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1. Introduction

In Vehicle Routing Problems (VRPs) the transportation planning 
period is a day and the service day of customers is assumed to be 
known. In a given day customers have to be assigned to vehicles 
and the order of visits of each vehicle has to be determined.

Several situations exist where some flexibility on the service 
time is possible but the quantities to be delivered are fixed. This is 
the case when customers make orders and the delivery is guaran-
teed within a certain number of days. This is in fact one of the most 
common situations. Often contracts are established between sup-
plier and customers whose cost depends on the time-to-delivery. 
The shorter the time-to-delivery the more expensive the contract 
is. Similarly, in e-commerce, customers make orders and a due date 
is established at the time an order is made. The time of service is a 
decision variable while the quantities to be delivered are given.

The real problem that motivated this study arises in city 
logistics. City logistics aims to reduce the nuisances associated to 
freight transportation in urban areas. A study on ad-hoc freight 
transportation systems for congested urban areas was presented 
in [13] while in [14] different models are presented for the 
evaluation and planning of city logistic systems. For a recent ref 
erence on a heuristic algorithm for a vehicle routing problem 
arising in city logistics we refer to [20].

There are different settings in city logistic systems. The one we
consider in this paper is composed by a central distribution center
(CDC) which is used to consolidate distribution activities within an
urban environment. Customers are private citizens, offices or shops.
Customers have made orders and request the delivery to take place
within a given due date. Trucks deliver goods to the CDC where
they are consolidated in vehicles dedicated for conducting urban
distribution activities. The problem is how to organize the distribu-
tion of goods to final customers. Goods have to be distributed from
the CDC to the customers within the due dates in such a way that
the distribution cost is minimized. We refer to this problem as the
Multi-period Vehicle Routing Problem with Due dates (MVRPD),
where a period corresponds to a day.

The MVRPD conceptually lies between the Periodic Vehicle
Routing Problem (PVRP) and the Inventory Routing Problem (IRP).
In the PVRP the planning period is made of a certain number of days.
A customer may request to be served one or more times in the
planning period. Alternative sequences of days of visit are pre-
defined for each customer. Given a sequence of days of visit, the
quantities to be delivered in each day of visit are known. For example
the planning period may be made of 6 days. A customer may require
two visits in a week and its possible alternative sequences may be
(1,4), (2,5), (3,6). The problem becomes that of choosing for each
customer one sequence of days and, for each day, assigning custo-
mers to vehicles and determining for each vehicle the order of visit.
Therefore, the PVRPs model the situation of customers requesting a
certain frequency of service with the flexibility of choosing the
precise days of service. The customers determine the service fre-
quency and the quantities to be delivered. The flexibility in the choice
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of the precise sequence of days of service creates saving opportu-nities, 
but makes the problem harder to be solved. A commonly used 
formulation is provided in [9]. A comprehensive survey on the PVRP 
and its extensions can be found in [19]. The exact algorithm proposed 
in [4] is currently the leading methodology for the exact solution of the 
PVRP. For a recent reference on a heuristic algorithm for the PVRP we 
refer to [22]. The issue of allowing more flexibility in PVRP is studied in 
[17] where the PVRP  with Service Choice (PVRP-SC)  is 
introduced, that is a PVRP in which service frequency is a decision of 
the model. The authors propose a mathematical formulation and an 
exact solution approach for the problem in [17] while in [16] a 
continuous approximation model for the same problem is proposed. In 
[18] the authors developed a tabu search method for the PVRP that can 
incorporate a range of operational flexibility options, like the possibility 
to increase the set of visit schedules, decide visit frequency, vary the 
driver who visits a customer and decide delivery amounts per visit. The 
authors analyze the trade-offs between the system performance 
improvements due to operational flexibility and the implementation, 
computational and modeling complexity. They introduce quantitative 
measures in order to evaluate the complexity increase and provide 
insights both from a managerial and a modeling perspective.

In the IRPs, the planning period is made of a certain number of 
days, as in the PVRPs. However, the IRP includes more flexibility with 
respect to the PVRP. A customer may be visited any number of times 
and the quantities to be delivered have to be determined. The 
customer consumption is known, day by day, but, contrary to the 
VRPs and the PVRPs, the quantities to be delivered are not. The days 
of service and the quantities to be delivered are to be determined in 
such a way that a stock-out never occurs at any customer. In 
addition, as in VRPs and in PVRPs, for each day customers have to be 
assigned to vehicles and the order of visit has to be determined. 
Additional savings can be achieved with respect to VRPs and also 
with respect to PVRPs. IRPs are interesting and challenging pro-
blems even when there is only one destination, i.e., when the 
routing side of the problem is trivially solved. An introduction to 
IRPs with a focus on the case of one origin and one destination can 
be found in [7], while a tutorial for the case of multiple destinations 
has been published shortly after in [8]. Surveys are also available, 
the most recent ones being [6,10].

The IRPs model different practical situations where the decision 
space is very broad. In particular, they model a manage-ment 
practice which is known as Vendor Managed Inventory (VMI). In 
VMI the supplier has regular information on the status of the 
inventory levels of its customers and of their consumptions and has 
the freedom to organize the distribution, provided that it guarantees 
no stock-out occurs at the customers. In the most basic IRP, 
customers are to be supplied over a certain number of days by a 
fleet of capacitated vehicles, based on a depot. Their consumption 
is known, day by day. Each customer has a max-imum inventory 
capacity. Different replenishment policies may be adopted. The 
quantity delivered to a customer may be such that the inventory 
capacity is reached (Order-Up to level policy) or such that the 
inventory capacity is not exceeded (Maximum Level policy). The 
decisions include when to serve each customer (how many times 
and the precise days), how much to deliver when a customer is 
served and the routes followed by the vehicles. This problem was 
introduced in [5]. The  first exact method for the solution of this 
problem was proposed in [2] for the case of one vehicle. Exact 
algorithms for the multi-vehicle extension were recently presented 
in [11,12,15], while alternative formulations are compared in [3].

The decision space of the MVRPD is broader than that of the 
VRP, as the days of service have to be chosen, and more 
restricted than in IRPs, as the quantities are given. The MVRPD 
are close to the PVRPs but typically there is no periodicity in the

service. Furthermore, we mention that in [1,24] the authors 
study the dynamic multi-period vehicle routing problem, where 
customers’ requests arrive dynamically over time and must be 
satisfied within a time window. The latter comprises several 
time periods of the planning horizon and thus resembles the due 
date in the MVRPD. In [24] the objective function comprises 
travelling cost, waiting time and balancing daily workload. In [1] 
the objective is to minimize travelling cost in a stochastic setting.

The contributions of this paper are fourfold. We first introduce 
the MVRPD. We investigate three alternative formulations and 
propose a set of valid inequalities for each one that exploit the 
problem structure. Each formulation is solved with a branch-and-
cut algorithm and we identify the best one through computational 
experiments. Finally, we evaluate the impact of altering due dates, 
number of vehicles and vehicle capacity. Our analysis provide 
valuable managerial insights.

The rest of the paper is organized as follows. In Section 2 we 
develop three formulations together with valid inequalities. In 
Section 3 we present our computational experiments. Finally, we 
provide concluding remarks in Section 4.

2. Problem description and formulations

We consider a planning horizon, composed of a certain number
of days. A set of customers have to be served. Each customer has
placed an order that has to be satisfied within a certain due date.
Multiple orders of the same customers may be modelled through
different co-located customers. In the following, we will use the
terms ‘order’ and ‘customer’ with the same meaning. A fleet of
capacitated vehicles, based on a depot, are available to serve the
customers. The goods requested by a customer may not be available
at the beginning of the planning horizon but are known to become
available at a later time. If the due date of a customer exceeds the
planning horizon, its service may be postponed. In this case, a
penalty will be charged. The latter cost is assumed to encompass
the inventory holding cost of customers beyond the planning
horizon. The problem is to design daily distribution routes for the
given planning horizon. We refer to this problem as the Multi-
period Vehicle Routing Problem with Due dates (MVRPD).

A planning horizon T ¼ f1;…;Hg is given. The MVRPD is defined
on a complete directed graph G¼ ðV ;AÞ, where V ¼ f1;…;ng is the
vertex set and A¼ fði; jÞ : i; jAVg is the arc set. Vertex 1 is the depot
at which m identical vehicles of capacity Q are based, whereas the
remaining vertices represent customers. An order quantity qi is
associated with customer i, together with a release date ri,
1rrirH and a due date di, diZri. The due date may exceed the
planning horizon. If it does, the customer may be served within
the planning horizon or its service may be postponed. A penalty
cost pi is charged if customer i is postponed. A nonnegative cost cij
is associated with each arc ði; jÞAV and represents the transporta-
tion cost incurred by travelling directly from i to j. For all periods
tAT routes are constructed such that each customer order is
delivered at most once by one vehicle (exactly once if the due date
does not exceed the planning horizon), all routes start and end at
the depot and the total quantity on any route does not exceed the
vehicle capacity Q. Furthermore, the routes must be such that each
customer is not served before its release date. For each customer i,
an inventory holding cost hi is charged for each day that order i
spends at the depot. We assume that the depot has sufficient
capacity to hold the entire demand delivered to it. We call the
period ½ri; di� the window associated with customer i. Let
C � fV n f1gg be the set of customers whose due date is greater
than H. Each order iAC, if not served within H, incurs a holding
cost hi½H�ri� as well as the penalty cost pi.



The objective of the problem is to minimize the total cost,
which is comprised of the following elements:

(i) Transportation cost for served orders: the cost of the distance
travelled by the vehicles to distribute the orders from the
depot.

(ii) Inventory holding cost of served and unserved orders: the
cost of holding inventory between the release date and the
actual delivery day (if the order is served) or H (if the order is
unserved).

(iii) Unserved order cost: the penalty cost incurred for unserved
orders.

In the following sections we present three formulations for the 
MVRPD, each of which is followed by a set of valid inequalities. In 
Section 2.1 we present a flow based formulation. This is extended in 
Section 2.2 to include assignment variables. Finally, in Section 2.3 we 
present a load based formulation.

2.1. A flow based formulation

The flow based formulation makes use of the following decision 
variables:

xtijk ¼
1 if arc ði; jÞ is traversed by vehicle k on day t;

0 otherwise;

(

and is as follows:

ðMVRPD� F1ÞMin
Xm
k ¼ 1

Xn
i ¼ 1

Xn
j ¼ 1

XH
t ¼ ri

cijxtijkþ
Xn
i ¼ 2

hi
Xminfdi ;Hg

t ¼ riþ 1

ðt�riÞ
Xm
k ¼ 1

Xn
j ¼ 1

xtijk

þ
X
iAC

hiðH�riÞþpi
� �

1�
Xm
k ¼ 1

Xn
j ¼ 1

XH
t ¼ ri

xtijk

0
@

1
A ð1Þ

subject to

Xm
k ¼ 1

Xn
j ¼ 1

Xdi
t ¼ ri

xtijk ¼ 1 8 iAfV n fC;1gg; ð2Þ

Xm
k ¼ 1

Xn
j ¼ 1

XH
t ¼ ri

xtijkr1 8 iAfCg; ð3Þ

Xn
i ¼ 2

qi
Xn
j ¼ 1

xtijkrQ fk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð4Þ

Xn
j ¼ 1

xtijk ¼
Xn
j ¼ 1

xtjik ði¼ 1;…;nÞ; ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð5Þ

X
i;jAS

xtijkr jSj �1 ðS� V

n f1g;2r jSj Þ; ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð6Þ

Xn
j ¼ 1

xt1jkr1 ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð7Þ

Xn
j ¼ 1

xtj1kr1 ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð8Þ

xtijkAf0;1g ði; j¼ 1;…;nÞ; ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ: ð9Þ

The objective (1) includes the transportation cost. The term

Xn
i ¼ 2

hi
Xminfdi ;Hg

t ¼ ri þ1

ðt�riÞ
Xm
k ¼ 1

Xn
j ¼ 1

xtijk

accounts for the inventory holding cost for the served orders until
H. The term

X
iAC

hiðH�riÞ 1�
Xm
k ¼ 1

Xn
j ¼ 1

XH
t ¼ ri

xtijk

2
4

3
5

accounts for the inventory holding cost for unserved customers
within the interval [1,H]. Finally, the term

X
iAC

pi 1�
Xm
k ¼ 1

Xn
j ¼ 1

XH
t ¼ ri

xtijk

0
@

1
A

expresses the penalty of unserved customers until period H. Eq.  (2) 
ensures that each customer order, which must be delivered within H, is 
served within its window by a single vehicle on a single day. Eq. (3) 
ensures that each customer order, which could be delivered after H, is 
delivered at most once within its release date and H. Eq.  (4) 
guarantees that the capacity of each vehicle is respected on each day. 
Eq. (5) ensures the flow conservation. Eq. (6) is the subtour elimina-
tion constraints. Eqs. (7) and (8) ensure that at most one tour is 
performed by each vehicle per day.

Valid inequalities
In what follows we present a set of valid inequalities for the 

flow based formulation.

Inequality 2.1. The inequalities

Xm
k ¼ 1

Xn
i ¼ 1

X
ja i

Xminft0 ;dig

t ¼ ri

qix
t
ijkrmQt0ðt0 ¼ 1;…;HÞ;

are valid, since the total delivered demand until day t0 should not
exceed the total available vehicle capacity over the t0 days.

Inequality 2.2. The inequalities

Xn
i ¼ 1

X
ja i

Xminft0 ;dig

t ¼ ri

qix
t
ijkrQt0 ðt0 ¼ 1; …;HÞ; ðk¼ 1;…;mÞ

are valid, since the total satisfied demand until day t0 by vehicle k
should not exceed the total available capacity of the vehicle over
the t0 days.

We note that (2.1) is obtained by (2.2) over all vehicles.

Inequality 2.3. The inequalities

Xn
i ¼ 2

qi�
Xm
k ¼ 1

Xn
i ¼ 2

X
ja i

Xminft0 ;dig

t ¼ ri

qix
t
ijk�

X
iAC

qi�
Xm
k ¼ 1

Xn
j ¼ 1

XH
t ¼ 1

qix
t
ijk

0
@

1
A

rmQ ðH�t0Þðt0 ¼ 1;…;HÞ;

are valid.
The customer demand that is not satisfied until H is

X
iAC

qi�
Xm
k ¼ 1

Xn
j ¼ 1

XH
t ¼ 1

qix
t
ijk

0
@

1
A:

Therefore, the unsatisfied demand until day t0 which is satisfied
by H is

Xn
i ¼ 2

qi�
Xm
k ¼ 1

Xn
i ¼ 2

X
ja i

Xminft0 ;dig

t ¼ ri

qix
t
ijk�

X
iAC

qi�
Xm
k ¼ 1

Xn
j ¼ 1

XH
t ¼ 1

qix
t
ijk

0
@

1
A:

This should not exceed the residual capacity within the interval
½t0 þ1;H�, which is mQ ðH�t0Þ.

Inequalities (2.3) can be strengthened in the following way.



Inequality 2.4. The inequalities

Xn
i ¼ 2

qi�
Xm
k ¼ 1

Xn
i ¼ 2

X
ja i

Xminft0 ;dig

t ¼ ri

qix
t
ijk�

X
iAC

qi�
Xm
k ¼ 1

Xn
j ¼ 1

XH
t ¼ 1

qix
t
ijk

0
@

1
A

rmQ ðH�t0Þ�
Xm
k ¼ 1

XH
t ¼ t0 þ1

Q
Xn
j ¼ 2

ð1�xt1jkÞðt0 ¼ 1;…;H�1Þ

are valid. The summation

Xm
k ¼ 1

XH
t ¼ t0 þ1

Xn
j ¼ 2

xt1jk

expresses the number of times the vehicles are utilized within the
interval ½t0 þ1;H�. The term

Xm
k ¼ 1

XH
t ¼ t0 þ1

Q
Xn
j ¼ 2

ð1�xt1jkÞ

expresses the unutilized capacity during ½t0 þ1; H�. Therefore, (2.4) 
follows (2.3), while the former account for unutilized vehicle
capacity within the interval ½t0 þ1; H�.

The three following inequalities are based on the required 
demand per interval. For each combination of periods t1 and t2,
such that t1 ot2, let qt1 ;t2 

denote the demand that should be
delivered within ½t1; t2�. This is expressed as

qt1 ;t2 ¼
Xn
i ¼ 1

ri Z t1 ;di r t2 ;

qi:

Furthermore, we define St1 ;t2 as the set of customers whose release
date is greater than or equal to t1, and whose due dates are less
than or equal to t2.

Inequality 2.5. The inequalities

Xm
k ¼ 1

Xn
j ¼ 1

Xt2
t ¼ t1

xt1jkZ⌈
qt1 ;t2
Q

⌉ ðt1 ¼ 1;…;HÞ; ðt2 ¼ t1;…;HÞ

are valid. This follows from the fact that the number of vehicles
required for serving St1 ;t2 is bounded by ⌈qt1 ;t2=Q⌉.

Inequality 2.6. The inequalities

Xm
k ¼ 1

Xn
i ¼ 1

Xn
jA St1 ;t2

ja i

Xt2
t ¼ t1

qjx
t
ijk ¼ qt1 ;t2 ðt1 ¼ 1;…;HÞ; ðt2 ¼ t1;…;HÞ

are valid since all customers St1 ;t2 must be served within ½t1; t2�.

Inequality 2.7. The inequalities

Xm
k ¼ 1

Xn
i ¼ 1

Xn
jA St1 ;t2

ja i

Xt2
t ¼ t1

qjx
t
ijkrmQ ðt2�t1þ1Þ ðt1 ¼ 1;…;HÞ; ðt2 ¼ t1;…;HÞ

are valid, since the total customer demand that must be served
within ½t1; t2� should not exceed the available vehicle capacity
during the interval ½t1; t2�.

Furthermore, for S� V , let δðSÞ denote the set of edges with one
endpoint in S and the other in fV n Sg. We add the following
rounded capacity constraints:

Xm
k ¼ 1

X
ði;jÞAδðSÞ

xtijkZ2⌈
P

iA Sqi
Q

⌉ ðt ¼ 1;…;HÞ; ðS� V n 1f g;2r jSj Þ:

2.2. A flow based formulation with assignment variables

We define the following additional assignment variables:

ztik ¼
1 if customer i is served by vehicle k on day t;

0 otherwise;

(

and extend the flow based formulation as follows:

ðMVRPD�F2Þ Min
Xm
k ¼ 1

Xn
i ¼ 1

Xn
j ¼ 1

XH
t ¼ ri

cijx
t
ijkþ

Xn
i ¼ 2

hi

Xminfdi ;Hg

t ¼ ri þ1

ðt�riÞ
Xm
k ¼ 1

ztik

þ
X
iAC

hiðH�riÞþpi
� �

1�
Xm
k ¼ 1

XH
t ¼ ri

ztik

!
ð10Þ

subject to

Xm
k ¼ 1

Xn
j ¼ 1

Xdi
t ¼ ri

xtijk ¼ 1 8 iAfV n fC;1gg; ð11Þ

Xm
k ¼ 1

Xn
j ¼ 1

XH
t ¼ ri

xtijkr1 8 iAfCg; ð12Þ

Xn
i ¼ 2

qi
Xn
j ¼ 1

xtijkrQ ðk¼ 1;…;mÞ; ðt ¼ 1;…; Þ; ð13Þ

Xn
j ¼ 1

xtijk ¼
Xn
j ¼ 1

xtjik ði¼ 1;…;nÞ; ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð14Þ

ztik ¼
Xn
j ¼ 1

xtjik ði¼ 1;…;nÞ; ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð15Þ

X
i;jA S

xtijkr
X
iA S

ztik�ztjk ðS� V

n f1gÞ; ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; 8 jAS; ð16Þ

Xn
j ¼ 1

xt1jkr1 ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð17Þ

Xn
j ¼ 1

xtj1kr1 ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð18Þ

xtijkAf0;1g ði; j¼ 1;…;nÞ; ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ; ð19Þ

ztikAf0;1g ði¼ 1;…;nÞ; ðk¼ 1;…;mÞ; ðt ¼ 1;…;HÞ: ð20Þ
The objective (10) is adapted from the flow based formulation 

presented in Section 2.1 to include the assignment variables. Eqs. 
(11)–(14) and (17)–(18) directly follow the flow based for-mulation 
presented in Section 2.1. Eq. (15) links the assignment variables 
with the flow variables. Eq. (16) is the subtour elimina-tion 
constraints formulated in terms of ztik variables. Note that they are 
more binding (6).

Valid inequalities
In the following we present the formulation of the valid 

inequalities presented in Section 2.1 adapted to the flow based 
formulation with assignment variables.

Xm
k ¼ 1

Xn
i ¼ 1

Xminft0 ;dig

t ¼ ri

qiz
t
ikrmQt0 ðt0 ¼ 1;…;HÞ; ð21Þ

Xn
i ¼ 1

Xminft0 ;dig

t ¼ ri

qiz
t
ikrQt0 ðt0 ¼ 1;…;HÞ; ðk¼ 1;…;mÞ; ð22Þ



Xn
i ¼ 2

qi�
Xm
k ¼ 1

Xn
i ¼ 2

Xminft0 ;dig

t ¼ ri

qiz
t
ik�

X
iAC

qi�
Xm
k ¼ 1

XH
t ¼ 1

qiz
t
ik

!

rmQ ðH�t0Þ ðt0 ¼ 1;…;HÞ; ð23Þ

Xn
i ¼ 2

qi�
Xm
k ¼ 1

Xn
i ¼ 2

Xminft0 ;dig

t ¼ ri

qiz
t
ik�

X
iAC

qi�
Xm
k ¼ 1

XH
t ¼ 1

qiz
t
ik

!

rmQ ðH�t0Þ�
Xm
k ¼ 1

XH
t ¼ t0 þ1

Q
Xn
j ¼ 2

ð1�xt1jkÞ ðt0 ¼ 1;…;H�1Þ;

ð24Þ

Xm
k ¼ 1

Xn
j ¼ 1

Xt2
t ¼ t1

xt1jkZ⌈
qt1 ;t2
Q

⌉ ðt1 ¼ 1;…;HÞ; ðt2 ¼ t1;…;HÞ; ð25Þ

Xm
k ¼ 1

Xn
jA St1 ;t2

Xt2
t ¼ t1

qjz
t
jk ¼ qt1 ;t2 ðt1 ¼ 1;…;HÞ; ðt2 ¼ t1;…;HÞ; ð26Þ

Xm
k ¼ 1

Xn
jA St1 ;t2

Xt2
t ¼ t1

qjz
t
jkrmQ ½t2�t1þ1� ðt1 ¼ 1;…;HÞ; ðt2 ¼ t1;…;HÞ;

ð27Þ

Xm
k ¼ 1

X
ði;jÞAδðSÞ

xtijkZ2⌈
P

iA Sqi
Q

⌉ ðt ¼ 1;…;HÞ; ðS� V

n 1f g;2r jSj Þ: ð28Þ

2.3. A load based formulation

We present an aggregated load formulation where arc variables
are aggregated over all vehicles. The formulation is based on the
following decision variables:

xtij ¼
1 if arc ði; jÞ is traversed on day t;

0 otherwise;

(

ltij ¼ the load of the vehicles upon traversing arc ði; jÞ on day t;
n

and is expressed as follows:

ðMVRPD�F3Þ Minimize
Xn
i ¼ 1

Xn
j ¼ 1

XH
t ¼ ri

cijx
t
ijþ

Xn
i ¼ 1

hi
Xminfdi ;Hg

t ¼ ri

ðt�riÞ
Xn
j ¼ 1

xtij

þ
X
iAC

hiðH�riÞþpi
� �

1�
Xn
j ¼ 1

XH
t ¼ ri

xtij

0
@

1
A ð29Þ

subject to

Xn
j ¼ 1

Xdi
t ¼ ri

xtij ¼ 1 8 iA ½V n ½C;1��; ð30Þ

Xn
j ¼ 1

XH
t ¼ ri

xtijr1 8 iAfCg; ð31Þ

Xn
j ¼ 1

xtij ¼
Xn
j ¼ 1

xtji ði¼ 1;…; Þ; ðt ¼ 1;…;HÞ; ð32Þ

Xn
j ¼ 1

xt1jrm ðt ¼ 1;…;HÞ; ð33Þ

Xn
j ¼ 1

ltji�
Xn
j ¼ 1

ltij ¼ qi
Xn
j ¼ 1

xtij ði¼ 2;…;nÞ; ðt ¼ 1;…;HÞ; ð34Þ

Xn
j ¼ 1

lt1j�
Xn
j ¼ 1

ltj1 ¼
Xn
i ¼ 1

Xn
j ¼ 1

qix
t
ij ðt ¼ 1;…;HÞ; ð35Þ
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The objective function (29) and constraints (30)–(32) are adapted 

from the flow based formulation presented in Section 2.1. 
Constraints (33) ensure that at most m vehicles are used each day. 
Constraints (34) link the load variables with the flow variables, 
while constraints (35) entail that for each day the difference 
between the total load leaving the depot and the total load entering 
the depot equals the total demand served on that day. Constraints 
(36) guarantee that the load on each arc does not exceed the 
vehicle capacity.

Valid inequalities
In the following we present the formulation of the valid 

inequalities presented in Section 2.1 adapted to the load based 
formulation.
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3. Computational experiments

The three formulations presented in Section 2 were coded in a
Cþþ  environment with CPLEX 12.5. All experiments were 
con-ducted on an Intel(R) Xeon(R) CPU X5675 with 12-Core 3.07 
GHz and 96 GB of RAM (by using a single thread). The maximum 
run time for each instance was set to 3 h. The polynomial time 
exact separation algorithm presented in [21] is used to detect 
violated subtour elimination constraints. Capacity cuts are 
separated heuristically using the extended shrinking heuristic 
and the greedy shrinking heuristic presented in [23].

The instances were generated by adapting the benchmark IRP
instances presented in [2]. The testbed consists of 180 instances,



classified into the following four categories:

1. Instances with high inventory cost and H ¼ 6.
2. Instances with low inventory cost and H¼ 6.
3. Instances with high inventory cost and H ¼ 3.

Instances with low inventory cost and H 3.4. ¼

Each category contained instances with 10, 15,…, 50 customers, five 
instances were generated for each combination of category and number 
of customers. Note that the IRP instances presented in [2] comprises also 
instances with 5 customers. We decided to skip those instances as the 
dimension is  too  small to give  significant insights. Data 
concerning customer locations, inventory costs and vehicle capacity has 
been kept equal to the data of the original IRP instances. Customer 
demands has been set equal to the daily customer demand of the IRP 
instance multiplied by H. Release dates are set as follows:
starting with a value t ¼ 1, customers are considered sequentially and
their release date is set equal to t. The value of  t is increased by one
every time a new customer is considered until it reaches the value of H, 
after which it is set again to one. The difference between the release 
date  and the due date of each customer is set to α, i.e., given the
release date ri for customer i, we determine its due date di as ri þα.
The penalty cost pi is set to 10hi. This value takes into account the 
inventory cost beyond H plus the fact that the customer still needs to 
be served and this will incur in an additional transportation cost.

The purpose of the computational experiments is twofold. In Section 
3.1 we compare the performance of the three proposed formulations. In 
Section 3.2 we then perform several analysis examining the potential 
impact of relaxing and tightening the experimental parameters.

3.1. Model assessment

  The performance of the three formulations (presented in 2) is 
evaluated on a base case, in which for each instance the number of

Table 1
Computational results for F1 with valid inequalities.

Num. of customers Num. of solved Average gap (%) Average runtime (s)

10 20 0.0 0
15 20 0.0 2.8
20 20 0.0 30.1
25 20 0.0 804.6
30 13 2.5 5817.9
35 7 4.8 8185.8
40 4 11.4 9926.5
45 0 23.4 10,800
50 0 30.1 10,800

Total 104
Average 5152.0

Table 2
Computational results for F2 with valid inequalities.

Num. of customers Num. of solved Average gap (%) Average runtime (s)

10 20 0.0 0
15 20 0.0 0.9
20 20 0.0 11.1
25 20 0.0 196.8
30 19 0.3 1912.4
35 18 0.2 4141.6
40 8 5.3 8071.2
45 2 10.8 10,042.4
50 1 19.0 10,797.4

Total 128
Average 3908.2

vehicles was set to one with α ¼ 1. Aside from the rounded capacity
constraints, all valid inequalities are added at the route node. The
results for the flow based formulation (F1), the flow based formulation 
with assignment variables (F2) and the load based formulation (F3), are 
presented in Tables 1–3, respectively.

The number of instances solved by F1 is 104 out of 180 while F2 
solved 128 instances, including all those solved by F1. Moreover, the 
optimality gaps and the runtimes for F2 on average are lower than 
those of F1.

F3 solved 164 instances, including all those solved by F1. The 
average runtimes for F3 are on average lower than those  of F2. 
Therefore, we conclude that F3 outperforms F2 and F1, on the chosen 
instances.

In order to assess the added value of the valid inequalities, we 
ran the experiments with F3 without the valid inequalities. These 
results can be found in Table 4. Without the valid inequalities F3 
solved 164 instances, 161 of which were solved by F3 with the 
valid inequalities. In 71% of the instances solved by both formula-
tions, the runtimes were longer or equal than their corresponding 
value when solved by F3 with the valid inequalities. Moreover, the 
average gaps are higher for F3 without the valid inequalities.

The above discussion leads us to the conclusion that F3 with 
the valid inequalities is superior to the other presented formula-
tions. In Section 3.2 we analyze the behavior of the problem when 
relaxing and tightening some of the parameters.

3.2. Analysis

We explore here the structure of the solutions obtained. First, 
we analyze the distribution of costs on the tested instances. Then, 
we evaluate the impact of changing the parameter values with 
respect to the base case. We study the impact of the range of

Table 3
Computational results for F3 with valid inequalities.

Num. of customers Num. of solved Average gap (%) Average runtime (s)

10 20 0.0 0
15 20 0.0 1.2
20 20 0.0 8.0
25 20 0.0 21.7
30 20 0.0 88.2
35 20 0.0 202.1
40 19 0.1 1223.9
45 13 1.7 4213.7
50 12 2.2 5621.4

Total 164
Average 1264.5

Table 4
Computational results for F3 without valid inequalities.

Num. of customers Num. of solved Average gap (%) Average runtime (s)

10 20 0.0 0
15 20 0.0 1.7
20 20 0.0 8.8
25 20 0.0 29.3
30 20 0.0 82.9
35 19 0.0 943.3
40 20 0.0 1429.1
45 15 1.5 3446.0
50 10 2.8 6775.8

Total 164
Average 1413.0



flexibility on the due dates, the impact of having more or less
vehicles and, finally, the impact of having larger or smaller
capacity vehicles. In what follows we focus on the 90 instances

with H ¼ 6, as the longer horizon allows a more careful analysis of
the effects of parameter changes. In this case the number of solved
instances is 84 out of 90.

3.3. Cost components

We first explore the cost structure, with respect to the cost 
components of the objective function. To this end, we consider the 
results of F3 with valid inequalities, as it performed better than the 
other formulations. Considering the solved instances for each 
category, Table 5 shows the percentages of transportation cost in 
columns two and three and the inventory cost in columns four and 
five.The instances are classified in two categories: the ones with 
high inventory cost (‘high’) and the ones with low inventory cost 
(‘low’). The transportation cost is the major component of the total 
cost, also for the instances where the inventory cost is higher. This 
confirms that the instances sensibly simulate real cases.

On average the transportation costs constitute a lower portion 
of the total costs for instances with higher inventory costs. 
Naturally, the inventory costs constitute a higher portion of the 
total costs for instances with higher inventory costs.

In the following analysis we present the results of F3 with valid 
inequalities as it outperformed F1, F2 with valid inequalities on all 
experimental settings. The performance of F1 and F2 with valid 
inequalities on all experimental settings is reported in the Appendix.

3.4. Due date flexibility

As strict due dates entail a high total cost, in this section we 
aim to quantify the potential saving that might be obtained by
extending the due dates. Table 6 shows the results of setting α ¼ 2,
i.e., setting the due date 2 days after the release date. The results
from this experimental setting are compared against the base case,
in which α ¼ 1. Similarly, Table 7 shows the results of setting α ¼ 3
and its comparison with the base case.

In Tables 6 and 7 the fifth column indicates the average savings 
with respect to the base case, as measured on instances solved by
the base case as well as the setting with α ¼ 2 o

fi

r 3, respectively.
The percentage of savings is also indicated in the fth column. The 
last three columns report the average percentage of savings for 
each of the three cost components of the objective function: 
transportation, inventory and penalty.

Table 6 indicates that the average cost savings that can be achieved by 
increasing due dates by 1 day is 16.5%, when compared to the base case. 
Such savings largely stem from a substantial reduction in transportation 
costs, while penalty costs are increasing. Thus, we infer that extending 
due dates reduces the total transportation costs by grouping clients into 
more efficient routes.

Table 5
Percentage of transportation and inventory cost.

Num. of customers Transp. cost Inv. cost

Category High (%) Low (%) High (%) Low (%)

10 86.9 98.5 13.0 1.5
15 90.4 98.4 9.4 1.6
20 91.3 98.3 8.5 1.7
25 91.3 97.8 8.5 2.2
30 91.0 97.3 8.7 2.7
35 88.7 97.7 11.0 2.3
40 90.1 96.5 9.6 3.4
45 84.9 97.2 14.7 2.8
50 88.7 96.7 10.9 3.3

Average 89.4 97.7 10.4 2.3

Table 6
Base case with α¼ 2.

Num. of
customers

Num. of
solved

Average
gap (%)

Average
runtime
(s)

Savings
(%)

Savings

Transp.
(%)

Inv.
(%)

Pen.
(%)

10 10 0.0 0 497.8
(14.0%)

96.4 14.7 �11.1

15 10 0.0 5.1 581.8
(16.2%)

127.2 �6.0 �21.2

20 10 0.0 24.3 841.6
(20.0%)

120.4 �1.2 �19.2

25 10 0.0 191.7 841.1
(17.8%)

133.6 �11.8 �21.8

30 10 0.0 194.8 881.9
(18.7%)

124.8 �3.9 �20.9

35 8 1.0 4293.9 897.6
(17.2%)

120.8 7.6 �28.4

40 8 1.0 5028.7 796.9
(15.4%)

130.8 �2.7 �28.1

45 4 4.8 6693.6 549.2
(9.6%)

154.5 17.8 �72.3

50 2 4.2 8963.9 700.5
(10.3%)

176.7 15.5 �92.2

Total 72
Average 2821.8 744.4

(16.5%)
125.9 �0.1 �25.7

Table 7
Base case with α¼ 3:

Num. of customers Num. of solved Average gap (%) Average runtime (s) Savings (%) Savings

Transp. (%) Inv. (%) Pen. (%)

10 10 0.0 1.1 886.6 (25.7%) 109.5 10.4 �19.9
15 10 0.0 8.2 855.4 (24.4%) 129.6 �4.3 �25.3
20 10 0.0 47.3 1270.5 (30.6%) 117.8 2.7 �20.4
25 10 0.0 225.9 1426.4 (30.7%) 130.2 �1.4 �28.8
30 10 0.0 139.2 1377.3 (29.7%) 135.5 �5.5 �30.0
35 10 0.0 1222.4 1557.3 (31.4%) 131.5 0.3 �31.8
40 5 1.7 6105.3 960.1 (19.8%) 150.5 1.5 �51.9
45 6 2.9 6696.7 1064.1 (19.4%) 156.9 �0.4 �44
50 1 6.5 9921.9 774.5 (12.2%) 234.7 36.4 �171.2

Total 77
Average 2707.6 1190.2 (27.1%) 131.3 0.4 �30.7



The results observed for α¼ 2 are further amplified for the case
of α¼ 3. These results indicate that increasing due dates can have
a large influence on the distance travelled by vehicles.

3.5. Vehicle flexibility

A potential cost reduction can be achieved if we increase the
number of vehicles. Thus, we performed experiments with m ¼ 2 and
m ¼ 3, the results of which are reported in Tables 8 and 9, respectively.

The average saving achieved by having two vehicles is 1.9%, which is 
mainly due to savings in transportation costs. A total of 85 instances are
also to optimality for the setting with two vehicles, 83 of which were 
solved by the setting with one vehicle. A total of 85 instances are also

solved to optimality for the setting with three vehicles, 83 of which 
were solved by the with one vehicle. Furthermore, 84 instances were 
solved to optimality for the setting with two vehicles as well as the 
setting with three vehicles. In these 84 instances, the savings achieved 
by using two or three vehicles were identical. Furthermore, in 44 out of 
the 84 instances no cost reduction was observed, with respect to the 
base case. These results indicate that while using two vehicles may yield 
a cost reduction, there is no apparent advantage of using three vehicles. 

As previously mentioned, extending due dates yields substan-tial 
cost reduction. This reduction is much greater than that 

achieved by using two vehicles. In order to observe the potential 
cost reduction that can be achieved by extending due dates and
using more vehicles, we experimented with the setting with α ¼ 2
and m ¼ 2, the results of which are reported in Table 10. We note
that the difference between the average savings reported 
in Table 6 and those reported in Table 10 is 2.9%. This result 
implies that while extending due dates warrants a crucial cost 
reduction, using additional vehicles entails little added value.

3.6. Vehicle capacity flexibility

The use of the smaller vehicles should increase cost. However, this 
may be offset by the advantages of using lighter vehicles, e.g., reducing 
emissions. To examine the potential cost increase due to a decrease in 
vehicle capacity we experimented with three different settings, 
consisting of 10.0%, 20.0% and 30.0% reduction in vehicle capacity. 
The details of the experiments are in the Appendix.

Table 11 summarizes the results for the three experimental settings. 
More instances are likely to become infeasible as the capacity decreases. 
In columns two, four and six we report the number of solved instances 
and the number of feasible instances for each of the three settings. 
Columns three, five, and seven contain the average increase in cost, in 
value and as percentage, when compared to the base case. The cost 
increase is computed only on instances that were solved 
in the base case as well as in the  reduced capacity setting.

The number of feasible instances decreases from 90 to 88 if 
vehicle capacity is reduced by 10.0%, and to 72 if vehicle capacity is 
reduced by 30.0%. We observe that the infeasible instances tend to 
appear in instances with a low number of customers. A 10.0%

Table 8
Base case with m¼ 2.

Num. of
customers

Num. of
solved

Average
gap

Average
runtime
(s)

Savings
(%)

Savings

Transp.
(%)

Inv. (%) Pen.
(%)

10 10 0.0 0 171.9
(4.8%)

26.4 73.6 0.0

15 10 0.0 0.8 130.6
(3.3%)

68.2 31.8 0.0

20 10 0.0 5 59
(1.6%)

82.4 17.6 0.0

25 10 0.0 15.6 62.9
(1.3%)

160.1 �60.1 0.0

30 10 0.0 69.3 69.9
(1.4%)

159.7 �59.7 0.0

35 10 0.0 131.1 75.7
(1.6%)

105.7 �5.7 0.0

40 10 0.0 844 66.7
(1.3%)

185.3 �85.3 0.0

45 8 0.7 3393.3 0 (0.0%) 0.0 0.0 0.0
50 7 10.8 4735.7 37.4

(0.7%)
111.2 �11.0.0 0.0

Total 85
Average 1021.6 78

(1.9%)
94.7 5.3 0.0

Table 9
Base case with m¼ 3.

Num. of
customers

Num. of
solved

Average
gap (%)

Average
runtime (s)

Savings
(%)

Savings

Transp.
(%)

Inv.
(%)

Pen.
(%)

10 10 0.0 0 171.9
(4.8%)

26.4 73.6 0.0

15 10 0.0 0.6 130.6
(3.3%)

68.2 31.8 0.0

20 10 0.0 3.9 59
(1.6%)

82.4 17.6 0.0

25 10 0.0 14.3 62.9
(1.3%)

160.1 �60.1 0.0

30 10 0.0 52.4 69.9
(1.4%)

159.7 �59.7 0.0

35 10 0.0 151.3 75.7
(1.6%)

105.7 �5.7 0.0

40 10 0.0 508.2 66.7
(1.3%)

185.3 �85.3 0.0

45 8 1 3636.6 0 (0%) 0.0 0.0 0.0
50 7 1.2 5014.4 37.4

(0.7%)
111.2 �11 0.0

Total 85
Average 1042.4 78

(1.9%)
94.7 5.3 0.0

Table 10
Base case with α¼ 2 and m¼ 2.

Num. of
customers

Num. of
solved

Average
gap (%)

Average
runtime
(s)

Savings
(%)

Savings

Transp.
(%)

Inv.
(%)

Pen.
(%)

10 10 0 0.1 602.8
(17.1%)

83.9 20.6 �4.5

15 10 0 8.8 718.8
(19.7%)

93.6 1.2 5.2

20 10 0 35.9 899.7
(21.4%)

115.9 �3.9 �11.9

25 9 0.2 1171 945.5
(19.9%)

116.8 �11.7 �5

30 10 0 307 1018.1
(21.4%)

107.7 �5.7 �1.9

35 6 1.6 5548.2 967.1
(18.1%)

88 2.1 10

40 6 1.5 6315.4 944.5
(18.3%)

97 �10.1 13.1

45 2 4.7 9313.4 932.2
(16.7%)

57 �1.7 44.8

50 1 5.5 10,553.7 1043.4
(14.8%)

72.7 62.4 �35.1

Total 64
Average 3694.8 863.8

(19.4%)
100.4 �0.8 0.3



reduction in vehicle capacity causes an average cost increase of
3.7%, whereas a 30.0% reduction in vehicle capacity causes an
average cost increase of 16.2%.

Finally, we experimented with capacity reductions for the base
case when extending due dates with α¼ 2. We compare this case
with the base case in order to validate if the flexibility in due dates can
balance the decrease in vehicle capacity. The results of these experi-
ments are summarized in Table 12 and the details of the experiments
are in the Appendix. Despite the reduced vehicle capacity, average
savings are achieved. This is explained by the fact that extending the
deadlines offsets the decrease in vehicle capacity. The number of
feasible instances decreases from 90 to 84 only if vehicle capacity is
reduced by 30.0%. A 10.0% reduction in vehicle capacity, coupled with
α¼ 2, causes an average saving of 12.9%, whereas a 30.0% reduction in
vehicle capacity, coupled with α¼ 2, causes a saving of 1.7%.

4. Conclusions

The MVRPD captures the operations of many distributors that
deliver products from a CDC to customers, within predetermined due
dates. The distribution activities are planned over several days, the
main decisions relate to which customers to visit on each day and in
what order. Products kept at the warehouse entail inventory holding
costs. The MVRPD aims to balance transportation cost, inventory cost,
as well as penalty costs, incurred as a result of unserved demand
within the planing horizon. As such, the MVRPD balances the
flexibility of choosing to serve a customer within an interval of
consecutive days with the cost of keeping its demand at the CDC.

We proposed three formulations for the MVRPD: a flow based
formulation, a flow based formulation with assignment variables

and a load based formulation. For each of the three formulations
we developed a series of valid inequalities. We generated a test
bed for the MVRPD, which we used to examine the performance of
each of the formulations. The load based formulation substantially
outperformed the two other formulations, in terms of the number
of solved instances and of the average runtimes.

We performed a number of analysis with the aim of understanding
how the MVRPD solutions would be altered to accommodate changes
in the input parameters. Through a series of experiments we demon-
strated how the model may provide managerial insights with respect
to such changes. Based on the results of the considered instances, we
conclude that substantial cost savings can be achieved by extending
customer due dates. Such additional flexibility allows for improved
routing decisions, that yield a considerable reduction in the travelled
distance. Despite the fact that the due dates are exogenous para-
meters, in reality distribution companies periodically negotiate con-
tracts with their customers. Therefore, the MVRPD is paramount in
quantifying the added value of extending due dates. Our experiments
also showed that using additional vehicles does not yield a substantial
reduction in the considered operational costs. Finally, our results
indicated that reducing vehicle capacity causes a cost increase but
this can be balanced by due dates flexibility. Future research could
incorporate environmental factors in the model, while accounting for
more complex distribution networks.
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Table 11
Base case with 10.0%, 20.0% and 30.0% capacity reduction.

Num. of customers 10.0% capacity reduction 20.0% capacity reduction 30.0% capacity reduction

Num. of solved (feasible) Cost increase (%) Num. of solved (feasible) Cost increase(%) Num. of solved (feasible) Cost increase (%)

10 8(8) 124.9 (3.7%) 4 (4) 205.9 (6.2%) 0 (0)
15 10(10) 296.5 (8.5%) 10 (10) 572.3 (15.7%) 2 (2) 970.7 (31.6%)
20 10(10) 198.3 (4.7%) 10 (10) 485.3 (11.3%) 10 (10) 1017.6 (23.6%)
25 10(10) 146.5 (3.1%) 10 (10) 347.7 (7.5%) 10 (10) 899 (18.6%)
30 10(10) 123.7 (2.8%) 10 (10) 276.9 (6.1%) 10 (10) 533 (11.7%)
35 10(10) 169.9 (3.4%) 10 (10) 431.3 (8.7%) 6 (10) 882.4 (16.7%)
40 10(10) 149.1 (3.1%) 7 (10) 323.6 (6.5%) 5 (10) 642.2 (12%)
45 6(10) 70.2 (1.3%) 5 (10) 106.2 (2%) 3 (10) 433.1 (7.1%)
50 7(10) 48.2 (0.8%) 5 (10) 107.4 (1.5%) 3 (10) 224.3 (3.3%)

Total 81 (88) 71 (84) 49 (72)
Average 155.5 (3.7%) 356.2 (8.2%) 753.4 (16.2%)

Table 12
Base case with α¼ 2, 10.0%, 20.0% and 30.0% capacity reduction.

Num. of customers 10.0% capacity reduction 20.0% capacity reduction 30.0% capacity reduction

Num. of solved (feasible) Cost increase (%) Num. of solved (feasible) Cost increase(%) Num. of solved (feasible) Cost increase (%)

10 10(10) �371.7 (�10.6%) 10(10) �78 (�2%) 4(4) 267 (8.7%)
15 10(10) �394.5 (�10.8%) 10(10) �139.1 (�3.7%) 10(10) 227.7 (6.6%)
20 10(10) �623.3 (�15.1%) 10(10) �477.7 (�11.7%) 10(10) �155.2 (�4.2%)
25 10(10) �666.2 (�14.3%) 10(10) �507.6 (�11%) 10(10) �184.4 (�4.4%)
30 10(10) �770.3 (�16.3%) 10(10) �621.9 (�13.1%) 10(10) �438.4 (�9%)
35 7(10) �705.7 (�13.7%) 6(10) �620.1 (�12%) 2(10) 80.1 (1.4%)
40 6(10) �535 (�9.8%) 4(10) �375.8 (�7.4%) 2(10) 80.9 (1.7%)
45 3(10) �517.3 (�9.1%) 4(10) �502.6 (�8.5%) 2(10) �206.4 (�3.8%)
50 3(10) �774.8 (�12.7%) 4(10) �708.1 (�10.3%) 52(84) �379.2 (�5.8%)

Total 69(90) 68(90) 52(84)
Average �583.9 (�12.9%) �416.3 (�8.7%) �101.6 (�1.7%)



Appendix

See Tables 13–29.

Table 13
Base case with α¼ 2 for F1 and F2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 10 0.0 0.5 10 0.0 0.1
15 10 0.0 35.8 10 0.0 17.5
20 10 0.0 792.8 10 0.0 254.1
25 7 1.5 5058.1 9 0.6 2408.8
30 6 3.7 6841.5 9 0.6 3612
35 0 15.6 10,800 2 8.3 9265.3
40 0 24.0 10,800 1 14.3 10,362.9
45 0 33.1 10,800 0 23.5 10,800
50 0 44.7 10,800 0 27.7 10,800

Total 43 51
Average 6214.3 5280.1

Table 14
Base case with α¼ 3 for F1 and F2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 10 0.0 0.4 10 0.0 0.5
15 10 0.0 47.6 10 0.0 30.4
20 10 0.0 802.9 10 0.0 834.3
25 7 1.6 4291.5 9 0.5 3184.7
30 4 4.3 8448 9 0.6 3705.7
35 0 15.5 10,800 3 5.9 8411.6
40 0 27.5 10,800 1 17.5 10,494.7
45 0 37.4 10,800 0 26.0 10,800
50 0 46.3 10,800 0 24.4 10,800

Total 41 52
Average 6310.0 5362.4

Table 15
Base case with m¼ 2 for F1 and F2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 10 0.0 3.7 10 0.0 0.1
15 10 0.0 402.7 10 0.0 77.7
20 8 1.6 4145.6 9 0.7 2715.8
25 1 8.9 9925.5 1 6.3 9756.1
30 0 17 10,800 1 9 10,198.3
35 0 30.5 10,800 0 19.4 10,800
40 0 38.2 10,800 0 37.1 10,800
45 0 38.4 10,800 0 29.1 10,800
50 0 64.9 10,800 0 37.1 10,800

Total 29 31
Average 7608.6 7327.6

Table 16
Base case with m¼ 3 for F1 and F2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 10 0 22.3 10 0 1.5
15 9 0.3 1910.4 10 0 1194.7
20 4 6.5 8027.4 4 5.5 8379.7
25 0 19 10,800 1 15.4 10,427.2
30 0 33.1 10,800 0 21.6 10,800
35 0 35.7 10,800 0 33.6 10,800
40 0 47.6 10,800 0 45.3 10,800
45 0 49.7 10,800 0 41.2 10,800
50 0 67.7 10,800 0 10,800

Total 23 25
Average 8306.7 8222.6

Table 17
Base case with α¼ 2 and m¼ 2 for F1 and F2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 10 0 26 10 0 6.8
15 10 0 870.9 10 0 739.2
20 7 3.1 6226.6 8 2.1 5752.2
25 1 9.6 9920.8 4 7.3 8766.5
30 0 19.9 10,800 0 14.4 10,800
35 0 34.8 10,800 0 31.6 10,800
40 0 45.1 10,800 0 40.4 10,800
45 0 49.1 10,800 0 47.5 10,800
50 0 54.6 10,800 0 45.5 10,800

Total 28 32
Average 7893.8 7696.1

Table 18
Computational results for base case with 10.0% capacity reduction for F3.

Num. of
customers

Num. of solved
(feasible)

Average gap
(%)

Average runtime
(solved) (s)

10 8(8) 0.0 0
15 10(10) 0.0 0.1
20 10(10) 0.0 8
25 10(10) 0.0 22
30 10(10) 0.0 50.4
35 10(10) 0.0 445.2
40 10(10) 0.0 1720.6
45 6(10) 0.5 3497
50 7(10) 0.9 4156.3

Total 81(88)

Average 1125



Table 19
Computational results for base case with 20.0% capacity reduction for F3.

Num. of
customers

Num. of solved
(feasible)

Average gap
(%)

Average runtime
(solved) (s)

10 4(4) 0.0 0
15 10(10) 0.0 0
20 10(10) 0.0 7.7
25 10(10) 0.0 16.2
30 10(10) 0.0 137
35 10(10) 0.0 1339.4
40 7(10) 1.0 4747.5
45 5(10) 1.9 3774.3
50 5(10) 2.5 5971.7

Total 71(84)

Average 1904

Table 20
Computational results for base case with 30.0% capacity reduction for F3.

Num. of
customers

Num. of solved
(feasible)

Average gap
(%)

Average runtime
(solved) (s)

10 0(0)
15 2(2) 0.0 0
20 10(10) 0.0 6
25 10(10) 0.0 96.7
30 10(10) 0.0 156.4
35 6(10) 0.8 5172.4
40 5(10) 3.6 6957.2
45 3(10) 3.0 7192.9
50 3(10) 3.6 8282.7

Total 49(72)

Average 3817

Table 21
Computational results for base case with 10.0% capacity reduction for F1 and F2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 8(8) 0.0 0 8(8) 0.0 0.0
15 10(10) 0.0 10.6 10(10) 0.0 2.2
20 10(10) 0.0 77.9 10(10) 0.0 37.6
25 10(10) 0.0 2260.1 10(10) 0.0 387.9
30 5(10) 2.4 6884.4 10(10) 0.0 1475.5
35 1(10) 5.9 9834.4 4(10) 1.1 7829.2
40 0(10) 14.9 10,800 2(10) 8.9 9325.9
45 0(10) 17.7 10,800 0(10) 11.2 10,800
50 0(10) 21.4 10,800 0(10) 15.7 10,800

Total 44(88) 54(88)
Average 5848.6 4620.3

Table 22
Computational results for base case with 20.0% capacity reduction for F1 and F2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 4(4) 0.0 0 4(4) 0.0 0
15 10(10) 0.0 1.1 10(10) 0.0 1.3
20 10(10) 0.0 158.9 10(10) 0.0 35.4
25 9(10) 0.5 2087 10(10) 0.0 311.4
30 6(10) 2.3 5631.1 9(10) 0.4 2767.5
35 1(10) 7.9 9747.6 4(10) 3.8 7705.6
40 0(10) 16.8 10,800 1(10) 13.3 9991.6
45 0(10) 20.0 10,800 0(10) 13.0 10,800
50 0(10) 28.4 10,800 0(10) 17.4 10,800

Total 40(84) 48(84)
Average 5955.4 5049.1

Table 24
Computational results for base case with 10.0% capacity reduction and α¼ 2.

Num. of
customers

Num. of solved
(feasible)

Average gap
(%)

Average runtime
(solved) (s)

10 10(10) 0.0 0
15 10(10) 0.0 5
20 10(10) 0.0 49.3
25 10(10) 0.0 197.8
30 10(10) 0.0 483.9
35 7(10) 1.1 4771.5
40 6(10) 2.4 5776.7
45 3(10) 6.2 7583
50 3(10) 3.7 7736

Total 69(90)
Average 2955.9

Table 23
Computational results for base case with 30.0% capacity reduction for F1 and F2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 0(0) 0(0)
15 2(2) 0 0 2(2) 0 0
20 10(10) 0 178.8 10(10) 0 35.5
25 6(10) 1.4 7885.2 10(10) 0 1188.8
30 4(10) 3.6 7498 10(10) 0 3805
35 0(10) 13.3 10,800 1(10) 6.6 10,298.9
40 0(10) 21.7 10,800 0(10) 18.9 10,800
45 0(10) 24.3 10,800 0(10) 22 10,800
50 0(10) 29.7 10,800 0(10) 19 10,800

Total 22(72) 33(72)
Average 8141.5 6628.9
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Table 25
Computational results for base case with 20.0% capacity reduction α¼ 2.

Num. of
customers

Num. of solved
(feasible)

Average gap
(%)

Average runtime
(solved) (s)

10 10(10) 0.0 0
15 10(10) 0.0 8.8
20 10(10) 0.0 31.1
25 10(10) 0.0 244.7
30 10(10) 0.0 754.8
35 6(10) 1.3 6104.5
40 4(10) 3.9 7224.1
45 4(10) 4.7 5947.7
50 4(10) 6.8 7984

Total 68(90)
Average 3144.4

Table 26
Computational results for base case with 30.0% capacity reduction α¼ 2.

Num. of
customers

Num. of solved
(feasible)

Average gap
(%)

Average runtime
(solved) (s)

10 4(4) 0.0 0
15 10(10) 0.0 6.3
20 10(10) 0.0 102.2
25 10(10) 0.0 511.3
30 10(10) 0.0 2449.7
35 2(10) 3.0 9043.7
40 2(10) 6.5 10,032.7
45 2(10) 5.9 9029.8
50 2(10) 7.0 9215.6

Total 52(84)
Average 4808.5

Table 27
Computational results for base case with 10.0% capacity reduction for F1 and F2
α¼ 2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 10(10) 0.0 0.2 10(10) 0.0 0
15 10(10) 0.0 40.1 10(10) 0.0 20.1
20 10(10) 0.0 1028.1 10(10) 0.0 356.6
25 7(10) 1.7 5659.5 10(10) 0.0 3178
30 3(10) 5.3 9350.4 8(10) 0.7 4650.1
35 1(10) 14.3 10,385.9 2(10) 8.9 9386.8
40 0(10) 29.4 10,800 0(10) 19.3 10,800
45 0(10) 35.0 10,800 1(10) 23.2 9954.6
50 2(10) 32.5 8640 0(10) 24.8 10,800

Total 43(90) 51(90)
Average 6300.5 5460.7

Table 28
Computational results for base case with 20.0% capacity reduction for F1 and F2
α¼ 2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 10(10) 0.0 0.2 10(10) 0.0 0.1
15 10(10) 0.0 49.7 10(10) 0.0 28.9
20 10(10) 0.0 608.2 10(10) 0.0 162.6
25 5(10) 3.6 7106.8 10(10) 0.0 2746.3
30 3(10) 6.2 9682.3 6(10) 2.1 6595.3
35 1(10) 14.3 10,202.4 2(10) 9.4 9150.4
40 0(10) 32.7 10,800 0(10) 19 10,800
45 0(10) 38.4 10,800 0(10) 19.5 10,800
50 0(10) 38.7 10,800 0(10) 25.1 10,800

Total 39(90) 48(90)
Average 6672.2 5676

Table 29
Computational results for base case with 30.0% capacity reduction for F1 and F2
α¼ 2.

Num. of
customers

F1 F2

Num. of
solved

Average
gap (%)

Average
runtime (s)

Num. of
solved

Average
gap (%)

Average
runtime
(s)

10 4(4) 0 0 4(4) 0 0
15 10(10) 0 25.8 10(10) 0 20.7
20 10(10) 0 1718.3 10(10) 0 525.3
25 6(10) 2.3 8211.7 8(10) 1.5 4869.6
30 2(10) 8 9544.3 5(10) 4 7139.1
35 0(10) 20.9 10,800 0(10) 13.6 10,800
40 0(10) 33.8 10,800 0(10) 25 10,800
45 0(10) 34.3 10,800 0(10) 25.6 10,800
50 0(10) 38 10,800 0(10) 22.8 10,800

Total 32(84) 37(84)
Average 7464.3 6637.5
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