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ABSTRACT 

Reducing fuel consumption of ships against volatile fuel prices and greenhouse gas 

emissions resulted from international shipping are the challenges that the industry faces today. 

The potential for fuel savings is possible for new builds, as well as for existing ships through 

increased energy efficiency measures; technical and operational respectively. The limitations 

of implementing technical measures increase the potential of operational measures for energy 

efficient ship operations. Ship owners and operators need to rationalise their energy use and 

produce energy efficient solutions. Reducing the speed of the ship is the most efficient 

method in terms of fuel economy and environmental impact. The aim of this paper is twofold: 

(i) predict ship fuel consumption for various operational conditions through an inexact 

method, Artificial Neural Network ANN; (ii) develop a decision support system (DSS) 

employing ANN based fuel prediction model to be used on-board ships on a real time basis 

for energy efficient ship operations. The fuel prediction model uses operating data -‘Noon 

Data’ - which provides information on a ship’s daily fuel consumption. The parameters 

considered for fuel prediction are ship speed, revolutions per minute (RPM), mean draft, trim, 

cargo quantity on board, wind and sea effects, in which output data of ANN is fuel 

consumption. The performance of the ANN is compared with multiple regression analysis 

(MR), a widely used surface fitting method, and its superiority is confirmed. The developed 

DSS is exemplified with two scenarios, and it can be concluded that it has a promising 

potential to provide strategic approach when ship operators have to make their decisions at an 

operational level considering both the economic and environmental aspects.  

Keywords: Ship Energy Efficiency, Operational Measures, Decision Support System, 

Artificial Neural Networks 
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1. Introduction 

1.1. Ship energy efficiency measures and the importance of developing a decision support system 

CO2 emissions generated by maritime transport represent a significant part of total global greenhouse gas 

(GHG) emissions. According to the International Maritime Organisation (IMO), ships emitted 1016 million 

tonnes of CO2 on average for the period 2007-2012 which make up approximately 3.1% of global emissions 

[1].  

With the tripling of world trade, if no action is taken, it is assumed that the emissions from shipping will 

increase by 50% –250% until 2050 [1]. OECD also reported a similar level of prediction in the increase in 

CO2 emissions from shipping [2].  

As there is a strong demand for ships to reduce the emissions, a number of current research activities 

focus on estimating global shipping emissions and develop mitigating solutions to tackle the problem, e.g. 

[3–10]. In addition, the rising and volatile fuel prices constitutes a major problem for shipping companies as 

the fuel cost forms 60% of the ship operating cost [11]. As a result, shipping companies are moving towards 

energy efficient procedures and operations for reducing energy consumption in order to lower their 

management costs and thereby maintain their competitive position in the market and to reduce negative 

environmental impacts. 

Ship energy efficiency measures offer various options to ship owners and operators to reduce fuel 

consumption and emissions. In 2011, IMO’s Marine Environment Protection Committee (MEPC) adopted 

the amendments to International Convention for the Prevention of Pollution from Ships (MARPOL) Annex 

VI, as a new chapter (Chapter 4). Through this, Energy Efficiency Design Index (EEDI) for new ships and 

Ship Energy Efficiency Management Plan (SEEMP) for all ships have been made compulsory from 1 

January 2013 [12]. While EEDI facilitates implementation of technical measures through design to meet the 

carbon emission limits for new ships, SEEMP aims to increase the energy efficiency, through operational 

applications that are developed using the existing technologies in ships, including crew awareness and 

training on energy efficiency. For the above reasons, the fuel saving of ships has become paramount for ship 

energy efficiency.  

1.2. Overview and requirements for ship operational energy efficiency decision support system  

Decision support systems (DSS) are kinds of computer-based information system that can help decision 

makers utilize data, models and other knowledge on the computer to solve semi structural and some non-

structural problems, which cannot be measured or modelled. This aspect of semi-structured problems 

requires human intervention, and therefore, solutions to semi-structured problems are often achieved by 

allowing a decision-maker to select and evaluate practical solutions from a finite set of alternatives. The aim 

of DSS is to help decision makers improve decision-making effectiveness and efficiency by combining 

information resources and analysis tools [13]. 

Combined effects of several factors are involved for evaluating ship operational energy efficiency 

measures. Determining a strategic implementation becomes more complicated for ship operators due to its 

complexity and difficulty. There is a need for decision support to provide quickly and directly solution for 

predicting fuel consumption at an operational level through implementing operational measures using the 

existing technologies in ships to increase energy efficiency and to decrease environmental effects and 

overall costs. 

‘Noon Data’ reports provide valuable information on the fuel consumption of ships under various 

loading, speed and weather conditions that can be utilised for development of the ship operational energy 

efficiency Noon reports, unfortunately, have not been utilised fully by the shipping companies towards 

energy efficient operations, as in most cases they were collected in order to comply with 

regulations.  Therefore, the potential benefits of noon reports towards developing an energy efficiency 

strategy has not been realised by many companies. Noon data, unless collected and analysed in a systematic 

way, will be less beneficial.  Furthermore, a proper study of Noon data with a focus on energy efficiency, 

can only be performed by accessing other ship/operation related information (quantity of cargo, draft marks, 

shaft power etc.) which are not provided in the noon reports.  This paper aims to address the gap by 
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developing an innovative approach for shipping companies to utilise the noon data for improving the energy 

efficiency.  

1.3. The use of artificial neural networks and related literature 

One of the methods used as an alternative to traditional estimation methods is artificial neural network for 

complex systems [14]. As long as there are adequate samples, the input variables accurately state the output 

variable through the ‘‘training’’ process of ANN. Considering the nature of data, appropriate methods 

should be selected to obtain best-fit prediction. This study finds that Artificial Neural Network (ANN) 

technology is suited for on-site optimization of ship operational measures related energy efficiency.  

In quest of emulating the working principles of human brain, ANN is a field of computational science 

developed over the recent years to deal with the complex systems, which are very difficult or even 

impossible to model using other analytical and statistical methods. ANN is well suited for prediction 

purpose as it can approximate successfully any measurable function [15]. The forecasting capabilities of 

ANN were acknowledged in the past [14]. ANN shows great adaptability, robustness and fault tolerance due 

to the large number of highly interconnected processing elements [16]. The surface fitting capabilities of 

ANNs will be essential for our case and this is the reason why ANN was selected to be used for our study 

[17]. 

Numerous studies in different disciplines have been undertaken to predict the fuel consumption by using 

ANN models [18, 19, 20, 21]. ANN has been found to be the domain for many successful applications of 

prediction tasks, in modelling and prediction of energy-engineering systems [22], prediction of the energy 

consumption of passive solar buildings [23], developing energy system and forecast of energy consumption 

[24], and analysis of reduction of emissions [25]. There are also some relevant reports of ANN’s use based 

on decision support systems in various subjects such as solving the buffer allocation problem in reliable 

production [26], developing environmental emergency decision support systems [27], risk assessment on 

prediction of terrorism insurgency [28] and metamodeling of simulation metamodel [29]. ANN has been 

used to predict specific fuel consumption and exhaust temperature of a Diesel engine for various injection 

timings [30]. However, no paper is found that modelled fuel consumption using ANN for decision support 

system based on ship operating data -‘Noon Data’. 

1.4. Aim of this study 

The study on operations research (OR) in energy modelling and management based maritime 

transportation had great attention in recent decades. Ronen [31] examined the tradeoff between fuel savings 

through speed reduction and the loss of incomes as a result of voyage extension. Brown et al. [32] focused a 

scheduling problem for crude oil tanker and determined optimal speeds for the ships, the best routing of 

ballast legs and cargo assignment. Perakis and Papadakis [33, 34] decided the fleet deployment and the 

related optimal speed for ships between one loading port and one unloading port. They later improved their 

research with multiple loading ports and multiple unloading ports [35]. Yao et al. [36] examined the 

relationship between bunker fuel consumption rate and ship speed for different sizes of container-ships 

based on real data obtained from a shipping company. 

The majority of these studies focused on speed optimization. To the best of authors’ knowledge, there is 

no study that takes into account ship’s operating data including speed, trim and weather effects along with 

decision making in order to minimize ship fuel consumption. 

The aim of this paper is twofold: (i) predict ship fuel consumption for various operational conditions 

through ANN; (ii) develop a decision support system employing ANN based fuel prediction model to be 

used on-board ships on a real time basis for energy efficient ship operations. The goal of the ANN is to 

predict ship fuel consumption under various operational conditions using operating data -‘Noon Data’ - 

which provides information on a ship’s daily fuel consumption. 

The rest of this paper is organized as follows. In Section 2, the methods and data conducted in this study 

is presented. Section 3 and 4 describe the design and development of the ship operational energy efficiency 

ANN system that predicts ship fuel consumption under various operational conditions, based on the noon 

data. In Section 5, the performance of the developed Artificial Neural Network (ANN) is compared with 
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multiple regression analysis (MR), another well-known surface fitting method. Section 6 discusses the 

design of the (DSS) for improving ship energy. The last section draw conclusions and recommendations for 

further research. 

2. Methods and Data 

2.1 Modelling of ship fuel consumption 

Ship fuel consumption and its prediction is modelled in three parts: a database of ship fuel consumption 

obtained from the ship’s noon reports, fuel consumption forecasting algorithm and performance analysis. 

To develop ANN based decision support system that can predict ship fuel consumption accurately under 

various operational factors, a large amount of training and testing data is needed. In the data acquisition, the 

information and data of ship fuel consumption are acquired mainly from noon reports and also supported by 

daily reports of the tanker. 

Crew fill noon reports every 24 hours at sailing, containing the daily fuel consumption of the ship as well 

as the daily average of operational details such as draft, speed, duration, distance covered, location, port 

arrivals, departure, weather, fuel consumption of main engine and auxiliaries along with the type of fuel 

used. It is compulsory for ship operators to fill these forms. In order to observe and evaluate the changes in 

the operation systems of ships which sail in various conditions, acquiring daily data is very important. Noon 

reports are a major indicator of the amount of fuel that ships consume in various weather conditions and at 

different sailing speeds. 

The oil tanker used as a case study in this paper spends 51% of her time sailing, 25% at anchor, 11% at 

port, 9% manoeuvring and 4% drifting. This study is conducted using 233 ship noon reports which have 

covered the sailing of the ship over the 17 months of her operation since it was built. Table 1 describes the 

main characteristics of the tanker ship analysed in this study: the ship is equipped with one main engine with 

internal combustion for propulsion. Metric tonnes per hour (mtons/h) is assumed to be the unit of 

measurement of fuel consumption in this study as it uses the same basis to compare daily reports in different 

time intervals. 

Table 1 

Main characteristics of the analysed ship 

Type Oil Tanker 

Built 21.6.2012 

Length (m) 266.07 

Breadth (m) 48 

Moulded Depth (m) 23.7 

Summer Draft (m) 17 

Deadweight (t) 156597 

Shaft Power (kw) 18660 

Break Horse Power (kw) 25023 

 

 

Seven important factors - ship speed, revolutions per minute (RPM), mean draft, trim, cargo quantity on 

board, wind and sea effects- are examined for fuel consumption forecasting model. These are used as inputs 

in the network training. 

Ship speed is an important element in maritime transportation. With the growth in the volume of world 

trade, high-speed ships are required to meet the consumers’ demand in a timely manner since the high ship 

speed provides economic benefits such as the receipt of the cargo in time, lower inventory costs and 
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increasing trade volume per unit time [37]. However, the increase in fuel prices and the environmental 

problems coupled with global recession have brought a new perspective to ship speed and therefore, 

lowering the ship speed has become an important research topic. 

Reducing the speed of the ship is the most efficient method in terms of fuel economy. According to 

previous studies, reducing sailing speed by 2-3 knots below the design speed has a considerable impact on 

daily fuel consumption and thus may halve operating cost of shipping companies [38, 39]. A main reason is 

that there is a non-linear relationship between ship speed and fuel consumption. The ship speed has a major 

impact on fuel consumption due to its third-order function with the power consumed by the main engine [31, 

40, 41, 42, 43]. This means that, if the ship speed is doubled, the power of the used engine will increase at 

least eight times. In other words; if the ship speed is reduced by 10%, the amount of fuel consumed by a ship 

will reduce by about 27% [44].  

Speed reduction (slow steaming) has been a major topic in research activities related to low carbon 

shipping. Notteboom and Vernimmen [45] determined the economic and environmental benefits provided 

by low speed by examining the relationship between fuel consumption and speed. Corbett et al. [46] have 

calculated the cost-effectiveness of container ships at low speed. Chang and Chang, [47] applied three 

different scenarios through speed reductions of bulk carriers by 10%, 20% and 30%. The results indicated 

that although the low speeds of the ships provide fuel economy, it increases the operating costs because of 

the low-speed charter contract. Reducing speed is profitable in terms of fuel consumption, it must be 

balanced in line with other commercial and operational needs, since the reduction of speed means more 

ships to sustain the same level of service, provided there is a demand. 

Liner service ships (container and ferries) are strongly dependent on schedule and port rotation and sail at 

a given speed [48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. The high penalties resulting from being late have 

restrained the low speed voyage of these type of ships and therefore fuel economy. For the tramp service 

ships (tankers and bulk carriers), the ship speed shall be determined in accordance with the estimated time of 

arrival (ETA). In these types of contracts, the flexibility can occur as a result of delays that may arise due to 

the port rules or port congestion. If the ship sails at a lower speed instead of waiting for a long time to enter 

the port (due to congestion at the port), it can reduce the fuel consumption by up to 10% during the voyage 

[58, 59]. In order to benefit from such situations, dynamic voyage planning is an essential for low carbon 

shipping. 

Revolutions per minute (RPM) is a main engine speed. The engine will run efficiently at the rated RPM 

at the rated load. When the engine itself is operating at its most efficient, particularly at engine speeds 

approaching the maximum number of revolutions per minute (RPM), this affects to give a relatively poor 

fuel consumption rate. 

The fuel consumption is also affected by ships' trim and draft. Hull forms traditionally have been 

designed in accordance with the specific drafts. If the trim of the ship is even slightly different than the 

design point, the ship resistance might increase and thus fuel consumption. In some circumstances, lighter 

drafts at the wrong trim may cause higher resistance than a deeper draft at the proper trim [60]. The 

optimum trim can be provided through the proper distribution of cargo, ballast and consumables by ship's 

captains and cargo planners. On the other hand, increasing the quantity of cargo increases the draft and 

displacement of the ship resulting in greater resistance and hence higher fuel consumption. 

Ship weather routing is defined as determining the optimum route by taking into account the weather 

conditions (wind, current and sea effects) on the designated voyage [61, 62, 63]. The optimum route 

designated for the voyage is considered as the route that allows the completion of the voyage as soon as 

possible in which the safety and comfort [64, 65], maximum energy efficiency in various weather conditions 

[66, 67, 68], or a combination of these factors [69, 70]. Published studies, based on real operational data, 

indicate that it is possible to reduce the fuel consumption by up to 3% by adopting weather routing plans 

[71].  

For the reasons detailed above, all of the seven impact factors can provide effective parameters for 

matching the ship operational energy efficiency decision support characteristics. 
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2.2 Artificial Neural Network (ANN) 

ANN is one of the most powerful computational methods broadly inspired from the biological nervous 

systems of the human brain, can achieve remarkable results where the other traditional statistical methods 

could not be effective. 

The ability of learning by example is probably the most important property associated with neural 

networks and can be used to train a network with the records of past response of a complex system [72]. 

Artificial neural networks are made up many highly inter-connected processing elements called neurons. 

The basic elements of a neuron is depicted in Figure 1. Artificial neuron mainly consists of weight, bias and 

activation function. Each neuron receives inputs x1, x2,..., xn, attached with a weight xi which indicates the 

connection strength for a particular input for each connection. Then it multiplies every input by the 

corresponding weight of the neuron connection. A bias bi can be defined as a type of connection weight with 

a constant nonzero value added to the summation of inputs and corresponding weights u, given as follows: 

𝑢𝑖 = ∑ 𝑊𝑖𝑗

𝑛

𝑗=1
𝑋𝑗 +  𝑏𝑖                                      (1) 

where ui is the net inside activity level of ith neuron, wij is the jth weight value of the ith layer, xj is the 

output value of the jth layer, and n is the number of the neurons. 

The activation function yi will create an actual output. It uses a hyperbolic tangent sigmoid transfer 

function. The summation ui is transferred using a scalar-to-scalar function called an ‘‘activation or transfer 

function”, f(ui), to yield a value called the unit’s ‘‘activation”, given as: 

𝑦𝑖 = 𝑓(𝑢𝑖)                                        (2)  

 

 

Figure 1: Basic elements of an artificial neuron 

 

The most commonly used training algorithm for the multi-layer perception is a back propagation 

algorithm (BPA) [73]. It is a gradient descent method to minimize the error for a particular training pattern. 

The back-propagation stage is carried out through a large number of training sets or training cycles (epochs). 

These learning processes are repeated until the optimal set of weights, which in the ideal case would produce 

the right output for any input.  

3. Design of ANN Model 

In this study, a neural network model has been implemented with Neural Network toolbox presented in 

MATLAB 2010a. 
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The data set derived from 233 noon reports are used to design and construct the ANN. Initially, a sample 

of 164 (70%) of noon reports was randomly selected for training, and the remaining sample of 69 (30%) of 

the data was used for validation. There are seven input variables; ship speed, revolutions per minute (RPM), 

mean draft, trim, cargo quantity on board, wind and sea effects.  The output parameter of the ANN model is 

ship fuel consumption (mtons/h). The range of the samples is given in Table 2.  

 

Table 2  

Range of input–output parameters in training–testing phase  

Parameters 
Range of values 

Min Max 

Ship Speed (knots) 8.69 16.46 

RPM 49.16 85 

Mean Draft (meter) 7.5 17 

Trim (meter) 0 3.2 

Carqo Quantity (mton) 0 149419 

Wind Effects
*
 (knots) -41.54 36.9 

Sea Effects 
*
 (meter) -9.14 8.79 

Fuel Consumption (mtons/hour) 0.58 3.13 

*Vectors: (- indicates adversely effect on fuel savings) 

The modelling method for ANN is based on the back-propagation learning algorithm used in feed 

forward with one hidden layer. A primary task of ANN studies is to identify the ideal network architecture, 

which is related to the number of hidden layers and neurons in it. Considering the ANN performance, the 

number of hidden layer(s), the neurons in the hidden layer(s) and the value of the training parameters for 

every training algorithm were determined through a trial and error method. The optimal architecture of the 

ANN was constructed as, 7–12–1 NN architecture for fuel prediction representing the number of inputs, 

neurons in hidden layers, and outputs, respectively. The proposed ANN model is given in Figure 2. The 

learning algorithm used in the study is Levenberg–Marquardt (LM), activation function is hyperbolic 

tangent sigmoid transfer functions (inputs and outputs were scaled between -1 and +1 for the neural network 

model) and number of epochs is set to 10,000. 

 

Figure 2: The schematic of ANN structure  
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Determination coefficient (R
2
) and error variance criteria (MSE and RMSE) have been used for 

measuring ANN's performance. The most widely used error indicator, the MSE, of the prediction over all 

the training patterns for a one output neuron network can be formulized as: 

MSE = 
1

2𝑁
∑ ( 𝑡𝑖 − 𝑧𝑖)2𝑁

𝑖                  (3) 

N is the total number of training patterns where ti and zi are the predicted output for the ith training pattern 

and the target [74]. Another error estimation criterion is the RMSE (root mean square error) and through it, 

the error is shown in the units of target and predicted data. According to these criteria, high R
2
 and low MSE 

and RMSE values are indicating a well-fitting model. 

4. Performance of the ANN Model 

In this section, the results and system efficiency used in forecasting the fuel consumption of a ship will be 

described. As shown in Table 3, the field study revealed that 1.89 mtons/h of fuel, on average, was 

consumed by the ship. 

Table 3 

Statistics of fuel consumption (mtons/h) 

  

Min. Max. Mean SD 95% confidence 

interval 

 

Lower Upper 

mtons/h 0.58 3.13 1.89 0.50 1.80 1.98 

 

Figure 3 and 4 illustrate the training and validation of the ANN model for observed and predicted values 

for fuel consumption. The R
2 

was 0.834 and 0.759 for training and validation of the ANN model, 

respectively. 

 

Figure 3: Relationships between actual and predicted fuel consumption (Training) using the ANN model 
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Figure 4: Relationships between actual and predicted fuel consumption (Validation) using the ANN 

model 

ANN technique is treated as black-box application in general. However, this study opens this black box 

and introduces the ANN application in a closed form solution. This study aims to present the closed form 

solution of fuel consumption based on the trained ANN parameters (weights and biases) as a function ship 

speed, revolutions per minute (RPM), mean draft, trim, cargo quantity on board, wind and sea effects.  

where the hyperbolic tangent (tan h) transfer function used for this approach is given as follows: 

tan ℎ(𝑈𝑖) =
1+𝑒−𝑢𝑖

1−𝑒−𝑢𝑖
                                       (4) 

where U are given in Eq. (5). The normalization values of input parameters used for Eq. (5). 

𝑈𝑖 = 𝐶1𝑖 × 𝑠ℎ𝑖𝑝 𝑠𝑝𝑒𝑒𝑑 + 𝐶2𝑖 × 𝑅𝑃𝑀 + 𝐶3𝑖 × 𝑑𝑟𝑎𝑓𝑡 + 𝐶4𝑖 × 𝑡𝑟𝑖𝑚 + 𝐶5𝑖 × 𝑐𝑎𝑟𝑔𝑜 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 + 𝐶6𝑖 × 𝑤𝑖𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡 + 𝐶7𝑖 × 𝑠𝑒𝑎 𝑒𝑓𝑓𝑒𝑐𝑡 + 𝑏𝑖                                                                                     

(5) 

where, K are given in Eq. (6) used for Eq. (7)                          

𝐾𝑖 = ∑ tan ℎ(𝑈𝑖) × lw𝑖

𝑛=12

İ=1
+ 𝑏2               (6) 

where, the weights and biases between input layer and hidden layer are given in Table 4 for LM 

algorithm with 12 neurons.  
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Table 4 

The weights and biases between input layer and hidden layer for Eqs. (5) and (6). 

 

n C1i C2i C3i C4i C5i C6i C7i lw b1 b2 

1 -0.7431 -0.0587 -0.5878 0.80046 -0.7439 1.2996 -0.417 -0.3347 2.0881 -0.2226 

2 -0.5483 1.1236 0.43986 0.65012 0.71865 1.6052 0.03826 0.48388 -1.4265 
 

3 -0.5352 0.32488 0.75197 -0.9981 0.84385 -0.9504 0.19942 -0.8794 -0.9295 
 

4 -0.0148 1.2529 -0.2573 0.99103 -0.6864 0.62122 -0.9913 -0.1947 1.0954 
 

5 1.1545 1.3696 0.71883 0.59309 -0.5946 0.34136 0.84336 -0.4167 0.83542 
 

6 0.00326 0.00296 1.3981 -0.0773 -1.4224 0.08862 -0.1686 0.3915 0.0096 
 

7 0.26818 1.336 0.72698 -0.9393 0.57327 -0.0808 -0.3688 0.61318 -0.1373 
 

8 -0.6215 -1.1863 -0.529 -0.4208 -0.6297 1.5299 -1.3653 -0.3507 -0.5414 
 

9 -0.3622 1.1819 -1.0303 0.50076 0.35171 -1.716 -1.2242 0.54683 1.2775 
 

10 0.29539 0.33189 -0.9563 -1.8743 -0.4322 -0.2218 0.36101 0.70683 1.4561 
 

11 0.50702 -0.3649 0.76347 1.5718 0.63403 0.34273 0.77075 0.56254 1.5673 
 

12 -0.6832 -0.5465 0.33544 1.0733 -0.3552 1.0141 -0.7989 0.46534 -2.1906   

 

Using weights and biases of trained ANN model, the normalized value of fuel consumption can be given 

as follows:  

𝑦𝑖 = 𝑓(𝑢𝑖) =
1+𝑒−𝐾𝑖

1−𝑒−𝐾𝑖
                                    (7) 

where, 𝑦𝑖 is a normalization value and should be converted to actual value of fuel consumption. 

 

Figure 5: Relationships between actual and predicted fuel consumption (Training) using MR model 
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5. Validation and Benchmarking 

In this section, the results using the ANN developed above are compared with multiple regression 

analysis (MR). 

One of the most common techniques which are used to determine the relationship between variables in 

the studies is the regression analysis technique. Multiple regression analysis (MR) is a linear statistical 

technique which is used for establishing the best relationship between a variable (dependent, predicant) and 

several other variables (independent, predictor) using the least square method. A multiple regression 

analysis model is then developed for predicting the fuel consumption as: 

Y =  a0 + a1V1 +  a2V2 + ⋯ +  anVn +  ε (8) 

where a0-an are the regression coefficients, V1-Vn are the independent variables, and ε is model error. The 

model has a linear form in order to represent linear relationships between the dependent variable and the 

independent variables as well as relationships between independent variables. 

It is important to consider the goodness-of-fit and the statistical significance of the estimated parameters 

of the developed regression models. A model with the highest R
2 

can be designed through a combination of 

forward, backward and stepwise regression adjustments. The variables significant at P= 0.05 are always 

maintained for the final model [75]. 

MR has been performed under IBM SPSS Statistics 21.0 software. Multiple regression with the highest 

R
2
 can be designed in this study through enter method. 

The performance was assessed using the same data sets excluding the variable of cargo quantity due the 

high correlation with the variable draft which causes multicollinearity problem, as were used for examining 

the performance of the ANN. 

The linear relationships of the dependent variable with the independent variables are represented by a 

multiple regression analysis model. Same data sets was used for the training of the ANN in order to compare 

more comprehensively with the ANN model and predictions on validation data were estimated after running 

the model. A multiple regression analysis model could be fitted to fuel consumption data and accounted for 

around 75% of the variance in validation data. Figures 5 and 6 compare the predicted and actual ship's fuel 

consumption for training and validation data, respectively. The final MSE and RMSE for validation data 

were 0,038 and 0,196 mtons/h respectively given in table 5. 

Table 5 

MSE and RMSE for training and validation of the MR and ANN models. 

  MR   ANN 

  Training Validation   Training Validation 

MSE 0.03 0.038   0.02 0.037 

RMSE 0.174 0.196 

 

0.141 0.193 
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Figure 6: Relationships between actual and predicted fuel consumption (Validation) using MR model 

 

For both training and validation data, the correlation between the actual and predicted energy 

consumption for the ANN model was shown to be much higher than the correlation for the linear regression 

model by the comparison done between ANN model and multiple linear regression models; furthermore, 

RMSE of the ANN model on the validation data was much lower than that of the MR model. (Table 5) 

6. Design of the Decision Support System (DSS) for improving ship energy efficiency 

Ship operators, making decisions concerning the implementation of operational measures to improve ship 

energy efficiency, could use with advantage the results obtained from the developed ANN of Section 4. 

Table 6 shows the seven parameters and their controllability by ship operators for decision support.   

Table 6 

The parameters can be controlled by ship operators 

Inputs Controlled? Description 

Ship Speed 
Ship speed can be increased or decreased considering voyage 

plan 

RPM  RPM can be increased or decreased considering voyage plan 

Cargo 

Quantity 
- Cargo Quantitity is determined by trading parties. 

Draft - Draft is entered depending on the ship's displacement  

Trim  Trim can be adjusted according to draft. 

Wind Effects 
Wind effect can be decreased with weather routing (course 

alteration) 

Sea Effects 
Wind effect can be decreased with weather routing (course 

alteration) 

 

Accordingly; 

Actual Fuel Consumption (mtons/h)

3,503,002,502,001,501,000,50
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2,50

2,00

1,50
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R Sq Linear = 0,756

y=0,769x+0,3719
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Ship operator can adjust speed and RPM with consideration of voyage plan (time constraint may occur 

due to the trading environment). Cargo quantity determines the displacement of ship, so cargo quantity and 

draft parameters are uncontrollable, only used for prediction. Trim can be optimized according to draft. 

Wind and sea effects can be used in support of fuel savings by weather routing.  

The design of this DSS (from the effects of ship operational energy efficiency measures on fuel 

consumption forecasted by the use of ANN) is shown in Figure 7. 

 

Figure 7: Design of ship operational energy efficiency ANN DSS 

The database of DSS contains data from the developed ANN. This ANN was run having as input the 

seven important impact factors(ship speed, revolutions per minute (RPM), mean draft, trim, cargo quantity 

on board, wind and sea effects)  and the result of the ANN for all these 233
7 

different input samples were 

recorded and stored in the database of DSS. It should be noted that; instead of having the results of the ANN 

for the 233
7
 different cases stored in the database, the ANN itself could be inserted in the DSS. In this way, 

based on the user’s input, the ANN would produce dynamically its output on a real time basis. 

The ANN based DSS functionality follows these steps: 

Step 1: The ship operator enters all the necessary variables including input parameters for ANN and other 

essential parameters for the voyage of ship such as distance between ports, required date for cargo delivery 

and the course of ship following prompts from the system. 

Step 2: Depending on the input of the ship operator, the system makes the necessary queries to the 

database. 

Step 3: The results of the queries are returned and are presented to the ship operator, who can evaluate 

them. The user, at this point, can either finish the interaction or continue by returning to Step 1. 

To illustrate the functionality of the developed DSS, hypothetical case with two scenarios are presented 

below, corresponding to ship speed and RPM optimization decision-making situations due to their great 

significant impacts on fuel savings.  

The ship operator enters parameters for draft, trim, cargo quantity, wind and sea effects used for ANN 

and additional information such as the distance between ports in nautical mile (d) and required date for 

cargo delivery. In order to evaluate two scenarios for speed and RPM optimization, ship operator enters two 

different speed and RPM values to receive the outputs of ANN based DSS. (Step 1)  

The ship is ballasted condition with 7.5 m draft and 2.7 m trim. Weather adversely affects for wind is 23 

knots and sea is 0.3 m. The distance between ports is 800 nautical mile. Ship speed is 10 knots and RPM is 

55 for Scenario 1 while ship speed is 13 knots and RPM is 71 for Scenario 2. 

ANN calculation is performed when operational information is input to the interface. Then, the outputs 

(fuel consumptions) are 0.96 mtons/hour for Scenario 1 and 2.1 mtons/hour for Scenario 2. (Step 2) 

Table 7 gives the results of decision support information. The emission factor of CO2 is 3.17 [76, 77, 47]. 

The fuel price is $150 per metric ton used for calculating the total amount of fuel cost for voyage [46]. 

User 

Interface

n1

n2

n3

n4

n12

Input Layer Hidden Layer Output Layer

Step 1 Step 2

Step 3

Database

Calculations

Output from ANN
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Table 7 

Decision support information 

Scenario d (NM) t (hours) 
Output FC 

(mtons/h) 
Q (mtons) P ($) 

CO2 

(tons) 

Scenario 1 800 80 0.96 76.8 15360 243.456 

Scenario 2 800 61.5 2.1 129.15 25830 409.406 

 

where, t is the sailing duration based upon cargo delivery date, Q and P are the total amount of fuel 

consumption in metric tonnes and fuel cost in dollars for the voyage, respectively.    

 According to the obtained information, decision maker can manage the operational parameters for 

decision support. The input information will change according to operational information and requirements 

considering voyage plan of ship and decision support information will change according to changes in the 

input information.  Ship operator is concerned with the optimum speed and RPM that a ship can reach the 

port on time. (Extra waiting durations for cargo at anchorage or port as a result of high speed ships or delay 

for cargo due to the slow steaming are not intended) Thus, ship speed and RPM can be optimized through 

adjusting sailing duration (t) considering required date for cargo delivery. In this hypothetical case, the 

difference between two scenarios are approximately 52 metric tons of fuel consumption, 10470 dollars of 

fuel cost and 165 tons of CO2 for present voyage with 800 nautical mile (NM) distance. The user, after 

receiving the information shown in table 7, can either continue with an additional investigation concerning a 

new operational values for different speed and RPM or exit from the system. (Step 3) 

7. Conclusion 

In terms of ship energy efficiency, fuel consumption has become a primary concern. The lowering of fuel 

consumption is considered to be the paramount goal as a result of economic pressure and environmental 

regulations. The potential for fuel savings is possible for existing ships through operational measures.  

The overall purpose of this paper is to develop an Artificial Neural Network (ANN) based decision 

support system for ship operators in making decisions concerning the implementation of operational 

measures considering both the economic and environmental aspects to improve ship energy efficiency.  

This research has demonstrated two novelties; the first one is predicting ship fuel consumption by 

employing an inexact approach, ANN. The second one is to develop a decision support tool to help ship 

personnel making optimal decisions on a real time basis for energy efficient ship operations.  

This study is the first time an ANN model is designed to predict fuel consumption in ship operations 

using ships noon report data. With this motivation, the proposed method can be considered as a successful 

decision support tool for ship operators in forecasting fuel consumption based on different daily operational 

conditions.  

The proposed decision support system provides a strategic approach when ship operators have to make 

their decisions at an operational level considering both the economic and environmental aspects. 

The obtained results make it clear that the neural network can learn very accurately the relationships 

between the input variables and a ship's fuel consumption. Furthermore, ANN provides relatively better 

prediction results for ship fuel consumption when compared to the results derived using the MR model. 

The developed DSS including the prediction model can also be used during ship design to assess fuel 

consumption and environmental aspects for design alternatives. 

As ship fuel consumption is influenced by several uncontrollable factors in the sea environment, exploring 

the links between other input variables and fuel consumption of ships in detail should be the next step in 

future studies. Therefore, considering significant variations with the operating profiles of different ships and 
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a high number of uncontrollable parameters, not only MR model but also other prediction models will be 

required for improving the accuracy. In addition, the other decision support systems can be developed for 

different types of ships such as bulk carriers, containers and etc. and larger number of ships with various 

characteristics.  
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