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Abstract

We propose improvements to some of the best heuristic algorithms for optimal prod-
uct pricing problem originally designed by Dobson and Kalish in the late 1980’s and in the
early 1990’s. Our improvements are based on a detailed study of a fundamental decoupling
structure of the underlying mixed integer programming (MIP) problem and on incorporating
more recent ideas, some from the theoretical computer science literature, for closely related
problems. We provide very efficient implementations of the algorithms of Dobson and Kalish
as well as our new algorithms. We show that our improvements lead to algorithms which
generate solutions with better objective values and that are more robust in overall perfor-
mance. Our computational experiments indicate that our implementation of Dobson-Kalish
heuristics and our new algorithms can provide good solutions for the underlying MIP prob-
lems where the typical LP relaxations would have more than a trillion variables and more
than three trillion constraints.
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1 Introduction

We study a class of optimal product pricing problems in which the customer demands, budgets
and preferences are encoded by reservation prices — the highest price that a customer is willing
and able to pay for a given product. See, for instance, [18, 19, 20]. Essentially every company
operating in a free market environment faces a variant of this problem. Therefore, the optimal
pricing problem in revenue management is widespread. A very fundamental version of the
problem is based on the assumption that the customers will buy the product that maximizes
their individual surplus (or utility), where the surplus is defined as the difference between the
reservation price of the customer for the product and the price of the product. In some similar
contexts, this model can also be used for envy-free pricing ; see the related models in [1, 3, 11].
Maximum utility pricing models are also related to bilevel pricing problems. For the latter,
see, for instance, [15] and the references therein. The problem considered there is equivalent to
maximum utility product pricing problem, see [16]

From a computational complexity viewpoint, the problem is NP-hard, see [9, 3]; it is NP-
hard even to approximate within a reasonable worst-case ratio, see [11] (even though some
special cases of related optimal pricing problems admit efficient algorithms, see for instance
[12]). Currently, the best heuristic algorithms for solving these problems are the ones proposed
by Dobson and Kalish, see [8, 9]. While these algorithms are successful on many instances of
the problem, quite often they are not.

We present very efficient implementations of Dobson-Kalish heuristic algorithms for opti-
mal pricing problems [8, 9]. Then, we consider further improvements based on a decoupling
property of the problem with respect to continuous and binary variables. Our improvements
are based on a detailed study of a fundamental decoupling structure of the underlying mixed
integer programming (MIP) problem and on incorporating some more recent ideas for closely
related problems from Computer Science, Operations Research and Optimization. We provide
very efficient implementations of our new algorithms; efficiency, in particular the speed of the
algorithms is critical in practical applications of our framework. A main reason is our stationary
price assumption for the competitors’ products. Indeed, in practice the competitors may adjust
their prices, as a result, we should be able to re-optimize our prices and respond very quickly.
Another main reason for the required speed comes from the sizes of the optimization problems
in nontrivial applications. For the sake of presentation, we make simplifying assumptions about
the optimal pricing problem while constructing the mathematical model. Indeed, in applica-
tions, we can relax most of the assumptions required by our mathematical models. However,
to do so, we introduce new variables to the problem. For example, the mathematical model
requires that every customer segment pay the same price for the same product. Suppose that in
some application, we would like to offer different prices to customers who buy their plane tickets
four to six weeks in advance of their trip than others. In this case, we simply create a new
product in our mathematical model to represent these plane tickets. Another instance arises in
product bundling. For each bundle of products, we create a new variable which represents the
bundle. These transformations when properly applied can lead to tens of thousands of “product
variables” in the mathematical model (which in turn lead to LP relaxations with a huge number
of variables and constraints).

We show that our improvements yield algorithms which generate solutions with better ob-
jective values and that are more robust in overall performance. Our computational experiments
indicate that our implementation of Dobson-Kalish heuristics and our new algorithms can pro-
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vide good solutions for the underlying MIP problems where the typical LP relaxations would
have more than a trillion variables and more than three trillion constraints. In the next sec-
tion, we begin the development of the necessary notation and the description of some of the
fundamental mathematical models we utilize. Then, at the end of next section, we describe the
material in the remaining sections.

2 Notation and Fundamental Ingredients of the Heuristics

Suppose we have n customer segments, with each segment homogeneous (i.e., customers within
a segment behave similarly), and m products. Rij denotes the reservation price of customer
segment i for product j. Let our decision variables be as follows:

θij :=

{
1, if customer segment i buys product j,
0, otherwise,

πj := price of product j.

Customers strive to maximize their utility which in our case corresponds to consumer surplus
given by (Rij−πj) for customer i and product j. For a fixed customer segment i, if the consumer
surplus is negative for every product then customer segment i would buy nothing. Therefore,
customers buy among all product with nonnegative consumer surplus, the one with the largest
surplus. We are modeling the problem from the viewpoint of one fixed company with products
1, 2, . . . ,m. To represent the competing companies’ products, we assume that the prices of
their competing products are known to us. We denote by CSi (which is part of the data for
our optimization problem), the maximum surplus for customer segment i across all competitor
products. Then the constraints that model the buying behaviour are

(Rij − πj)θij ≥ Rikθij − πk, ∀k 6= j,

and
(Rij − πj)θij ≥ CSiθij , ∀j,

respectively. Note that we may replace Rij by max {Rij − CSi, 0} for every i, j and assume
without loss of generality that CSi = 0 for every i.

Assuming that each customer segment buys at most one type of product, and each customer
buys at most one unit of a product, and denoting by Ni the number of customers in segment i,
the problem can be expressed as the following nonlinear mixed-integer programming problem:

max

n∑
i=1

m∑
j=1

Niπjθij , (1)

s.t. (Rij − πj)θij ≥ Rikθij − πk, ∀j,∀k 6= j,∀i,
(Rij − πj)θij ≥ 0, ∀j,∀i,

m∑
j=1

θij ≤ 1, ∀i,

θij ∈ {0, 1}, ∀i, j,
πj ≥ 0, ∀j.
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Note that the second group of constraints (arising from the elimination of CSi) are very similar
to the first group of constraints. Indeed, the second group of constraints can be removed from
the formulation by introduction of a dummy product indexed zero, with price set equal to zero.
We will see this again shortly when we expose the underlying network structure in the above
formulation.

The assumptions stipulated above are not very restrictive in practice as there are ways of
relaxing them by modifying the interpretation of the variables etc.; for example, production costs
can be incorporated in the objective function without destroying the important mathematical
structures of (1). Some of the classical work in the area explicitly included fixed costs. Adding
production costs (fixed and/or variable unit costs) to our model does not change the applicability
of our algorithms. This is due to the fact that in making assignment decisions (assigning a
customer segment to a product), our algorithms evaluate the whole objective function for that
assignment/reassignment. As a result, feasible solutions of the problem (1) will be correctly
evaluated if we change the objective function of the problem allowing fixed costs. Moreover, the
transformations we made in relation to CSi are indeed still valid in this case.

The assumption about the competitors’ prices being stationary and known to us, can also be
handled in practice, as long as we are able to reoptimize our prices very quickly (for details, see
[20], [19] and [21]). This provides more motivation for having very fast and effective heuristic
algorithms with good re-optimization properties. As we mentioned in the Introduction, our
model is closely related to envy-free pricing models. Considering Walrasian Equilibrium Models
(going back at least to Walras in 1874, see [22]), equilibrium prices should be chosen so that

(i) customers have no incentive to change their decision;

(ii) the company has no incentive to change its prices.

At an optimal solution of our problem (1), item (i) is satisfied due to the fact that every
customer who buys a product, buys a product for which the customer has the maximum possible
positive surplus. Item (ii) is satisfied, due to the fact that the total revenue/profit for the com-
pany is maximized and no further change to the prices can increase the current revenue/proift.

For a fixed θ ∈ {0, 1}n×m such that
∑m

j=1 θij ≤ 1, ∀i, the problem (1) becomes an LP
problem (on variables π) with a totally unimodular (TUM) coefficient matrix. The dual of this
LP is equivalent to a shortest path problem, where there are (m + 1) nodes (a node for each
product and a dummy product). Let 0 denote the dummy product node. Assign arc lengths:

rkj := min
i∈Cj
{Rij −Rik} ,

r0j := min
i∈Cj
{Rij} ,

where Cj := {i : θij = 1} and B := {j : Cj 6= ∅}. Note that rkj for k ∈ {1, 2, . . . ,m} may be
negative and we utilize the usual convention that the minimum over an empty set is +∞. Then,
this dual LP problem can be solved by finding shortest paths from node 0 to every node j ∈ B.
The lengths of these shortest paths provide optimal πj values. For the details, see [8, 20].

Dobson and Kalish gave two heuristic algorithms for the above problem that have stood the
test of time. The first one is a reassignment heuristic which we refer to as DK88. DK88 takes as
input a feasible assignment θ and constructs a shortest path tree, as described above, rooted at
the dummy node 0. Then for each customer segment that determines the cost on an arc of the
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shortest path tree, the algorithm considers assigning that customer segment to the parent of the
current node in the shortest path tree. Among all such reassignments, DK88 picks the one with
the largest improvement. If the improvement is positive, the algorithm modifies the assignment
variables θ, updates the arc lengths and the shortest path tree, and repeats; otherwise, the
algorithm terminates and reports the current θ and π.

Another heuristic algorithm by Dobson and Kalish introduces products one at a time with
initial prices at +∞. For each product, the algorithm computes the maximum possible price
that a customer segment can be charged while keeping the prices of all other products fixed at
their current levels. Then, the algorithm computes the total profit for setting the price of the
current product to one of the n possible values just computed. The algorithm loops through
these steps until no improvement is obtained. We refer to this algorithm as DK93.

We provide a state-of-the-art implementation of the algorithm DK88 that we call Fast-DK.
Then, considering the ideas of DK93, we design a new version that we call Global-DK. We further
exploit the structure of the mixed integer nonlinear programming problem and the basic decou-
pling as exposed by Dobson and Kalish [8], as well as the ideas offered by Dobson and Kalish
[9], Shioda et al. [20] and Guruswami et al. [11]. In addition to providing very efficient imple-
mentations of DK88 and Global-DK, our work leads to five fundamental improvements. Three of
the improvements are directly related to our generalization (Generalized Reassignment Heuristic
GRH, as described in the next section) of the algorithms of Dobson and Kalish. By decoupling
the problem into its combinatorial and continuous parts, we are able to apply continuous op-
timization techniques in the price space. In many continuous optimization algorithms, in each
iteration, we pick a search direction, a direction along which to change the current solution; and
once the search direction is chosen, we then decide on the step size (how far to move along the
search direction). Then, we have the next iterate.

• Once a search direction (a direction along which the prices are being changed) is picked,
instead of looking for a first change in the customers’ choices for products to buy, in some
of our new algorithms, we do a full line search, allowing the step size to take any value in
(−∞,+∞) and picking the price that globally maximizes the objective function along this
line.

• In an extension of the algorithm DK88, using the fact that when a customer segment is
assigned to its parent, only the children of the new node may change in the new shortest
path tree, provided no price is decreased, we consider increasing the prices of all products
for each of the subtrees of the node (product) being considered. We call this new algorithm
GRH-SubTree.

• Through our study of geometric, algebraic and combinatorial properties of the problem,
we find that the search directions corresponding to picking two products and increasing
the price of one while decreasing the price of the other at the same rate may yield to
better solutions. We utilize these search directions in addition to the conventional search
directions. We use these ideas in one of our featured algorithms called Cell-Pierce.

The remaining fundamental improvements are on initialization of the reassignment algo-
rithms mentioned above. The most recent computational work reported in [20] used a greedy
initialization heuristic called MaxR, described in the next section. However, Guruswami et al.
[11] showed that setting all prices equal to a common value and optimizing this common value
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gives another simple algorithm which has a provable performance guarantee (even though a very
weak one from an applications viewpoint).

• We utilize the basic idea of the Guruswami et al. heuristic and call this algorithm Guru.
We observe that Guru does perform better than MaxR under many circumstances.

• Exploiting the decoupling nature of the “assignment” part and “given an assignment, find-
ing the optimal prices for that assignment” part of the problem, we define a simple iterated
optimization procedure. Finding a fixed point of these iterated operators is computation-
ally easy. We apply the iterated operators to the output of Guru. The resulting algorithm
is called Guru which provides improvements over Guru, as verified by our computational
experiments.

In addition to the above-mentioned contributions, we also present some theoretical founda-
tions for our algorithmic ideas and some theoretical connections to related problems. In partic-
ular, after providing more detailed descriptions of our new algorithms in Section 3, in Section
4 we derive properties of the ingredients of our algorithms based on the decoupling structure in
the MIP. This decoupling structure and the underlying heuristic algorithms, motivate the need
for better understanding of the polyhedral subdivisions induced by them. We conclude Section
4 by analyzing the polyhedral subdivision induced by the MIP in the price space. The exchange
results established for these polyhedra further motivate a connection to another optimal pricing
problem called the Stackelberg Network Pricing Game in Subsection 4.3. In Section 5, this time
motivated by Guruswami et al. [11] results, we explore theoretical worst-case approximation
guarantees. We report the results of our computational experiments as well as a new lifted LP
relaxation of the MIP in Section 6. We conclude with brief final remarks in Section 7.

3 Generalized Reassignment Heuristic and Related Algorithms

As in Shioda et al. [20], we will utilize the Maximum Reservation Price Heuristic (MaxR) as an
initialization heuristic for Fast-DK as well as Global-DK:

Maximum Reservation Price Heuristic (MaxR)

1: Set Cj = {i : j = arg maxk{Rik}}, ∀j. I.e., assign each customer to her/his maximum-utility
product.

Based on our assumptions, every π ∈ Rm+ defines a corresponding product-customer assign-
ment θ ∈ {0, 1}n×m. As we did above, we use two equivalent representations of such product-
customer assignments, the other being the collection of subsets C := {C1, C2, . . . , Cm} (with Cj
denoting the set of customers who buy product j under the current assignment). Depending
on the context, we will use θ and C interchangeably, to refer to the same product-customer
assignment. We call θ ∈ {0, 1}n×m a feasible assignment if there exists π ∈ Rm+ such that (θ, π)
is a feasible solution of the nonlinear MIP (1). Note that even though every nonnegative price
vector π yields a feasible assignment, not every {0, 1}n×m is a feasible assignment. We will
also use the notation C which represents an assignment as a function which maps a given price
vector π to the corresponding product-customer assignment. It may be that there are many
optimal assignments for given prices. To disambiguate, we require that C always returns the
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assignment where each customer, when indifferent between two products and both products
have the same surplus, chooses the product with least index. This can be phrased as taking the
lexicographically-least optimal assignment. Even though lexico.-least approach seems arbitrary,
there is a notion called a price ladder structure in the area of revenue management; see, for ex-
ample, [1] and [18]. Indexing the products with respect to some loose notion of price ladder may
make sense in practice too. Let us denote such an assignment by C(π). Then, by construction,
the assignment C(π) is feasible. Therefore, our algorithms based on this function never encounter
infeasible assignments θ. Also note that in addition to the MaxR heuristic, any heuristic which
delivers some π ∈ Rm+ can be used to initialize our algorithms via the computation of C(π).

Once a feasible assignment C is given, we can easily compute the corresponding “optimal
prices” by solving the shortest path problem on the underlying auxiliary graph of products.
We denote these “optimal prices” by Π(C). For the convenience of our design of heuristics, we
would like to define the mapping Π : {0, 1}mn → Rm so that it produces an m-vector. For those
products u for which Cu = ∅, we set πu to a high enough price that does not change C. That is,
we need

πu > min
i
{Riu −Riji + πji} ,

where ji denotes the product j such that i ∈ Cj . Note that even if Ci 6= ∅, for every i, it is
rarely the case that for an arbitrary π ∈ Rm+ , Π (C(π)) = π.

3.1 Fast-DK: An Efficient Implementation of the Dobson-Kalish 1988 Heuris-
tic

Given an assignment θ of customers to products, let the “pricing graph” be the directed graph
on all products together with the null product where there is an arc from product k to product
j with weight

min
i:θij=1

{Rij −Rik}.

The weights on the arcs emanating from the null product are also computed by the same formula
(with the convention that Ri0 := 0). Applying operator Π to the assignment θ simply amounts
to building this graph and computing single-source shortest paths taking the null product as the
root.

In a DK88 iteration, we have a shortest-path tree for the current assignment of customers to
products and we try, for each product, reassigning the customer who constrains the price the
most to the parent product. This reassignment produces, in each case, a very closely related
pricing graph — only the arcs incident with the parent and child products can be changed.
Thus, the adjacency matrices of the pricing graphs of the original and reassigned problems differ
in at most two rows and two columns.

This leads to a trick for computing the pricing graphs of the reassigned subproblems quickly.
We store the original pricing graph in adjacency matrix form as an array of length m of pointers
to arrays of length m. (The kth entry of the array pointed to by the jth pointer is the smallest
value of Rij −Rik among all customer segments assigned to product j.) Note that, if customer
segment i is reassigned from product j to product k, then all edge weights in this graph are
unchanged except those involving products j and k.

Thus, we can represent a reassigned subproblem as a copy of the original graph with two
pointers changed together with a list of two columns whose contents have been replaced. The
original matrix is not mutated; the identities and contents of these columns are stored separately
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from the original matrix. Looking up the weight of the arc from j to k is done by checking
whether k is one of the affected columns, using its replacement if so, or using the kth entry of
the array pointed to by the jth pointer if not.

When recomputing shortest paths after reassigning customer i from product j to product
k, we set shortest path lengths for all descendants of k to infinity and then run Bellman-Ford-
Moore algorithm starting at k, taking care when visiting a node first to relax along all inbound
arcs.

3.2 Generalized Framework for Heuristic Algorithms

Now, we are ready to describe the Generalized Reassignment Heuristic (GRH). Let Dπ ⊂ Rm
denote the set of search directions to be considered. For d ∈ Dπ, αd ≥ 0 will denote the step size
along the direction d. At each major iteration, we start with prices π (optimal with respect to
the current product-segment assignment). For the first iteration, we can begin with the output
of the MaxR heuristic. For each d ∈ Dπ, we find a suitable αd > 0 and let

π′d := π + αdd.

We then compute Π (C (π′d)) and the corresponding objective function value. At the end of each
major iteration, we set π to Π (C (π′d∗)) which maximizes the total revenue among all Π (C (π′d))
for d ∈ Dπ.

Generalized Reassignment Heuristic (GRH)

Require: a feasible product-segment assignment and its corresponding optimal spanning tree
solution from solving the underlying shortest path problems, including prices π and the
corresponding objective function value z.

1: repeat
2: For each d ∈ Dπ compute Π (C(π + αdd)), and the corresponding objective value zd.
3: if maxd∈Dπ {zd} ≤ z, then
4: STOP and return π and the corresponding assignment C(π).
5: end if
6: Let z := maxd∈Dπ {zd}, d̄ := argmaxd∈Dπ {zd}, π := Π

(
C(π + αd̄d̄)

)
.

7: until Maximum number of iterations.

Note that the above algorithm can increase the prices of an arbitrary number of products
at arbitrary relative rates and simultaneously decrease the prices of an arbitrary number of
products at arbitrary, relative rates. Moreover, the set of search directions may varied based
on the current price vector π. Next remark highlights how general our proposed framework is
compared to the Dobson-Kalish reassignment heuristic, DK88.

Remark 1. The Dobson-Kalish reassignment heuristic, DK88, is a special case of the above
algorithm, where

Dπ := {ej : j ∈ B}
⋃
{0},

independent of π, with ei denoting the ith unit vector and 0 is included in Dπ to represent the
status quo. αd would be determined by the first change in C along this price change direction d.
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Our approach to the problem exposes possibilities for improving the Dobson-Kalish heuristic
within the framework of the general algorithm above. We can increase some prices and decrease
some others at the same time. We can perform these increases/decreases proportional to the
current prices, or proportional to some “target” Rij (which may be determined by Ni and/or
Mj :=

∑
i∈Cj Ni, total number of customers who are buying product j under the current prices)

for each j, or proportional to the distance to such a target (Rij − πj).
GRH also has the ability to “revive” products or customers that were eliminated. In the

DK88 heuristic, once a product is “deleted” (assigned no customers), that product will never be
purchased in any of the subsequent iterations (similarly for segments that are reassigned to the
0 node/product). In the GRH framework, the prices can be modified such that these products
and customers may become “active” again.

Another advantage of our GRH over the DK88 heuristic is that GRH can handle some non-
trivial modifications to the model. For example, in practice, one of the drawbacks of our current
model is that the model effectively assumes if there is a tie for the largest positive surplus, then
the customer segment will buy the most expensive product. Shioda et al. [20] proposed the usage
of a utility tolerance which forces the model to only assign the customer segment i to the product
j when the corresponding surplus is at least a predetermined amount δ larger than for all other
products. Indeed, this tolerance may differ for every pair j, k of products, in addition to varying
over the customer segments (we may denote the tolerance by δijk). Note that GRH is driven
by the prices πj rather than the assignments θij . Consequently, GRH also easily handles the
various models based on nonzero utility tolerances δ, δi, δijk.

3.2.1 Line Search and the algorithm Global-DK

Given a direction d, we may in O(mn log n) time perform a full line search to compute the best
objective function value for potential prices

π + αd, where α ∈ R.

Note that we allow negative as well as positive values for α.

The key idea here is that each customer’s utility function (when considered as a function
of α), is convex and piecewise-linear, being defined by the maximum of m affine functions of
α. This is depicted in Figure 1. Thus, one can represent the epigraph of a customer’s utility
function as the intersection of m halfspaces; this intersection may be computed using duality
and a convex hull algorithm. If we use Graham’s scan (see for example Chapter 3 of [17]) to
compute this convex hull, notice that the same ordering, namely by component of d, works for
all customers; sorting the products in order once, suffices for all customers. So, we can compute
each customer’s utility function in O(m logm+mn) time.

The revenue function may be considered as the sum over all customers of the revenue gained
from each customer. The revenue gained from a customer is quite strongly related to the
customer’s utility function; both are piecewise-linear functions and they “break” at the same
abscissae. Compare Figures 1 and 2.

In O(mn log n) time, we can compute the maximum value of a sum of n discontinuous but
piecewise-linear functions and its abscissa (which is closely related to the fundamental problem of
computing the convex hull, in computational geometry). We do this with a sweep-line algorithm,
sweeping from left to right and adjusting the value and its slope at each “break” point. Care
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must be taken when programming this line search procedure to handle degenerate cases, such
as when three lines meet at a point.

α

Utility of customer i

Figure 1: A customer’s utility as a function of α (as the price vector varies with π + αd).

The heuristic Global-DK lies in the framework of GRH and uses directions in the π-space
that only increase or decrease prices one at a time:

Dπ := {±ej : j ∈ {1, 2, . . . ,m}}
⋃
{0}.

Next, we turn to the problem of finding promising search directions other than ±ei (i.e.,
other than increasing or decreasing the price of a single product at a time).

3.2.2 Algorithm Cell-Pierce

Every facet of every cell of the decomposition of π-space by customer assignment (θ) is defined
either by an inequality of the form πj−πk ≤ Rij−Rik, or πj ≤ Rij or by an inequality of the form
πj ≥ 0. Therefore, when we focus on inequalities generated from a fixed customer, we would see
a rectangular prism in Rm+ which is cut by half spaces πj − πk ≤ Rij − Rik, some of which will
correspond to parallel halfspaces. See Figure 3, where we took two products (m := 2) and three
customer segments (n := 3), and demonstrated the rectangular prisms and some cuts of the type
πj−πk ≤ Rij−Rik. Note that while Figure 3 is informative, it can be quite misleading in higher
dimensions (e.g., no two of the hyperplanes {π ∈ R5 : π1 − π2 = 10}, {π ∈ R5 : π2 − π3 = 20},
{π ∈ R5 : π3 − π4 = 30}, {π ∈ R5 : π4 − π5 = −10} are parallel in R5). However, we know the
normals to all hyperplanes of all facets of all cells. Thus, if one was so inclined, one could find
a point in the relative interior of each facet of the current cell and “see what is on the other
side.” This observation motivates the search directions {ej ± ek : 1 ≤ j ≤ m, 1 ≤ k ≤ m} in the
context of GRH.

A subset of these search directions with the full line search as described above are used in our
algorithm called Cell-Pierce (we named the algorithm based on the hope that if we move along
the directions that are normals to the facets of the cells and do a full line search α ∈ (−∞,+∞),
we have a higher chance of “piercing” through the interiors of full dimensional cells an not get
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α

Revenue from customer i

Figure 2: Revenue from the customer of Figure 1 as a function of α (as the price vector varies
with π + αd).

stuck on low dimensional faces of cells prematurely). We chose only the directions ej − ek such
that πj − πk = Rij − Rik at the current point for some i and made no attempt at finding the
relative interior of each appropriate face.

4 Algorithm GRH-SubTree, and Structural Results

The feasible assignments θ partition π-space so that each part is a TUM polyhedron. We call
such a polyhedron defined by a such a θ the polyhedron induced by θ. Note that moving along
the edges of such polyhedra correspond to moving along d ∈ {−1, 0,+1}m. (I.e., prices are
increased and/or decreased at the same rate.)

First, we note that when the price of a product is increased just enough that it causes a
change in the assignment θ, say a customer segment gets assigned to product j, the optimal
prices for this new assignment can be computed by simply updating the shortest path tree for the
children of the node j. Motivated by this observation (which is founded on Lemma 3.3 of [20]),
we propose an extension of DK88 which we call GRH-SubTree. The new algorithm GRH-SubTree

is a special case of GRH which in addition to considering directions ej , considers increasing the
prices for a product and all its children (in the current shortest path tree) at the same rate.

Next, we analyze repeated applications of operators C and Π which map prices to corre-
sponding feasible assignments, and feasible assignments to optimal prices, respectively.

4.1 Fixed Points of Π(C)

Now, it is useful to consider the properties of fixed points of Π(C), i.e., those π such that
Π(C(π)) = π. Later in Section 6, we present computational experiments with an algorithm of
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π2

π1

Figure 3: An illustration of some of the constraints in the subdivision of the price space Rm by
feasible product-customer assignments

Guruswami et al. [11] which we call Guru and our enhancement of it based on finding fixed points
of Π(C). Our algorithm Guru is simply Algorithm Guru followed by iterating the operators Π
and C until a fixed point is found. We use our enhancement in other heuristic algorithms as
well.

Definition 4.1. A price vector π is called a fixed point if Π(C(π)) = π. An assignment θ is
called a fixed point if C(Π(θ)) = θ. A pair (π, θ) is called a fixed point if Π(θ) = π and C(π) = θ.

The following proposition justifies the terminology.

Proposition 2. The following are equivalent:

1. (π, θ) is a fixed point;

2. π is a fixed point and θ is defined by θ := C(π);

3. θ is a fixed point and π is defined by π := Π(θ).

Recall that once we fix θ, our MIP formulation has only price variable π and in these variables,
the problem has a feasible region (which is empty iff θ is infeasible iff its dual which is a shortest
path problem has a negative-cost cycle in its network) every π in this feasible region is called
feasible for that given θ.

Proposition 3. Given π feasible for θ, the following are equivalent:

1. θ = C(π);

2. in the network defined by θ, all arcs having zero reduced cost with respect to π have non-
negative cost, and θ is lexicographically least under this restriction.
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Note that our statement and claim are algorithm dependent. I.e., they depend on the detailed
definitions of the maps C (e.g., lexico.-least rule) and Π. In the upcoming material we will use
terminology of Linear Programming duality, e.g., reduced cost (see, for instance, [10]). Further
note that in many of the proofs, we do not need to treat the null product separately (it suffices
to recall that for every feasible price π, π0 = 0, moreover, by definition, Ri0 := 0, for every
i ∈ {1, 2, . . . , n}).

Proof. Let π be feasible for some assignment θ. First, suppose θ = C(π). Then by definition,
the arcs (j, k) that have zero reduced cost (in the network defined by θ) satisfy:

0 = rjk − πj + πk = min
i∈Cj
{Rij −Rik} − πj + πk = (Ri∗j − πj)− (Ri∗k − πk) ,

where i∗ is a customer segment that attains the minimum above. Since customer i∗ bought
product j rather than k (under θ′) and both products have the same surplus,

• either πj > πk, or

• πj = πk and j < k.

In either case, rjk = πj − πk ≥ 0. By definition, θ is the lexicographically least assignment.
Next, suppose in the network defined by θ (where π is feasible for θ), all arcs having zero

reduced cost with respect to π have nonnegative cost, and θ is lexicographically least under this
restriction. Then, for every arc (j, k),

0 = rjk − πj + πk implies rjk ≥ 0.

Hence, for every arc (j, k) with zero reduced cost,

min
i∈Cj
{Rij −Rik} ≥ 0.

Putting all of this together, we deduce that customer i buys product j iff product j has the
largest nonnegative surplus (if there is a tie, product j has the largest price among all products
with maximum surplus, and there is yet another tie, then product j is the one with the least
index), as desired. Therefore, θ = C(π).

Next, we prove that we can compute a fixed point in strongly polynomial time. The hypoth-
esis of the next proposition requires a feasible assignment θ; however, notice that any π ∈ Rm+
can be used to find a feasible θ via θ := C(π), in strongly polynomial time, very efficiently.

Proposition 4. Given any feasible assignment θ, a fixed point can be obtained in strongly
polynomial time with objective value at least as large. In particular, there is an optimal solution
that is a fixed point.

Proof. Repeatedly apply C(Π) until a fixed point is obtained. Observe that whenever applying
C(Π) causes a segment i to switch from a product j to a product k, we have

Rij − πj = Rik − πk

and
πk ≥ πj ⇒ Rik ≥ Rij ,
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as well as either

πk > πj ⇒ Rik > Rij

or

k < j.

Thus, if we consider a single segment i and order its products j in a list L by descending order
of Rij and breaking ties by ascending order of j, we see that C(Π) only ever reassigns i from j
to k if j precedes k in L.

Hence, the number of applications of C(Π) needed to reach a fixed point is bounded by
O(nm). Since C(Π) can be computed in strongly polynomial time, we conclude that a fixed
point can be computed in strongly polynomial time.

Example 5. It is possible that if an assignment is optimal and some customers are deleted
from the problem, the assignment is no longer a fixed point. This can matter in some search
strategies. Take m := 2, n := 3 and

N := [10, 10, 1], R :=

 3 0
0 1
3 2

 .
Then,

θ :=

 1 0
0 1
0 1

 , π := [3, 1]

give a fixed point. Next, consider deleting customer 2, so our assignment becomes θ̃ :=

[
1 0
0 1

]
,

with C1 = {1} and C2 = {3}. This leads to the optimal price vector π̃ := [3, 2]. However, θ̃ is
not a fixed point with π̃, since customer 3 will be assigned to product 1 when applying C(π̃), due
to the lexico.-least rule.

Proposition 6. If a given feasible assignment θ is a fixed point, then Π(θ) can be computed
using Dijkstra’s algorithm.

Proof. The shortest path tree consists of equality arcs with respect to the computed shortest path
distances (by equality arcs we mean those arcs (j, k) for which the reduced cost (rjk − πj + πk)
is equal to zero, consistent with the terminology of for instance [6]), so all the arcs of the
shortest path tree will be nonnegative. Thus, we may remove all negative-cost arcs from the
network, apply Dijkstra’s algorithm, and use the resulting shortest path tree and shortest path
distances.

Proposition 7. If (π, θ) is a fixed point, there is no directed cycle of equality arcs with respect
to π.

Proof. Along any directed path of equality arcs, the product indices must decrease strictly since
θ = C(π). Therefore, a directed cycle cannot exist.

Proposition 8. If a given feasible assignment θ is a fixed point, then the polyhedron induced by
θ has dimension m.
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Proof. Let π = Π(θ) and let P be the polyhedron induced by θ. By the previous proposition,
the equality arcs form a directed acyclic graph G′. Topologically order the non-null products
with respect to G′ as j1, j2, . . . , jm. Let π̃ = π− ε

∑m
k=1 kejk , where ε > 0 is small enough that π̃

is still feasible and no new equality arcs form, which exists because of the topological ordering.
Observe that no inequalities hold at equality for π̃, so the only equality that holds for P is
π0 = 0. Therefore, dim(P ) = m.

Example 9. In general, many applications of the operator Π(C) may be needed to reach a
fixed point. Consider an instance with n customer segments with Ni := 1 for every i, and two
products, m := 2. Let

R :=


n 0
n 1
n 2
...

...
n (n− 1)

 .
Consider the initial feasible assignment

θ(0) :=

e1,
n∑
j=2

ej

 .
Then,

π(0) = Π(θ(0)) = [n, 1],

θ(1) = C(π(0)) =

e1 + e2,

n∑
j=3

ej

 ,
π(1) = Π(θ(1)) = [n, 2],

θ(2) = C(π(1)) =

e1 + e2 + e3,
n∑
j=4

ej

 ,
π(2) = Π(θ(2)) = [n, 3],

...

θ(n−1) = C(π(n−2)) =

 n∑
j=1

ej , 0

 ,
π(n−1) = Π(θ(n−1)) = [n,+∞].

In this example, where m = 2, the operator must be applied Θ(n) times to reach a fixed point.

4.2 Adjacent Polyhedra

As we noted earlier, for each θ ∈ {0, 1}n×m, we obtain a polyhedron in the π-space from our
MIP. Moreover, under this map, the union of all feasible assignments partitions the π-space into
polyhedra. Motivated by the fact that the algorithms DK88 and Fast-DK move in the assignment
space by a single customer segment being reassigned at a time, in this subsection, we analyze
the related structure of this polyhedral subdivision.
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Proposition 10 (Simultaneous Feasibility). Suppose θ is a feasible assignment and that a single
reassignment produces another feasible assignment θ′. Then there exists π that is feasible for
both θ and θ′.

Proof. Let G and G′ be the networks corresponding to θ and θ′ respectively, and take the
disjoint union of their arc-sets to obtain a new network H. We need to check that there is no
negative-cost cycle in H.

Let i be the customer that switched from product j to product k, between θ and θ′. Suppose
there is a negative-cost cycle C in H. Without loss of generality, C is simple (i.e., no node in
C is repeated). Since there is no negative-cost cycle in either G or G′, C must use an arc that
is not in G and an arc that is not in G′. Clearly, both these arcs must be induced by customer
i. Indeed, the cycle cannot be made up from just two arcs (j, k) and (k, j), since the cost of the
cycle, then would be zero. Without loss of generality, the first arc is from some product j′ to
j, and the second arc is from some product k′ to k. Then we can write C := j′j, P1, k

′k, P2 for
some paths P1 and P2 that appear in both G and G′.

Let C1 := k′j, P1 be a cycle in G and C2 := j′k, P2 be a cycle in G′. Then

c(C) = c(j′j) + c(P1) + c(k′k) + c(P2)

= Rij −Rij′ + c(P1) +Rik −Rik′ + c(P2)

= Rij −Rik′ + c(P1) +Rik −Rij′ + c(P2)

≥ c(k′j) + c(P1) + c(j′k) + c(P2)

= c(C1) + c(C2).

Therefore, either c(C1) < 0 or c(C2) < 0, a contradiction. (Note that in the above, if k = 0, i.e.,
customer i is assigned to the null product, the argument applies the same).

Proposition 11. Given feasible assignments θ and θ′, θ′ can be obtained from θ by performing
at most 2n reassignments while maintaining feasibility at all times.

Proof. Since reassignment is symmetric, it is enough to show how to get from θ to the null
assignment (all customers assigned to the null product) with at most n reassignments. To do
this, repeatedly compute optimal prices for the current assignment, identify a segment that is
indifferent between its choice and the null product (note that such a segment always exists,
recall the arcs with zero reduced cost that are adjacent to node zero), and assign that segment
to the null product.

The above proposition justifies a search by making single reassignments.

Proposition 12. All feasible single reassignments can be found in O(nm2) time.

Proof. First, compute all-pairs shortest paths in O(nm2) time. Now, for each customer i and
each product j, determine whether it is possible to reassign i to j. To do this, note that by
simultaneous feasibility, it is enough to check that there is no negative-cost cycle when the new
in-arcs of product j are introduced. Therefore, the reassignment is feasible if and only if for all
products k,

dist(j, k) +Rij −Rik ≥ 0.

The total time to make this check for every customer-product combination is O(nm2).
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Example 13. Given a feasible assignment θ, there might not exist a monotone path (where
each arc is a single reassignment which does not decrease the objective value) connecting θ to an
optimal assignment θ∗.

Consider m := 1, n := 3, R := [2, 1, 1]>, N := [3, 2, 2], θ := [1, 0, 0]>. The initial objective
value is 6. The unique optimal solution is θ∗ = [1, 1, 1]>, which has objective value 7, and
is more than a single reassignment different from θ. A single reassignment applied to θ will
produce objective value 0, if customer 1 is reassigned to product 0, or objective value 5, if either
of customer 2 or 3 is reassigned to product 1. Therefore, there is no monotone path from θ to
θ∗.

Note that DK88 as well as Fast-DK move only along strictly monotone paths with single
reassignments in the θ-space. These algorithms may get stuck in “local” maximizers in this
sense of neighbourhood. However, many of our other algorithms, including Global-DK and
Cell-Pierce allow multiple reassignments in a single iteration and have a chance of breaking
free of such local maximizers.

Example 14. In the previous subsection, we observed that there is an optimal θ that induces
a shortest-path polyhedron of dimension m. Unfortunately, although we can get this solution
using only single reassignments while maintaining feasibility, we might not be able to maintain
full-dimensionality.

Consider m := 1, n := 2, N := [1, 1] and R := [1, 1]>. The unique optimal solution
is to assign both customers to product 1, but it is clear that this cannot be done with single
reassignments while maintaining a shortest-path polyhedron of dimension m.

Searching just dimension-m polyhedra may be desirable for some algorithms, since moving
into a lower-dimensional polyhedron is in some ways a degenerate move and will produce less
change in the pricing structure. This example motivates finding more sophisticated reassign-
ments that allow us to move between any two assignments that induce dimension-m polyhedra,
while maintaining that dimension.

Proposition 15 (Characterization of Feasible Single Reassignments). Given a feasible assign-
ment, reassigning a customer i from j to k 6= j produces a feasible assignment if and only if
Rij −Rik is the cost of the shortest path from k to j.

Proof. Suppose that the reassignment is feasible. We know from an earlier proposition that the
new assignment must be simultaneously feasible with the previous one. I.e., there exists a price
vector π which is feasible with respect to both assignments. From a geometrical viewpoint,
in the π-space, the polytopes which correspond to these two assignments “touch.” From a
combinatorial optimization viewpoint, we can check feasibility in the combined graph.

Suppose that in the old graph, there is a path P from k to j with cost c(P ) < Rij−Rik. Then
in the combined graph, consider the cycle P, jk, which has cost at most c(P ) + (Rik −Rij) < 0,
contradicting simultaneous feasibility.

Conversely, suppose that Rij −Rik is the cost of the shortest path from k to j. Then find a
price vector π by computing shortest paths rooted at k, and translating so that π0 = 0; this is
possible since the old assignment is feasible. By assumption, we have πj − πk = Rij − Rik, so
Rij − πj = Rik − πk, i.e. customer i is indifferent between j and k at the price vector π. Thus
π is still a feasible price vector after customer i is reassigned from j to k, proving feasibility of
the new assignment.
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Lemma 16 (Weak Exchange Property). Let θ and θ′ be distinct, feasible assignments. Let
(ji : i ∈ {1, 2, . . . , n}) and (ki : i ∈ {1, 2, . . . , n}) be their respective vectors of purchases. Then
there is some i∗ such that ji∗ 6= ki∗ and setting ji∗ := ki∗ in θ produces a feasible assignment.

First, we illustrate the proof idea on a concrete example. Suppose that for every i where
ji 6= ki, it is infeasible to set ji := ki. Then for each of the networks corresponding to these
reassignments, there is a negative-cost cycle. For this example, there are three segments, i1, i2, i3
that have different purchases. Thus, we get three negative-cost cycles. Each arc is labeled with
the segment that induces it. Gray arcs represent paths that exist in all the considered networks.

k1

j3

i3i1

k2

j3

i3i2

k3 j1

j2

i1

i2
i3

Figure 4: An illustration of the proof idea for the weak exchange property: step 1

Now, create a network where the vertices are the segments, and each gray path with a k
node at its tail is an arc.

i1 i2

i3

Figure 5: An illustration of the proof idea for the weak exchange property: step 2

Since every node in this new network has an out-arc (this follows from the fact that as in
the proof of Proposition 10, the negative-cost cycles must be induced by the customer segments
who switched products), there is a cycle. In this case, the cycle uses the out-arcs from i1 and
i3. Keep only the negative-cost cycles for those segments.

k1

j3

i3i1

k3 j1

j2

i1

i2
i3

Figure 6: An illustration of the proof idea for the weak exchange property: step 3

Observe that we can rearrange, preserving costs, into a single cycle having the k-nodes and
zero or more cycles having the j-nodes. This is always possible.

However, cycles having only k-nodes are cycles in the network of θ′, and cycles having only
j-nodes are cycles in the network of θ. By feasibility, all those cycles have nonnegative cost, a
contradiction.
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k1

k3

i3i1

j3 j1

j2

i1

i2
i3

Figure 7: An illustration of the proof idea for the weak exchange property: step 4

Proof. Suppose that for every i such that ji 6= ki, it is infeasible to set ji := ki. Then, for each
of the networks corresponding to these reassignments, there is a negative-cost cycle. Label each
arc with the segment that induces it. Replace the paths that exist in all considered networks by
gray arcs (by contracting if necessary). Now, create a network (call this the auxiliary network)
where the nodes are the segments, and each gray arc (path) with a k node at its tail is an arc.

Since every node in the auxiliary network has an out-arc (again, as in the proof of Proposition
10, the negative-cost cycles must be induced by the customer segments who switched products),
there is a cycle in the auxiliary network. Go back to the original negative cost cycles which
certified that for every i such that ji 6= ki, it is infeasible to set ji := ki. Only keep the negative
cost cycles that were involved in the cycle picked from the auxiliary network. Note that we can
rearrange, by preserving costs, into a single cycle having the k-nodes and zero or more cycles
having the j-nodes (we can do this by cutting the cycles into paths and then solving matching
problems, one for the paths involving k-nodes and the other for the paths involving j-nodes).
However, cycles having only k-nodes are cycles in the network corresponding to θ′, and cycles
having only j-nodes are cycles in the network corresponding to θ. Since both θ and θ′ are feasible
assignments, all those cycles have nonnegative cost, a contradiction.

Example 17. We present a simple example where not all such steps are feasible: Let n :=
2,m := 1, R := [1, 2]> and j1 := j2 := 1, k1 := k2 := 0.

In this case, segment 1 must be reassigned to 0 before segment 2 is, because if segment 1 buys
product 1 at some price, then segment 2 will get positive surplus with that price.

The following result immediately follows from the last lemma.

Theorem 18. Suppose θ and θ′ are both feasible assignments that differ in the purchases of `
segments. Then there is a sequence of ` feasible single reassignments connecting θ to θ′.

So far, we have studied the fundamental properties of the polyhedral subdivisions induced by
the decoupling structure of our MIP as well as some of the fundamental combinatorial structures
as they relate to the algorithms. This study also led us to investigating local properties of
these subdivisions based on single reassignment of a single customer segment (as used in some
of the algorithms). Indeed, in moving from one feasible assignment to a neighboring feasible
assignment, exchange properties of the underlying structures are critical. Next, we investigate
the possibility of extending some of these exchange properties to a very closely related optimal
pricing problem which also has a similar decoupling property. We prove that the fundamental
property of simultaneous feasibility goes through; however, various versions of the weak exchange
property does not.
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4.3 Analogous results for StackMST

A related optimal pricing problem arises in the area of Stackelberg network pricing games. In this
general framework, there is a leader who sets prices on a subset of edges of a given graph (these
edges are called priceable). The other edges may have some fixed costs. Then, the followers
solve a combinatorial optimization problem to choose a minimum cost solution for themselves.
Finally, the leader collects these revenues from the followers. The objective for the leader is
to find a maximum revenue solution. Note that the arcs with fixed costs are irrelevant to the
leader’s revenue but are very relevant to the followers’ cost. Moreover, these fixed costs and the
priced arcs are both expenses to the followers who use them.

In this subsection, we consider the version of this problem where the combinatorial optimiza-
tion problem solved by the followers is the Minimum Spanning Tree (MST) problem (see [5]).
Motivation for our choice is at least two fold:

• MST is one of the most fundamental problems (that could be considered as a building
block in many more sophisticated models),

• and it is the prime, matroidal, example for consideration of exchange properties.

We call the above problem StackMST.
A tree T is called feasible, if there exists a feasible price vector for which T is an MST.

Example 19. Between two feasible trees T1, T2 for a StackMST problem, it can happen that
there is e ∈ T2 \ T1 such that for all f ∈ T1 \ T2 such that T ′ := T1 ∪ {e} \ {f} is a tree, T ′ is
not feasible.

Observe that both of the following trees, given in Figure 8, are feasible, where the tree edges
are double-dashed and priceable edges are indicated by asterisks.

∗∗
2

1 ∗

∗∗
2

1 ∗

Figure 8: An illustration of the feasible trees for Example 19

However, if the edge with cost 2 is added to the tree on the left, then the top right edge must
be deleted, and the resulting tree is infeasible since 2 > 1, i.e., the tree in Figure 9 is not feasible,
since it is not an MST.

The above example is analogous to the fact that in our original pricing problem, given two
feasible assignments and a segment i that buys differently in each of the assignments, it is not
always feasible to reassign i from its choice in the first assignment to its choice in the second
assignment.

Theorem 20 (Simultaneous Feasibility for StackMST). Suppose T, T ′ are feasible trees for a
StackMST problem, and suppose |T \ T ′| = 1. Then there exists a price vector π for the edges
such that T, T ′ are both minimum-cost spanning trees with respect to π.
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∗∗
2

1 ∗

Figure 9: An illustration of the infeasible tree for Example 19

Given a tree T and an edge e /∈ T , the unique cycle created by adding e to T is called the
fundamental cycle of e in T and is denoted by cyce.

Proof. The idea is to explicitly specify π and check MST optimality conditions for it. (Namely,
a tree T is a MST if and only if for every edge e /∈ T and every f ∈ cyce, πe ≥ πf .) Write
{e} = T ′ \ T and {f} = T \ T ′. Let F = T ∪ T ′. Observe that e and f lie on the only cycle in
F , call it G; that e lies on cyc′f , the fundamental cycle of f in T ′; and that f lies on cyce, the
fundamental cycle of e in T . A first observation is that an edge g /∈ T ∪ T ′ has f ∈ cycg if and
only if e ∈ cyc′g. Moreover, if g has f ∈ cycg, then cycg4cyc′g = G, and otherwise cycg = cyc′g.
We will always set all prices of priceable edges in T ∩ T ′ to 0 and all prices of priceable edges in
E \ (T ∪ T ′) to ∞. Together with feasibility of T and T ′, this ensures that the only optimality
conditions we need to check are:

1. πe ≥ πg ∀g ∈ cyce, πg fixed;

2. πf ≥ πg ∀g ∈ cyc′f , πg fixed;

3. πg ≥ πe ∀g /∈ (T ∪ T ′) , e ∈ cyc′g, πg fixed;

4. πg ≥ πf ∀g /∈ (T ∪ T ′) , f ∈ cycg, πg fixed.

There are four cases, depending on whether πe, πf , or both are fixed. If both πe and πf are
fixed, then all the four conditions above are obvious. If both πe and πf are variable, we set them
to be equal to the maximum of 0 and the fixed prices of the edges in the cycle G. Then the
first two conditions are clearly satisfied. The second group of conditions are satisfied because
if πe = πf = 0, then by non-negativity, and otherwise, there is an edge h ∈ G with fixed πh
such that πe = πf = πh, so h ∈ cycg4cyc′g, and hence πh ≤ πg by feasibility of T and T ′. If
exactly one of πe and πf is variable, without loss of generality, πe is variable. Set πf = πe.
Then, the first condition follows from feasibility of T , which then implies the second condition
since πf = πe. The third condition follows from feasibility of T ′, and then implies the fourth
condition since πf = πe.

Example 21. We now prove that the weak exchange property does not hold for StackMST, in
general. For ease of exposition, the example is presented where neither the fixed-cost edges nor
the priceable edges form connected graphs. Clearly these conditions can be achieved by inserting
new fixed-cost edges with large cost and inserting new priceable edges, so as to connect the graphs.
Consider the following assignment of costs to K4. The trees are given by double edges. In Figure
10, T is given first, then in Figure 11, we illustrate T ′′.
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1

2
∗

∗

∗

∗

Figure 10: Tree T for Example 21

1

2
∗

∗

∗

∗

Figure 11: Tree T ′′ for Example 21

Note that |T \ T ′′| = 2. It is clear that adding either edge in T ′′ \ T to T determines exactly
one edge from T \ T ′′ that must be deleted to maintain the tree. However, after either of these
two steps, the resulting tree is infeasible, since the edge of cost 2 lies on the fundamental cycle
of the edge of cost 1.

5 Approximation Results

Guruswami et al. [11] give an O(log n) approximation algorithm for the case where Ni = 1 ∀i
(also see the related follow=up results in [2]). Their analysis extends to the case where the ratio
between the largest Ni and the smallest Ni is bounded by a constant, but not to the fully general
problem. Their approximation algorithm is based on selling all products at the same price.

We can easily adopt their heuristic to the general case. Define

R̄i := max
j
{Rij}, ∀i ∈ {1, 2, . . . , n}.

Let the customer segments be indexed such that

R̄1 ≥ R̄2 ≥ · · · ≥ R̄n.
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Then Guruswami et al. type heuristic finds

` := argmaxk

{
R̄k

k∑
i=1

Ni

}

and chooses

πj := R̄`, ∀j ∈ {1, 2, . . . ,m}.

We call this algorithm Guru. Guruswami et al. [11] gave an example to show that their heuristic
algorithm does not yield an approximation ratio better than Ω(log n). In the following, we
present a closely related family of instances which prove that Global-DK as well as MaxR followed
by DK88 both can perform as poorly as the approximation ratio Ω(log n).

Example 22. Let m := n, Ni := 1, ∀i ∈ {1, 2, . . . , n}. Let ε be positive but sufficiently small.

Rij :=


1 + ε, if i = j = 1;

1, if i = 1, j ≥ 2;
1
i , if i = j ≥ 2;
0, otherwise.

Our variant of DK93, Global-DK, when run on the above family of instances, would assign a
price of (1+ε) to every product and achieve the total profit 1+ε out of the possible

(∑n
i=2

1
i

)
+ 1
n .

The latter can be achieved by setting πi := 1/i, for i ∈ {1, 2, . . . , n}. Therefore, Global-DK

cannot have better than Ω(log n) approximation ratio. Similarly, we can show that in a related
family of instances, MaxR followed by DK88 achieves a profit of approximately 1, and therefore
this algorithm cannot hope for better than Ω(log n) approximation ratio in the worst-case either.

Using the above idea and the structures, we can provide a family of instances on which
Global-DK and related algorithms perform worse.

Example 23. Let m := n, Ni := 1, ∀i ∈ {1, 2, . . . , n}. Let ε be positive but sufficiently small.

Rij :=


1 + ε, if i = j = 1;

1, if i = 1, j ≥ 2;
1
2 , if i = j ≥ 2;
0, otherwise.

In the above family of instances, setting πi := 1
2 , for i ∈ {1, 2, . . . , n} yields a total profit

of n/2, while Global-DK achieves the total profit 1 + ε. Therefore, Global-DK cannot achieve
an approximation ratio better than Ω(n) (or Ω(m)). Next, we show that when the population
sizes, Ni, are not necessarily all the same, the worst-case behaviour of the algorithm Guru gets
worse as well.

Example 24. Let m := n, and set the reservation prices as follows

Rij :=

{
2(i−1), if i = j;

0, otherwise.

Finally, set the population sizes Ni to 2n−1, 2n−2, . . . , 20.
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Then selling all products at the same price always gives profit at most 2k(2n−k − 1) ≤ 2n,
but the optimal profit is n2n−1. Thus, the algorithm has a ratio of Ω(n) in this example.

Remark 25. Guruswami et al.’s algorithm has the property that every segment that buys some
product buys its most desired product. In this sense, it shares something in common with the
MaxR initialization heuristic.

Remark 26. Guruswami et al.’s solution can be found with Dobson-Kalish-style reassignments
in the following way. Initialize with MaxR heuristic. Then repeatedly compute optimal prices,
choose a segment that is inducing an edge from 0 that is tight, and reassign that segment to 0.
At some point during this procedure, the Guruswami et al. solution will arise.

We conclude this section with a performance analysis of Guru which is stated in terms of
population sizes and reservation prices. Our proof technique is based on treating the possible
input of the algorithm as variables in an optimization problem set up for computing the worst-
case performance ratio.

Proposition 27. The above heuristic, Guru, has the worst-case approximation ratio at most:

min

{
n∑
i=1

Ni∑i
`=1N`

, n−
n−1∑
i=1

R̄i+1

R̄i

}
.

Proof. The ratio is determined by the optimal objective value of the following optimization
problem (the variables are Ni and R̄i):

max
∑n

i=1NiR̄i(∑i
k=1Nk

)
R̄i ≤ 1, ∀i ∈ {1, 2, . . . , n}

R̄i+1 ≤ R̄i, ∀i ∈ {1, 2, . . . , n− 1}
R̄n ≥ 0,
Ni ≥ 0, ∀i ∈ {1, 2, . . . , n}.

To obtain the second bound, take optimal R̄i, compute the optimal Ni in terms of R̄i:

N1 =
1

R̄1
, Ni =

1

R̄i
− 1

R̄i−1
, ∀i ∈ {2, . . . , n},

and evaluate the objective function value. The first bound is very elementary but it can also be
obtained from the above problem, by taking optimal Ni, computing the corresponding optimal
R̄i, in terms of Ni and evaluating the objective function value.

This proposition and the last example prove that the worst-case approximation ratio is
Θ(n). However, for many interesting special cases, the above proposition may yield better
approximation ratios. For instance, (Ni may be arbitrary but) if

R̄i+1

R̄i
≥ 1− k

n− 1
, ∀i ∈ {1, 2, . . . , n− 1},

then

the approx. ratio ≤ (k + 1).



25

6 Computational Experiments

All experiments were run using our pricedown software on a 48-core AMD Opteron 6176 machine
with 256GB of memory running Red Hat Enterprise Linux 5.8. We compiled pricedown using
gcc-4.7.0. pricedown is single-threaded and all times reported are “user time.”

6.1 Basic Experiments

We compare the following heuristics:

• Guru: The algorithm described in Section 5 based on the heuristic by Guruswami et al.
[11].

• Guru: Algorithm Guru followed by iterating the operators Π and C until a fixed point is
found.

• MaxR Fast-DK: Fast-DK initialized with the MaxR heuristic.

• MaxR Global-DK: full line search algorithm Global-DK, initialized with the MaxR heuristic.

• Guru GRH-SubTree: Initialize with Guru and then use GRH-SubTree (the version of GRH
where the direction set is the set of incidence vectors of bottom-up subtrees of the shortest
path tree).

• Cell-Pierce:

1. Initialize using MaxR.

2. If a GRH-SubTree move improves the objective value, do it and go to 2.

3. If a Fast-DK move improves the objective value, do it and go to 3.

4. If a Global-DK move improves the objective value, do it and go to 8.

5. If a GRH-SubTree move improves the objective value, do it and go to 8.

6. If a GRH move using direction set {ej ± ek : 1 ≤ j ≤ n, 1 ≤ k ≤ n} with Rij − Rik =
πj − πk for some i improves the objective value, do it and go to 8.

7. Return.

8. Apply operator C then operator Π then go to 3.

We used two families of test data. For each m and n in {10, 20, 40, 60, 80, 100}, we generated
ten m × n problems by selecting each reservation price, segment size, and competitor surplus
uniformly among the integers between 0 and 1000. For these problems, we report the average
CPU time and the ratio of the heuristic objective value to the LP relaxation objective value.
These results are recorded in Table 6.1. We used the optimal objective value of the following
(lifted) LP relaxation:
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max
∑n

i=1

∑m
j=1Nipij

s.t. πk −
∑m

j=1 vijk ≥ 0 ∀i, k
vijk ≥ 0 ∀i, j, k
vijk ≥ (Rij −Rik)θij − pij ∀i, j, k
pij ≤ πj ∀i, j
pij ≤ R̄jθij ∀i, j
pij ≥ πj − R̄j(1− θij) ∀i, j
pij ≥ 0 ∀i, j∑

j θij ≤ 1 ∀i
θij ≥ 0 ∀i, j
πj ≥ 0 ∀j,

(2)

where R̄j = max
i
{Rij} and the null product, j = 0, is included above with the usual conventions

of this paper (π0 := 0, pi0 := 0, Ri0 := 0, ∀i).
The above LP relaxation uses the auxiliary variables pij and vijk. Some version of pij

variables seem necessary in formulating the bilinear terms πjθij in a MIP. The vijk variables
allow an efficient lifting of various aggregation strategies for the large number of constraints
resulting from this linearization. For some examples of such constraint aggregations, see [20].
Our lifted formulation above unifies such strategies and it is at least as strong as any LP
relaxation resulting from such aggregation strategies.

To analyze the formulation (2), rearrange all the constraints so that they are of the form

Ax+By ≤ b,

where the x vector is the concatenation of vectors θ, π and pij , and the vector y has the entries
vijk. Then, the feasible region of the effective formulation in the x-space is

P := {x : Ax+By ≤ b, for some y}.

The underlying linear inequalities representing the polyhedron P are defined by

u>Ax ≤ u>b,

where u is an extreme ray of the polyhedral convex cone

K := {z : Bz = 0, z ≥ 0}.

This association also indicates how one might design matrices A and B to include various classes
of integration strategies.

Note that Heilporn, Labbé, Marcotte, and Savard [14] proved that the formulation of [15] is
stronger than the formulation used by [20]. Our lifted formulation (2) given above is stronger
than all of these formulations. However, our formulation comes with a significant increase in
the number of variables and constraints.

We see from the results in the Table 6.1 that the largest instance in the table only took 0.078
seconds to solve with a provable guarantee of being at least 66.78% of the optimal value. When
the number of products, m, is much smaller than the number of customer segments and the
test data is generated as above, Global-DK produced better solutions than Fast-DK; however,
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in other cases, Fast-DK did very well including its speed. In the worst-case, the number of
iterations of Fast-DK is at least quadratic in n [7]; however, in our experiments (with randomly
generated data as well as with the real data, see Table 6.3) Fast-DK was indeed much faster
than its worst-case lower bound. Overall, our algorithms based on Generalized Reassignment
Heuristic, Guru GRH-SubTree and Cell-Pierce, performed in a more robust manner, generating
feasible solutions with objective value at least as good as the best of Fast-DK and Global-DK.
Moreover, in some cases, these good solutions were attained in a fraction of the time spent by
MaxR Global-DK. Based on the computational results, we also suggest that Guru can serve as a
robust initialization heuristic for optimal pricing problems.

6.2 Large-Scale Experiments

Our second data set is generated as follows. For each m in {200, 400, 600, 1000} and each n
in {5000, 10000, 20000, 40000}, we generated one m × n problem. To do this, we generated an
(m + 5) × 20 matrix V and a 20 × n matrix W choosing each entry uniformly from [−32, 32].
We formed W = UV , added normally distributed noise with mean zero and standard deviation
20, rounded to integers, and clamped negative entries at zero. The reservation price matrix is
the first m rows of W , the competitor surplus vector is the elementwise maximum of the last
five rows, and the segment sizes are drawn uniformly from the integers in [512, 1023]. We also
generated these instances with m ∈ {5000, 10000, 20000, 40000} and n ∈ {200, 400, 600, 1000}.
For these problems, we report the CPU time taken and the improvement over the Guru heuristic.
We put an 86400-second CPU time limit and an 32GB memory limit on each run. These results
are recorded in Table 6.2.

One does not market tens of thousands of distinct but interchangeable products to thou-
sands of distinct, identifiable customer segments in practice. However, being able to solve, even
heuristically, large-scale pricing problems allows one flexibility in modelling.

One might use a large number of products in order to price product bundles optimally (for
a classical MIP approach see [13]). In many applications, a company may offer only a small
number of products but sell the products in various bundles whose prices can be individually
set. (Indeed, declaring the price of a bundle as the sum of the prices of its ingredients rarely
leads to an optimal solution.) Within our framework, one can simply model each bundle as a
separate product; as the number of bundles increase so does the number of products, m, in our
formulation.

The large values of n can be explained by the large amount of data available to the companies
about their current and potential customers. Due to very detailed information gathered by the
companies about their customers (e.g., zip code) including the information gathered through
customer loyalty programs (what and when each customer is buying, their exact address, income
level, etc.) and the data mining tools allowing the analysis of these data, the companies are able
to divide their current and potential customers into very many customer segments. Moreover,
in our mathematical model, we had a unit demand assumption (each customer in a customer
segment buys at most one product), an obvious way to relax this assumption in practice is to
simulate the behaviour of a given customer by many customers in the mathematical model.
These tricks can increase the number of customer segments very significantly.

In addition, the readers may wonder whether it is reasonable to generate these large-scale
instances from small rank, e.g., rank 20, matrices. Indeed, our discussion above of why the
large-scale instances may be necessary to solve in practice explains that even though m and
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n themselves may be very large, usually there is a small number (like 20) of most important
driving/determining main factors for m as well as n. Clearly, the addition of random noise is
justified by the difficult nature of quantifying customer preferences.

Many other metrics could be considered here; we also performed experiments with many
different combinations of our algorithms during 2009–2012. In this section, we only reported the
results for the very few versions that we thought were most interesting. However, we provide
the C++11 source to pricedown, our input files, and our computation logs at
http://csclub.uwaterloo.ca/∼tmyklebu/pricing/ interested researchers may freely con-
struct and try out their favourite variants.

Our most sophisticated and resource consuming algorithm is Cell-Pierce. During our
preliminary experiments, for each cell, the algorithm considered Θ(m2) directions. This was
extremely time-consuming for the large instances. We then tried doing some preprocessing in
every iteration to determine first which constraints are tight for the current cell at the current
price vector and then use only the directions ei ± ej that arise from those inequalities. This
latter idea worked very well computationally and our reported results use this version.

The results in Table 6.2 suggest that the iterated operator part of the heuristic Guru does
not improve the objective value much over the results of the basic heuristic Guru when n is
much larger then m (even though the former can be very time consuming). On the other hand,
when m is much larger then n, Guru can improve the objective value as much as 23% over
that of Guru objective value. We see that the behaviours of the algorithms that we noticed
during our basic experiments (see Table 6.1) are still present in these large-scale experiments
and they are only magnified. A very promising result is that our most sophisticated heuristics
Guru GRH-SubTree and Cell-Pierce also continued their good behaviour observed in the basic
experiments, generating good feasible solutions within generally reasonable computation times.

6.3 Experiments using historical vacation package sales data

We ran the heuristics on data derived from historical vacation package sales. This is the same
data as in [20] and [19] and the procedure for deriving the needed reservation prices is described in
an appendix of [19]. We unfortunately cannot make these datasets available to other researchers
due to a confidentiality agreement with the data provider.

The methods in [19], when applied to the historical sales data that we have, produced one
dataset with 7117 customers and 234 products and another dataset with 9148 customers and
234 products. We generated “reduced” versions of these two datasets by clustering the customer
segments into various numbers of clusters and taking a cluster’s reservation price list to be the
weighted mean of its constituents’ reservation price lists. The clustering is unsophisticated; we
randomly assign the customers to clusters then hill-climb to minimise the sum of Euclidean
distances across clusters. In no case was the set of products changed.

One will note from the results in Table 6.3 that the heuristics Cell-Pierce, Guru, GRH-Subtree,
and MaxR Global-DK produce solutions with rather similar objective values on these cases. Even
though most of the patterns we noted in the experiments with randomly generated data are
present in Table 6.3, compared to the performance with randomly generated data, in the real
data case, Guru, and as a result Guru did worse, MaxR Global-DK did significantly better. MaxR
Global-DK also became more robust with the real data (partly due to the fact that ranges of
m and n seem to favor MaxR Global-DK in this case). Cell-Pierce was still the most robust;
however, due to the fact that the real data was easy for MaxR Global-DK, Cell-Pierce did not



30

n
m

G
u
r
u

M
a
x
R
G
l
o
b
a
l
-
D
K

M
a
x
R
F
a
s
t
-
D
K

G
u
r
u
G
R
H
-
S
u
b
T
r
e
e

C
e
l
l
-
P
i
e
r
c
e

50
0
0

2
00

10
0
.0

467
(.00

9
h

)
108.8830

(.096
h

)
75.5171

(.058
h

)
108.6972

(.102
h

)
109.1345

(.111
h

)
50

0
0

4
00

10
0
.2

450
(.02

2
h

)
111.8544

(.426
h

)
86.5640

(.124
h

)
111.2061

(.611
h

)
112.3437

(.564
h

)
50

0
0

6
00

10
0
.3

346
(.03

6
h

)
1
12.7227

(1.339
h

)
96.3856

(.249
h

)
112.4902

(1.045
h

)
113.7898

(1.115
h

)
50

0
0

1
0
00

10
0
.8

233
(.06

8
h

)
1
14.1830

(2.904
h

)
102.4372

(.752
h

)
113.6746

(3.234
h

)
115.2064

(3.107
h

)
100

0
0

2
00

10
0
.0

000
(.03

0
h

)
106.3786

(.254
h

)
54.2994

(.228
h

)
106.3399

(.246
h

)
106.6803

(.369
h

)
100

0
0

4
00

10
0
.1

346
(.10

9
h

)
1
09.1887

(1.127
h

)
75.1328

(.519
h

)
109.1368

(1.598
h

)
109.6671

(1.415
h

)
100

0
0

6
00

10
0
.0

365
(.10

6
h

)
1
09.8326

(4.907
h

)
79.3633

(.739
h

)
109.4865

(3.145
h

)
110.2880

(3.412
h

)
100

0
0

1
0
00

10
0
.3

057
(.24

5
h

)
1
11.4575

(12.736
h

)
83.8101

(2.017
h

)
111.3775

(9.760
h

)
112.4647

(15.479
h

)
200

0
0

2
00

10
0
.0

060
(.17

0
h

)
105.4225

(.719
h

)
47.3979

(.704
h

)
105.2912

(.710
h

)
105.4328

(.761
h

)
200

0
0

4
00

10
0
.0

410
(.31

6
h

)
1
07.3023

(3.008
h

)
53.5044

(1.581
h

)
107.1143

(5.327
h

)
107.4160

(4.147
h

)
200

0
0

6
00

10
0
.0

377
(.60

3
h

)
1
06.5057

(6.495
h

)
69.8042

(3.327
h

)
106.4201

(10.476
h

)
106.7048

(9.766
h

)
200

0
0

1
0
00

1
00.09

8
4

(1.077
h

)
1
08.0280

(20.442
h

)
80.8387

(6.184
h

)
107.5701

(23.993
h

)
107.5012

(23.995
h

)
400

0
0

2
00

10
0
.0

000
(.59

7
h

)
1
04.6436

(1.965
h

)
23.9715

(1.309
h

)
104.6112

(3.758
h

)
104.6882

(1.755
h

)
400

0
0

4
00

1
00.01

0
6

(2.146
h

)
1
05.8200

(7.715
h

)
41.6453

(4.888
h

)
105.6322

(10.800
h

)
105.8977

(9.772
h

)
400

0
0

6
00

1
00.00

8
5

(3.227
h

)
1
04.4826

(23.994
h

)
47.8095

(21.661
h

)
105.0925

(23.994
h

)
104.6178

(23.994
h

)
400

0
0

1
0
00

1
00.02

7
4

(7.235
h

)
9
0.3893

(23.994
h

)
77.8084

(23.993
h

)
104.1509

(23.994
h

)
104.1252

(23.994
h

)
2
0
0

5
0
00

123
.6

1
34

(0
h

)
135.5827

(0
h

)
155.7910

(.012
h

)
155.1074

(.004
h

)
157.0861

(.011
h

)
2
0
0

10
0
00

115
.0

7
73

(0
h

)
152.0927

(.003
h

)
157.8988

(.008
h

)
157.4648

(.007
h

)
160.4208

(.024
h

)
2
0
0

20
0
00

11
3
.2

464
(.00

1
h

)
145.2699

(.007
h

)
147.8242

(.025
h

)
147.5414

(.050
h

)
148.3224

(.137
h

)
2
0
0

40
0
00

11
7
.4

900
(.00

2
h

)
146.2617

(.048
h

)
150.4751

(.114
h

)
153.0789

(.134
h

)
153.7721

(.589
h

)
4
0
0

5
0
00

11
1
.4

507
(.00

1
h

)
136.3736

(.050
h

)
144.5134

(.020
h

)
142.3170

(.037
h

)
146.0311

(.055
h

)
4
0
0

10
0
00

11
9
.3

917
(.00

2
h

)
130.0758

(.042
h

)
143.9515

(.045
h

)
144.9777

(.036
h

)
146.0984

(.073
h

)
4
0
0

20
0
00

11
7
.7

649
(.00

5
h

)
135.5036

(.043
h

)
148.2505

(.197
h

)
148.1672

(.142
h

)
150.1365

(.213
h

)
4
0
0

40
0
00

11
0
.1

589
(.00

8
h

)
142.6810

(.031
h

)
149.1894

(.526
h

)
149.7208

(1.002
h

)
150.7921

(1.610
h

)
6
0
0

5
0
00

11
4
.3

141
(.00

3
h

)
126.6203

(.114
h

)
141.0762

(.082
h

)
140.5073

(.074
h

)
142.7010

(.116
h

)
6
0
0

10
0
00

11
3
.1

518
(.00

7
h

)
131.4402

(.070
h

)
142.7323

(.108
h

)
142.7636

(.118
h

)
145.7095

(.237
h

)
6
0
0

20
0
00

11
1
.4

827
(.01

0
h

)
137.9467

(.732
h

)
143.8965

(.265
h

)
142.1926

(.317
h

)
144.7289

(.703
h

)
6
0
0

40
0
00

11
0
.8

461
(.02

1
h

)
135.5177

(.472
h

)
140.6506

(.646
h

)
140.3603

(.246
h

)
142.5931

(1.987
h

)
10

0
0

5
0
00

11
2
.5

696
(.01

0
h

)
125.9860

(.873
h

)
132.0921

(.152
h

)
132.3481

(.264
h

)
135.3372

(.398
h

)
10

0
0

10
0
00

11
5
.5

102
(.02

1
h

)
1
28.0345

(1.270
h

)
136.4630

(.482
h

)
136.3058

(.495
h

)
139.2389

(.758
h

)
10

0
0

20
0
00

11
2
.7

683
(.03

2
h

)
1
22.4778

(1.159
h

)
138.9816

(1.351
h

)
138.2458

(4.716
h

)
141.5158

(2.937
h

)
10

0
0

40
0
00

11
5
.0

332
(.07

7
h

)
1
33.2337

(1.520
h

)
143.7260

(4.039
h

)
142.8655

(1.741
h

)
146.1982

(6.442
h

)

T
ab

le
2
:

Q
u

otien
t

of
solu

tion
valu

e
to

G
u
r
u

solu
tion

valu
e

an
d

com
p

u
tation

tim
e.



31

provide the same level of additional improvement.

7 Conclusions

We provided very efficient implementations of DK88 for optimal pricing problem and new heuris-
tic algorithms that perform significantly better under various conditions. Our ideas may also
be useful for other mixed integer programming problems where a similar decoupling of the
continuous and integer variables is present.
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[20] R. Shioda, L. Tunçel and T. G. J. Myklebust. Maximum utility product pricing models and algo-
rithms based on reservation prices. Computational Optimization and Applications 48 (2011) 157–198.
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