these do not follow a Normal distribution. Therefore,
Wilcoxon signed-rank tests were performed. In all cases the alternative hypothesis
is that the mean of BRKGA is smaller than the mean of the compared algorithm.
Table 7 summarizes the obtained results. Since different data are available for the
different algorithms, we give the number of instances on which each algorithm can
be compared to BRKGA (N), as well as the number of instances where the two
algorithms did not yield the same solution (N 6=). The value of the test statistic is
given as U , and the corresponding p-value is given in the last row. As can be seen,

Table 7. Wilcoxon Singned-Rank Tests of the hypothesis

VLNS ACO ESO RAMP
N 58 42 81 50
N 6= 20 20 48 21
U 28 0 55 81
p-val 1.e-3 1.e-5 2.e-8 0.12

in all cases except for RAMP the superiority of BRKGA is statistically significant.
This is not the case with RAMP that, as mentioned above, provided excellent so-
lutions but only for some of the instances (group cm50 and a subgroup of cm100),
at the expenses of extremely large CPU times.

The running times of the CMST heuristics used in our comparison were measured
on different (older) computers. To give the reader an idea of how much faster our
machine is as compared to the machines used in the tests of the other heuristics, the
last two rows of Table 6 give the computer used in each case and its SPECint20061

1http://www.spec.org/cpu2006/results/cint2006.html
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base score, together with an estimate of the computing times reduction factor, if
runs were performed in our computer (in parentheses). When the available informa-
tion on a computer was not enough to determine its processor, we chose the slowest
possible option to make sure their CPU times were not overestimated. According
to the obtained estimates, ACO is the fastest algorithm for UD instances although,
as mentioned above, it yields worse solutions than the other algorithms. Taking
into account the average CPU times in the different instance groups, our BRKGA
was faster than any other algorithm in all groups where data are available, except
in cm200 where, on the average, VLNS took about 60% as much time as BRKGA.
On the contrary, the CPU time of VLNS was about five times and twice that of
BRKGA in groups cm50 and cm100, respectively. The comparison of CPU times
between VLNS and BRKGA in UD instances is even more favorable to BRKGA.

Table 8. Number of best-known solutions found by the different heuristics

Group instances VLNS ACO ESO RAMP BRKGA

tc80 15 15 8 11 13 15
te80 15 15 10 7 6 15
td80 15 NA NA 5 NA 15
tc120 15 5 2* 7 NA 15
te120 15 3 1* 1 NA 11
tc160 3 0 0 0 NA 3
te160 3 0 0 0 NA 3
cm50 15 14 NA NA 11 15
cm100 15 9 NA NA 3** 11
cm200 15 5 NA NA NA 7

* – Results only for tc120-1 and te120-1
NA – No available information
** – Results only for instances with Q = 200

Finally, Table 8 shows the number of best-known solutions obtained by each of
the heuristics for each group of test instances. These results show that none of the
other heuristics was able to find more best-known solutions on any group of test
instances than those found by the BRKGA. On the UD instances, the BRKGA
found a best-known solution on 77 of the 81 test instances. On the non-UD sets,
the algorithm found a best-known solution on 34 out of 45 instances.

6. Concluding remarks

This paper presented a BRKGA for the CMST, which is a difficult combinatorial
optimization problem with multiple applications, mainly in telecommunications
network design. Despite the difficulty introduced by the capacity constraints, the
algorithm showed to be efficient and robust for solving instances with up to 200
vertices and various characteristics (UD and non-UD demands; Euclidean and non-
Euclidean distances) without practically changing the setup parameters.

By comparing the two proposed decoders we observed that the one based on
predecessor assignment better transmitted genetic information from parents to off-
springs than the one based on subroot assignment. This turned out to be crucial
for obtaining good solutions: while the quality of the solutions produced by both
decoders was not so different, the impact of the local search on the predecessor as-
signment decoder was substantially larger than on the subroot assignment decoder.
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Another element that contributed significantly to the success of our algorithm is
an effective local search, which efficiently explores four relatively simple neighbor-
hoods. This is particularly true when the MST-stage is applied after every move
and the size of the neighborhoods is restricted by only considering promising moves.

The results produced by the BRKGA on a set of 126 instances illustrate its
robustness and effectiveness. Small differences are observed among seven different
runs on each instance. New best-known solutions were found for seven out of the 25
instances with unknown optimal values. On the remaining instances, small average
percentage gaps were obtained in moderate computational times. A comparison of
the BRKGAwith four other CMST heuristics in the literature highlights the efficacy
of our proposal in terms of both, solution quality and computational burden.
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Appendix A. Complete results

Tables 9, 10, and 11 give detailed information of the BRKGA results on all the
tested instances. Columns Mean %gap and CPU show, respectively, the average
over the seven runs of the deviation of the obtained solution from the optimal/best-
known one, and the CPU time to termination, in seconds. Best-known solutions are
given next. Boldfaced values correspond to proven optimal solutions, while best-
known values that have been improved in this work are marked with an asterisk.
The last four columns give the mean of the seven (often repeated) solution values,
their standard deviation, and the values of the best and worst solutions obtained
in the seven runs, respectively.
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Table 9. Results for instances with n = 80 and unitary demands

Instance Mean CPU Best-known Mean Stdev Best Worst
Group Q number %gap (seconds) Solution BRKGA BRKGA BRKGA BRKGA

tc80 5 1 0.00 38.84 1099 1099.0 0.00 1099 1099
2 0.00 99.04 1100 1100.0 0.00 1100 1100
3 0.00 106.49 1073 1073.0 0.00 1073 1073
4 0.00 105.53 1080 1080.0 0.00 1080 1080
5 0.00 119.08 1287 1287.0 0.00 1287 1287

10 1 0.00 53.06 888 888.0 0.00 888 888
2 0.00 105.36 877 877.0 0.00 877 877
3 0.00 112.78 878 878.0 0.00 878 878
4 0.07 121.26 868 868.6 1.51 868 872
5 0.00 126.02 1002 1002.0 0.00 1002 1002

20 1 0.00 61.63 834 834.0 0.00 834 834
2 0.00 117.17 820 820.0 0.00 820 820
3 0.00 102.85 828 828.0 0.00 828 828
4 0.00 103.56 820 820.0 0.00 820 820
5 0.00 123.88 916 916.0 0.00 916 916

te80 5 1 0.00 180.05 2544 2544.0 0.00 2544 2544
2 0.03 341.61 2551 2551.7 1.89 2551 2556
3 0.01 270.51 2612 2612.3 0.76 2612 2614
4 0.03 277.84 2558 2558.9 1.07 2558 2560
5 0.00 199.06 2469 2469.0 0.00 2469 2469

10 1 0.00 186.13 1657 1657.0 0.00 1657 1657
2 0.00 215.17 1639 1639.0 0.00 1639 1639
3 0.00 221.18 1687 1687.0 0.00 1687 1687
4 0.00 218.45 1629 1629.0 0.00 1629 1629
5 0.00 201.22 1603 1603.0 0.00 1603 1603

20 1 0.00 185.14 1275 1275.0 0.00 1275 1275
2 0.00 190.74 1224 1224.0 0.00 1224 1224
3 0.00 187.42 1267 1267.0 0.00 1267 1267
4 0.00 216.44 1265 1265.0 0.00 1265 1265
5 0.00 177.27 1240 1240.0 0.00 1240 1240

td80 5 1 0.00 279.23 6068 6068.3 0.76 6068 6070
2 0.00 266.01 6019 6019.0 0.00 6019 6019
3 0.01 285.57 5994 5994.9 1.46 5994 5997
4 0.00 206.99 6012 6012.0 0.00 6012 6012
5 0.00 197.89 5977 5977.0 0.00 5977 5977

10 1 0.00 341.31 3223 3223.0 0.00 3223 3223
2 0.00 228.83 3205 3205.0 0.00 3205 3205
3 0.00 317.28 3212 3212.0 0.00 3212 3212
4 0.00 323.99 3203 3203.0 0.00 3203 3203
5 0.00 237.86 3180 3180.0 0.00 3180 3180

20 1 0.00 196.10 1832 1832.0 0.00 1832 1832
2 0.02 262.74 1829 1829.3 0.49 1829 1830
3 0.00 230.66 1839 1839.0 0.00 1839 1839
4 0.02 243.12 1834 1834.4 0.53 1834 1835
5 0.00 267.65 1826 1826.0 0.00 1826 1826
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Table 10. Results for instances with n = 120, 160 and unitary demands

Instance Mean CPU Best-known Mean Stdev Best Worst
Group Q number %gap (seconds) Solution BRKGA BRKGA BRKGA BRKGA

tc120 5 1 0.00 128.07 1291 1291.0 0.00 1291 1291
2 0.00 189.76 1189 1189.0 0.00 1189 1189
3 0.03 274.47 1124 1124.3 0.76 1124 1126
4 0.03 250.22 1126 1126.3 0.76 1126 1128
5 0.02 235.08 1158 1158.3 0.49 1158 1159

10 1 0.00 168.30 904 904.0 0.00 904 904
2 0.00 355.37 756 756.0 0.00 756 756
3 0.00 372.05 722 722.0 0.00 722 722
4 0.00 276.17 722 722.0 0.00 722 722
5 0.17 355.59 761 762.3 1.89 761 765

20 1 0.00 298.73 768 768.0 0.00 768 768
2 0.00 420.21 569 569.0 0.00 569 569
3 0.00 442.56 536 536.0 0.00 536 536
4 0.13 549.16 571 571.7 0.49 571 572
5 0.22 552.47 581 582.3 1.50 581 585

te120 5 1 0.03 413.70 2197 2197.6 1.51 2197 2201
2 0.06 520.85 2134 2135.3 1.38 2134 2137
3 0.03 343.81 2079 2079.7 0.49 2079 2080
4 0.05 464.19 2158 2159.0 0.00 2159 2159
5 0.04 532.96 2017 2017.7 1.50 2017 2021

10 1 0.00 575.22 1329 1329.0 0.00 1329 1329
2 0.45 659.87 1225 1230.6 2.94 1228 1235
3 0.17 809.37 1195 1197.0 1.83 1195 1200
4 0.23 702.35 1230 1232.9 2.19 1231 1237
5 0.26 767.34 1164 1167.0 2.16 1165 1171

20 1 0.00 632.49 920 920.0 0.00 920 920
2 0.09 1034.26 785 785.7 0.95 785 787
3 0.02 1058.64 749 749.1 0.38 749 750
4 -0.13 920.74 773* 772.0 0.58 771 773
5 0.08 985.22 746 746.6 0.53 746 747

tc160 5 1 0.20 1034.13 2077 2081.1 2.97 2077 2084
10 1 0.18 2197.84 1319* 1321.4 3.05 1318 1327
20 1 0.12 2029.13 960 961.1 1.95 960 964

te160 5 1 0.03 1211.09 2789 2789.7 0.49 2789 2790
10 1 0.01 2141.96 1645 1645.1 0.38 1645 1646
20 1 0.00 1408.86 1098 1098.0 0.00 1098 1098
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Table 11. Results for instances with non-unitary demands

Instance Mean CPU Best-known Mean Stdev Best Worst
Group Q number %gap (seconds) Solution BRKGA BRKGA BRKGA BRKGA

cm50r 200 1 0.00 88.78 1098 1098.0 0.00 1098 1098
2 0.53 108.15 974 979.1 2.27 974 980
3 0.00 102.22 1186 1186.0 0.00 1186 1186
4 0.00 121.37 800 800.0 0.00 800 800
5 0.00 101.38 928 928.0 0.00 928 928

400 1 0.13 106.54 679 679.9 1.07 679 681
2 0.00 62.16 631 631.0 0.00 631 631
3 0.35 74.30 732 734.6 1.13 732 735
4 0.08 124.69 564 564.4 1.13 564 567
5 0.00 91.65 611 611.0 0.00 611 611

800 1 0.00 131.13 495 495.0 0.00 495 495
2 0.00 108.15 513 513.0 0.00 513 513
3 0.00 90.67 532 532.0 0.00 532 532
4 0.00 81.30 471 471.0 0.00 471 471
5 0.00 92.04 492 492.0 0.00 492 492

cm100r 200 1 1.04 439.57 509 514.3 2.87 509 517
2 2.08 368.24 584 596.1 1.57 593 597
3 0.26 484.89 540 541.4 0.53 541 542
4 0.33 383.76 435 436.4 0.98 435 437
5 0.89 428.98 418 421.7 1.80 420 425

400 1 0.17 439.19 252 252.4 0.53 252 253
2 0.36 397.48 277 278.0 0.00 278 278
3 0.18 457.12 236 236.4 0.53 236 237
4 0.00 523.62 219 219.0 0.00 219 219
5 0.00 495.37 223 223.0 0.00 223 223

800 1 0.00 489.72 182 182.0 0.00 182 182
2 0.00 479.85 179 179.0 0.00 179 179
3 0.00 466.91 175 175.0 0.00 175 175
4 0.00 485.28 183 183.0 0.00 183 183
5 0.00 552.53 186 186.0 0.00 186 186

cm200r 200 1 1.67 3122.37 994 1010.6 5.00 1003 1015
2 1.96 3007.78 1188 1211.3 9.11 1202 1225
3 2.89 3061.93 1313 1351.0 2.45 1348 1355
4 1.34 3561.27 917 929.3 7.18 919 937
5 2.11 3236.41 948 968.0 3.32 964 974

400 1 0.91 3097.51 391 394.6 1.90 392 397
2 0.30 3186.94 476* 477.4 1.51 475 480
3 -0.10 4040.28 559* 558.4 1.13 557 560
4 0.29 3447.51 389* 390.1 1.35 388 392
5 0.85 4046.50 418 421.6 0.79 421 423

800 1 0.00 2778.14 254; 254.0 0.00 254 254
2 -0.05 3133.56 294* 293.9 0.38 293 294
3 -0.08 3187.92 361* 360.7 0.49 360 361
4 0.00 3043.11 275; 275.0 0.00 275 275
5 0.20 3177.69 292 292.6 0.53 292 293
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