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Abstract. This paper develops three DEA performance indicators for the purpose of 

performance ranking by using the distances to both the efficient frontier and the anti-

efficient frontier to enhance discrimination power of DEA analysis. The standard DEA 

models and the Inverted DEA models are used to identify the efficient and anti-efficient 

frontiers respectively. Important issues like possible intersections of the two frontiers 

are discussed. Empirical studies show that these indicators indeed have much more 

discrimination power than that of standard DEA models, and produce consistent ranks. 

Furthermore, three types of simulation experiments under general conditions are carried 

out in order to test the performance and characterization of the indicators. The 

simulation results show that the averages of both the Pearson and Spearman correlation 

coefficients between true efficiency and indicators are higher than those of true 

efficiency and efficiency scores estimated by the BCC model when sample size is small. 
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1. Introduction 

Data envelopment analysis (DEA) was first introduced by Charnes et al. (1978), 

and has been widely used in performance or productivity evaluation. The main idea of 

the classic DEA is to first identify the production frontier on which the decision making 

units (DMUs) will be regarded as efficient. Then those DMUs not on the frontier will 

be compared with their peers on the frontier to estimate their efficiency scores. All the 

DMUs on the frontier are deemed to have the same level of performance and to 

represent the best practice. One of the main advantages of DEA is to allow the DMUs 

to have full freedom to select their weights, which are most favorable for their 

assessments to achieve the maximum efficiency score. This full flexibility of selecting 

weights is important in the identification of inefficient DMUs. However, this full 

flexibility may much reduce the discrimination power of DEA in the sense that there 

often exist too many DMUs on the frontier, which cannot be further ranked in the 

standard DEA models. When there are many input and output variables but only a few 

DMUs are available, decision makers (DMs) may find that all or most DMUs are 

efficient, and such results would be of little use for decision making. As Alder et al 

(2002, p.250) argued, “Often decision-makers are interested in a complete ranking, 

beyond the dichotomized classification, in order to refine the evaluation of the units.” 

Regarding the number of DMUs required in DEA models, Cooper et al. (2000, p. 

252) proposed a rule of thumb, which demands 

max{ ,3( )}n m s m s   , 

where n is the number of DMUs, m and s are the number of inputs and outputs. However, 

the rule above is sometimes violated in reality, because of small DMUs sample but 

many input and output variables. In such case, the standard DEA models are not as 

useful as expected. 

Therefore, many researchers have sought to improve the discrimination capability 

of standard DEA models. Now there are three main areas in DEA literature: The first 

area requires preferential or prior information from relevant decision-makers to 

enhance the discrimination ability of DEA models. For example, some scholars have 
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developed the weights restriction (Allen et al. 1997; Thanassoulis et al. 2004) or 

preference change methods (Liu et al. 2006; Zhang et al. 2009; Meng et al. 2008) to 

incorporate the prior information or value judgments of DMs into DEA models. The 

second area is based on cross-efficiency matrix, in which DMUs are evaluated by both 

itself and other peers (Sexton et al. 1986; Doyle and Green 1994). Although cross-

efficiency method is often very useful, in our opinion, the cross-efficiency scores have 

moved quite away from the basic principle of DEA. For instance in the case of one 

standard input variable, all the DMUs in fact use the same weights to compute their 

cross-efficiency scores. The third popular area is the super-efficiency method, which 

computes the score of the DMU being evaluated by excluding itself from the reference 

set (Banker and Gifford 1988; Andersen and Petersen 1993). It is clear that this model 

uses different reference sets to evaluate the efficient DMUs and inefficient DMUs. 

Furthermore, Banker and Chang (2006) reported that Andersen and Petersen’s (1993) 

procedure using the super-efficiency scores for ranking efficient observations had poor 

performance. 

Whilst each technique is useful in a specialist area, no one can be referred to as a 

complete solution to all problems. In this paper we explore another idea to enhance the 

discrimination power of DEA. People often have more than one reference point of view 

in judging DMUs. That is they do not just compare the DMUs with good references, 

but sometimes with bad references as well. In other words, on one hand a DMU is better 

if it is closer to the good references (or efficient frontier); on the other hand, it is also 

good if it is far from the bad references (or anti-efficient frontier). In this sense, the 

standard DEA models have just employed the best practice DMUs to construct the 

efficient frontier and haven’t fully taken the advantage of the information implied in 

the data. The earliest work on anti-efficient frontier can be traced to “Inverted” DEA 

model proposed by Yamada et al. (1994). Compared to the standard DEA models which 

evaluate DMUs from the perspective of optimism, “Inverted” DEA model is to evaluate 

the performance of DMUs from the perspective of pessimism. Recently, some scholars 

employed Inverted DEA model to exploit more information from the data in their 

applications. For example, Takamura and Tone (2003) employed the DEA and Inverted 
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DEA with weights restriction to solve the problem of site selection for the relocation of 

several government agencies outside of Tokyo. Paradi et al. (2004) used DEA and 

Inverted DEA models, which are so called “Worst Practice DEA” in the paper, to 

identify the worst practices in banking credit analysis. By using some layering or 

peeling technique (Thanassoulis 1999), the proposed approach increased the 

classification accuracies through the elimination of self-identifiers. Johnson and 

McGinnis (2008) employed both the efficient and anti-efficient frontiers to identify 

outliers and thus improve the accuracy of estimators in the second stage regression 

analysis.   

In addition, some scholars tried to construct some new efficiency measures based 

on DEA and Inverted DEA models. Entani et al. (2002) employed both DEA and 

Inverted DEA models to obtain the upper and lower bound of interval efficiency of 

DMUs. They argued if the range of the interval efficiency is large, then it means that 

although the DMU performs good from the optimistic viewpoint, it performs bad from 

the perspective of pessimistic. Then they used the interval efficiency to obtain a partial-

order relation of DMUs. Wang and Luo (2006) and Wu (2006) constructed the best and 

worst virtual DMUs as TOPSIS does (Hwang and Yoon 1981), and simply add them 

into the existing DMU set to carry out further DEA and Inverted DEA analysis using 

the extended data set. However, it may not be a wise idea because the Production 

Possibility Set (PPS) will be greatly changed in this case. Amirteimoori (2007) 1 

employed the Inverted DEA models to define the anti-efficient frontier. Then he used 

slacks based DEA and Inverted models to measure the weighted L1–distances from 

DMU0 to both efficient and anti-efficient frontier. Finally, he defined a new combined 

efficiency measure based on the two distances to rank DMUs. However, since the 

efficiency scores of these DMUs on efficient frontier and anti-efficient frontier are 1 

and -1 respectively, this combined efficiency measure is not able to improve 

discrimination power of DEA models either. Furthermore, there is no justification that 

the combined efficiency measure performs better than existing ones.  Zhou et al. (2007) 

                                                        
1 Note: In our view, there are some typos (errors) on inequalities in model (8) and model (10) in Amirteimoori 

(2007).  
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used the DEA model without explicit inputs (see, e.g., Meng et al. 2005, Liu et al. 2011) 

to combine the efficient and anti-efficient measures to rank the DMUs. However we 

can easily verify that their approach cannot increase significantly the discrimination 

power of DEA models.  

In this paper, we develop another DEA approach based on the idea of utilizing both 

good and bad frontiers to enhance discrimination power of DEA. The remainder of the 

paper is organized as follows: in Section 2, we discuss the approaches that can identify 

the anti-efficient frontier of DMUs. Furthermore, in this section, we introduce three 

composite performance indicators to combine the information from both best and worst 

viewpoints; In Section 3, we provide two empirical studies to illustrate the features of 

the indicators, and then we carry out simulation studies to examine the performance of 

our composite indicators in Section 4. Finally, conclusions and discussions are given in 

Section 5.  

2. Ranking DMUs via both Efficient and Anti-efficient Frontiers 

In this section we first outline our approach. For simplicity, we will illustrate the 

idea based on the radial measurement. Let 
1 2( , ,..., )mX x x x

 
and 

1 2( , ,..., )sY y y y  

be input and output vectors of m and s dimension respectively. Then Production 

Possibility Set (PPS) is defined by 

{( , ) :  can produce }PPS X Y X Y . 

The boundary of PPS is referred to as production technology or production frontier. 

Note, this unobservable production frontier is called true frontier or true efficient 

frontier hereinafter. When output is single, the production frontier is called production 

function in economic literature. DMUs which are technically efficient operate along the 

frontier, while those technically inefficient DMUs operate at points in the interior of 

PPS. Thus it is rational to rank DMUs according to their distances to the true frontier.  

Let {( , ) | 1,..., }j jx y j n  be a group of observed input and output data. Based on 

such observations, DEA models construct a piecewise linear production frontier, a non-

parametric estimate of the unobservable true frontier. Then DEA models measure the 
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efficiency of a DMU via its distance to the estimated frontier. Here we restate the input-

oriented CCR model with slacks of inputs and outputs as follows.  
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where   is a non-Archimedean infinitesimal.  

In theory, Banker (1993) provided a formal statistical foundation for DEA and 

argued that while the efficient frontier is biased below the true efficient frontier for a 

finite sample size, the bias goes zero for large samples. However when sample size is 

small, the estimated frontier could be far away from the true one so that the efficiency 

scores of DMUs are much higher than their true efficiency scores. For instance, many 

DMUs are on the estimated frontier and cannot be discriminated although some of them 

are in fact quite far from the true frontier. 

2.1 The Main Ideas  

To solve such a problem, one of the possibilities is to utilize information of anti-

efficient frontier. Anti-efficient frontier is the worst practice frontier constructed by 

worst practice DMUs. To identify anti-efficient frontier, we here simply treat the inputs 

and outputs of DMUs both as undesirable variables, and then use some DEA models 

with undesirable inputs and outputs. The idea is simple: if the inputs and outputs of 

DMUs are undesirable, one should maximize the inputs and minimize the outputs to 

find the efficient frontier. Using radial measurement and input orientation, this idea 

leads to the following Inverted DEA (CCR type) model: 
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Here *
w

h  measure the degree of inefficiency or anti-efficiency by radial 

measurement. Similarly, we can also have the following output oriented DEA model: 
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If we wish to consider the slacks of inputs and outputs, we can then introduce some 

variables ,i rs s  , and transform model (2) to the following model:  

        

1 1

0

1

0

1

*
=  Max     ( )

, 1,..., ,

. . , 1,..., ,   

, , 0,  1,..., .

m s

i r

i r

n

ij j i i

j

n

rj j r r

j

j i r

w
h s s

x s x i m

s t y s y r s

s s j n

 

 





 

 









 

 


  




  

  



 




            (4) 

Let us emphasize that there are many different approaches to deal with undesirable 

variables in DEA (see e.g., Liu et al 2010 for a summary). However here we only 

explore this simpler approach.  

Based on the Inverted DEA models above, we can obtain the Anti-Production 

Possibility Set (APPS) as follows: 
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Definition 1: Anti-efficient frontier is the boundary of APPS. 

Obviously, if *
w

h =1 in model (1), then the DMU is on the anti-efficient frontier. 

Thus we introduce another two definitions. Note, *
w

h  is called anti-efficiency score in 

following sections. 

Definition 2: DMU0 is weakly anti-efficient, if and only if *
w

h =1 in model (2). 

Definition3: DMU0 is strongly anti-efficient, if and only if *
w

h =1, and 

* * 0i rs s    in model (4). 

Theorem 1: The optimal value of model (3) is the reciprocal of that of model (2). 

Proof: If we let 
' /j j   , then we can rewrite model (2) as follows: 
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By changing the object function   to 1/ , the model (5) can be transformed to: 
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Hence if *  is the optimal solution of model (6), it is also the optimal solution of 

model (5). And then it is also the optimal solution of model (2). Hence the optimal value 

of Model (6) is the reciprocal of that of model (2). 
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If we let 1/  , then model (6) can be written as model (3) that is the optimal 

value of model (3) is also the reciprocal of that of model (2).  

Let us note that the dual model of model (2) reads: 

             

0 0Min    
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. .      
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t t

t t

j j

u y v x

u y v x
s t
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 
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               (7) 

where , , ,j jx y v u
 
are the inputs, outputs of DMUj and the corresponding weights 

respectively. Due to minimizing the ratio score, the Inverted DEA model (7) can be 

viewed to evaluate the performance of DMUs from the perspective of pessimism. 

   To illustrate the geometric meanings of the efficient and anti-efficient frontiers, we 

assume there are only two inputs and one output, and all of them are desirable. As 

Figure 1 shows, contrary to the DEA models using the best practice DMUs A, B, C and 

F to construct the efficient frontier, Inverted DEA model (2) employ the worst practice 

DMUs A, D, E and F to construct the anti-efficient frontier. Therefore, we can let the 

DMU being evaluated compare with virtual or real DMUs located on both efficient and 

anti-efficient frontiers. For instance, we can identify the peers G’ and G’’ of DMU G, 

which are separately located on efficient and anti-efficient frontiers. Then we can 

measure the distances from G to G’ (or G”) by using radial measurement OG’/OG (or 

OG”/OG). The larger OG’/OG, DMU G being evaluated is nearer to efficient frontier, 

and thus performs better. Meanwhile, the larger OG”/OG, DMU G is farther from the 

anti-efficient frontier, and thus performs better. As for these efficient DMUs A, B, C 

and F, A and F can be regarded worse than the other efficient DMUs on the efficient 

frontier as A and F are also on the anti-efficient frontier. 
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   Therefore, by utilizing the anti-efficient frontier generated by the worst practice 

DMUs, we can obtain more information about performance of DMUs, and thus enhance 

power of discrimination for DEA analysis. In the following section, we will present 

three intuitive approaches based on the radial measurement to utilize this extra 

information in DEA analysis. 

2.2 DEA Performance Indicators 

There are various possible ways to utilize the information of both the efficient and 

anti-efficient frontiers. However, to examine such idea, here we only propose three 

intuitive approaches to aggregate the radial based efficiency score * *,  b wh h  of the input-

oriented CCR (BCC) and Inverted CCR DEA models. It is possible to adopt the idea 

used in TOPSIS method to construct indicators of the form: db/(dg+db), where dg and 

db are the distances to the good and bad frontiers respectively. However it is clear that 

these indicators will take the same values on the two frontiers so that it is impossible to 

produce a full rank for their performance. To this end we have to use different ideas.  

In the first approach, we define a composite DEA indicator as * * *

I b wh h h    , 

where   is the non-Archimedean infinitesimal. Hereinafter, *

Ih  is called “CDI-I”. 

Naturally, people may argue it is more important to be close to the best frontier, and 

less important to be far from the worst frontier. Hence if people think the efficiency 

score *

bh  is overwhelmingly more important than anti-efficiency score *

wh , then we can 

Figure 1: Distances to Efficient and Anti-Efficient Frontiers 
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use * * *

I b wh h h     to rank the DMUs with the Lexicographic order. For example, if 

we wish to evaluate DMU1 and DMU2, we first use *

bh  to compare their performance. 

If * *

1 2b bh h , then DMU1 is considered to perform better than DMU2.  Otherwise if 

* *

1 2b bh h , then we use * wh  to compare DMU1 and DMU2. If * *

1 2w wh h , then DMU1 

performs better than DMU2. Note that this index is almost the same as the standard 

DEA score except for those efficient DMUs.  

In the second approach, we treat the two scores more equally and define another 

composite DEA indicator by combining the two as * * *[ (1 1/ )]/ 2II b wh h h   , so called 

“CDI-II”.  

Let us note that it may not be a good idea to directly use * *+ b wh h  because the ranges 

of *

bh  and *

wh  are different. The range of *

bh  is (0, 1] and that of *

wh
 
is [1, ) . We 

wish the latter term to have the same orientation as *

bh  (i.e. the larger is better). 

Therefore, we need to use some transformation before we can add the two scores. The 

range of the score *

wh
 
is normally [1, ) , and 1/ *

wh  is the optimal value of the 

output-oriented anti-efficient CCR DEA models according to Theorem 1. Thus it is 

reasonable to apply transformation 1 *1/ wh  as we have used in this paper. In this case 

if DMU0 is on the anti-efficient frontier, then * 1wh 
 
and * * / 2 1/ 2II bh h  . If a DMU 

is on both the efficient and anti-efficient frontiers like A and F in Fig.1, we have * 1bh  , 

* 1wh 
 
and then * 1/ 2IIh  2. And if a DMU is on the efficient frontier but not on the 

anti-efficient frontier, then its score will be higher than 1/2, and thus it performs better 

than these DMUs located on both the efficient and anti-efficient frontiers.  

As for CDI-I, *

bh  has the dominate importance with respect to *

wh . For CDI-II, we 

can show that *

bh  still plays a more important role than *

wh  by examining the partial 

derivatives of the CDI-II as follows:  

                                                        
2 It should be noted that if there is a need to further rank the DMUs on both efficient and anti-efficient frontiers, we 

could use super-anti-efficiency as the auxiliary information as discussed in subsection 2.3.  
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* * 1/ 2II bh h   , and * * * 21 [2( ) ]II w wh h h   . 

Since the range of *

wh
 
is [1, ) , it is clear that * * * *

II w II bh h h h     . That is the 

marginal increase in CDI-II remains constant with respect to efficiency score, but it is 

diminishing with respect to anti-efficiency score.  

To have more equal roles for the two distances, we may adopt the third approach to 

define the “CDI-III” as * * * 1/ 2[ ]III b wh h h  . If we use CDI-III, *

bh
 
and *

wh  can be 

compensated more equivalently: the score will not change when *

bh  increases, but *

wh  

decreases in the same percentage respectively. This is not true for CDI-II.  

In many scenarios, CDI-II and III are reasonable. For instance, suppose there are 

many homogeneous firms in one industry. Obviously, these firms on the anti-efficient 

frontier can be regarded as the firms with most inefficient operations (worst practices). 

Therefore such firms have much more risks to be driven out of market than those firms 

far from anti-efficient frontier. Therefore, investors will favor those firms either on the 

efficient frontier (leading in some aspects) or far from the anti-efficient frontier (less 

possibility of falling into bankruptcy). Moreover, the results of the simulation 

experiments in Section 4 shows that CDI-II and III are more reliable measures than the 

single BCC model with respect to true efficiency if the sample size is small (less than 

50).  

2.3 Intersection of Efficient and Anti-Efficient Frontiers 

From Figure 1, we can imagine that sometimes the efficient and anti-efficient 

frontiers do meet. In fact this was quite normal – it means that a unit did very well in 

some aspects but poorly in others. This however may reduce the discrimination power 

of our method. In this section we will address this issue. We will discuss a sufficient 

condition in the appendix of this paper to ensure that the efficient and anti-efficient 

frontiers will not intersect so that we can make sure that our method is meaningful in a 

particular application. See Appendix A for details.  

From Figure 1, we can imagine that sometimes the efficient and anti-efficient 

frontiers do meet. In fact this was quite normal – it means that a unit did very well in 
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some aspects but poorly in others. This however may reduce the discrimination power 

of our method. In this section we will address this issue. However in real applications, 

often there are DMUs that are on both the efficient and anti-efficient frontiers, as shown 

in the following examples.  

Example 1: In May 1998, the Ministry of Education of China (MOE) implemented 

the “Educational Revitalization Action Plan for the 21st Century”, which focuses on 

creating world-class and high-level universities in China. This is referred as the" 985 

"project. In this example, we select 7 Project 985 universities in the southeast as the 

DMUs to be evaluated, which are Fudan University (FDU), Tongji University (TJU), 

Shanghai Jiaotong University (SJTU), East China Normal University (ECNU), Nanjing 

University (NJU), Southeast University (SEU), and Zhejiang University (ZJU). These 

7 universities are all top-level universities and located at the southeast of China, where 

the level of economic development is among the highest in China. The input-output 

data of the science and technology (S&T) activities of these universities in 2010 are 

shown in Table 1 as follows.  

Table 1: Input-output data of the S&T activities of 7 universities in 2010. 

Unive

rsities 

Input indicators Output indicators CCR  

(Model 

1) 

Inverte

d CCR 

(Model 

4) 

STAF

F 

(Num

ber)  

FUND 

(RMB in 

thousand

s)  

Monog

raph(N

umber) 

Paper 

(Number

) 

TT income 

(RMB in 

thousands) 

Award 

(Numb

er) 

FDU 7670 1747498 37 8615 43575 31 0.696 1 

TJU 5418 1688046 15 5717 2270 38 0.702 1 

SJTU 12914 2722304 99 19899 166995 79 1 1.383 

ECN

U 1159 349159 7 1557 680 5 

0.742 1 

NJU 1856 897794 14 5012 3376 17 1 1.046 

SEU 3753 1471192 40 6112 108086 26 1 1.021 

ZJU 13138 3290607 36 16263 47055 135 1 1 

Source: S & T statistics compilation in 2011.  

We can see that Zhejiang Univ. is on both the efficient and anti-efficient frontiers. 

Zhejiang Univ. is one of four best universities in China. The possible explanation of it’s 

on the anti-efficient frontier is that it may have gone exceedingly to achieve its 

superiority in some areas, and this has brought some side effects. We can treat it as a 
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normal DMU or a special unit. Here we provide two possible approaches: The first one 

is to treat it indifferently with other DMUs, i.e., we can use the performance indicators 

defined in Section 3 directly. In such a case the DMUs on both the efficient and anti-

efficient frontiers will have the same performance scores and cannot be discriminated. 

The other one is to consider it as an outlier in the evaluation and treat it differently. 

Therefore we apply the super anti-efficiency model to compute their anti-efficiencies. 

Thus we have the following procedure to have a full ranking of DMUs:  

Step 1: Compute the super-anti-efficiencies of the intersected DMUs using the 

following super-anti-efficiency model (8):  
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  

  



 




              (8)  

Step 2: Use the super-anti-efficiencies 
*

'w
h  obtained from model (8) as the 

auxiliary information to further rank the DMUs on both efficient and anti-efficient 

frontiers for our proposed performance indicators.  

The two possible solutions can be selected according to the practical needs whether 

a totally full ranking is needed.  

3. Empirical Studies 

In this section, we apply the three indicators to two empirical examples to show 

their discrimination abilities. It is concluded from the simulation analysis below that 

the above DEA indicators have better discrimination power when using the CCR anti-

efficiency DEA models. Thus we will always use the CCR anti-efficiency DEA models 

in our empirical studies.  

As the first case, here we reconsider the Example 1 mentioned in Section 2.2. The 
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efficiency and anti-efficiency scores of the universities in the input-oriented CCR 

model (1) and the Inverted CCR model (4) are shown in Table 1. We can see that 

Zhejiang Univ. is on both the efficient and the anti-efficient frontiers. Following the 

analysis in Section 2.3, we will use both two possible treatments on this university. 

Firstly, we will compute three performance indicators using its efficiency and anti-

efficiency directly. Secondly, we will use the super-anti-efficiency model (8) to 

compute its anti-efficiency. Following the procedure proposed in Subsection 2.3, we 

have the following steps to rank these universities.  

Step 1: Compute the super-anti-efficiency of Zhejiang Univ. using the super-anti-

efficiency model (8). We can see its super-anti-efficiency is 0.990.  

Step 2: We also compute the three indicators. The results of the CCR model, and 

the CDI-I, II and III are illustrated respectively in Table 2.  

Table 2: Results and ranks of 7 universities using different models.  

Universities 

CCR CDI-I CDI-II CDI-III 

*
b

h  
Rank 

1 

*
w

h   
Rank 

2 

*
II

h  
Rank 

3 

*
III

h  
Rank  

4 

SJTU 1 1 1.383   1 0.638  1 1.176  1 

NJU 1 1 1.046   2 0.522  2 1.023  2 

SEU 1 1 1.021   3 0.510  3 1.010  3 

ZJU 1 1 
1 

/0.990a 
4 0.500/0.990b 4 1/0.990c  4 

ECNU 0.742 5 1   5 0.371  5 0.861  5 

TJU 0.702 6 1   6 0.351  6 0.838  6 

FDU 0.696 7 1   7 0.348  7 0.834  7 
a. 1  /0.990 denotes the values obtained from anti-efficiency model (4) with   and super-anti-

efficiency model (8) respectively.  
b. 0.500/0.990 denotes the value of CDI-II (0.500) with the super-anti-efficiency (0.990) as the 

auxiliary information.  
c. 1/0.990 denotes the value of CDI-III (1) with the super-anti-efficiency (0.990) as the auxiliary 

information.  

The performance of SJTU, NJU, SEU and ZJU cannot be discriminated if we only 

rank the DMUs according to the efficiency scores of the CCR model, although we can 

easily have the full ranking of these DMUs by applying the CDI-I, II, and III. In 

summary, we can conclude that by utilizing the information of anti-efficient frontier, 

our indicators have increased the discrimination power of DEA models. We now discuss 
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the main differences of the three indicators. It is clear that the CDI-I is most suitable 

for producing full ranks completely compliant with the classic DEA results. Essentially, 

the CDI-II and III are arithmetic and geometric means of the efficiency and anti-

efficiency scores respectively. Here we firstly visualize the two performance indicators. 

Without loss of generality, we set the ranges of efficiency scores and anti-efficiency 

scores as [0, 1] and [1, 10]. Thus we have the following Figure 2 and 3, which can 

illustrate the features of these two indicators.  

 

Figure 2: Visualization of CDI-II.        Figure 3: Visualization of CDI-III. 

From Figure 2 and 3, we can see that the visual shapes of these two indicators are 

quite similar. In fact it is clear from the empirical results that the correlations between 

these two indicators are very high. However, we can see that the maximal value of CDI-

II is quite lower than that of CDI-III. The main reason is that the ranges of efficiency 

scores and anti-efficiency scores are [0, 1] and [1, 10] respectively. Based on this, we 

can see from these two figures that anti-efficiency scores in the CDI-III play a more 

important role than those in the CDI-II. Thus we can deduce that the CDI-III 

emphasizes anti-efficiency scores while the CDI-II emphasizes more the efficiency 

scores. Therefore the DMs can select the two indicators according to the real needs. In 

the following section we will discuss when the CDI-I or the CDI-II (CDI-III) should be 

used in real applications.  

Next, we apply the three performance indicators on another empirical example.  

The data set of this example comes from Zhu (2003), which is shown in Table 3. 

Furthermore, we compare the results with the results using the method proposed by 
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Amirteimoori (2007), which defined new combined efficiency measures based on the 

weighted L1–distances to both efficient and anti-efficient frontiers to rank DMUs.  

Table 3: Fortune global 500 companies 

Company 
Inputs Outputs 

Assets Equity Employees Revenue Profit 

Mitsui 68770.9 5553.9 80000 181518.7 314.8 

Itochu 65708.9 4271.1 7182 169164.6 121.2 

General Motors 217123.4 23345.5 709000 168828.6 6880.7 

Sumitomo 50268.9 6681 6193 167530.7 210.5 

Marubeni 71439.3 5239.1 6702 161057.4 156.6 

Ford Motor 243283 24547 346990 137137 4139 

Toyota Motor 106004.2 49691.6 146855 111052 2662.4 

Exxon 91296 40436 82000 110009 6470 

Royal Dutch/Shell Group 118011.6 58986.4 104000 109833.7 6904.6 

Wal-Mart 37871 14762 675000 93627 2740 

Hitachi 91620.9 29907.2 331852 84167.1 1468.8 

Nippon Life Insurance 364762.5 2241.9 89690 83206.7 2426.6 

Nippon Telegraph &Telephone 127077.3 42240.1 231400 81937.2 2209.1 

AT&T 88884 17274 299300 79609 139 

At first, we employ the input-oriented CCR model (1) and anti-efficient CCR model 

(4) to calculate the efficiency and anti-efficiency scores. Then we use the three DEA 

performance indicators. With the intention to find the characteristics and differences of 

these models, we ranked the DMUs according to the scores from the different models. 

As shown in Table 4, the ranks R1, R2, R3 and R4 are generated by the CCR efficiency 

score, CDI- I, CDI- II and CDI- III respectively.  

It is clear that both the CCR and Inverted CCR models have weaker power of 

discrimination in this empirical study. Among 14 companies, 7 companies are efficient 

in the CCR model, and 6 companies are anti-efficient. As CDI- I used the efficiency 

and anti-efficiency scores of CCR and inverted CCR models (
* * *

I b wh h h    ) with 

Lexicographic order to rank DMUs, it is clear that the ranks of CDI- I do not conflict 

with those from the CCR model. Furthermore, CDI- I can almost discriminate these 

efficient DMUs identified by CCR model.  

Table 4: Results and ranks of companies using different models 

Company CCR CDI- I CDI- II CDI- III 
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*
b

h  Rank1 
*
w

h   Rank2 
*
II

h  Rank3 
*
III

h  Rank4 

Mitsui 1.00 1 2.93  1 0.83 1 1.71 1 

Sumitomo 1.00 1 2.68  2 0.81 2 1.64 2 

Exxon 1.00 1 1.45  3 0.65 3 1.20 4 

General Motors 1.00 1 1.22  4 0.59 6 1.10 6 

Itochu 1.00 1 1.18  5 0.58 7 1.09 7 

Wal-Mart 1.00 1 1.00  6 0.50 8 1.00 8 

Nippon Life 1.00 1 1.00  6 0.50 8 1.00 8 

Marubeni 0.97 8 1.40  8 0.63 4 1.17 5 

Royal Group 0.84 9 1.00  9 0.42 11 0.92 11 

Ford Motor 0.74 10 1.31  10 0.49 10 0.98 10 

Toyota Motor 0.52 12 1.07  12 0.30 12 0.75 12 

Hitachi 0.39 13 1.00  13 0.19 13 0.62 13 

Nippon T&T 0.35 14 1.00  14 0.17 14 0.59 14 

AT&T 0.27 15 1.00  15 0.14 15 0.52 15 

It is interesting to see that the *,bh * wh  scores of Wal-Mart and Nippon Life Insurance 

both are 1 in the CCR model and Inverted CCR model, which implies that they are 

located on both the efficient and anti-efficient frontiers. Hence, it may not be reasonable 

if we only rank the DMUs according to the scores of the CCR model. However, if we 

apply the CDI- I, II, and III, the ranks obtained respectively are 6th, 8th, and 8th, which 

are much lower than the ranks obtained from CCR model. The following table shows 

correlation among these results.  

Table 5: The Spearman’s correlation Coefficient of 4 ranks 

Coefficient Rank R1 Rank R2 Rank R3 Rank R4 

Rank R1 1    

Rank R2 0.950** 1   

Rank R3 0.769** 0.871** 1  

Rank R4 0.731** 0.832** 0.989** 1 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

As shown in Table 5, the Spearman’s correlation coefficient of Rank 1 and Rank 2 

is 0.950, which implies that the results form CCR and CDI-I are closely correlated as 

they are. Meanwhile, the CDI- II and III also show higher correlations.  

If we would like to further rank the Wal-Mart and Nippon Life Insurance and have 
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a full ranking of those companies, we can use follow the procedure proposed in 

Subsection 2.3. Therefore, we have the following results in Table 6:  

Table 6: Full ranking of companies.  

Company 

CCR CDI- I CDI- II CDI- III 

*
b

h  Rank 1 
*
w

h   
Rank 

2 

*
II

h  Rank 3 
*
III

h  Rank 4 

Mitsui 1.00 1 2.93  1 0.83 1 1.71 1 

Sumitomo 1.00 1 2.68  2 0.81 2 1.64 2 

Exxon 1.00 1 1.45  3 0.65 3 1.20 4 

General 

Motors 
1.00 1 1.22  4 0.59 6 1.10 6 

Itochu 1.00 1 1.18  5 0.58 7 1.09 7 

Wal-Mart 
1.00 1 

1.00

/0.56 
6 0.50/0.56 8 1.00/0.56 8 

Nippon Life  
1.00 1 

1.00

/0.40 
7 0.50/0.40 9 1.00/0.40 9 

Marubeni 0.97 8 1.40  8 0.63 4 1.17 5 

Royal Group 0.84 9 1.00  9 0.42 11 0.92 11 

Ford Motor 0.74 10 1.31  10 0.49 10 0.98 10 

Toyota Motor 0.52 12 1.07  12 0.30 12 0.75 12 

Hitachi 0.39 13 1.00  13 0.19 13 0.62 13 

Nippon T&T 0.35 14 1.00  14 0.17 14 0.59 14 

AT&T 0.27 15 1.00  15 0.14 15 0.52 15 

From Table 6 we can see we have discriminate the two DMUs (Wal-Mart and 

Nippon Life Insurance) and have a full ranking of all DMUs.  

Furthermore, we compare the above results in Table 6 with the results of the method 

proposed by Amirteimoori (2007). The results are shown in the following Table 7. From 

this table, we can see that, although Amirteimoori (2007) proposed interesting new 

combined efficiency measures based on the weighted L1–distances, there still are some 

drawbacks: (1) the new efficiency measure has low discrimination in the sense that it 

cannot rank fully the DMUs to be evaluated. For example, using the efficiency measure 

e0
∗ , the scores of all efficient DMUs are 1 and the scores of all full-inefficient DMUs 

are all -1. (2) The super-efficiency measure se0
∗  may suffer infeasibility problem. (3) 

The DMUs on the intersection of both efficient and anti-efficient frontiers are measured 

as -1 in either efficiency measure e0
∗  or the super-efficiency measure se0

∗ , i.e., the 

super-efficiency se0
∗  in Amirteimoori (2007) cannot discriminate the full-in-efficient 
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DMUs on anti-efficient frontier.   

Table 7. Comparison of different measures.  

Company u0
+ u0

− 
Efficiency measure e0

∗  in 

Amirteimoori (2007) 

Mitsui 0.0000  370178.3373  1.0000  

Itochu 0.0000  34261.7511  1.0000  

General Motors 0.0000  200222.7829  1.0000  

Sumitomo 0.0000  113049.5835  1.0000  

Marubeni 13701.1234  52047.3682  0.5832  

Ford Motor 197030.5311  164844.1294  -0.0889  

Toyota Motor 76620.3828  126479.3805  0.2455  

Exxon 0.0000  175864.5245  1.0000  

Royal Dutch/Shell Group 18072.0558  0.0000  -1.0000  

Wal-Mart 0.0000  0.0000  1.0000  

Hitachi 240457.6222  0.0000  -1.0000  

Nippon Life Insurance 0.0000  0.0000  1.0000  

Nippon Telegraph & 

Telephone 146104.7503  0.0000  

-1.0000  

AT&T  233171.1797  0.0000  -1.0000  

 

4. Simulation Study 

To further examine the effectiveness of our indicators, we design three Monte Carlo 

experiments in this section. In each experiment, we firstly generate data from a known 

data generating process as described in Section 4.1, and then conduct 2000 Monte Carlo 

trails.  

4.1 Data Generating Process 

   Although traditionally DEA was regarded as non-statistical approach, Banker and 

Natarajan (2008) provided a coherent Data Generating Process (DGP) for the two-stage 

analysis based on DEA. Following the line of Banker and Natarajan (2008), we employ 

two similar data generating processes in our simulation study. At first, we assume that 

the inputs and output data of DMUs are generated from the true production function 

( )x  and an error term  . The production function ( )x  is monotone increasing and 

concave with respect to inputs X. Thus, we can specify the following equation to relate 
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the inputs vector X to a single output y:  

                    ( )y x e  ,                        (9) 

   Then we assume that the error term   is composed of a one-sided distributed 

technical inefficiency u  and a two sided distributed random noise v , that is v u   . 

The specification of error term   is analogous to composed error formulations in 

parametric stochastic frontier models.  

   In our study, the technical inefficiency u  is drawn from a half normal distribution, 

that is 2~| (0, ) |uu N  . And the parameter 2

u  is generated from a uniform distribution 

over the interval [0, 0.1998] and so the mean efficiency given by ( )E  

exp( 2 / )u 
 
is between 0.7 and 1. Meanwhile, the random noise v  is generated 

from a two-sided truncated normal distribution 2(0, )vN   with upper and lower 

bounds at 6 v  
and 6 v . The 

v  is sampled from a uniform distribution over the 

interval [0.02, 0.06]. 

    Next we will separately use different specifications of true production function 

( )x  to conduct three simulation experiments as described from Section 4.2 to 4.4. 

4.2 Simulation Experiment I  

Banker and Chang (2006) employed the following “shifted” Cobb-Douglas 

function in their simulation study: 

          
   

1

i
m

i ii
x x


 


  ,                     (10) 

where 5i  , the inputs ix  are drawn randomly from independent uniform 

distributions on the interval [10, 20]. In our simulation study, if the inputs are two, then 

the coefficients 1  and 2  are generated randomly from independent uniform 

distributions on the interval [0.4, 0.5]; Otherwise if the inputs are three, then the 

coefficients 1  and 2  are generated randomly from independent uniform 

distributions on the interval [0.2, 0.3], while 3  is sampled randomly from 
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independent uniform distributions on the interval [0.2, 0.4] . Because the sum of 
i  is 

less than one, the production function ( )x  is concave and satisfies the same 

assumption of variable return to scale as BCC DEA model. 

Next, we need to generate N observations for each Monte Carlo trial. First, we 

randomly draw an integer value for N and values for 
u , 

v  and 
i . Then we 

randomly generate N observations of the inputs ikx , and the true efficiency ku

k e 
 , 

k= 1,…, N. Finally, we obtain the observed output ky  by the production function (10). 

In this manner we obtain a sample which contains N observations 1( , ,..., )k k mky x x . 

4.3 Simulation Experiment II 

Simar and Wilson (2007) employed the following function to represent a concave 

and monotone increasing production function ( )x : 

               1

( ) i

m

i

i

x x




                         (11) 

where 3/ 4i  . However, we generate i  from independent uniform distributions 

on the interval [0.6, 1] to get more generalized simulation results. The inputs ix  are 

drawn randomly from independent uniform distributions on the interval [6, 16]. 

Finally, we generate N observations for each Monte Carlo trial following the same 

procedures described in Section 4.2.  

4.4 Simulation Experiment III 

Banker and Natarajan (2008) used the following cubic polynomial to represent the 

production technology ( )x : 

         

2 3

0 1 2 3

1

( ) ( )
m

i i i

i

x a a x a x a x


    ,             (12) 

where the coefficients 0a , 1a , 2a  and 3a  determine the properties of the production 

technology ( )x . Here, we employ the same setting (
0 37a   , 

1 48a  , 
2 12a   , 
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3 1a  ) as in Banker and Natarajan (2008) so that ( )x  is continuous, monotone 

increasing and concave in range [1, 4]. Then we generate the input variables xi from 

independent uniform distributions over the interval [1, 4] independently.  

Finally, we generate N observations for each Monte Carlo trial following the same 

procedures described in Section 4.2. 

4.5 Sample Size 

To test the performance of our indicators, we carry out each type of simulation 

experiments separately as the samples vary from small to large. That is we consider a 

sample of size N, and for each of the three experiments, we repeatedly conduct the 

simulation experiment five times, but the sample size N takes any integer value on the 

intervals [5, 20], [20, 50], [50, 200], and [200, 500] with equal probability respectively.  

Then we run each simulation experiments for two thousand times independently.  

4.6 Results of the Experiments 

As the production function assumed above is concave, it seems very natural to apply 

the BCC model to estimate the production function. Hence, as for the anti-efficient 

frontier, we employ both the inverted CCR and BCC models to estimate the anti-

efficient frontiers for comparisons. The averages of Pearson and Spearman correlation 

coefficients of 2000 experiments are presented in Table 8 and 9.  
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Table 8: The averages of Pearson correlation coefficients between true efficiency and the results of BCC, Inverted CCR, CDI- II and CDI- III 

Types of 

Experiment 

Corre. 

Coefficient 

N[5, 20] N[20, 50]   N[50, 200]  N[200, 500]  

m=2 m=3 m=2 m=3 m=2 m=3 m=2 m=3 

Experiment 

I 

BCC 0.6616 0.5639 0.7982 0.6702 0.8704 0.7334 0.8986 0.7625 

Inv. BCC 0.5378 0.5019 0.6282 0.5726 0.6928 0.6272 0.7282 0.6580 

CDI-II-B 0.7262 0.6199 0.8199 0.6920 0.8648 0.7372 0.8815 0.7587 

CDI-III-B 0.7190 0.6168 0.8098 0.6874 0.8553 0.7309 0.8728 0.7508 

Inv. CCR 0.7904 0.6946 0.8254 0.7167 0.8422 0.7342 0.8466 0.7362 

CDI-II-C 0.8494 0.7065 0.8942 0.7476 0.9160 0.7774 0.9209 0.7878 

CDI-III-C 0.8493 0.7079 0.8948 0.7446 0.9143 0.7694 0.9172 0.7766 

Experiment 

II 

BCC 0.6658 0.6102 0.7857 0.7063 0.8623 0.7623 0.8977 0.7969 

Inv. BCC 0.5471 0.5155 0.6425 0.5931 0.7014 0.6450 0.7426 0.6839 

CDI-II-B 0.7328 0.6585 0.8192 0.7323 0.8632 0.7705 0.8857 0.7980 

CDI-III-B 0.7264 0.6529 0.8111 0.7246 0.8552 0.7616 0.8783 0.7881 

Inv. CCR 0.7769 0.6538 0.8144 0.6884 0.8383 0.7003 0.8497 0.7099 

CDI-II-C 0.8220 0.7118 0.8689 0.7661 0.8997 0.7929 0.9147 0.8135 

CDI-III-C 0.8227 0.7042 0.8687 0.7521 0.8969 0.7743 0.9099 0.7915 

Experiment 

III 

BCC 0.6674 0.5190 0.7890 0.6055 0.8665 0.6647 0.8972 0.6833 

Inv. BCC 0.4249 0.4166 0.5025 0.4644 0.5382 0.4994 0.5521 0.5106 

CDI-II-B 0.6300 0.5444 0.7211 0.5980 0.7647 0.6306 0.7823 0.6400 

CDI-III-B 0.6134 0.5387 0.6991 0.5905 0.7368 0.6216 0.7471 0.6273 

Inv. CCR 0.6104 0.5490 0.6350 0.5717 0.6193 0.5885 0.6001 0.5879 

CDI-II-C 0.7402 0.6096 0.8095 0.6500 0.8460 0.6770 0.8644 0.6805 

CDI-III-C 0.7280 0.6055 0.7869 0.6433 0.7978 0.6669 0.7891 0.6678 
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Table 9: The averages of Spearman correlation coefficients between true efficiency and the results of BCC, Inverted CCR, CDI-I, II and III 

Types of 

Experiment 

Corre. 

Coefficient 

N[5, 20] N[20, 50] N[50, 200] N[200, 500] 

m=2 m=3 m=2 m=3 m=2 m=3 m=2 m=3 

Experiment 

I 

BCC 0.5957 0.4922 0.7358 0.6154 0.8376 0.7059 0.8824 0.7463 

Inv. CCR 0.7560 0.6640 0.8041 0.6987 0.8262 0.7200 0.8323 0.7229 

CDI-I 0.7238 0.5783 0.7807 0.6432 0.8480 0.7122 0.8846 0.7476 

CDI-II 0.8063 0.6553 0.8726 0.7072 0.9022 0.7436 0.9105 0.7585 

CDI-III 0.8050 0.6575 0.8705 0.7118 0.8993 0.7471 0.9058 0.7588 

Experiment 

II 

BCC 0.5964 0.5358 0.7224 0.6453 0.8307 0.7353 0.8824 0.7834 

Inv. CCR 0.7516 0.6377 0.7979 0.6840 0.8251 0.7007 0.8383 0.7125 

CDI-I 0.7007 0.5994 0.7593 0.6666 0.8387 0.7397 0.8841 0.7843 

CDI-II 0.7798 0.6578 0.8416 0.7216 0.8809 0.7616 0.9016 0.7889 

CDI-III 0.7801 0.6587 0.8430 0.7234 0.8806 0.7603 0.8984 0.7832 

Experiment 

III 

BCC 0.6112 0.4724 0.7275 0.5627 0.8289 0.6422 0.8753 0.6726 

Inv. CCR 0.5792 0.5241 0.6176 0.5536 0.6057 0.5738 0.5877 0.5739 

CDI-I 0.6935 0.5350 0.7764 0.5916 0.8439 0.6499 0.8792 0.6745 

CDI-II 0.6880 0.5639 0.7855 0.6200 0.8397 0.6586 0.8650 0.6698 

CDI-III 0.6779 0.5612 0.7574 0.6140 0.7788 0.6468 0.7751 0.6525 

Note: 1. when N[5, 20], among 2000 trials there are 23, 19 and 53 trials that all the DMUs generated are BCC efficient for three types of experiment respectively.  

2. In Table 8, CDI-II-B, CDI-III-B, CDI-II-C and CDI-III-C refer to the CDI-II and CDI-III based on the Inverted BCC and Inverted CCR model respectively. While 

in Table 9, we only show the CDI-I, CDI-II, CDI-III based on inverted CCR model.  

3. We also conducted another three simulation experiments, when the error term   only consists of technical inefficiencyu . This specification of error term is adopted 

by Banker (1993) and Banker and Chang (2006). And the simulation results are similar with what we have reported in Table 8 and 9. 
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As Table 8 and 9 show, the averages of both the Pearson and Spearman correlation 

coefficients between true efficiency and our performance indicators based on the 

Inverted CCR model are higher than those of true efficiency and efficiency scores 

estimated by the BCC model in all the experiments when sample size is less than 200. 

Therefore, it is clear that the performance of our CDI is more satisfactory than that of 

BCC model, especially when the sample size is small (e.g. less than 20). These 

simulation results confirmed our arguments described in the beginning: for a small 

sample (No. of DMUs), the standard DEA models do not work well. In this case, 

additional information from anti-efficient frontier can increase the performance of DEA 

estimators.  

Meanwhile, we find that the averages of correlation coefficients based on Inverted 

CCR are much higher than those based on Inverted BCC in all experiments. Actually, 

these results are not coincidence. It is more reliable to use anti-efficient CCR than anti-

efficient BCC, no matter whether the CCR or BCC model is employed to estimate the 

efficient frontier. To illustrate the difference between the two Inverted DEA models, we 

simply assume that there is only one input and output. The true efficient frontier and 

the frontiers generated by BCC, Inverted BCC and Inverted CCR are illustrated in 

Figure 4. The anti-efficient BCC frontier is convex, while the true efficient frontier is 

concave. And this phenomenon may make the DMUs with extreme inputs become 

relatively closer to the anti-efficiency frontier regardless whether they are close to the 

true frontier or not. On the contrary, the anti-efficient frontier estimated by Inverted 

CCR model reduces this problem. Therefore, we can conclude that the frontier of the 

anti-efficient CCR should be more reliable. 
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As Figure 4 shows, the DMUs A, B, C and D are identified as DEA efficient by 

BCC model. However, they may have different true efficiency scores if the true efficient 

frontier is known. That is why we try to use the anti-efficient CCR frontier to 

discriminate these DMUs: given inputs X, the farther a DMU from the anti-efficient 

CCR frontier, the more likelihood it obtains a larger score of true efficiency. Therefore, 

anti-efficient frontier estimated by Inverted CCR model is able to provide us with very 

useful extra information to evaluate the performance of a DMU, especially when the 

sample is relatively small. However, as the sample size goes to infinite, the BCC frontier 

will be very close to the true efficient frontier (Banker 1993). Then the additional 

information from anti-efficient frontier becomes less useful. 

Finally, as Table 9 shows, the averages of Spearman correlation coefficients of CDI-

I are higher than those of BCC model in all experiments. However, when sample size 

is small (e.g. less than 50), the averages of Spearman correlation coefficients of CDI-I 

is lower than those of CDI-II and III. Therefore, we can conclude that it is more 

plausible for us to use either CDI-II or III. But as sample size goes large, it is more 

suitable to employ CDI-I. 

5. Conclusions 

In summary, our study shows that it is plausible to consider both the efficient and 

anti-efficient frontiers in DEA analysis when there are many input and output variables, 

Figure 4: The anti-efficient frontiers of Inverted CCR and BCC models 
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but only few DMUs are available. The extra information of anti-efficient frontier is able 

to increase the discrimination power of DEA analysis quite well. 

More specifically, to examine our research idea, we firstly constructed three 

intuitive DEA performance indicators based on the distances to both efficient and anti-

efficient frontier. In the two empirical examples, the empirical results show that our 

approach indeed increases discrimination power of DEA analysis. In the following 

simulation study, we further found that the averages of both Pearson and Spearman 

correlation coefficients between true efficiency and the three indicators are higher than 

those of true efficiency and efficiency scores estimated by the BCC model in all the 

experiments when sample size is less than 50. This performance gap is considerably 

large especially when the sample size is small (e.g. less than 20). Furthermore, we also 

found it is much better to employ Inverted CCR model to construct the performance 

indicators regardless which production technologies we assume. Finally, it is more 

plausible for us to use either CDI-II or III when sample is small. But as sample size 

goes large, it is more suitable to employ BCC model or CDI-I.  

 

Acknowledgements. We acknowledge the support of the National Natural Science 

Foundation of China (No. 71201158).  

References 

[1] Adler, N., Friedman, L., Sinuany-Stern, Z. (2002) Review of ranking methods in the data 

envelopment analysis context, European Journal of Operational Research 140, 249-265. 

[2] Allen, R., Athanassopoulos, A., Dyson, R.G., Thanassoulis, E. (1997) Weights restrictions and 

value judgments in data envelopment analysis: Evolution, development and future directions. 

Annals of Operations Research 73, 13-34. 

[3] Amirteimoori, A. (2007) DEA efficiency analysis: Efficient and anti-efficient frontier, Applied 

Mathematics and Computation 186, 10–16. 

[4] Andersen, P., Petersen, N. (1993) A procedure for ranking efficient units in data envelopment 

analysis, Management Science39, 1261–1264. 

[5] Banker, R.D., Gifford, J.L. (1988) A relative efficiency model for the evaluation of public 

health nurse productivity, Mellon University Mimeo, Carnegie. 



 

 29 

[6] Banker, R.D. (1993) Maximum likelihood, consistency and data envelopment analysis: A 

statistical foundation. Management Science 39, 1265–1273. 

[7] Banker, R.D., Chang, H. (2006) The super-efficiency procedure for outlier identification, not 

for ranking efficient units, European Journal of Operational Research 175, 1311-1320. 

[8] Banker, R.D., Natarajan, R. (2008) Evaluating contextual variables affecting productivity 

using data envelopment analysis, Operations Research 56, 48-58. 

[9] Beasley, J.E. (2003) Allocating fixed costs and resources via data envelopment analysis, 

European Journal of Operational Research 147, 198-216.  

[10] Charnes, A., Cooper, W.W., Rhodes, E. (1978) Measuring the efficiency of decision making 

units, European Journal of Operational Research 2, 429-444. 

[11] Chen, Y. (2004) Ranking efficient units in DEA, Omega 32,213-219. 

[12] Cooper, W.W., Seiford, L.M., Tone, K. (2000) Data Envelopment Analysis: A Comprehensive 

Text with Models- Applications, References and DEA-Solver Software, Kluwer Academic 

Publishers, Boston.  

[13] Dantzig, G.B. (1963) Linear Programming and Extensions. Princeton University Press, New 

York. 

[14] Doyle, J.R., Green, R. (1994) Efficiency and cross-efficiency in data envelopment analysis: 

Derivatives, meanings and uses, Journal of the Operational Research Society 45(5), 567–578. 

[15] Entani, T., Maeda, Y., Tanaka, H. (2002) Dual models of interval DEA and its extension to 

interval data, European Journal of Operational Research 136, 32-45. 

[16] Hwang, C.L., Yoon, K. (1981) Multiple Attribute Decision Making: Methods and Applications, 

Springer-Verlag, New York. 

[17] Johnson, A.L., McGinnis, L.F. (2008) Outlier detection in two-stage semiparametric DEA 

models, European Journal of Operational Research 187, 629–635. 

[18] Liu, W.B., Meng, W., Zhang, D.Q. (2006) Chapter 21: Incorporating value judgments in DEA, 

In Productivity Analysis in the Service Sector using Data Envelopment Analysis - 3rd edition 

(Edited by Avkiran N. K.), 217-242. 

[19] Liu, W.B., Meng, W., Li, X.X., Zhang, D.Q. (2010) DEA Models with Undesirable Inputs and 

Outputs, Annals of Operations Research173, 177-194.  

[20] Liu, W.B., Zhang, D.Q., Meng, W., Li, X.X., Xu, F. (2011). A study of DEA models without 

explicit inputs. Omega, The International Journal of Management Science 39, 472-480.  

[21] Meng W, Liu WB, Li. XX. (2005). Application of index DEA model on performance 

evaluation of Basic Research Institute. Science of Science and Management of Science and 

Technology 9, 11–6. (in Chinese).  

[22] Meng,W., Zhang, D.Q., Qi, L., Liu, W.B. (2008) Two-level DEA approaches in research 

evaluation. Omega 36 (6), 950-957. 



 

 30 

[23] Paradi, J.C., Asmild, M., Simak P.C. (2004) Using DEA and Worst Practice DEA in Credit 

Risk Evaluation. Journal of Productivity Analysis 21, 153–165. 

[24] Sexton, T.R., Silkman, R.H., Hogan, A.J. (1986) Data envelopment analysis: Critique and 

extensions. In: Silkman, R.H. (Ed.), Measuring Efficiency: An Assessment of Data Envelopment 

Analysis, Jossey-Bass, San Francisco, CA, 73–105.  

[25] Simar, L., Wilson, P.W. (2007) Estimation and inference in two-stage, semi-parametric models 

of production processes, Journal of Econometrics 136, 31-64. 

[26] Takamura, Y., Tone, K. (2003) A comparative site evaluation study for relocating Japanese 

government agencies out of Tokyo, Socio-Economic Planning Sciences 37, 85–102. 

[27] Thanassoulis, E. (1999) Setting Achievements Targets for School Children, Education 

Economics 7(2), 101–119. 

[28] Thanassoulis, E., Portela, M.C., Allen, R. (2004) Incorporating value judgment in DEA, In 

Handbook on Data Envelopment Analysis (Edited by Cooper, W.W., Seiford, L.M. and Zhu, J.), 

Kluwer Academic Publishers, 99-138. 

[29] Wang, Y.M., Luo, Y. (2006) DEA efficiency assessment using ideal and anti-ideal decision 

making units, Applied Mathematics and Computation 173, 902–915.  

[30] Wu, D. (2006) A note on DEA efficiency assessment using ideal point: An improvement of 

Wang and Luo's model, Applied Mathematics and Computation 183, 819-830.  

[31] Yamada, Y., Matsui, T., Sugiyama, M. (1994) An inefficiency measurement method for 

management systems, Journal of the Operations Research Society of Japan 37, 158–67. 

[32] Zhang, D.Q., Li, X.X., Meng, W., Liu, W.B.(2009) Measure the performance of nations at 

Olympic Games using DEA models with different preferences. Journal of the Operational Research 

Society 60, 983-990.  

[33] Zhou, P., Poh, K., Ang, B. (2007) A non-radial DEA approach to measuring environmental 

performance. European Journal of Operational Research 178, 1-9.   

[34] Zhu, J. (2003) Quantitative Models for Performance Evaluation and Benchmarking: DEA with 

Spreadsheets and DEA Excel Solver, Kluwer Academic Publishers, Boston. 

  



 

 31 

Appendix A: A sufficient condition for the intersection of the efficient and anti-

efficient frontiers  

Here we discuss a sufficient condition theoretically to ensure that the efficient and 

anti-efficient frontiers will not intersect. By model (1) and model (4), we can identify 

the 1s  efficient DMUs, denoted by 1
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convex combinations of the 1s  efficient DMUs and the 2s  anti-efficient DMUs 

respectively, i.e: 
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We let eEF  and aEF
 
denote the efficient and anti-efficient frontiers respectively. 

Thus we have eEF
 
and aEF  . It is clear that if there are no intersections 

between   and  , then eEF  and aEF  must not intersect. Therefore we can have 

the following sufficient condition that can ensure there are no intersections between   

and  . We consider the following system of linear inequalities:  
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where 
1 2

' '

1 1,..., , ,...,s s     are coefficients.  

If there is no feasible solution in (A-3), we can ensure that the efficient and anti-

efficient frontiers will not intersect.  

It is clear that we can introduce the following auxiliary linear programming model 

(A-4) with the slacks variables to determine whether or not there is feasible solution in 

(A-3) (see Dantzig, 1963).  
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where 
1 2

' '

1 1,..., , ,...,s s     are original unknowns and 1 2,..., m sv v    are slacks.  

It is easy to check that 11,..., 0s  
; 2

' '

1,..., 0s  
; 1,..., 0m sv v  

; 1 1m sv   
; 

2 1m sv   
 is a feasible solution in model (A-4) so it is always feasible. Using it, we 

have the following theorem: 

Theorem A-1: There exists no intersection between   and  , if and only if the 

optimal value of objective function in model (A-4) is larger than zero.  

Proof: If the optimal value is zero, then there is a feasible solution such that 

1 20,..., 0m sv v    . Thus   and   has at least one intersection. If the minimal 

value is larger than zero, suppose that   and   have one intersection so that there 

exist feasible 
1 2

' '

1 1,..., , ,...,s s     such that 1 20,..., 0m sv v    . Then it is clear that 

this is a feasible solution of model (A-5) and thus the minimal value should be zero, 

which is a contradiction. Q.E.D. 
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Thus if the optimal value of objective function in model (A-4) is larger than zero, 

there exists no feasible solution in (A-3). Therefore, we can have a sufficient condition 

to ensure there is no intersection between efficient and anti-efficient frontiers. We can 

similarly handle the case where the BCC is assumed for the anti-efficient frontier.  

 


