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a b s t r a c t

This paper presents the p-next center problem, which aims to locate p out of n centers so as to minimize
the maximum cost of allocating customers to backup centers. In this problem it is assumed that centers
can fail and customers only realize that their closest (reference) center has failed upon arrival. When this
happens, they move to their backup center, i.e., to the center that is closest to the reference center.
Hence, minimizing the maximum travel distance from a customer to its backup center can be seen as an
alternative approach to handle humanitarian logistics, that hedges customers against severe scenario
deteriorations when a center fails.

For this extension of the p-center problemwe have developed several different integer programming
formulations with their corresponding strengthenings based on valid inequalities and variable fixing.
The suitability of these formulations for solving the p-next center problem using standard software is
analyzed in a series of computational experiments. These experiments were carried out using instances
taken from the previous discrete location literature.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction: new location model for humanitarian logistics

The p-center problem (pCP) is a very well-known discrete
optimization problem which consists in locating p out of n centers
and assigning users to them so as to minimize the maximum
distance (cost) between a user and the corresponding (reference)
center. It was shown in [19] that pCP is an NP-hard problem. Some
applications of pCP are the location of emergency services like
ambulances, hospitals or fire stations, since all users should be
within a small radius from some emergency center. As a conse-
quence, pCP has been extensively studied, and both exact and
heuristic algorithms have been proposed. Recent papers on the
field are [10,14,27]. We also refer the interested reader to
Chapter 5 of [11]. Capacitated versions of pCP have also received
some attention in the literature: a local search heuristic for a
capacitated version of pCP was developed in [30], and a special
case where all users have equal demands was studied in [2,20];
the case of an underlying tree network was approached in [18],
whereas in [1,28] the authors propose exact algorithms.

Emergency services can, in practice, fail. In particular, after a
large disaster, an emergency center located in the affected area is
likely to be destroyed or seriously damaged. This kind of situation
was given, for example, in May 11, 2011, in the Spanish town of

Lorca. As a consequence of two consecutive earthquakes nine
people were killed, three hundred were injured and the local
hospital had to be evacuated due to the risk of collapse.

This fact has motivated us to extend the p-center problem in a
new direction and define the p-next center problem (pNCP). We
are interested in studying the situation where an unpredictable
incident can occur in any of the p centers, forcing this center to be
closed and all users allocated to it to be reassigned/derived to
another center. We assume that these users only realize that their
first center (from now on, reference center) is unavailable after
arriving to it, i.e., no a priori information is known. Then they will
be redirected to the center closest to the unavailable center (from
now on, backup center). In the unlikely case of tie between two or
more reference centers, we assume that the user chooses her best
option, that is to say, the reference center with a closest backup
center. It is further assumed that the possibility that both, the
reference and the backup centers fail, is negligible.

The pNCP can be seen as an extension of the so-called messenger-
boy problem [15] which aims at finding a 1-center in the plane, but
where the cost associated with each customer is the sum of the
distance between the customer and the center, plus a constant that
depends on the customer. In the pNCP, instead of that constant we
incorporate the distance from the reference center to its closest other
center. Two other related problems that are pretty similar to each other
are the collection depot facility location problem and the one-way facility
location problem. In both cases, center objectives are considered, with
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assignment costs that are also associated with paths that visit three
different locations (including the customer). However, in contrast to the
p-next center problem, the path to serve a customer visits one of the
located centers, and one of the already available depots. Indeed, the
pNCP can be regarded as the extension of these problemswhere depots
are restricted to be among the opened centers. Planar and network
versions of these problems have also been studied in the literature
[4,5,13,32].

From a geometrical point of view this problem has an appealing
meaning that is different from the meaning of the p-center. We can
consider that, in pCP, we are looking for the centers of p spheres
which cover the demand points and such that the largest radius is
as small as possible. In our case, the problem is to find p points such
that, if each demand point is covered by a sphere centered at the
closest point and that center is covered by another sphere centered
at its closest point, then the maximal sum of the two radii be
minimal. It is clear that, in this regard, our problem adds a
redundancy effect to hedge against failures in emergency systems.

The literature on location problems with facility failures is quite
extensive. It starts with the seminal paper [12], where the possibility
that several facilities in the p-center model may become inactive is
studied. A probability that a facility becomes inactive is then intro-
duced and a heuristic procedure is presented. Since then, a large
variety of models have been proposed in the literature to incorporate
the issue of disruption into facility planning decisions. Broadly speak-
ing, these models can be classified according to two criteria. On the
one hand, differences exist depending on the moment when custo-
mers realize that their reference facility is not available; most refe-
rences assume that customers know it in advance and, thus, they
travel directly to their backup facility, but other papers, as it is the case
in this work, pay attention to situations where they do not know it in
advance. For instance, in [7], a model where the customers may have
to visit several facilities until finding an available one is analyzed to
conclude that centralization and co-location are adequate strategies to
locate centers in this case. More recently, the same authors try to
explain in [6] how correlated failure probabilities and problem
objective (median and center) affect the location decisions when
information is available, and when it is not. On the other hand, using
or not failure probabilities to include the possibility that facilities
become unavailable defines a second classification. Again, the litera-
ture is unbalanced. Lots of papers exist where these probabilities play
a crucial role in the studied models, as shown in [23], while only a few
references concentrate on models that do not require the knowledge
of these probabilities to identify sets of facilities that are robust
enough to guarantee a reasonable service level even in the case of
failures (see, for instance, [17]). In this regard, the present work is
basically in the second category, since failure probabilities are not
included in the model. However, as it will be seen, they can be easily
incorporated to the model if they were available.

In this paper we introduce and analyze different (mixed) linear
integer programming formulations of pNCP, developed from
different points of view. We first present a natural formulation
that uses binary variables modeling the paths from a site to its
backup center, through its reference center. This yields quite a
strong formulation at the cost of using a large number of variables
(variables with three indices). For this reason, we next explore the
capability of smaller sets of variables to model pNCP. In particular,
two alternative sets of variables with only two indices are
considered, giving rise to two different formulations. One of them,
using binary variables to identify pairs of sites where centers are
established, is relegated to an appendix in order to focus the
reader's attention on the most promising models. In the second
case, binary variables indicate either links between a customer and
its reference center, or links between a center and its backup
center. Finally, as it has been successfully done for pCP (for
instance, in [14]), a fourth formulation is studied that combines

covering variables with the use of ordered distances and a
telescopic objective function.

All formulations are studied and strengthened using valid
inequalities and some variable fixing criteria that can be applied
when valid upper bounds are available. Finally, a computational
experience has been performed to compare their utility to solve
pNCP using branch and bound with standard software.

The rest of the paper is organized as follows. First, the formal
statement of the problem is given in Section 2 together with the
notation that will be used throughout the paper, and a proof of the
NP-hardness of the problem. The natural formulation, with three-
indexed variables, is presented and analyzed in Section 3. Then, in
Section 4, the formulation that uses two-indexed variables is
developed and strengthened. Finally, Section 5 contains the for-
mulation with covering variables together with its improvements.
The description and the results of the computational experiments
carried out are given in Section 6 and the paper is completed with
some conclusions and remarks exposed in Section 7.

2. Problem definition, notation and NP-hardness

Let A¼ f1;…;ng be a given set of sites (points) which represent
users and also candidate sites for locating the centers. For each
pair (i,j), i; jAA, let dijZ0 be the distance (cost) from i to j, which
must satisfy dii ¼ 0, iAA, dij40, i; jAA, ia j, and dijrdikþdkj,
i; j; kAA. Finally, let pZ2 be the number of centers to install
among the n possibilities.

The p-next center problem is defined as

min
Q � A

jQ j ¼ p

max
iAA

8>><
>>:
min
jAQ

fdijgþ min
j0 Aarg min

jAQ
fdijg

min
kAQ

ka j0

fdj0kg

9>>=
>>;
;

i.e., to choose p elements of A so as to minimize the maximum, for
all sites iAA, of the sum of two distances, the distance between
point i and its closest center(s) and the distance between the best
closest center and its closest center. Throughout the paper we will
use the notation δijk≔dijþdjk, i; j; kAA, to denote the total assign-
ment cost of site i if j is its reference center and k is its backup center.

From a practitioner point of view, we are modeling the case where
a person does not know beforehand that her reference center is not
available but, in case of tie among several centers, this person will
attend the one from which going to another center implies covering
the smallest distance. Note that if it were not forced that the reference
center for a site must be among its closest centers, solutions where the
user goes first to a center which is not the closest one can give better
objective values. This can be clearly seen in the following example.

Example 2.1. Consider the problem defined by the five points in Fig. 1,
with Euclidean distances, and p¼3. If sites are not forced to choose their
closest center as their reference center, then the optimal solution is the
one given in the second sub-figure, with cost equal to 7.28, given by the
total assignment cost of site 1 (1�1�4). However, in this solution site
5 is using center 4 as its reference center whilst center 1 is much closer
to it. Thus, if in this solutionwe force site 5 to visit first its closest center,
then 4 will be its backup center giving rise to a solution cost of 11.07. In
this case, it is optimal to locate a center at 5 instead of 1 (see the last
sub-figure), and the solution cost 8.70 is given by site 1 which has 5 as
its reference center, and 4 as its backup center.

Note also that the solutions of this problem can be substantially
different from the solutions of pCP. In this example, if the optimal
solution of pNCP, given by sites 2, 4 and 5, is seen as a p-center
solution, it has an associated cost of 4, given by the assignment cost of
site 3, while the optimal solution of pCP is given by sites 3, 4 and 5 and
has a cost of 3.61 given by the assignment of site 1 to center 5.

In what follows we show the complexity of pNCP.
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Proposition 2.1. pNCP is an NP-hard problem.

Proof. The proof follows by reduction from the Euclidean p-center
problem EpCP (proven to be NP-hard in [26]) to pNCP. To this end,
consider an instance of the decision version of EpCP given by n
points in the plane with coordinates ðxi; yiÞ, i¼ 1;…;n, a given
number of centers q, Euclidean distances between the points, and
a real α40. We can assume without loss of generality that all
Euclidean distances between pairs of points are different.

Let 0oεr1
2min dij j i; jA1;…;n; ia j

� �
, which can be computed

in Oðn2Þ time. We shall prove that there is a solution to EpCP with
value less than or equal to α if and only if there is a solution to a
specific pNCP instance with value less than or equal to αþε.

We build an associated instance of pNCPwith jAj ¼ 2n and p¼ 2q,
considering the n points ðxi; yiÞ plus n twin points ðxiþn; yiþnÞ with
xiþn ¼ xiþε, yiþn ¼ yi, i¼ 1;…;n. Costs dij are given by Euclidean
distances between points.

Consider any optimal solution to the second instance, repre-
sented by a set of p¼ 2q centers C. Since each of the points in C is
its own reference center and has as backup center the closest point
in C (other than itself), we can build a directed network
N≔ðG;ℓÞ ¼ ðC;AC ;ℓÞ with ðu; vÞAAC if v is the backup center of u
and ℓuv the Euclidean distance between centers u and v.

If G contains a circuit with more than two arcs, say ðu1;u2Þ,
ðu2;u3Þ,…, ðut�1;utÞ, ðut ;u1Þ, it must hold

ℓutu1 Zℓu1u2 Zℓu2u3 Z⋯Zℓut � 1ut Zℓutu1

implying

ℓutu1 ¼ ℓu1u2 ¼ ℓu2u3 ¼⋯¼ ℓut � 1ut ¼ ℓutu1 :

In such a case the circuit can be destroyed by changing the backup
center of u1 to ut, for instance, getting a new solution with the
same value. Therefore, we can assume that all circuits in G have
length 2.

Let now assume that there are points in network N with in-degree
0. Note that none of their twin points belongs to C since, otherwise,
they would be part of a circuit of length two. For clarity we take these
points to be ðx1; y1Þ;…; ðxk; ykÞ, that is to say, none of the k first points
are backup centers of any other center. We also assume that the
backup centers of these points are ðxkþ1; ykþ1Þ, …, ðxkþ r ; ykþ rÞ with
rrk. Then, a different solution to this instance of pNCP is obtained by
removing ðxi; yiÞ i¼ 1;…; k from C to get the set of centers C 0, making
C ¼ C 0 [ fðxiþkþn; yiþkþnÞ; i¼ 1;…; rg and re-assigning the centers to
their closest backup centers. If this change produces new points in N
with in-degree 0, the transformation is repeated until the network
reduces to a collection of circuits of length 2. Finally, if some of these
circuits is not spanned by two twin points, we remove one of the
points from C and add the twin point of the other one to C to obtain a
network spanned by pairs of twin points.

Obviously, the assignment cost of any of the removed centers in
the new solution does not increase in more than ε with respect to
the initial solution, since now either ðxiþk; yiþkÞ or ðxiþkþn; yiþkþnÞ
for some i¼ 1;…; r will be their backup center. Assignment of
other points that are not centers, due to the triangle inequality,
will neither increase in more than ε.

If, after the transformations, the network contains less than p
centers (but in any case an even number of them), by adding pairs
of twin centers to it the solution will never worsen.

If this last solution to pNCP is at most αþε then we can build a
solution to the original instance of pCP given by one center from
each pair of twins and with objective value less than or equal to α,
and vice versa. □

3. A three-indexed formulation using path variables

Two-stage location problems (see, e.g., [21]) and hub location
problems [8,9], among others, have been formulated by means of
binary variables associated with the possible routes from each origin
through the plants/hubs to the final destination. In our case, a route
is given by three elements: site i, reference center j and backup
center k. Then, for our first formulationwe introduce binary variables

� yj: to indicate whether there is a center in site jAA,
� xijk: to indicate whether the reference center of i is j and the

backup center of i (closest facility to j that is not j) is k only
defined for i; j; kAA with jak, iak and dijrdik),

and the auxiliary continuous variable z, to account for the largest
total assignment cost. With these variables the problem is for-
mulated as

ðF1Þ min z

s:t:
X
jAA

yj ¼ p ð1Þ
X
jAA

X
kA A;ka i;j
dij r dik

xijk ¼ 1; iAA; ð2Þ

X
kA A;ka i;j
dik Z dij

xijkþ
X

kA A;ka j
dik r dij

xikjryj; i; jAA; ð3Þ

yjþ
X
hA A

dih 4 dij

X
ka i;h

dik Z dih

xihkr1 i; jAA; ia j; ð4Þ

zZ
X
jAA

X
kA A;ka i;j
dij r dik

δijkxijk; iAA; ð5Þ

yjAf0;1g; jAA; ð6Þ

xijkAf0;1g; i; j; kAA; ka i; j; dijrdik: ð7Þ

Fig. 1. Problem solutions.
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Constraint (1) ensures that exactly p centers are set. Constraints
(2) force each site to be assigned a two-leg trip, and (3) ensure that
those paths go through two sites where centers have been set.
Constraints (4) force each site to have its reference center among
the closest ones. To ensure this, (4) forbid assigning site i to a
center that is further from it than site j, if j is a center. Finally,
constraints (5) are used to identify the length of the longest path.

Some comments on (F1) are given next.

� It is not needed to require explicitly in the formulation that the
backup center of a given site is the closest center with respect
to the reference center, since there is always an optimal
solution satisfying it (p-center problem formulations also
benefit of a similar property).

� Constraints forcing that the reference center of each site be its
closest center need to be explicitly included. Otherwise, further
reference centers could be preferred, if they allow for cheaper
backup assignments (see Example 2.1). In this formulation this
is done by means of Closest Assignment Constraints (CAC) (4).
Recent studies of CAC for standard discrete location formula-
tions can be consulted in [16,22].
Actually, constraints (4) can be replaced by the stronger
constraints

yjþ
X
kA A

dik 4 dij

X
ha i;k

dik Z dih

xikhþ
X
kA A

dik o dij

X
hA A;ha i;k
dkh 4 dkj

xikhr1 i; jAA; ia j: ð8Þ

The new term added in the constraints forbids the second leg of
the trip from each site i being longer than the distance from its
reference center to site j, if j is a center. Note that the variables
in this term correspond to assignments of i to centers that are
closer to it than j, so that none of those variables can take value
1 if any of the variables of the original term takes value 1. Fig. 2
shows the two situations that are forbidden through con-
straints (8). The situation in Fig. 2(a) was already forbidden
by the original constraints, but by adding the new termwe also
forbid the situation depicted in Fig. 2(b).

� Note that if constraints (7) are relaxed to 0rxijkr1 variables
will still take integer values in some optimal solution to the
problem.

� If costs take only integer values, then z will also take an integer
value in the optimal solutions.

� If an upper bound zUB on the optimal value is known, it can be
used to fix variables to zero in this formulation. Indeed,
whenever δijk4zUB, it is sure that variable xijk will not be equal
to 1 in any optimal solution, and can be thus removed from the
formulation.

It is clear that when a site i has its reference center in j, center j
will be its own reference center. Then, the following result follows.

Proposition 3.1. There exists an optimal solution to (F1) for which

xijkrxjjk for all i; j; kAA; ia jak; dijrdik: ð9Þ

Inequalities (9) might be incorporated to formulation (F1). How-
ever, including them all in the original formulation is rather ineffi-
cient, since this set of constraints has size O(n3). We have considered
the possibility of using these inequalities as optimality cuts.

4. A two-indexed formulation

Usually, three-indexed variables have produced good bounds in
discrete location at the expenses of making the formulations too
large and thus useless for medium sized instances. As previously
observed in the literature of two-stage location problems, two-

indexed formulations have a much smaller size and can be adequate
to formulate larger instances. For this reason, in this section we
present such a formulation, taking into account that the objective
function is obtained from the sum of the two distances which join
each site to its backup center, and also the specificities of how sites
are allocated to both centers in the path. To this end, we have defined
our first set of two-indexed variables in a very particular way. We
will use the following binary variables:

� yj: to indicate whether there is a center in location jAA,
� xij: to indicate whether the closest center to i that is different

from i is j (these variables are only defined for i; jAA with ja i),

and variable z with the same purpose as before.
Note that xij ¼ 1 has a different meaning depending on whether

i is a center or not. If i is not a center, xij ¼ 1 implies that j is the
reference center for i. Otherwise, if i is a center itself, xij ¼ 1 means
that j is the backup center for i, and, therefore, for all sites having i
as the reference center. Using these variables, and using the same
idea as in Proposition 3.1, we have built the following formulation:

ðF2Þ min z
s:t: ð1Þ; ð6ÞX

jA A
ja i

xij ¼ 1; iAA; ð10Þ

xijryj; i; jAA; ia j; ð11Þ

yjþ
X
kA A

dik 4 dij

xikr1; i; jAA; ia j; ð12Þ

zZ
X
kA A
ka j

djkxjk; jAA; ð13Þ

zZdijðxij�yiÞþ
X
kA A
ka j

djkxjk; i; jAA; ia j; ð14Þ

xijAf0;1g; i; jAA; ia j: ð15Þ
Constraints (10) and (11) ensure that each point i is assigned to a

center j different from i. Constraints (12) are CAC based on those
proposed in [33] and, as in the previous formulation, they forbid the
type of situations depicted in Fig. 2(a). The main difference with
respect to [33] is that the case i¼ j must be removed, since in this
case (12) would prevent against the allocation of i to its backup
center.

To force z to take the correct value, we use constraints (13) and
(14). With the first set, we make sure that z is larger than the travel
cost of any site where a center is set. In this case, the first level
assignment is the site itself (at a 0 cost) and the second assign-
ment is to the closest center different from itself, which can be
identified through the x-variables. In the second set of constraints,
we use the fact that, according to Proposition 3.1, there is an
optimal solution where all the sites that are primarily assigned to a
given center j will have the same backup center, which coincides
with the backup of j itself. Thus, if no center is set at site i and its
reference center is j, its total assignment cost will be equal to the
distance from i to j plus the distance from j to j's closest center,
given by the sum in the second term of the inequality. Note that, in
any other case, xij�yir0 and the resulting constraint is weaker
than the constraint in set (13) for index j.

Some comments on this formulation are the following.

� Removing CAC constraints (12) may result in general in solu-
tions that do not fulfill the closest assignment requirement.

� In this formulation, relaxing constraints (15) to 0rxijr1 may
lead to fractional solutions, since constraint (13) may not be
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active in the optimal solution. However, relaxing constraints (6)
does not have any effect on the set of feasible solutions of the
problem since the binary character of y variables is enforced by
(15) together with (11).

� Again, note that if distances only take integer values, then z will
also take an integer value in the optimal solutions.

� Similarly to (F1), some x-variables can be fixed to zero in (F2) as
follows:
○ If zUB is an upper bound on the optimal value of (F2), then

variable xij can be fixed to zero if dij4zUB.
○ For each site i, sort all locations: j1, j2,…,jn¼ i so that

dij1 Zdij2 Z⋯Zdijn ¼ 0. Then, all variables xik with
dik4dijp� 1

can be fixed to zero since p centers will be
located and, thus, at least p�1 of them will be established
at sites different from i.

� The following CAC adapted from the literature can be also
added as valid inequalities for (F2):

yi�p
X
kA A

dik 4 dij

xikþ
X
kA A

dik 4 dij

ykZ0; i; jAA; ia j; ð16Þ

qij
X
aA A

dia 4 dij

xiaþ
X
aA A

dia r dij

yarqijþyi; i; jAA; ð17Þ

where qij ¼minfp; j faa i : diardijgj g.

To see how (16) works, assume that there exists a site k such
that dik4dij with xik ¼ 1. This means site i is allocated to a center
further from i than j, and then all p centers (apart from i itself)
must be also further from i than j. In the case of constraints (17), if
a center exists whose distance to i (which is not a center itself)
does not exceed dij, i cannot be allocated to any center at a distance
greater than dij. In any case, the left hand side of (17) is bounded by
pþyi, but qij also takes into account the case in which there are
less than p elements in the set faa i : diardijg.

A second formulation with two-indexed variables, named (F3),
is presented in the Appendix. In (F3) we define the objective
function in terms of the location variables only, and assignment
variables need not be considered. Preliminary computational
results showed that none of the versions of this formulation was
efficient in terms of computational times.

5. A formulation using covering variables

Covering variables have been successfully used in discrete
location problems, see e.g. [24,25,29]. In particular, a formulation
based on these variables was used in [14] for the p-center problem,
providing very good lower bounds. Introducing covering variables

in our model has a greater degree of difficulty, since closest
allocation to the reference center must be guaranteed. In this
section we give the details of such a formulation and several
possibilities of improvement.

First of all, some previous operations with the data are needed.
In this case we sort the values δijk, for those triplets ði; j; kÞ with
i; j; kAA, ka i; j such that dijrdik, in increasing order and ignoring
ties. Let

Δ1oΔ2o⋯oΔh

denote the strictly increasing sequence of such values, H be the set
f1;…;hg, Hði; jÞ denote the set of indices ℓAH corresponding to δij U
values and H(i) denote the set of indices ℓAH corresponding to
δi U U values.

We need the following binary variables:

� yj: to indicate whether there is a center in site jAA.
� yjk: to indicate whether two centers are set in locations j and k

(these variables are only defined for jok). Note that variable yjk
can be seen as the product yj � yk.� zℓ: to indicate whether the assignment cost of some site is at
least Δℓ, ℓAH.

The proposed formulation is

ðF4Þ min Δ1z1þ
Xh
ℓ ¼ 2

ðΔℓ�Δℓ�1Þzℓ ð18Þ

s:t: ð1Þ; ð6Þ
zℓþ

X
aA A

dia r dij

X
bA Anfag
dia r dib
δiab oΔℓ

ya0b0 Zyj i; jAA; ℓAHði; jÞ; ð19Þ

zℓZzℓþ1; ℓ¼ 1;…;h�1; ð20Þ

yjkryj; j; kAA; jok; ð21Þ

yjkryk; j; kAA; jok; ð22Þ

yjkAf0;1g; j; kAA; jok: ð23Þ

zℓAf0;1g; ℓAH: ð24Þ
For brevity, in (19), a0 has been taken to represent minfa; bg, and

b0 to represent maxfa;bg. Here, the objective function (18) mea-
sures the maximum assignment cost of a site, given by the Δ-value
associated to the last z-variable taking value 1. To force that the
primary assignment of site i is made to its closest center, we use
constraints (19). Each such constraint forces a z-variable to take

Fig. 2. Inequalities (8): the drawn paths cannot be used if j is a center.
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value 1 if a center is established at site j and there is no pair (a, b)
of centers with a not further from i than j, a closer to i than b and
giving a total cost δiab strictly smaller than Δℓ. Finally, constraints
(21) and (22) force variables to take consistent values.

As in previous formulations we next collect some useful
observations:

� One can derive from [31] that the set of binary solutions toP
jyj ¼ p and yjk ¼ yjyk, k4 j coincides with the set of binary

solutions to (21) and (22), yjkZyjþyk�1, k4 j and
X
k4 j

yjkþ
X
ko j

ykj ¼ ðp�1Þyj; jAA: ð25Þ

Due to the form of our formulation, constraints yjkZyjþyk�1
are always satisfied in any optimal solution and we do not need
to impose them explicitly. Constraints (25) will be added to the
formulation in order to get better lower bounds.

� Based on the above, in this formulation only the y U variables
are required to be binary to enforce y U U to be binary as well.

� Additionally, even if constraints (24) are removed from the
formulation, z-variables will take binary values in any optimal
solution.

� The following are valid inequalities for (F4):

zℓþ
X
aAA

X
bA Anfag
dia r dib
δiab oΔℓ

ya0b0 Z1; iAA; ℓAHðiÞ: ð26Þ

Each constraint in family (26) forces a z-variable to take value
1 if all the y-variables in the constraint take value 0, i.e., if there
is not any pair of centers (a, b) with a closer to i than b and with
a total assignment cost δiab less than Δℓ. However, these
constraints cannot be used instead of (19) since they do not
imply closest allocation.

On the other hand, as it happened in previous formulations,
(F4) can also be reinforced by using an upper bound on its optimal
value, zUB. Let ℓU be the largest index ℓ for which ΔℓrzUB. An
improved version of (F4) based on this bound is

ðF4bÞ min Δ1þ
XℓU
ℓ ¼ 2

ðΔℓ�Δℓ�1Þzℓ

s:t: ð1Þ; ð6Þ; ð21Þ; ð22Þ
zℓþ

X
aA A

dia r dij

X
bA Anfag
dia r dib
δiab oΔℓ

ya0b0 Zyj; i; jAA; ℓAHði; jÞ \ 1;…;ℓUf g; ð27Þ

X
aA A

dia r dij

X
bA Anfag
dia r dib

δiab oΔℓU þ 1

ya0b0 Zyj; i; jAA : Hði; jÞ \ fℓUþ1;…;hga∅; ð28Þ

X
aAA

X
bA Anfag
dia r dib

δiab oΔℓU þ 1

ya0b0 Z1; iAA; ð29Þ

zℓZzℓþ1; ℓ¼ 1;…;ℓU�1; ð30Þ

zℓþ
X
aAA

X
bA Anfag
dia r dib
δiab oΔℓ

ya0b0 Z1; iAA; ℓ¼ 1;…;ℓU : ð31Þ

Since the value of zℓ is fixed for ℓ=2f1;…;ℓUg, not all constraints
(19) are needed. However, not all constraints from that set with
indices ℓ=2f1;…;ℓUg can be dropped. Otherwise, the assignment
cost of some of the sites might not be accounted correctly. For this
reason, in this case constraints (28) need to be added, to make sure
that sites that might have an assignment cost larger than zUB have
available eligible centers that lead to smaller assignment cost and
satisfy the closest assignment condition. In the same spirit,
constraints (29) make sure that the set of selected centers lead
to a cost smaller than the upper bound.

6. Computational experience

A series of computational experiments have been carried out to
assess the usefulness of the proposed formulations to solve pNCP
with standard software, and to compare their performances. These
experiments and their results are reported in this section. Addi-
tionally, an analysis of the relationship between the solutions to
pCP and pNCP is included in the last subsection.

6.1. Comparison of the formulations

The computational experiments carried out in order to evaluate
the suitability of the different formulations to solve pNCP using
standard MIP solvers are split into two parts. In a preliminary
study, with a set of small instances, the best variant of each
formulation has been identified. Then, the best versions of the
different formulations are compared in a second part, using two
sets of larger instances.

6.1.1. Preliminary study
Since the number of proposed formulations and improvements is

large, a preliminary study with most of the variants on a small amount
of instances (40) was carried out in first place. The dimensions (n, p) of
the instances considered in this initial experiment are depicted in
Table 1. For each considered dimension (n, p), four instances were
generated taking the first n points of each of the four well known
instances pmed1–pmed4 from the OR-library [3]. All formulations
were implemented using Xpress Optimizer Version 23.01.05 on a Dell
Computer with two Inter(R) Xeon(R) X5690 processors with 3.47 GHz
and 3.46 GHz and 48 GB of RAM memory. A limit of 2 h of CPU time
was set.

Two alternative settings were tested for the three-indexed for-
mulation: formulation (F1) presented in Section 3 but replacing
constraints (4) by the stronger constraints (8) (for brevity, we will
still denote this formulation (F1)), and the same formulation, but
reinforced with valid inequalities (9), that, from now on we will
denote by (F1)0. In the case of formulation (F2), we have compared the
plain formulation with the formulation reinforced with valid inequal-
ities (16) and (17) (from now on, (F2)0). Regarding the formulations
presented in Section 5 (the formulation using covering variables) we
have always used in our computational experiments its improved
form (F4b) and considered two settings: the plain formulation (F4b)
with upper bound, and the reinforcement of (F4b) which incorporates
constraints (25), that we will denote by (F4b)0. Previous tests discour-
aged us from studying other alternatives. This information together
with the sizes of all formulations considered are summarized in
Tables 2 and 3. Regarding Table 3, the number of variables in (F1)
depends on the number of ties between distances di�, whereas
parameter h depends on the ties between δ-values and is bounded
by n3.

All formulations benefit from the knowledge of zUB, an upper
bound on the optimal value of the problem. In order to get a value
for zUB without excessive computational effort, five feasible solu-
tions were generated by randomly choosing p centers. For each of
these candidate initial solutions, we performed an interchange
phase trying to reduce the value of the largest assignment cost.
The objective value given by the best among these five solutions
was used as an upper bound for the problem. Since this is a
randomized procedure, to make fair comparisons of the different
formulations, for each considered instance the bounding procedure
was run only once, and the same upper bound was used in all the
formulations. Although this upper bound may be seen as naïve, it is
rather effective as confirmed by the computational experiments.

Most of the 40 instances could be solved within the 2 h of CPU
time with the majority of formulations and variants. Indeed, there are
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only 4 instances, all with n¼50, that could not be solved with some of
the formulations. The percent gaps between the best solution found
and the current lower bound after the 2 h of CPU time obtained in
those four cases are shown in Table 4. Alternatives (F2) and (F2)0 are
not included in this table since they could solve all instances in much
shorter times (less than 20min, and than one hour, respectively).
From Table 4 it can be observed that all instances but one could be
optimally solved both by (F1) and (F1)0. Moreover, in this single
instance, the percent gap was only slightly over 1%. In fact, none of the
other 3 instances required more than 1.5 min with either variant. The
two variants of (F4) (the formulation with covering variables) show a
different behavior. When using alternative (F4b) two instances
remained unsolved, while this happened in four instances with
(F4b)0. The percent gaps ranged from about 2% to almost 20%. With
respect to the observed gaps, the reinforced alternative (F4b)0 seemed

to be the best one; it only left unsolved two of the instances, and the
final percent gaps never reached 4%.

Additionally, Table 5 shows the average (among the four
instances of the same dimensions n and p) percent gaps between
the LP bounds and the optimal values of the proposed formulations.
As it can be seen the two variants of (F1) provide the smallest LP
gaps, although gaps are very similar for all the formulations
considered. In order to make a deeper comparison of the variants
of all formulations, Fig. 3 shows the evolution of the average CPU
times as the size of the instance grows for the 36 instances that
could be solved with all the formulation variants we considered.
The two variants of (F1), (F2) and (F4) are shown in sub-figures (a),
(b) and (c), respectively. As Fig. 3 shows, the plain version of
formulation (F1) clearly outperforms the reinforced version, and
the same happens in the case of (F2). Note that the number of
additional constraints is Oðn3Þ in the case of (F1) and Oðn2Þ in the
case of (F2). This increase of the formulation size may explain the
faster growth of the time required to solve the instances by the
reinforced formulations. So, in these cases, the plain version has
been chosen for next experiments. Regarding Fig. 3(c), the observed
behavior has led us to keep formulation (F4b)0 for further analysis.

We next analyze the CPU times required to solve all the
instances with the remaining formulations ((F1), (F2) and (F4b)0).
Fig. 4 displays (in logarithmic scale) the averages of these times (in
seconds) taken among instances of the same dimension n. The CPU
time limit 7200 has been used for the unsolved instances. Here,
formulations (F1) and (F2) show their superiority over (F4b)0. Not
only CPU times required to solve pNCP using formulation (F4b)0

are larger, but they also tend to increase faster.
To evaluate the effect of the number of centers to locate, p, on

these CPU times, we have concentrated on the instances with
n¼40, since all p values are considered in this set. Fig. 5 gathers
the obtained results. This figure shows how formulations (F1) and
(F2) behave similarly, and their computational times do not vary
much as p increases. Instead, with formulation (F4b)0 instances with
small values of p are harder to solve. A similar effect has already
been observed when using covering formulations for other discrete
location problems. When p is large, the number of z-variables that
are candidates to take value 1 in the optimum becomes small.

Table 1
Dimensions considered in the first experiment.

p¼5 p¼10 p¼20

n¼10 ✓

n¼20 ✓ ✓

n¼30 ✓ ✓

n¼40 ✓ ✓ ✓

n¼50 ✓ ✓

Table 2
Naming convention and constraints for each formulation.

Name Formulation

(F1) min z

s:t: ð1Þ; ð2Þ; ð3Þ; ð5Þ; ð6Þ; ð8Þ

(F1)0 min z

s:t: ð1Þ; ð2Þ; ð3Þ; ð5Þ; ð6Þ; ð8Þ; ð9Þ

(F2) min z
s:t: ð1Þ; ð6Þ; ð10Þ; ð11Þ; ð12Þ; ð13Þ; ð14Þ; ð15Þ

(F2)0 min z

s:t: ð1Þ; ð6Þ; ð10Þ; ð11Þ; ð12Þ; ð13Þ; ð14Þ; ð15Þ; ð16Þ; ð17Þ

(F4b) min Δ1þ
PℓU

ℓ ¼ 2ðΔℓ�Δℓ�1Þzℓ
s:t: ð1Þ; ð6Þ; ð21Þ; ð22Þ; ð27Þ; ð28Þ; ð29Þ; ð30Þ; ð31Þ

(F4b)0 min Δ1þ
PℓU

ℓ ¼ 2ðΔℓ�Δℓ�1Þzℓ
s:t: ð1Þ; ð6Þ; ð21Þ; ð22Þ; ð25Þ; ð27Þ; ð28Þ; ð29Þ; ð30Þ; ð31Þ

Table 3
Number of variables and constrains of all formulations.

Formulation Variables Linear constraints

Minimum Maximum Binary Minimum Maximum

(F1) n3 �n2 þ2nþ2
2

n3�2n2þ2nþ1 n 2n2þnþ1

(F1)0 n3 �n2 þ2nþ2
2

n3�2n2þ2nþ1 n n3 þ3n2 þ2nþ2
2

n3þ2nþ1

(F2) n2þ1 n2�n 3n2�nþ1
(F2)0 n2þ1 n2�n 5n2�2nþ1
(F4b) n2 �n

2 þnþh n 2n2�nþh n3þn2�nþh

(F4b)0 n2 �n
2 þnþh n 2n2þh n3þn2þh

Table 4
Percent gaps at termination, for the instances not solved with all formulations.

Source n p (F1) (F1)0 (F4b) (F4b)0

pmed1 50 10 – – 17.36 –

pmed2 50 10 – – 7.89 –

20 1.02 1.02 1.87 2.96

pmed3 50 10 – – 19.58 3.85
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6.1.2. Analysis with larger instances
With the three remaining formulations ((F1), (F2) and (F4b)0) a

second experiment was carried out on larger instances, also gener-
ated from the well known p-median instances pmed1–pmed4. Now,
we generated instances with n taken from f60;70;80;90;100g and
pAf10;20;30g. Additionally, the value p¼50 was also considered for
the instances with n¼90 and n¼100. This gave rise to a set of 68
instances. Again, a CPU time limit of 2 h was set.

There were many instances that could not be solved within this
time limit. Indeed, formulation (F1) allowed to solve 37 of the
instances, which represents 54% of the set, whereas (F2) allowed
to solve 26 (38% of the total) and only 16 instances (24% of the
total) could be solved using (F4b)0. In total, the optimal solution
was found for 41 of the instances. 15 instances could only be
solved using (F1), for 3 instances (F2) was the only formulation
that succeeded, whereas for other 7 instances the optimal solution
was found by both, (F1) and (F2), but not by (F4b)0. One single
instance (with n¼60 and p¼20) could be solved using (F2) and
(F4b)0 but not with (F1). Finally, there is a set of 15 instances with
very diverse dimensions that could be solved with all three
formulations. Among the instances that could not be solved with
any formulation we find all the instances with n¼90 and p¼20,
and all the instances with n¼100 and pr20.

The results obtained with this set of larger instances are
summarized in Table 6. Each row corresponds to a different
combination of n and p. Columns under heading ‘#’ represent
the number of instances solved up to optimality. For the three
formulations, the average percent gaps after 2 h of computing time
are depicted under heading ‘%gap’, whereas the average comput-
ing times, in seconds, are given under heading ‘time’. Notice
that, here, a CPU time equal to 2 h has been attributed for the
instances that could not be solved within this limit, therefore
times are underestimated. Additionally, for formulations (F1) and

(F2), the percentage of the variables not fixed to zero value, after
applying the criteria exposed in Sections 3 and 4 is given under
heading ‘%var’.

Most of the conclusions drawn in the first experiment scaled to
these larger instances. For instance, (F1) and (F2) are superior to
(F4b)0 in terms of both, % gaps after 2 h, and CPU times. This can be
better appreciated in Fig. 6, which displays average times and
percent gaps for the different values of n. Also, the computational
times for formulations (F1) and (F2) are very similar, although
formulation (F1) is, again, slightly faster. This behavior might seem
surprising, taking into account that formulation (F2) is much
smaller than (F1) due to the number of variables. Nevertheless,
as we can see in Table 6, the number of variables fixed to zero by
using the criteria exposed in Sections 3 and 4 is much higher in
(F1) than in (F2). This fact may partially explain the better
behavior of (F1).

Table 6 also shows that, again, for a fixed dimension n formulation
(F4b)0 becomes more effective as p increases. This is not the case for

Table 5
Average percent gaps between the LP bounds and the optimal values.

n p (F1) (F1)0 (F2) (F2)0 (F4b) (F4b)0

%LP gap %LP gap %LP gap %LP gap %LP gap %LP gap

10 5 20.00 19.34 26.64 26.64 21.83 21.79

20 5 25.85 25.42 34.61 34.61 31.26 30.79
10 8.16 8.16 8.16 8.16 8.14 8.14

30 5 30.03 29.92 42.12 42.12 38.18 37.65
10 19.81 19.42 21.21 21.21 20.43 20.43

5 28.29 28.28 44.56 44.56 39.49 38.44
40 10 21.28 21.20 24.48 24.48 22.73 22.70

20 2.41 2.41 2.41 2.41 2.41 2.41

50 10 26.16 25.98 29.56 29.56 27.78 27.78
20 4.05 4.05 4.05 4.05 4.05 4.05

40

50

60

(a) F1 alternatives (b) F2 alternatives (c) F4 alternatives

(F1)
(F1)' 3000

4000 (F4b)
(F4b)'

60

80 (F2)
(F2)'

10

20

30

40

1000

2000

20

40

60

0
n=10 n=20 n=30 n=40

00
n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40

Fig. 3. Average CPU times (s) for the variants of formulations (F1), (F2) and (F4).
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Fig. 4. Average CPU times (s) for the small instances (logarithmic scale).
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Fig. 5. Effect of p on the CPU times (s) (n¼40).
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formulations (F1) and (F2), where the effect of p on the times and
percent gaps depends pretty much on the size of the instance.

Recall that the results shown in Table 6 and in Fig. 6 are biased,
since a CPU time of 2 h has been considered for all unsolved
instances. To avoid this bias, in Table 7 we display the solution
times, in seconds, for the 15 instances that could be solved with all
formulations. Each row corresponds to a different combination of
n and p. Under heading ‘#’ we give the number of instances that
could be solved by all formulations. The three next columns give
the corresponding average CPU times. Now, the difference
between (F4b)0 and formulations (F1) and (F2) is clearer, with
CPU times that can be about two orders of magnitude larger. It is
also worth mentioning that all instances with p¼50 could be
solved with all formulations, despite having 90 and 100 nodes,
while no instance with 80 nodes appears in the table; i.e., each 80
nodes instance was left unsolved by at least one formulation.

On the other hand, it becomes clear that, although (F1) seems to
be the most effective formulation, (F2) is very competitive, and it is
the best alternative for larger instances, when the size of (F1) makes it
useless. To confirm this, a third experiment was carried out on larger
instances. Now we generated 24 instances from the three p-median
instances pmed6, pmed7 and pmed8. We considered all combinations
of nAf150;200g with pAf20;30;50;80;100g except ð200;20Þ and
ð150;100Þ. For these experiments, a CPU time limit of four hours was
established. The results obtained with these larger instances are
summarized in Table 8. As can be seen, all the instances with

n¼200 are intractable with formulation (F1), whereas formulation
(F2) is able to solve to optimality instances with n¼200 and p¼80,
100, although for the remaining instances the gap is also large. From
the above, we conclude that (F2) is the natural alternative to solve the
pNCP whenever the instances have a medium to large size, i.e.
nZ150.

6.2. Solution analysis

In view of the complexity of the pNCP as compared with pCP,
one might wonder to what extent these problems yield different
solutions and it is thus worth solving it instead of pCP in some

Table 6
Average results and number of solved instances for the set of larger instances.

n p (F1) (F2) (F4b)0

%gap Time # %var %gap Time # %var %gap Time #

10 0.0 399 4 18.3 1.3 5031 3 73.65 20.0 6292 1
60 20 1.3 3856 2 9.6 2.2 2434 3 54.96 9.4 5617 1

30 0.0 112 4 4.1 0.0 46 4 33.72 0.0 1172 4

10 0.0 1537 4 16.5 21.9 7200 0 74.32 33.9 7200 0
70 20 1.8 4297 2 7.5 8.5 7200 0 49.66 14.9 7200 0

30 0.9 2388 3 4.6 2.3 1919 3 38.17 4.5 3661 2

10 1.2 3957 3 21.1 29.1 7200 0 78.78 51.5 7200 0
80 20 7.5 5752 1 11.0 25.8 7200 0 61.57 37.5 7200 0

30 3.5 6147 1 7.0 3.6 4834 2 46.97 13.2 7200 0

10 2.8 5770 2 23.3 38.7 7200 0 82.71 71.9 7200 0
90 20 16.3 7200 0 12.5 28.3 7200 0 66.36 59.5 7200 0

30 6.9 3643 2 7.6 7.8 3681 2 50.26 17.5 7200 0
50 0.0 39 4 4.5 0.0 5 4 34.01 0.0 1471 4

10 17.5 7200 0 31.1 49.2 7200 0 87.80 105.6 7200 0
100 20 22.3 7200 0 13.5 29.8 7200 0 69.47 77.3 7200 0

30 8.5 5594 1 10.0 13.4 6216 1 53.85 43.0 7200 0
50 0.0 71 4 3.6 0.0 227 4 32.38 0.0 3263 4

Overall 5.3 3833 37 12.1 15.4 4823 26 58.2 32.9 5922 16
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Fig. 6. Summary of results for large instances.

Table 7
CPU times for large instances solved with all formulations.

n p # (F1) (F2) (F4b)0

60 10 1 57.2 2052.6 3569.7
60 30 4 111.6 45.5 1172.5
70 30 2 19.4 8.4 121.0
90 50 4 38.6 5.0 1471.4

100 50 4 71.4 226.7 3263.2

Table 8
Average results for large instances solved with (F1) and (F2).

n p (F1) (F2)

%gap CPU %gap CPU

20 28.16 14571.40 47.17 14428.40
150 30 19.36 14576.37 16.91 14422.90

50 0 866.52 0 893.17
80 0 271.96 0 19.37

30 n n 53.67 14477.90
200 50 n n 19.03 10959.50

80 n n 0 376.39
100 n n 0 81.37
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Fig. 7. Comparison of p-center and p-next center: percent deviations.
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situations. In order to visualize the differences between the
solutions of pCP and pNCP we have carried out a last experiment.

For the set of instances used in Section 6.1.1 we have evaluated
the optimal solution to pCP as a solution to the pNCP, and vice-
versa, and in both cases we have observed large deviations from
the optimum of the corresponding problem. Fig. 7 summarizes the
obtained results. For each instance, pC(pNC) is the deviation of the
p-next center solution from the p-center optimal value, while pNC
(pC) is the deviation of the p-center solution from the p-next
center optimal value. Averages of these deviations have been taken
among all the instances of the same size.

There were no instances where both deviations were small.
That is, the solutions of these problems are always quite different.
In general terms, we observed deviations of similar magnitudes in
both cases, with average values of about 50%. However, the two
deviations corresponding to the same instance were most often
very different. Indeed, there is a weak, albeit statistically signifi-
cant, negative correlation between both deviations; in the
instances where one of them is relatively small, the other one is
quite large. As can be seen in the figure, the deviation of the p-next
center solution from the p-center optimal value tends to decrease
for larger instances, while the deviation of the p-center solution
from the p-next center optimal value increases.

As mentioned in the Introduction, failure probabilities are most
often used in facility location models where facilities are consid-
ered to be prone to failure. This is not the case of the pNCP.
However, these probabilities can be incorporated in a straightfor-
ward way in any of the proposed formulations. While the pNCP
aims at minimizing the largest service distance in case there is one
facility failure, one might decide to minimize the expected largest
service distance when the failure probabilities are known. Assume
all these failure probabilities all equal to q. Then, the expected
service distance of customer i having j and k as its reference and
backup centers would be dijþqdjk. So, this extension of the pNCP
can be directly tackled with the previous formulations just by
redefining δijk ¼ dijþqdjk and adding a factor q in the last term of
constraints (14). Note that, for q¼0 and q¼1 we find as particular
cases of this extension pCP and pNCP, respectively. Therefore,
solving a series of instances of this new problem with increasing
values of q, ranging from 0 to 1, we can obtain a sequence of
solutions that evolve from the solution to pCP to the solution to
pNCP. Fig. 8 shows this sequence of solutions for an instance with
n¼20, p¼4 and Euclidean distances. As can be seen, as q increases,
the centers tend to be located in pairs, so that each center has a
close backup. This same behavior has been observed in different
instances.

This extension provides a suitable way to find tradeoff solutions
that balance the two objectives: having small service costs when
the system operates in regular conditions, and providing a reason-
able service if one facility fails. The analysis of the formulations

that has been carried out in the previous subsections applies also
to this case.

7. Conclusions

This paper introduces a new location problem, namely the p-
next center problem, which can be considered as a new attempt to
handle humanitarian logistics. For this problem, different formula-
tions are proposed. In order to evaluate their utility to solve this
new problem, we have compared the formulations after some
strengthening and preprocessing. To this end, we have solved
several sets of instances with an off-the-shelf solver using all
formulations. As a result of that comparison, we can compare the
suitability of the different formulations and observe that we can
systematically solve instances with up to 50 nodes within a
reasonable computational effort.

The findings of this paper can be the basis of further research
on this interesting problem. From a modeling point of view, it
would be of interest to consider the existence of capacity limits in
the facilities (at least in the backup facilities) since in real life
systems work with limited capacity. In case of failure, it is not
realistic to assume that the backup facility has enough spare
capacity to serve all the demand previously served by a disrupted
facility. The introduction of capacity constraints is possible at the
price of some modifications in the formulations. In particular,
closest assignment constraints would be needed as well to ensure
closest allocations to the backup facilities whereas in the original
models these constraints were only necessary for the first level
allocations. Another possibility may be to relax the closest assign-
ment hypothesis which would result in a different type of models.
From a technical point of view, it would be also very interesting to
address the separation of valid inequalities for the different
formulations inside a branch-and-cut framework. Indeed, improv-
ing the lower bounds at a low computational cost is needed to be
capable of solving this problem much faster and thus, be able to
solve larger instances.
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Appendix A

A second formulation with two-indexed variables and several
reinforcements are presented here. All versions of this formulation
behaved badly in terms of computational times. Nevertheless, it
has a certain theoretical interest and could be further studied to
take advantage of its reduced size.

We define the following binary variables:

� yj: to indicate whether a center is set in location jAA,
� yjk: to indicate whether there are two centers in sites j; kAA,

k4 j,

that we will use again together with the auxiliary continuous
variable z.

The corresponding formulation is

ðF3Þ min z
s:t: ð1Þ; ð6Þ; ð21Þ; ð22Þ; ð23Þ
zþ

X
aA A

dia o dij

δijkyaþ
X
bA Anfjg
dib 4 dij
djb o djk

δijkyb

þ
X
aA Anfjg
dia ¼ dij

X
bA Anfag
dia r dib
dab o djk

δijkya0b0 Zδijkyj; i; j; kAA; ka j; dijrdik; ð32Þ

Constraints (32) force variable z to take the required value in
the objective function. Like in (F4), a0 has been taken to represent
minfa; bg, and b0 to represent maxfa; bg. Given a site i and two sites
j and k that are eligible for being, respectively, the first and second
assignment of i, constraint (32) is non-trivial only if a center is set
at site j (yj¼1). In this case, the constraint forces z to take at least
the value δijk that would correspond to i being assigned to j and
having k as its backup center, unless any of the following occurs:

1. A center is set at some site a that is closer to i than j.
2. A center is set at some site b that is closer to j than k.
3. Two centers are set at sites (a, b) that allow a first assignment

of i as close as j and a second assignment to b giving rise to a
total assignment cost smaller than δijk.

Finally, constraints (21) and (22) force variables to take consistent
values.

Some comments on this formulation are the following:

� As in (F4), the shape of (F3) guarantees the satisfaction of the
constraints yjkZyjþyk�1 in any optimal solution, making it
possible to remove it.

� As it happens in formulation (F4), forcing variables y U to be
binary implicitly forces variables y U U to be binary as well, so
that constraints (23) can be dropped from the formulation.

� If distances take only integer values, then z will also take an
integer value in the optimal solution.

Note that variables yjk with jak only appear in one term of
constraints (32) that is required to cope correctly with situations
where different centers can be set at the same distance from a
given site i, and in the linking constraints (21) and (22) required to
force them to take values consistent with those of variables yj.
Thus, if there are no ties in the distances from any site i to the
others, this formulation can be sensibly reduced. Indeed, variables
yjk are no longer needed, and the resulting formulation is

ðF3rÞ min z
s:t: ð1Þ; ð6Þ
zþ

X
aA A

dia o dij

δijkyaþ
X
bA Anfjg
dib 4 dij
djb o djk

δijkybZδijkyj; i; j; kAA; ka j; dijrdik:

The above two formulations for pNCP (the one with and the
one without ties) can benefit from the knowledge of and upper
bound zUB. An improvement of (F3) is

ðF3bÞ min z

s:t: ð1Þ; ð6Þ; ð21Þ; ð22Þ

zþ
X
aA A

dia o dij

δijkyaþ
X
bA Anfjg
dib 4 dij
djb o djk

δijkyb
X
aA Anfjg
dia ¼ dij

X
bA Anfag
dia r dib
dab o djk

δijkya0b0 Zδijkyj;
i; j; kAA; ka j; dijrdik;

δijkrzUB;

ð33Þ
X
aA A

dia o dij

yaþ
X
bA Anfjg
dib 4 dij
djb o djk

ybþ
X
aA A

dia ¼ dij

X
bA Anfag
dia r dib
dab o djk

ya0b0 Zyj;
i; j; kAA; ka j; dijrdik;

δijk4zUB:
ð34Þ

Constraints (34) have to be incorporated to the formulation
since there may be sites i with no constraint in family (33)
associated, which would lead to an underestimation of the optimal
value of the problem.

In those cases where formulation (F3) can be reduced to (F3r),
i.e., when ties in the distances do not exist, a similar use of upper
bounds can be carried out giving rise to the following formulation:

ðF3rbÞ min z
s:t: ð1Þ; ð6Þ

zþ
X
aA A

dia o dij

δijkyaþ
X
bA Anfjg
dib 4 dij
djb o djk

δijkybZδijkyj;
i; j; kAA; ka j; dijrdik

δijkrzUB;

X
aA A

dia o dij

yaþ
X
bA Anfjg
djb o djk

ybZyj;
i; j; kAA; ka j;

dijrdik; δijk4zUB:
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