Multi-period Vehicle Routing Problem with Due dates

Claudia Archetti^{a,*}, Ola Jabali^b, M. Grazia Speranza^a

^a Department of Economics and Management, University of Brescia, Brescia, Italy ^b CIRRELT and HEC Montréal, Canada

Available online 28 March 2015

1. Introduction

In Vehicle Routing Problems (VRPs) the transportation planning period is a day and the service day of customers is assumed to be known. In a given day customers have to be assigned to vehicles and the order of visits of each vehicle has to be determined.

Several situations exist where some flexibility on the service time is possible but the quantities to be delivered are fixed. This is the case when customers make orders and the delivery is guaranteed within a certain number of days. This is in fact one of the most common situations. Often contracts are established between supplier and customers whose cost depends on the time-to-delivery. The shorter the time-to-delivery the more expensive the contract is. Similarly, in e-commerce, customers make orders and a due date is established at the time an order is made. The time of service is a decision variable while the quantities to be delivered are given.

The real problem that motivated this study arises in city logistics. City logistics aims to reduce the nuisances associated to freight transportation in urban areas. A study on ad-hoc freight transportation systems for congested urban areas was presented in [13] while in [14] different models are presented for the evaluation and planning of city logistic systems. For a recent ref erence on a heuristic algorithm for a vehicle routing problem arising in city logistics we refer to [20].

There are different settings in city logistic systems. The one we consider in this paper is composed by a central distribution center (CDC) which is used to consolidate distribution activities within an urban environment. Customers are private citizens, offices or shops. Customers have made orders and request the delivery to take place within a given due date. Trucks deliver goods to the CDC where they are consolidated in vehicles dedicated for conducting urban distribution activities. The problem is how to organize the distribution of goods to final customers. Goods have to be distributed from the CDC to the customers within the due dates in such a way that the distribution cost is minimized. We refer to this problem as the Multi-period Vehicle Routing Problem with Due dates (MVRPD), where a period corresponds to a day.

The MVRPD conceptually lies between the Periodic Vehicle Routing Problem (PVRP) and the Inventory Routing Problem (IRP). In the PVRP the planning period is made of a certain number of days. A customer may request to be served one or more times in the planning period. Alternative sequences of days of visit are predefined for each customer. Given a sequence of days of visit, the quantities to be delivered in each day of visit are known. For example the planning period may be made of 6 days. A customer may require two visits in a week and its possible alternative sequences may be (1,4), (2,5), (3,6). The problem becomes that of choosing for each customer one sequence of days and, for each day, assigning customers to vehicles and determining for each vehicle the order of visit. Therefore, the PVRPs model the situation of customers requesting a certain frequency of service with the flexibility of choosing the precise days of service. The customers determine the service frequency and the quantities to be delivered. The flexibility in the choice

* Corresponding author.

E-mail addresses: claudia.archetti@unibs.it (C. Archetti),

ola.jabali@hec.ca (O. Jabali), grazia.speranza@unibs.it (M.G. Speranza).

of the precise sequence of days of service creates saving opportu-nities, but makes the problem harder to be solved. A commonly used formulation is provided in [9]. A comprehensive survey on the PVRP and its extensions can be found in [19]. The exact algorithm proposed in [4] is currently the leading methodology for the exact solution of the PVRP. For a recent reference on a heuristic algorithm for the PVRP we refer to [22]. The issue of allowing more flexibility in PVRP is studied in where the PVRP with Service Choice (PVRP-SC) [17] is introduced, that is a PVRP in which service frequency is a decision of the model. The authors propose a mathematical formulation and an exact solution approach for the problem in [17] while in [16] a continuous approximation model for the same problem is proposed. In [18] the authors developed a tabu search method for the PVRP that can incorporate a range of operational flexibility options, like the possibility to increase the set of visit schedules, decide visit frequency, vary the driver who visits a customer and decide delivery amounts per visit. The authors analyze the trade-offs between the system performance improvements due to operational flexibility and the implementation, computational and modeling complexity. They introduce quantitative measures in order to evaluate the complexity increase and provide insights both from a managerial and a modeling perspective.

In the IRPs, the planning period is made of a certain number of days, as in the PVRPs. However, the IRP includes more flexibility with respect to the PVRP. A customer may be visited any number of times and the quantities to be delivered have to be determined. The customer consumption is known, day by day, but, contrary to the VRPs and the PVRPs, the quantities to be delivered are not. The days of service and the quantities to be delivered are to be determined in such a way that a stock-out never occurs at any customer. In addition, as in VRPs and in PVRPs, for each day customers have to be assigned to vehicles and the order of visit has to be determined. Additional savings can be achieved with respect to VRPs and also with respect to PVRPs. IRPs are interesting and challenging problems even when there is only one destination, i.e., when the routing side of the problem is trivially solved. An introduction to IRPs with a focus on the case of one origin and one destination can be found in [7], while a tutorial for the case of multiple destinations has been published shortly after in [8]. Surveys are also available, the most recent ones being [6,10].

The IRPs model different practical situations where the decision space is very broad. In particular, they model a manage-ment practice which is known as Vendor Managed Inventory (VMI). In VMI the supplier has regular information on the status of the inventory levels of its customers and of their consumptions and has the freedom to organize the distribution, provided that it guarantees no stock-out occurs at the customers. In the most basic IRP, customers are to be supplied over a certain number of days by a fleet of capacitated vehicles, based on a depot. Their consumption is known, day by day. Each customer has a max-imum inventory capacity. Different replenishment policies may be adopted. The quantity delivered to a customer may be such that the inventory capacity is reached (Order-Up to level policy) or such that the inventory capacity is not exceeded (Maximum Level policy). The decisions include when to serve each customer (how many times and the precise days), how much to deliver when a customer is served and the routes followed by the vehicles. This problem was introduced in [5]. The first exact method for the solution of this problem was proposed in [2] for the case of one vehicle. Exact algorithms for the multi-vehicle extension were recently presented in [11,12,15], while alternative formulations are compared in [3].

The decision space of the MVRPD is broader than that of the VRP, as the days of service have to be chosen, and more restricted than in IRPs, as the quantities are given. The MVRPD are close to the PVRPs but typically there is no periodicity in the

service. Furthermore, we mention that in [1,24] the authors study the dynamic multi-period vehicle routing problem, where customers' requests arrive dynamically over time and must be satisfied within a time window. The latter comprises several time periods of the planning horizon and thus resembles the due date in the MVRPD. In [24] the objective function comprises travelling cost, waiting time and balancing daily workload. In [1] the objective is to minimize travelling cost in a stochastic setting.

The contributions of this paper are fourfold. We first introduce the MVRPD. We investigate three alternative formulations and propose a set of valid inequalities for each one that exploit the problem structure. Each formulation is solved with a branch-andcut algorithm and we identify the best one through computational experiments. Finally, we evaluate the impact of altering due dates, number of vehicles and vehicle capacity. Our analysis provide valuable managerial insights.

The rest of the paper is organized as follows. In Section 2 we develop three formulations together with valid inequalities. In Section 3 we present our computational experiments. Finally, we provide concluding remarks in Section 4.

2. Problem description and formulations

We consider a planning horizon, composed of a certain number of days. A set of customers have to be served. Each customer has placed an order that has to be satisfied within a certain due date. Multiple orders of the same customers may be modelled through different co-located customers. In the following, we will use the terms 'order' and 'customer' with the same meaning. A fleet of capacitated vehicles, based on a depot, are available to serve the customers. The goods requested by a customer may not be available at the beginning of the planning horizon but are known to become available at a later time. If the due date of a customer exceeds the planning horizon, its service may be postponed. In this case, a penalty will be charged. The latter cost is assumed to encompass the inventory holding cost of customers beyond the planning horizon. The problem is to design daily distribution routes for the given planning horizon. We refer to this problem as the Multiperiod Vehicle Routing Problem with Due dates (MVRPD).

A planning horizon $T = \{1, ..., H\}$ is given. The MVRPD is defined on a complete directed graph G = (V, A), where $V = \{1, ..., n\}$ is the vertex set and $A = \{(i, j) : i, j \in V\}$ is the arc set. Vertex 1 is the depot at which *m* identical vehicles of capacity Q are based, whereas the remaining vertices represent customers. An order quantity q_i is associated with customer *i*, together with a release date r_i , $1 \le r_i \le H$ and a due date d_i , $d_i \ge r_i$. The due date may exceed the planning horizon. If it does, the customer may be served within the planning horizon or its service may be postponed. A penalty cost p_i is charged if customer *i* is postponed. A nonnegative cost c_{ii} is associated with each arc $(i, j) \in V$ and represents the transportation cost incurred by travelling directly from *i* to *j*. For all periods $t \in T$ routes are constructed such that each customer order is delivered at most once by one vehicle (exactly once if the due date does not exceed the planning horizon), all routes start and end at the depot and the total quantity on any route does not exceed the vehicle capacity Q. Furthermore, the routes must be such that each customer is not served before its release date. For each customer i, an inventory holding cost h_i is charged for each day that order *i* spends at the depot. We assume that the depot has sufficient capacity to hold the entire demand delivered to it. We call the period $[r_i, d_i]$ the window associated with customer *i*. Let $C \subset \{V \setminus \{1\}\}$ be the set of customers whose due date is greater than *H*. Each order $i \in C$, if not served within *H*, incurs a holding cost $h_i[H-r_i]$ as well as the penalty cost p_i .

The objective of the problem is to minimize the total cost, which is comprised of the following elements:

- (i) Transportation cost for served orders: the cost of the distance travelled by the vehicles to distribute the orders from the depot.
- (ii) Inventory holding cost of served and unserved orders: the cost of holding inventory between the release date and the actual delivery day (if the order is served) or *H* (if the order is unserved).
- (iii) Unserved order cost: the penalty cost incurred for unserved orders.

In the following sections we present three formulations for the MVRPD, each of which is followed by a set of valid inequalities. In Section 2.1 we present a flow based formulation. This is extended in Section 2.2 to include assignment variables. Finally, in Section 2.3 we present a load based formulation.

2.1. A flow based formulation

The flow based formulation makes use of the following decision variables:

$$x_{ijk}^{t} = \begin{cases} 1 & \text{if arc } (i,j) \text{ is traversed by vehicle } k \text{ on day } t, \\ 0 & \text{otherwise,} \end{cases}$$

and is as follows:

$$(\text{MVRPD} - \text{F1}) \text{ Min } \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{t=r_{i}}^{H} c_{ij} x_{ijk}^{t} + \sum_{i=2}^{n} h_{i} \sum_{t=r_{i+1}}^{\min[d_{i},H]} (t-r_{i}) \sum_{k=1}^{m} \sum_{j=1}^{n} x_{ijk}^{t}$$
$$+ \sum_{i \in C} (h_{i}(H-r_{i}) + p_{i}) \left(1 - \sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=r_{i}}^{H} x_{ijk}^{t} \right)$$
(1)

subject to

$$\sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=r_{i}}^{d_{i}} x_{ijk}^{t} = 1 \quad \forall i \in \{V \setminus \{C, 1\}\},$$
(2)

$$\sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=r_{i}}^{H} x_{ijk}^{t} \le 1 \quad \forall i \in \{C\},$$
(3)

$$\sum_{i=2}^{n} q_i \sum_{j=1}^{n} x_{ijk}^t \le Q \quad \{k = 1, ..., m\}, \ (t = 1, ..., H),$$
(4)

$$\sum_{j=1}^{n} x_{ijk}^{t} = \sum_{j=1}^{n} x_{jik}^{t} \quad (i = 1, ..., n), \ (k = 1, ..., m), \ (t = 1, ..., H), \tag{5}$$

$$\sum_{i,j \in S} x^{t}_{ijk} \le |S| - 1 \quad (S \subset V)$$

\{1},2 \le |S|), (k = 1,...,m), (t = 1,...,H), (6)

$$\sum_{j=1}^{n} x_{1jk}^{t} \le 1 \quad (k = 1, ..., m), \ (t = 1, ..., H),$$
(7)

$$\sum_{j=1}^{n} x_{j1k}^{t} \le 1 \quad (k = 1, ..., m), \ (t = 1, ..., H),$$
(8)

$$x_{ijk}^t \in \{0, 1\}$$
 $(i, j = 1, ..., n), (k = 1, ..., m), (t = 1, ..., H).$ (9)

The objective (1) includes the transportation cost. The term

$$\sum_{i=2}^{n} h_i \sum_{t=r_i+1}^{\min\{d_i, H\}} (t-r_i) \sum_{k=1}^{m} \sum_{j=1}^{n} x_{ijk}^t$$

accounts for the inventory holding cost for the served orders until *H*. The term

$$\sum_{i \in C} h_i(H - r_i) \left[1 - \sum_{k=1}^m \sum_{j=1}^n \sum_{t=r_i}^H x_{ijk}^t \right]$$

accounts for the inventory holding cost for unserved customers within the interval [1,*H*]. Finally, the term

$$\sum_{i \in C} p_i \left(1 - \sum_{k=1}^m \sum_{j=1}^n \sum_{t=r_i}^H x_{ijk}^t \right)$$

expresses the penalty of unserved customers until period H. Eq. (2) ensures that each customer order, which must be delivered within H, is served within its window by a single vehicle on a single day. Eq. (3) ensures that each customer order, which could be delivered after H, is delivered at most once within its release date and H. Eq. (4) guarantees that the capacity of each vehicle is respected on each day. Eq. (5) ensures the flow conservation. Eq. (6) is the subtour elimination constraints. Eqs. (7) and (8) ensure that at most one tour is performed by each vehicle per day.

Valid inequalities

In what follows we present a set of valid inequalities for the flow based formulation.

Inequality 2.1. The inequalities

$$\sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j \neq i} \sum_{t=r_{i}}^{\min\{t', d_{i}\}} q_{i} x_{ijk}^{t} \leq mQt'(t'=1, ..., H),$$

are valid, since the total delivered demand until day t' should not exceed the total available vehicle capacity over the t' days.

Inequality 2.2. The inequalities

$$\sum_{i=1}^{n} \sum_{j \neq i} \sum_{t=r_i}^{\min\{t', d_i\}} q_i x_{ijk}^t \le Qt' \quad (t' = 1, ..., H), (k = 1, ..., m)$$

are valid, since the total satisfied demand until day t' by vehicle k should not exceed the total available capacity of the vehicle over the t' days.

We note that (2.1) is obtained by (2.2) over all vehicles.

Inequality 2.3. The inequalities

$$\sum_{i=2}^{n} q_{i} - \sum_{k=1}^{m} \sum_{i=2}^{n} \sum_{j \neq i}^{n} \sum_{t=r_{i}}^{\min\{t', d_{i}\}} q_{i} x_{ijk}^{t} - \sum_{i \in C} \left(q_{i} - \sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=1}^{H} q_{i} x_{ijk}^{t} \right)$$

$$\leq mQ(H - t')(t' = 1, ..., H),$$

are valid.

The customer demand that is not satisfied until *H* is

$$\sum_{i \in C} \left(q_i - \sum_{k=1}^m \sum_{j=1}^n \sum_{t=1}^H q_i x_{ijk}^t \right)$$

Therefore, the unsatisfied demand until day t' which is satisfied by H is

$$\sum_{i=2}^{n} q_{i} - \sum_{k=1}^{m} \sum_{i=2}^{n} \sum_{j \neq i}^{n} \sum_{t=r_{i}}^{\min\{t',d_{i}\}} q_{i} x_{ijk}^{t} - \sum_{i \in C} \left(q_{i} - \sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=1}^{H} q_{i} x_{ijk}^{t} \right).$$

This should not exceed the residual capacity within the interval [t'+1, H], which is mQ(H-t').

Inequalities (2.3) can be strengthened in the following way.

Inequality 2.4. The inequalities

$$\sum_{i=2}^{n} q_{i} - \sum_{k=1}^{m} \sum_{i=2}^{n} \sum_{j \neq i}^{n} \sum_{t=r_{i}}^{\min\{t', d_{i}\}} q_{i} x_{ijk}^{t} - \sum_{i \in C} \left(q_{i} - \sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=1}^{H} q_{i} x_{ijk}^{t} \right)$$
$$\leq mQ(H-t') - \sum_{k=1}^{m} \sum_{t=t'+1}^{H} Q \sum_{j=2}^{n} (1-x_{1jk}^{t})(t'=1,...,H-1)$$

are valid. The summation

$$\sum_{k=1}^{m} \sum_{t=t'+1}^{H} \sum_{j=2}^{n} x_{1jk}^{t}$$

expresses the number of times the vehicles are utilized within the interval [t' + 1, H]. The term

$$\sum_{k=1}^{m} \sum_{t=t'+1}^{H} Q \sum_{j=2}^{n} (1 - x_{1jk}^{t})$$

expresses the unutilized capacity during [t'+1, H]. Therefore, (2.4) follows (2.3), while the former account for unutilized vehicle capacity within the interval [t'+1, H].

The three following inequalities are based on the required demand per interval. For each combination of periods t_1 and t_2 , such that $t_1 < t_2$, let q_{t_1,t_2} denote the demand that should be delivered within $[t_1, t_2]$. This is expressed as

$$q_{t_1,t_2} = \sum_{\substack{i=1\\r_i \ge t_1, d_i \le t_2,}}^n q_i.$$

Furthermore, we define S_{t_1,t_2} as the set of customers whose release date is greater than or equal to t_1 , and whose due dates are less than or equal to t_2 .

Inequality 2.5. The inequalities

$$\sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=t_1}^{t_2} x_{1jk}^t \ge \lceil \frac{q_{t_1,t_2}}{Q} \rceil \quad (t_1 = 1, ..., H), \ (t_2 = t_1, ..., H)$$

are valid. This follows from the fact that the number of vehicles required for serving S_{t_1,t_2} is bounded by $\lceil q_{t_1,t_2}/Q \rceil$.

Inequality 2.6. The inequalities

$$\sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=\xi_{1,t} \atop i \neq i}^{n} \sum_{t=t_{1}}^{n} q_{j} x_{ijk}^{t} = q_{t_{1},t_{2}} \quad (t_{1} = 1, ..., H), \ (t_{2} = t_{1}, ..., H)$$

are valid since all customers S_{t_1,t_2} must be served within $[t_1,t_2]$.

Inequality 2.7. The inequalities

$$\sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j \in S_{t_{1},t_{2}} \atop j \neq i}^{n} \sum_{t=t_{1}}^{n} q_{j} x_{ijk}^{t} \le mQ \quad (t_{2}-t_{1}+1) \ (t_{1}=1,...,H), (t_{2}=t_{1},...,H)$$

are valid, since the total customer demand that must be served within $[t_1, t_2]$ should not exceed the available vehicle capacity during the interval $[t_1, t_2]$.

Furthermore, for $S \subset V$, let $\delta(S)$ denote the set of edges with one endpoint in *S* and the other in $\{V \setminus S\}$. We add the following rounded capacity constraints:

$$\sum_{k=1}^{m} \sum_{(i,j) \in \delta(S)} x_{ijk}^{t} \geq 2 \lceil \frac{\sum_{i \in S} q_i}{Q} \rceil \quad (t = 1, ..., H), (S \subset V \setminus \{1\}, 2 \leq |S|).$$

2.2. A flow based formulation with assignment variables

We define the following additional assignment variables:

$$z_{ik}^{t} = \begin{cases} 1 & \text{if customer } i \text{ is served by vehicle } k \text{ on day } t, \\ 0 & \text{otherwise;} \end{cases}$$

and extend the flow based formulation as follows:

$$(\text{MVRPD} - \text{F2}) \operatorname{Min} \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{t=r_{i}}^{H} c_{ij} x_{ijk}^{t} + \sum_{i=2}^{n} h_{i} \sum_{t=r_{i}+1}^{\min\{d_{i},H\}} (t-r_{i}) \sum_{k=1}^{m} z_{ik}^{t} + \sum_{i \in C} (h_{i}(H-r_{i}) + p_{i}) \quad 1 - \sum_{k=1}^{m} \sum_{t=r_{i}}^{H} z_{ik}^{t}$$

$$(10)$$

subject to

$$\sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=r_{i}}^{d_{i}} x_{ijk}^{t} = 1 \quad \forall i \in \{V \setminus \{C, 1\}\},$$
(11)

$$\sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=r_{i}}^{H} x_{ijk}^{t} \le 1 \quad \forall i \in \{C\},$$
(12)

$$\sum_{i=2}^{n} q_i \sum_{j=1}^{n} x_{ijk}^t \le Q \quad (k = 1, ..., m), (t = 1, ...,),$$
(13)

$$\sum_{j=1}^{n} x_{ijk}^{t} = \sum_{j=1}^{n} x_{jik}^{t} \quad (i = 1, ..., n), (k = 1, ..., m), (t = 1, ..., H),$$
(14)

$$z_{ik}^{t} = \sum_{j=1}^{n} x_{jik}^{t} \quad (i = 1, ..., n), (k = 1, ..., m), (t = 1, ..., H),$$
(15)

$$\sum_{i,j \in S} x_{ijk}^{t} \le \sum_{i \in S} z_{ik}^{t} - z_{jk}^{t} \quad (S \subset V \\ \setminus \{1\}), (k = 1, ..., m), (t = 1, ..., H), \ \forall j \in S,$$
(16)

$$\sum_{j=1}^{n} x_{1jk}^{t} \le 1 \quad (k = 1, ..., m), (t = 1, ..., H),$$
(17)

$$\sum_{j=1}^{n} x_{j1k}^{t} \le 1 \quad (k = 1, ..., m), (t = 1, ..., H),$$
(18)

$$x_{ijk}^t \in \{0, 1\}$$
 $(i, j = 1, ..., n), (k = 1, ..., m), (t = 1, ..., H),$ (19)

$$z_{ik}^t \in \{0, 1\}$$
 $(i = 1, ..., n), (k = 1, ..., m), (t = 1, ..., H).$ (20)

The objective (10) is adapted from the flow based formulation presented in Section 2.1 to include the assignment variables. Eqs. (11)–(14) and (17)–(18) directly follow the flow based for-mulation presented in Section 2.1. Eq. (15) links the assignment variables with the flow variables. Eq. (16) is the subtour elimina-tion constraints formulated in terms of z_{ik}^t variables. Note that they are more binding (6).

Valid inequalities

In the following we present the formulation of the valid inequalities presented in Section 2.1 adapted to the flow based formulation with assignment variables.

$$\sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{t=r_{i}}^{\min\{t',d_{i}\}} q_{i} z_{ik}^{t} \le mQt' \quad (t'=1,...,H),$$
(21)

$$\sum_{i=1}^{n} \sum_{t=r_i}^{\min\{t', d_i\}} q_i z_{ik}^t \le Qt' \quad (t'=1, ..., H), (k=1, ..., m),$$
(22)

$$\sum_{i=2}^{n} q_{i} - \sum_{k=1}^{m} \sum_{i=2}^{n} \sum_{t=r_{i}}^{\min\{t', d_{i}\}} q_{i} Z_{ik}^{t} - \sum_{i \in C} q_{i} - \sum_{k=1}^{m} \sum_{t=1}^{H} q_{i} Z_{ik}^{t} \right)$$

$$\leq mQ(H-t') \ (t'=1, ..., H),$$
(23)

$$\sum_{i=2}^{n} q_{i} - \sum_{k=1}^{m} \sum_{i=2}^{n} \sum_{t=r_{i}}^{\min\{t', d_{i}\}} q_{i} z_{ik}^{t} - \sum_{i \in C} q_{i} - \sum_{k=1}^{m} \sum_{t=1}^{H} q_{i} z_{ik}^{t} \right)$$

$$\leq mQ(H-t') - \sum_{k=1}^{m} \sum_{t=t'+1}^{H} Q \sum_{j=2}^{n} (1-x_{1jk}^{t}) \ (t'=1,...,H-1),$$
(24)

$$\sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{t=t_1}^{t_2} x_{1jk}^t \ge \lceil \frac{q_{t_1,t_2}}{Q} \rceil \quad (t_1 = 1, \dots, H), (t_2 = t_1, \dots, H),$$
(25)

$$\sum_{k=1}^{m} \sum_{j \in S_{t_1,t_2}}^{n} \sum_{t=t_1}^{t_2} q_j z_{jk}^t = q_{t_1,t_2} \quad (t_1 = 1, ..., H), (t_2 = t_1, ..., H),$$
(26)

$$\sum_{k=1}^{m} \sum_{j \in S_{t_1,t_2}}^{n} \sum_{t=t_1}^{t_2} q_j z_{jk}^t \le m Q[t_2 - t_1 + 1] \quad (t_1 = 1, ..., H), (t_2 = t_1, ..., H),$$
(27)

$$\sum_{k=1}^{m} \sum_{(i,j) \in \delta(S)} x_{ijk}^{t} \ge 2 \lceil \frac{\sum_{i \in S} q_i}{Q} \rceil \quad (t = 1, ..., H), (S \subset V \land \{1\}, 2 \le |S|).$$

$$(28)$$

2.3. A load based formulation

We present an aggregated load formulation where arc variables are aggregated over all vehicles. The formulation is based on the following decision variables:

$$x_{ij}^{t} = \begin{cases} 1 & \text{if arc } (i,j) \text{ is traversed on day } t, \\ 0 & \text{otherwise;} \end{cases}$$

 $l_{ij}^{t} = \{$ the load of the vehicles upon traversing arc (i, j) on day t,

and is expressed as follows:

$$(\text{MVRPD} - \text{F3}) \text{ Minimize } \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{t=r_{i}}^{H} c_{ij} x_{ij}^{t} + \sum_{i=1}^{n} h_{i} \sum_{t=r_{i}}^{\min\{d_{i}, H\}} (t-r_{i}) \sum_{j=1}^{n} x_{ij}^{t} + \sum_{i \in C} (h_{i}(H-r_{i}) + p_{i}) \left(1 - \sum_{j=1}^{n} \sum_{t=r_{i}}^{H} x_{ij}^{t} \right)$$

$$(29)$$

subject to

$$\sum_{j=1}^{n} \sum_{t=r_{i}}^{d_{i}} x_{ij}^{t} = 1 \quad \forall i \in [V \setminus [C, 1]],$$
(30)

$$\sum_{j=1}^{n} \sum_{t=r_{i}}^{H} x_{ij}^{t} \le 1 \quad \forall i \in \{C\},$$
(31)

$$\sum_{j=1}^{n} x_{ij}^{t} = \sum_{j=1}^{n} x_{ji}^{t} \quad (i = 1, ...,), (t = 1, ..., H),$$
(32)

$$\sum_{j=1}^{n} x_{1j}^{t} \le m \quad (t = 1, ..., H),$$
(33)

$$\sum_{j=1}^{n} l_{ji}^{t} - \sum_{j=1}^{n} l_{ij}^{t} = q_{i} \sum_{j=1}^{n} x_{ij}^{t} \quad (i = 2, ..., n), (t = 1, ..., H),$$
(34)

$$\sum_{j=1}^{n} l_{1j}^{t} - \sum_{j=1}^{n} l_{j1}^{t} = \sum_{i=1}^{n} \sum_{j=1}^{n} q_{i} x_{ij}^{t} \quad (t = 1, ..., H),$$
(35)

$$l_{ij}^{t} \leq Q x_{ij}^{t}$$
 $(i, j = 1, ..., n), (t = 1, ..., H),$ (36)

$$x_{ij}^t \in \{0, 1\}$$
 $(i, j = 1, ..., n), (t = 1, ..., H),$ (37)

$$l_{ii}^t \ge 0$$
 $(i = 1, ..., n), (t = 1, ..., H).$ (38)

The objective function (29) and constraints (30)–(32) are adapted from the flow based formulation presented in Section 2.1. Constraints (33) ensure that at most *m* vehicles are used each day. Constraints (34) link the load variables with the flow variables, while constraints (35) entail that for each day the difference between the total load leaving the depot and the total load entering the depot equals the total demand served on that day. Constraints (36) guarantee that the load on each arc does not exceed the vehicle capacity.

Valid inequalities

In the following we present the formulation of the valid inequalities presented in Section 2.1 adapted to the load based formulation.

$$\sum_{i=1}^{n} \sum_{j \neq i} \sum_{t=r_i}^{\min\{t', d_i\}} q_i x_{ij}^t \le mQt' \quad (t' = 1, ..., H),$$
(39)

$$\sum_{i=2}^{n} q_{i} - \sum_{i=2}^{n} \sum_{j \neq i} \sum_{t=r_{i}}^{\min\{t', d_{i}\}} q_{i} x_{ij}^{t} - \sum_{i \in C} \left(q_{i} - \sum_{j=1}^{n} \sum_{t=1}^{H} q_{i} x_{ij}^{t} \right)$$

$$\leq m Q(H - t')(t' = 1, ..., H),$$
(40)

$$\sum_{i=2}^{n} q_{i} - \sum_{i=2}^{n} \sum_{j \neq i} \sum_{t=r_{i}}^{\min[t',d_{i}]} q_{i}x_{ij}^{t} - \sum_{i \in C} \left(q_{i} - \sum_{j=1}^{n} \sum_{t=1}^{H} q_{i}x_{ij}^{t} \right)$$

$$\leq mQ(H - t') - \sum_{t=t'+1}^{H} (Qm - Q\sum_{j=2}^{n} x_{1j}^{t})(t' = 1, ..., H - 1), \quad (41)$$

$$\sum_{j=1}^{n} \sum_{t=t_1}^{t_2} x_{1j}^t \ge \lceil \frac{q_{t_1,t_2}}{Q} \rceil \quad (t_1 = 1, ..., H), (t_2 = t_1, ...,),$$
(42)

$$\sum_{i=1}^{n} \sum_{j=0}^{n} \sum_{t=t_{1} \atop j \neq i}^{t_{2}} t_{i} = t_{1} q_{j} x_{ij}^{t} \ge q_{t_{1},t_{2}} \quad (t_{1} = 1, ..., H), (t_{2} = t_{1}, ..., H),$$
(43)

$$\sum_{i=1}^{n} \sum_{j=1, j \in S_{t_1, t_2} \atop j \neq i}^{n} \sum_{t=t_1}^{t_2} q_j x_{ij}^t \le mQ[t_2 - t_1 + 1] \quad (t_1 = 1, ..., H), (t_2 = t_1, ..., H).$$
(44)

3. Computational experiments

The three formulations presented in Section 2 were coded in a C++ environment with CPLEX 12.5. All experiments were conducted on an Intel(R) Xeon(R) CPU X5675 with 12-Core 3.07 GHz and 96 GB of RAM (by using a single thread). The maximum run time for each instance was set to 3 h. The polynomial time exact separation algorithm presented in [21] is used to detect violated subtour elimination constraints. Capacity cuts are separated heuristically using the extended shrinking heuristic and the greedy shrinking heuristic presented in [23].

The instances were generated by adapting the benchmark IRP instances presented in [2]. The testbed consists of 180 instances,

classified into the following four categories:

- 1. Instances with high inventory cost and H = 6.
- 2. Instances with low inventory cost and H = 6.
- 3. Instances with high inventory cost and H = 3.
- 4. Instances with low inventory cost and H = 3.

Each category contained instances with 10, 15,..., 50 customers, five instances were generated for each combination of category and number of customers. Note that the IRP instances presented in [2] comprises also instances with 5 customers. We decided to skip those instances as the dimension is too small to give significant insights. Data concerning customer locations, inventory costs and vehicle capacity has been kept equal to the data of the original IRP instances. Customer demands has been set equal to the daily customer demand of the IRP instance multiplied by *H*. Release dates are set as follows:

starting with a value t = 1, customers are considered sequentially and their release date is set equal to t. The value of t is increased by one every time a new customer is considered until it reaches the value of H, after which it is set again to one. The difference between the release date and the due date of each customer is set to α , i.e., given the release date r_i for customer i, we determine its due date d_i as $r_i + \alpha$. The penalty cost p_i is set to $10h_i$. This value takes into account the inventory cost beyond H plus the fact that the customer still needs to be served and this will incur in an additional transportation cost.

The purpose of the computational experiments is twofold. In Section 3.1 we compare the performance of the three proposed formulations. In Section 3.2 we then perform several analysis examining the potential impact of relaxing and tightening the experimental parameters.

3.1. Model assessment

The performance of the three formulations (presented in 2) is evaluated on a base case, in which for each instance the number of

Table 1

Computational results for F1 with valid inequalities.

Num. of customers	Num. of solved	Average gap (%)	Average runtime (s)
10	20	0.0	0
15	20	0.0	2.8
20	20	0.0	30.1
25	20	0.0	804.6
30	13	2.5	5817.9
35	7	4.8	8185.8
40	4	11.4	9926.5
45	0	23.4	10,800
50	0	30.1	10,800
Total Average	104		5152.0

Table 2

Computational results for F2 with valid inequalities.

Num. of customers	Num. of solved	Average gap (%)	Average runtime (s)
10	20	0.0	0
15	20	0.0	0.9
20	20	0.0	11.1
25	20	0.0	196.8
30	19	0.3	1912.4
35	18	0.2	4141.6
40	8	5.3	8071.2
45	2	10.8	10,042.4
50	1	19.0	10,797.4
	100		
Average	128		3908.2

vehicles was set to one with $\alpha = 1$. Aside from the rounded capacity constraints, all valid inequalities are added at the route node. The results for the flow based formulation (F1), the flow based formulation with assignment variables (F2) and the load based formulation (F3), are presented in Tables 1–3, respectively.

The number of instances solved by F1 is 104 out of 180 while F2 solved 128 instances, including all those solved by F1. Moreover, the optimality gaps and the runtimes for F2 on average are lower than those of F1.

F3 solved 164 instances, including all those solved by F1. The average runtimes for F3 are on average lower than those of F2. Therefore, we conclude that F3 outperforms F2 and F1, on the chosen instances.

In order to assess the added value of the valid inequalities, we ran the experiments with F3 without the valid inequalities. These results can be found in Table 4. Without the valid inequalities F3 solved 164 instances, 161 of which were solved by F3 with the valid inequalities. In 71% of the instances solved by both formulations, the runtimes were longer or equal than their corresponding value when solved by F3 with the valid inequalities. Moreover, the average gaps are higher for F3 without the valid inequalities.

The above discussion leads us to the conclusion that F3 with the valid inequalities is superior to the other presented formulations. In Section 3.2 we analyze the behavior of the problem when relaxing and tightening some of the parameters.

3.2. Analysis

We explore here the structure of the solutions obtained. First, we analyze the distribution of costs on the tested instances. Then, we evaluate the impact of changing the parameter values with respect to the base case. We study the impact of the range of

Table 3

Computational results for F3 with valid inequalities.

Num. of customers	Num. of solved	Average gap (%)	Average runtime (s)
10	20	0.0	0
15	20	0.0	1.2
20	20	0.0	8.0
25	20	0.0	21.7
30	20	0.0	88.2
35	20	0.0	202.1
40	19	0.1	1223.9
45	13	1.7	4213.7
50	12	2.2	5621.4
Total Average	164		1264.5

Table 4								
Computational	results	for	F3	without	valid	ineq	ualitie	s.

Num. of customers	Num. of solved	Average gap (%)	Average runtime (s)
10	20	0.0	0
15	20	0.0	1.7
20	20	0.0	8.8
25	20	0.0	29.3
30	20	0.0	82.9
35	19	0.0	943.3
40	20	0.0	1429.1
45	15	1.5	3446.0
50	10	2.8	6775.8
Total	164		
Average			1413.0

flexibility on the due dates, the impact of having more or less vehicles and, finally, the impact of having larger or smaller capacity vehicles. In what follows we focus on the 90 instances

Table !	5
---------	---

Percentage of transportation and inventory cost.

Num. of customers	Transp. cost	t	Inv. cost	
Category	High (%)	Low (%)	High (%)	Low (%)
10 15 20 25 30	86.9 90.4 91.3 91.3 91.0	98.5 98.4 98.3 97.8 97.3	13.0 9.4 8.5 8.5 8.7	1.5 1.6 1.7 2.2 2.7
35 40 45 50	88.7 90.1 84.9 88.7	97.7 96.5 97.2 96.7	9.6 14.7 10.9	2.3 3.4 2.8 3.3
Average	89.4	97.7	10.4	2.3

Table 6

Base case with $\alpha = 2$.

Num. of customers	Num. of solved	Average gap (%)	Average runtime	Savings (%)	Savings		
			(3)		Transp. (%)	Inv. (%)	Pen. (%)
10	10	0.0	0	497.8 (14.0%)	96.4	14.7	- 11.1
15	10	0.0	5.1	581.8 (16.2%)	127.2	- 6.0	-21.2
20	10	0.0	24.3	841.6 (20.0%)	120.4	- 1.2	- 19.2
25	10	0.0	191.7	841.1 (17.8%)	133.6	- 11.8	-21.8
30	10	0.0	194.8	881.9 (18.7%)	124.8	- 3.9	-20.9
35	8	1.0	4293.9	897.6 (17.2%)	120.8	7.6	-28.4
40	8	1.0	5028.7	796.9 (15.4%)	130.8	-2.7	-28.1
45	4	4.8	6693.6	549.2 (9.6%)	154.5	17.8	-72.3
50	2	4.2	8963.9	700.5 (10.3%)	176.7	15.5	-92.2
Total Average	72		2821.8	744.4 (16.5%)	125.9	-0.1	-25.7

Table	7
-------	---

Base case with $\alpha = 3$.

with H = 6, as the longer horizon allows a more careful analysis of the effects of parameter changes. In this case the number of solved instances is 84 out of 90.

3.3. Cost components

We first explore the cost structure, with respect to the cost components of the objective function. To this end, we consider the results of F3 with valid inequalities, as it performed better than the other formulations. Considering the solved instances for each category, Table 5 shows the percentages of transportation cost in columns two and three and the inventory cost in columns four and five.The instances are classified in two categories: the ones with high inventory cost ('high') and the ones with low inventory cost ('low'). The transportation cost is the major component of the total cost, also for the instances where the inventory cost is higher. This confirms that the instances sensibly simulate real cases.

On average the transportation costs constitute a lower portion of the total costs for instances with higher inventory costs. Naturally, the inventory costs constitute a higher portion of the total costs for instances with higher inventory costs.

In the following analysis we present the results of F3 with valid inequalities as it outperformed F1, F2 with valid inequalities on all experimental settings. The performance of F1 and F2 with valid inequalities on all experimental settings is reported in the Appendix.

3.4. Due date flexibility

As strict due dates entail a high total cost, in this section we aim to quantify the potential saving that might be obtained by extending the due dates. Table 6 shows the results of setting $\alpha = 2$, i.e., setting the due date 2 days after the release date. The results from this experimental setting are compared against the base case, in which $\alpha = 1$. Similarly, Table 7 shows the results of setting $\alpha = 3$ and its comparison with the base case.

In Tables 6 and 7 the fifth column indicates the average savings with respect to the base case, as measured on instances solved by the base case as well as the setting with $\alpha = 2$ or 3, respectively. The percentage of savings is also indicated in the fifth column. The last three columns report the average percentage of savings for each of the three cost components of the objective function: transportation, inventory and penalty.

Table 6 indicates that the average cost savings that can be achieved by increasing due dates by 1 day is 16.5%, when compared to the base case. Such savings largely stem from a substantial reduction in transportation costs, while penalty costs are increasing. Thus, we infer that extending due dates reduces the total transportation costs by grouping clients into more efficient routes.

Num. of customers	Num. of solved	Average gap (%)	Average runtime (s)	Savings (%)	Savings	Savings	
					Transp. (%)	Inv. (%)	Pen. (%)
10	10	0.0	1.1	886.6 (25.7%)	109.5	10.4	- 19.9
15	10	0.0	8.2	855.4 (24.4%)	129.6	-4.3	-25.3
20	10	0.0	47.3	1270.5 (30.6%)	117.8	2.7	-20.4
25	10	0.0	225.9	1426.4 (30.7%)	130.2	-1.4	-28.8
30	10	0.0	139.2	1377.3 (29.7%)	135.5	-5.5	- 30.0
35	10	0.0	1222.4	1557.3 (31.4%)	131.5	0.3	- 31.8
40	5	1.7	6105.3	960.1 (19.8%)	150.5	1.5	- 51.9
45	6	2.9	6696.7	1064.1 (19.4%)	156.9	-0.4	-44
50	1	6.5	9921.9	774.5 (12.2%)	234.7	36.4	- 171.2
Total	77						
Average			2707.6	1190.2 (27.1%)	131.3	0.4	- 30.7

Table 8 Base case with m = 2.

Num. of customers	Num. of solved	Average gap	Average runtime	Savings (%)	Savings		
			(3)		Transp. (%)	Inv. (%)	Pen. (%)
10	10	0.0	0	171.9 (4.8%)	26.4	73.6	0.0
15	10	0.0	0.8	130.6 (3.3%)	68.2	31.8	0.0
20	10	0.0	5	59 (1.6%)	82.4	17.6	0.0
25	10	0.0	15.6	62.9 (1.3%)	160.1	-60.1	0.0
30	10	0.0	69.3	69.9 (1.4%)	159.7	- 59.7	0.0
35	10	0.0	131.1	75.7 (1.6%)	105.7	-5.7	0.0
40	10	0.0	844	66.7 (1.3%)	185.3	-85.3	0.0
45	8	0.7	3393.3	0 (0.0%)	0.0	0.0	0.0
50	7	10.8	4735.7	37.4 (0.7%)	111.2	- 11.0.0	0.0
Total Average	85		1021.6	78 (1.9%)	94.7	5.3	0.0

Table 9

Base case with m = 3.

Num. of	Num. of	Average	Average	Savings	Savings		
customers	solved	gap (%)	runnine (3)	(70)	Transp. (%)	Inv. (%)	Pen. (%)
10	10	0.0	0	171.9 (4.8%)	26.4	73.6	0.0
15	10	0.0	0.6	130.6 (3.3%)	68.2	31.8	0.0
20	10	0.0	3.9	59 (1.6%)	82.4	17.6	0.0
25	10	0.0	14.3	62.9 (1.3%)	160.1	-60.1	0.0
30	10	0.0	52.4	69.9 (1.4%)	159.7	-59.7	0.0
35	10	0.0	151.3	75.7	105.7	-5.7	0.0
40	10	0.0	508.2	66.7 (1.3%)	185.3	-85.3	0.0
45	8	1	3636.6	0 (0%)	0.0	0.0	0.0
50	7	1.2	5014.4	37.4 (0.7%)	111.2	- 11	0.0
Total Average	85		1042.4	78 (1.9%)	94.7	5.3	0.0

The results observed for $\alpha = 2$ are further amplified for the case of $\alpha = 3$. These results indicate that increasing due dates can have a large influence on the distance travelled by vehicles.

3.5. Vehicle flexibility

A potential cost reduction can be achieved if we increase the number of vehicles. Thus, we performed experiments with m = 2 and m = 3, the results of which are reported in Tables 8 and 9, respectively.

The average saving achieved by having two vehicles is 1.9%, which is mainly due to savings in transportation costs. A total of 85 instances are also to optimality for the setting with two vehicles, 83 of which were solved by the setting with one vehicle. A total of 85 instances are also

Table 10 Base case with $\alpha = 2$ and m = 2.

Num. of customers	Num. of solved	Average gap (%)	Average runtime	Savings (%)	Savings		
_			(3)		Transp. (%)	Inv. (%)	Pen. (%)
10	10	0	0.1	602.8 (171%)	83.9	20.6	-4.5
15	10	0	8.8	(19.7%) (19.7%)	93.6	1.2	5.2
20	10	0	35.9	899.7 (21.4%)	115.9	-3.9	- 11.9
25	9	0.2	1171	945.5 (19.9%)	116.8	- 11.7	-5
30	10	0	307	1018.1 (21.4%)	107.7	-5.7	- 1.9
35	6	1.6	5548.2	967.1 (18.1%)	88	2.1	10
40	6	1.5	6315.4	944.5 (18.3%)	97	- 10.1	13.1
45	2	4.7	9313.4	932.2 (16.7%)	57	- 1.7	44.8
50	1	5.5	10,553.7	1043.4 (14.8%)	72.7	62.4	- 35.1
Total Average	64		3694.8	863.8 (19.4%)	100.4	-0.8	0.3

solved to optimality for the setting with three vehicles, 83 of which were solved by the with one vehicle. Furthermore, 84 instances were solved to optimality for the setting with two vehicles as well as the setting with three vehicles. In these 84 instances, the savings achieved by using two or three vehicles were identical. Furthermore, in 44 out of the 84 instances no cost reduction was observed, with respect to the base case. These results indicate that while using two vehicles may yield a cost reduction, there is no apparent advantage of using three vehicles. As previously mentioned, extending due dates yields substan-tial

cost reduction. This reduction is much greater than that achieved by using two vehicles. In order to observe the potential cost reduction that can be achieved by extending due dates and using more vehicles, we experimented with the setting with $\alpha = 2$ and m = 2, the results of which are reported in Table 10. We note that the difference between the average savings reported in Table 6 and those reported in Table 10 is 2.9%. This result implies that while extending due dates warrants a crucial cost reduction, using additional vehicles entails little added value.

3.6. Vehicle capacity flexibility

The use of the smaller vehicles should increase cost. However, this may be offset by the advantages of using lighter vehicles, e.g., reducing emissions. To examine the potential cost increase due to a decrease in vehicle capacity we experimented with three different settings, consisting of 10.0%, 20.0% and 30.0% reduction in vehicle capacity. The details of the experiments are in the Appendix.

Table 11 summarizes the results for the three experimental settings. More instances are likely to become infeasible as the capacity decreases. In columns two, four and six we report the number of solved instances and the number of feasible instances for each of the three settings. Columns three, five, and seven contain the average increase in cost, in value and as percentage, when compared to the base case. The cost increase is computed only on instances that were solved in the base case as well as in the reduced capacity setting.

The number of feasible instances decreases from 90 to 88 if vehicle capacity is reduced by 10.0%, and to 72 if vehicle capacity is reduced by 30.0%. We observe that the infeasible instances tend to appear in instances with a low number of customers. A 10.0%

Table 11								
Base case	with	10.0%,	20.0%	and	30.0%	capacity	reduction.	

Num. of customers	10.0% capacity reduction		20.0% capacity reduction		30.0% capacity reduction	
	Num. of solved (feasible)	Cost increase (%)	Num. of solved (feasible)	Cost increase(%)	Num. of solved (feasible)	Cost increase (%)
10	8(8)	124.9 (3.7%)	4 (4)	205.9 (6.2%)	0 (0)	
15	10(10)	296.5 (8.5%)	10 (10)	572.3 (15.7%)	2 (2)	970.7 (31.6%)
20	10(10)	198.3 (4.7%)	10 (10)	485.3 (11.3%)	10 (10)	1017.6 (23.6%)
25	10(10)	146.5 (3.1%)	10 (10)	347.7 (7.5%)	10 (10)	899 (18.6%)
30	10(10)	123.7 (2.8%)	10 (10)	276.9 (6.1%)	10 (10)	533 (11.7%)
35	10(10)	169.9 (3.4%)	10 (10)	431.3 (8.7%)	6 (10)	882.4 (16.7%)
40	10(10)	149.1 (3.1%)	7 (10)	323.6 (6.5%)	5 (10)	642.2 (12%)
45	6(10)	70.2 (1.3%)	5 (10)	106.2 (2%)	3 (10)	433.1 (7.1%)
50	7(10)	48.2 (0.8%)	5 (10)	107.4 (1.5%)	3 (10)	224.3 (3.3%)
Total	81 (88)		71 (84)		49 (72)	
Average		155.5 (3.7%)		356.2 (8.2%)	· ·	753.4 (16.2%)

Table 12

Base case with $\alpha = 2$, 10.0%, 20.0% and 30.0% capacity reduction.

Num. of customers	10.0% capacity reduction		20.0% capacity reduction		30.0% capacity reduction	
	Num. of solved (feasible)	Cost increase (%)	Num. of solved (feasible)	Cost increase(%)	Num. of solved (feasible)	Cost increase (%)
10 15 20 25 30 35 40 45	$ \begin{array}{c} 10(10)\\ 10(10)\\ 10(10)\\ 10(10)\\ 10(10)\\ 7(10)\\ 6(10)\\ 3(10)\\ \end{array} $	$\begin{array}{c} -371.7\ (-10.6\%)\\ -394.5\ (-10.8\%)\\ -623.3\ (-15.1\%)\\ -666.2\ (-14.3\%)\\ -770.3\ (-16.3\%)\\ -705.7\ (-13.7\%)\\ -535\ (-9.8\%)\\ -517.3\ (-9.1\%)\end{array}$	$ \begin{array}{c} 10(10)\\ 10(10)\\ 10(10)\\ 10(10)\\ 10(10)\\ 6(10)\\ 4(10)\\ 4(10)\\ \end{array} $	$\begin{array}{c} -78 \ (-2\%) \\ -139.1 \ (-3.7\%) \\ -477.7 \ (-11.7\%) \\ -507.6 \ (-11\%) \\ -621.9 \ (-13.1\%) \\ -620.1 \ (-12\%) \\ -375.8 \ (-7.4\%) \\ -502.6 \ (-8.5\%) \end{array}$	$\begin{array}{c} 4(4) \\ 10(10) \\ 10(10) \\ 10(10) \\ 10(10) \\ 2(10) \\ 2(10) \\ 2(10) \\ 2(10) \end{array}$	267 (8.7%) 227.7 (6.6%) - 155.2 (-4.2%) - 184.4 (-4.4%) - 438.4 (-9%) 80.1 (1.4%) 80.9 (1.7%) - 206.4 (-3.8%)
50 Total	3(10) 69(90)	-774.8 (-12.7%)	4(10) 68(90)	-708.1 (-10.3%)	52(84) 52(84)	-379.2 (-5.8%)
Average		-583.9 (-12.9%)		-416.3 (-8.7%)		- 101.6 (-1.7%)

reduction in vehicle capacity causes an average cost increase of 3.7%, whereas a 30.0% reduction in vehicle capacity causes an average cost increase of 16.2%.

Finally, we experimented with capacity reductions for the base case when extending due dates with $\alpha = 2$. We compare this case with the base case in order to validate if the flexibility in due dates can balance the decrease in vehicle capacity. The results of these experiments are summarized in Table 12 and the details of the experiments are in the Appendix. Despite the reduced vehicle capacity, average savings are achieved. This is explained by the fact that extending the deadlines offsets the decrease in vehicle capacity. The number of feasible instances decreases from 90 to 84 only if vehicle capacity is reduced by 30.0%. A 10.0% reduction in vehicle capacity, coupled with $\alpha = 2$, causes an average saving of 12.9%, whereas a 30.0% reduction in vehicle capacity, coupled with $\alpha = 2$, causes a saving of 1.7%.

4. Conclusions

The MVRPD captures the operations of many distributors that deliver products from a CDC to customers, within predetermined due dates. The distribution activities are planned over several days, the main decisions relate to which customers to visit on each day and in what order. Products kept at the warehouse entail inventory holding costs. The MVRPD aims to balance transportation cost, inventory cost, as well as penalty costs, incurred as a result of unserved demand within the planing horizon. As such, the MVRPD balances the flexibility of choosing to serve a customer within an interval of consecutive days with the cost of keeping its demand at the CDC.

We proposed three formulations for the MVRPD: a flow based formulation, a flow based formulation with assignment variables and a load based formulation. For each of the three formulations we developed a series of valid inequalities. We generated a test bed for the MVRPD, which we used to examine the performance of each of the formulations. The load based formulation substantially outperformed the two other formulations, in terms of the number of solved instances and of the average runtimes.

We performed a number of analysis with the aim of understanding how the MVRPD solutions would be altered to accommodate changes in the input parameters. Through a series of experiments we demonstrated how the model may provide managerial insights with respect to such changes. Based on the results of the considered instances, we conclude that substantial cost savings can be achieved by extending customer due dates. Such additional flexibility allows for improved routing decisions, that yield a considerable reduction in the travelled distance. Despite the fact that the due dates are exogenous parameters, in reality distribution companies periodically negotiate contracts with their customers. Therefore, the MVRPD is paramount in quantifying the added value of extending due dates. Our experiments also showed that using additional vehicles does not vield a substantial reduction in the considered operational costs. Finally, our results indicated that reducing vehicle capacity causes a cost increase but this can be balanced by due dates flexibility. Future research could incorporate environmental factors in the model, while accounting for more complex distribution networks.

Acknowledgments

One of the authors gratefully acknowledges funding provided by the Canadian Natural Sciences and Engineering Research Council under grant 436014-2013.

Appendix

See Tables 13-29.

Table 13

Base case with $\alpha = 2$ for F1 and F2.

Num. of	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	10	0.0	0.5	10	0.0	0.1
15	10	0.0	35.8	10	0.0	17.5
20	10	0.0	792.8	10	0.0	254.1
25	7	1.5	5058.1	9	0.6	2408.8
30	6	3.7	6841.5	9	0.6	3612
35	0	15.6	10,800	2	8.3	9265.3
40	0	24.0	10,800	1	14.3	10,362.9
45	0	33.1	10,800	0	23.5	10,800
50	0	44.7	10,800	0	27.7	10,800
Total	43			51		
Average			6214.3			5280.1

Table 14

Base case with $\alpha = 3$ for F1 and F2.

Num. of	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	10	0.0	0.4	10	0.0	0.5
15	10	0.0	47.6	10	0.0	30.4
20	10	0.0	802.9	10	0.0	834.3
25	7	1.6	4291.5	9	0.5	3184.7
30	4	4.3	8448	9	0.6	3705.7
35	0	15.5	10,800	3	5.9	8411.6
40	0	27.5	10,800	1	17.5	10,494.7
45	0	37.4	10,800	0	26.0	10,800
50	0	46.3	10,800	0	24.4	10,800
Total	41			52		
Average			6310.0			5362.4

Table 15	
D	

Base case with m = 2 for F1 and F2.

Num. of	F1	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)	
10	10	0.0	3.7	10	0.0	0.1	
15	10	0.0	402.7	10	0.0	77.7	
20	8	1.6	4145.6	9	0.7	2715.8	
25	1	8.9	9925.5	1	6.3	9756.1	
30	0	17	10,800	1	9	10,198.3	
35	0	30.5	10,800	0	19.4	10,800	
40	0	38.2	10,800	0	37.1	10,800	
45	0	38.4	10,800	0	29.1	10,800	
50	0	64.9	10,800	0	37.1	10,800	
Total	29			31			
Average			7608.6			7327.6	

Table 16 Base case with m = 3 for F1 and F2.

Num. of	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	10	0	22.3	10	0	1.5
15	9	0.3	1910.4	10	0	1194.7
20	4	6.5	8027.4	4	5.5	8379.7
25	0	19	10,800	1	15.4	10,427.2
30	0	33.1	10,800	0	21.6	10,800
35	0	35.7	10,800	0	33.6	10,800
40	0	47.6	10,800	0	45.3	10,800
45	0	49.7	10,800	0	41.2	10,800
50	0	67.7	10,800	0		10,800
Total	23			25		
Average			8306.7			8222.6

Table 17		
_	 -	

Base case with $\alpha = 2$ and m = 2 for F1 and F2.

Num. of	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	10	0	26	10	0	6.8
15	10	0	870.9	10	0	739.2
20	7	3.1	6226.6	8	2.1	5752.2
25	1	9.6	9920.8	4	7.3	8766.5
30	0	19.9	10,800	0	14.4	10,800
35	0	34.8	10,800	0	31.6	10,800
40	0	45.1	10,800	0	40.4	10,800
45	0	49.1	10,800	0	47.5	10,800
50	0	54.6	10,800	0	45.5	10,800
Total Average	28		7893.8	32		7696.1

Table 18

Computational results for base case with 10.0% capacity reduction for F3.

Num. of customers	Num. of solved (feasible)	Average gap (%)	Average runtime (solved) (s)
10	8(8)	0.0	0
15	10(10)	0.0	0.1
20	10(10)	0.0	8
25	10(10)	0.0	22
30	10(10)	0.0	50.4
35	10(10)	0.0	445.2
40	10(10)	0.0	1720.6
45	6(10)	0.5	3497
50	7(10)	0.9	4156.3
Total	81(88)		
Average			1125

Table 19

Computational results for base case with 20.0% capacity reduction for F3.

Num. of customers	Num. of solved (feasible)	Average gap (%)	Average runtime (solved) (s)
10	4(4)	0.0	0
15	10(10)	0.0	0
20	10(10)	0.0	7.7
25	10(10)	0.0	16.2
30	10(10)	0.0	137
35	10(10)	0.0	1339.4
40	7(10)	1.0	4747.5
45	5(10)	1.9	3774.3
50	5(10)	2.5	5971.7
Total	71(84)		
Average			1904

Table 20

Computational results for base case with 30.0% capacity reduction for F3.

Num. of customers	Num. of solved (feasible)	Average gap (%)	Average runtime (solved) (s)
10	0(0)		
15	2(2)	0.0	0
20	10(10)	0.0	6
25	10(10)	0.0	96.7
30	10(10)	0.0	156.4
35	6(10)	0.8	5172.4
40	5(10)	3.6	6957.2
45	3(10)	3.0	7192.9
50	3(10)	3.6	8282.7
Total	49(72)		
Average			3817

Computational results for base case with 20.0% capacity reduction for F1 and F2.

Num. of	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	4(4)	0.0	0	4(4)	0.0	0
15	10(10)	0.0	1.1	10(10)	0.0	1.3
20	10(10)	0.0	158.9	10(10)	0.0	35.4
25	9(10)	0.5	2087	10(10)	0.0	311.4
30	6(10)	2.3	5631.1	9(10)	0.4	2767.5
35	1(10)	7.9	9747.6	4(10)	3.8	7705.6
40	0(10)	16.8	10,800	1(10)	13.3	9991.6
45	0(10)	20.0	10,800	0(10)	13.0	10,800
50	0(10)	28.4	10,800	0(10)	17.4	10,800
Total	40(84)			48(84)		
Average	10(04)		5955.4	10(04)		5049.1

Table 23			
Computational results for ba	ase case with 30.0%	capacity reduction f	or F1 and F2.

Num. of	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	0(0)			0(0)		
15	2(2)	0	0	2(2)	0	0
20	10(10)	0	178.8	10(10)	0	35.5
25	6(10)	1.4	7885.2	10(10)	0	1188.8
30	4(10)	3.6	7498	10(10)	0	3805
35	0(10)	13.3	10,800	1(10)	6.6	10,298.9
40	0(10)	21.7	10,800	0(10)	18.9	10,800
45	0(10)	24.3	10,800	0(10)	22	10,800
50	0(10)	29.7	10,800	0(10)	19	10,800
Total Average	22(72)		8141.5	33(72)		6628.9

Table 21

Computational results for base case with 10.0% capacity reduction for F1 and F2.

Num. of	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	8(8)	0.0	0	8(8)	0.0	0.0
15	10(10)	0.0	10.6	10(10)	0.0	2.2
20	10(10)	0.0	77.9	10(10)	0.0	37.6
25	10(10)	0.0	2260.1	10(10)	0.0	387.9
30	5(10)	2.4	6884.4	10(10)	0.0	1475.5
35	1(10)	5.9	9834.4	4(10)	1.1	7829.2
40	0(10)	14.9	10,800	2(10)	8.9	9325.9
45	0(10)	17.7	10,800	0(10)	11.2	10,800
50	0(10)	21.4	10,800	0(10)	15.7	10,800
Total	44(88)			54(88)		
Average	. ,		5848.6	. ,		4620.3

Table 24

Computational results for base case with 10.0% capacity reduction and $\alpha\,{=}\,2.$

Num. of customers	Num. of solved (feasible)	Average gap (%)	Average runtime (solved) (s)
10	10(10)	0.0	0
15	10(10)	0.0	5
20	10(10)	0.0	49.3
25	10(10)	0.0	197.8
30	10(10)	0.0	483.9
35	7(10)	1.1	4771.5
40	6(10)	2.4	5776.7
45	3(10)	6.2	7583
50	3(10)	3.7	7736
Total	69(90)		
Average			2955.9

Table 25 Computational results for base case with 20.0% capacity reduction $\alpha = 2$.

Num. of customers	Num. of solved (feasible)	Average gap (%)	Average runtime (solved) (s)
10	10(10)	0.0	0
15	10(10)	0.0	8.8
20	10(10)	0.0	31.1
25	10(10)	0.0	244.7
30	10(10)	0.0	754.8
35	6(10)	1.3	6104.5
40	4(10)	3.9	7224.1
45	4(10)	4.7	5947.7
50	4(10)	6.8	7984
Total	68(90)		
Average			3144.4

Table 26

Computational results for base case with 30.0% capacity reduction $\alpha = 2$.

Num. of customers	Num. of solved (feasible)	Average gap (%)	Average runtime (solved) (s)
10	4(4)	0.0	0
15	10(10)	0.0	6.3
20	10(10)	0.0	102.2
25	10(10)	0.0	511.3
30	10(10)	0.0	2449.7
35	2(10)	3.0	9043.7
40	2(10)	6.5	10,032.7
45	2(10)	5.9	9029.8
50	2(10)	7.0	9215.6
Total	52(84)		
Average			4808.5

Table 27

Computational results for base case with 10.0% capacity reduction for F1 and F2 $\alpha = 2$.

Num. of	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	10(10)	0.0	0.2	10(10)	0.0	0
15	10(10)	0.0	40.1	10(10)	0.0	20.1
20	10(10)	0.0	1028.1	10(10)	0.0	356.6
25	7(10)	1.7	5659.5	10(10)	0.0	3178
30	3(10)	5.3	9350.4	8(10)	0.7	4650.1
35	1(10)	14.3	10,385.9	2(10)	8.9	9386.8
40	0(10)	29.4	10,800	0(10)	19.3	10,800
45	0(10)	35.0	10,800	1(10)	23.2	9954.6
50	2(10)	32.5	8640	0(10)	24.8	10,800
Total	43(90)			51(90)		
Average			6300.5			5460.7

References

- Albareda-Sambola M, Fernández E, Laporte G. The dynamic multiperiod vehicle routing problem with probabilistic information. Comput Oper Res 2014;48:31–9.
- [2] Archetti C, Bertazzi L, Laporte G, Speranza MG. A branch-and-cut algorithm for a vendor managed inventory routing problem. Transp Sci 2007;41:382–91.
- [3] Archetti C, Bianchessi N, Irnich S, Speranza MG. A comparison of formulations for the inventory routing problem. Int Trans Oper Res 2014;21:353–74.

Table 28

Computational results for base case with 20.0% capacity reduction for F1 and F2 $\alpha = 2.$

Num. of	F1			F2		
customers	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	10(10)	0.0	0.2	10(10)	0.0	0.1
15	10(10)	0.0	49.7	10(10)	0.0	28.9
20	10(10)	0.0	608.2	10(10)	0.0	162.6
25	5(10)	3.6	7106.8	10(10)	0.0	2746.3
30	3(10)	6.2	9682.3	6(10)	2.1	6595.3
35	1(10)	14.3	10,202.4	2(10)	9.4	9150.4
40	0(10)	32.7	10,800	0(10)	19	10,800
45	0(10)	38.4	10,800	0(10)	19.5	10,800
50	0(10)	38.7	10,800	0(10)	25.1	10,800
Total Average	39(90)		6672.2	48(90)		5676

Table 29

Computational results for base case with 30.0% capacity reduction for F1 and F2 $\alpha = 2.$

Num. of customers	F1			F2		
	Num. of solved	Average gap (%)	Average runtime (s)	Num. of solved	Average gap (%)	Average runtime (s)
10	4(4)	0	0	4(4)	0	0
15	10(10)	0	25.8	10(10)	0	20.7
20	10(10)	0	1718.3	10(10)	0	525.3
25	6(10)	2.3	8211.7	8(10)	1.5	4869.6
30	2(10)	8	9544.3	5(10)	4	7139.1
35	0(10)	20.9	10,800	0(10)	13.6	10,800
40	0(10)	33.8	10,800	0(10)	25	10,800
45	0(10)	34.3	10,800	0(10)	25.6	10,800
50	0(10)	38	10,800	0(10)	22.8	10,800
Total	32(84)			37(84)		
Average	. ,		7464.3	. ,		6637.5

[4] Baldacci R, Bartolini E, Mingozzi A, Valletta A. An exact algorithm for the period routing problem. Oper Res 2011;59:228–41.

[5] Bertazzi L, Paletta G, Speranza MG. Deterministic order-up-to level policies in an inventory routing problem. Transp Sci 2002;36:119–32.

[6] Bertazzi L, Savelsbergh M, Speranza MG. Inventory routing. In: Golden B, Raghavan S, Wasil E, editors. The vehicle routing problem: latest advances and new challenges. New York: Springer; 2008. p. 49–72.

- [7] Bertazzi L, Speranza MG. Inventory routing problems: an introduction. EURO J Transp Logist 2012;1:307–26.
- [8] Bertazzi L, Speranza MG. Inventory routing problems with multiple customers. EURO | Transp Logist 2013;2:255–75.
- [9] ChristofidesN, BeasleyJE. The periodrouting problem. Networks 1984; 14:237-56.
- [10] Coelho L, Cordeau J-F, Laporte G. Thirty years of inventory routing. Transp Sci 2014;48:1–19.
- [11] Coelho LC, Laporte G. The exact solution of several classes of inventory-routing problems. Comput Oper Res 2013;40:558–65.
- [12] Coelho LC, Laporte G. Improved solutions for inventory-routing problems through valid inequalties and input ordering. Int J Prod Econ. 2014;155:391–7.
- [13] Crainic TG, Ricciardi N, Storchi G. Advanced freight transportation systems for congested urban areas. Transp Res C 2004;12:119–37.
- [14] Crainic TG, Ricciardi N, Storchi G. Models for evaluating and planning city logistics systems. Transp Sci 2009;43:432–54.
- [15] Desaulniers G, Rakke JG, and Coelho LC. A branch-price-and-cut algorithm for the inventory-routing problem. Technical Report Les Cahiers du GERAD G-2014-19, GERAD, Montréal, Canada, 2014.
- [16] Francis PM, Smilowitz K. Modeling techniques for periodic vehicle routing problems. Transp Res B 2006;40:872–84.
- [17] Francis PM, Smilowitz K, Tzur M. The period vehicle routing problem with service choice. Transp Sci 2006;40:439–54.
- [18] Francis PM, Smilowitz K, Tzur M. Flexibility and complexity in periodic distribution problems. Naval Res Logist 2007;54:136–50.

- [19] Francis PM, Smilowitz K, Tzur M. The period vehicle routing problem and its extensions. In: Golden BL, Raghavan S, Wasil E, editors. The Vehicle Routing Problem: Latest Advances and New Challenges. New York: Springer; 2008. p. 73–102.
 [20] Hemmelmayr VC, Cordeau J-F, Crainic TG. An adaptive large neighborhood
- [20] Hemmelmayr VC, Cordeau J-F, Crainic TG. An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput Oper Res 2012;39:3215–28.
- [21] Padberg M, Rinaldi G. A branch-and-cut algorithm for the resolution of largescale symmetric traveling salesman problems. SIAM Rev 1991;33:60–100.
- [22] Rahimi-Vahed A, Crainic TG, Gendreau M, Rei W. A path relinking algorithm for a multi-depot periodic vehicle routing problem. J Heuristics 2013;3: 497-524.
- [23] Ralphs TK, Kopman L, Pulleyblank WR, Trotter LE. On the capacitated vehicle routing problem. Math Progr 2003;94:343–59.
- [24] Wen M, Cordeau J-F, Laportee G, Larsen J. The dynamic multi-period vehicle routing problem. Comput Oper Res 2010;37(9):1615–23.