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Sample Size and Choice of Robustness Measure

Juan Esteban Diaza,∗, Julia Handla, Dong-Ling Xua
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Abstract

We aim to find robust solutions in optimization settings where there is un-
certainty associated with the operating/environmental conditions, and the
fitness of a solution is hence best described by a distribution of outcomes.
In such settings, the nature of the fitness distribution (reflecting the perfor-
mance of a particular solution across a set of operating scenarios) is of po-
tential interest in deciding solution quality, and previous work has suggested
the inclusion of robustness as an additional optimization objective. However,
there has been limited investigation of different robustness criteria, and the
impact this choice may have on the sample size needed to obtain reliable
fitness estimates. Here, we investigate different single and multi-objective
formulations for robust optimization, in the context of a real-world problem
addressed via simulation-based optimization. For the (limited evaluation)
setting considered, our results highlight the value of an explicit robustness
criterion in steering an optimizer towards solutions that are not only robust
(as may be expected), but also associated with a profit that is, on aver-
age, higher than that identified by standard single-objective approaches. We
also observe significant interactions between the choice of robustness mea-
sure and the sample size employed during fitness evaluation, an effect that is
more pronounced for our multi-objective models.

Keywords: Evolutionary Multi-objective optimization, Production
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modelling
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1. Introduction

Real-world problems often require the consideration of multiple and often
conflicting criteria [13, 49, 39]. When faced with problems that incorporate
uncertainty, one may arguably need to take into account the robustness of
solutions [4] as an additional criterion of solution quality. Ideally, robust op-
timization would identify a solution that simultaneously offers the best and
most robust performance; in reality, these two criteria are usually conflict-
ing [44], and a single optimal solution is unlikely to exist. Due to this ex-
pected trade-off between the quality of a solution and its robustness [30, 41],
methodologies that are capable of identifying a desirable trade-off between
these conflicting criteria are of significant interest in a robust optimization
setting.

A complicating factor in robust optimization is the lack of a unique defi-
nition of the robustness of a solution. In some cases a solution is considered
to be robust when, under certain levels of variation in the decision space or
operating conditions, it performs reasonably well in terms of quality (e.g. ex-
pected objective value) [26, p. 189], feasibility or optimality [24]. Perhaps a
more common idea is to consider as robust a solution that offers the best per-
formance under the worst-case scenario [24] (e.g. maximizing the minimum
value of a performance measure).

Independent of the exact definition of robustness, it has been argued that
it may be advantageous to explicitly consider robustness as a separate objec-
tive [31], instead of optimizing for a single measure that implicitly considers
robustness (e.g. the average of a performance measure). This is because, in
doing so (using e.g. a Pareto optimization approach) more comprehensive in-
formation about the robustness of the solution can potentially be taken into
account (such as the variation in the fitness values seen), and the trade-off
between the main objective and its robustness measure may become more
evident and facilitate decision making. On the other hand, more implicit
considerations of robustness may have advantages in terms of the associated
computational expense and their ease of implementation. The calculation of
any measure of robustness implies additional modelling choices regarding the
set of scenarios considered (i.e. how to model the way in which uncertainty
presents itself, which may be in the form of variation in the design vector or
the operating conditions [34]), and the number of scenarios to consider (e.g.
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exhaustive enumeration versus sampling).
Some of the interactions between the above modelling choices are poorly

understood, e.g. it is unclear how the choice of sample size impacts on the
performance of different robustness criteria, and whether this may differ for
multi-objective versus single-objective optimizers. Here, we aim to investi-
gate this aspect in the context of a real-world robust optimization setting.
Specifically, we study a production planning problem in which an optimal
production plan is derived, but the profit achievable under this plan is sub-
ject to uncertainty in the factory’s operating conditions (due to the possibility
of machine failures). In this setting, a simulation model of the production
system can be used to translate a (deterministic) production plan into a
distribution of fitness values obtained under different scenarios of operat-
ing conditions, i.e the simulation model serves the purpose of modelling the
uncertainty intrinsic to the operating conditions.

1.1. Robust Optimization

To some extent, robust solutions to a problem may be obtained by re-
placing the original objective(s) by its/their “robust” equivalent(s) [30], e.g.
a robustness measure such as the average value instead of a single evaluation.
Alternatively, measures of robustness may be integrated into the optimiza-
tion as hard constraints [26, p. 216]. A third possibility is to consider ro-
bustness as part of a composite function that is the weighted sum of different
objectives (Deb, 2014, p. 408; Guo et al., 2008).

This are, of course, standard approaches to transform a multi-objective
optimization problem into a single-objective optimization problem, with a
number of known limitations: the choice of appropriate values for the weight
vector can be difficult and highly subjective, as it requires the translation of
qualitative information into quantitative indicators [13, p. 409]. Furthermore,
the (single) solution obtained through this approach can be very sensitive to
the relative weight assigned to each objective, and the method may thus be
highly-user dependent. Although different solutions can be found by varying
the weights, this approach is unable to find Pareto optimal solutions that lie
on non-convex regions of the Pareto optimal front [37].

Pareto optimization overcomes these limitations by exploring different
trade-off solutions between a set of objectives [29], without prior knowledge
of a preference vector. Concretely, Pareto optimization employs the principle
of Pareto dominance: A solution dominates another solution if it is strictly
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better in at least one objective and not worse in any objective [14, 35]. Dif-
ferent to single-objective optimization approaches, Pareto optimization does
not aim to find a single optimal or near-optimal solution, but the set of opti-
mal trade-off solutions. This so-called Pareto-optimal set consists of all those
solutions that are not dominated by any other solution in the search space.
The reader is referred to Deb [13] and Coello [8] for more details about Pareto
optimization.

In the context of robust optimization, we may use Pareto optimization
to simultaneously optimize the original objective (performance measure) as
well as a robustness measure. The Pareto front then serves to illustrate the
trade-off between these objectives, and the decision maker may choose one
solution from the set of Pareto-optimal solutions based on his experience,
specific requirements, or an in-depth analysis of the quality of individual
solutions.

1.2. Evolutionary Robust Optimization

Several previous works have searched for robust solutions via evolutionary
single-objective (ESO) optimization. Tsutsui and Ghosh [48] proposed the
single-evaluation mode (SEM) for genetic algorithms (GAs) with a robust
solution searching scheme, which consists of adding perturbations to the val-
ues of the decision variables, and then a single fitness evaluation is computed
per individual. Under the SEM approach robust individuals are more likely
to survive across generations than less robust ones. SEM can be seen as an
equivalent to an implicit averaging strategy when uncertainty is present in
the decision space. Also a multi-evaluation mode (MEM), which can be seen
as an equivalent to an explicit averaging strategy, was later proposed by Tsut-
sui [47] to search for robust solutions with GAs. The author also proposed a
MEM where the fitness of an individual corresponds to the worst fitness value
(MEM-W) for situations where robustness is a crucial consideration. Branke
[2] analysed the potential of evolutionary algorithms (EAs) to find robust so-
lutions via different explicit averaging strategies. In Branke [2], uncertainty
is also modelled by adding random perturbations to the decision space before
fitness evaluation. After analysing several strategies, the author concluded
that both, re-evaluating fitter individuals and using previous fitness values to
weight the fitness of those individuals are two promising ways to help EAs in
the search for robust solutions. The MEM-W approach proposed by Tsutsui
[47] is later applied by Ong et al. [40] within a max-min surrogate-assisted
EA to generate robust solutions for engineering design, since MEM-W was
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thought to be more conservative in terms of solution robustness than MEM
(explicit averaging).

Considerable research in robust optimization can also be found in the
existing evolutionary multi-objective (EMO) optimization literature. The
explicit averaging strategy used in ESO optimization was extended to EMO
optimization by Deb and Gupta [14]. Two approaches to obtain robust so-
lutions are proposed in Deb and Gupta [14]. In the first approach, fitness
evaluations for the different objectives are computed by averaging a set of
neighbouring solutions in order to create perturbations in the decision space,
which are later reflected in the objective space. In the second approach the
optimization is performed based on fitness evaluations of the actual individ-
uals (without perturbations) present in the population and a constraint is
added to the problem for every objective considered. This constraint im-
poses a user-defined limit on the normalized, absolute or average normalized
difference between the perturbed fitness (which may be represented by av-
erage fitness or worst fitness) and the original fitness (fitness of the actual
solution without perturbations). In this second approach the desired level of
robustness can be specified in terms of the maximum level of fitness varia-
tion associated with local perturbations. In both approaches multiple fitness
evaluations need to be computed (using neighbouring solutions) to calculate
the average fitness and the perturbed fitness in the first and second case,
respectively.

In Jin and Sendhoff [31], trade-off solutions between robustness and per-
formance were obtained by simultaneously optimizing both criteria via EMO
optimization. This approach was motivated by the observation that expec-
tation measures such as the sample mean cannot sufficiently capture fluctu-
ations in performance [31], whereas variance-based measures fail to take into
account the absolute performance of a solution. This idea of simultaneously
optimizing a performance and a robustness measure via EMO optimization
has been applied in several studies to search for robust solutions. For in-
stance, Ray [43] searched for robust solutions for engineering design prob-
lems by simultaneously optimizing the average performance of neighbouring
solutions, and the standard deviation of the performance of neighbouring
solutions. Similarly, Goh and Tan [25] generated trade-off solutions between
performance and robustness by optimizing measures of expected and worst
case performance.

Lim et al. [34, 33] describe an inverse technique that avoids the need
for defining an appropriate neighbourhood in the design space (as this may
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be difficult to achieve a priori for some design problems). Starting from
a threshold on acceptable fitness variation alone, this approach performs a
multi-objective search for solutions with the highest fitness and the largest
neighbourhood size consistent with this fitness threshold.

While many single and multi-objective studies have been published in the
field of robust optimization, studies that directly compare ESO and EMO ap-
proaches to find robust solutions for the same problem are rare in the existing
literature. Pereira et al. [42] compared the ability of evolutionary single and
multi-objective algorithms to find robust solutions (link weight configurations
for traffic routing processes). However, in Pereira et al. [42] a solution was
considered to be robust when it performed well under two different network
conditions; in this sense, two performance measures (rather than one perfor-
mance measure and one robustness measure) were optimized. The weighted
sum of two congestion functions (two performance measures) was applied
as fitness function in the ESO algorithm, whereas in both EMO algorithms,
the non-dominated sorting genetic algorithm II (NSGA II) [15] and strength
Pareto evolutionary algorithm 2, both congestion functions were optimized
separately. The performance advantage of NSGA II was evident under more
complex network topologies and more demanding traffic requirements.

1.3. Contributions

In this study, we investigate the extent to which ESO and EMO opti-
mization are able to generate high-quality robust solutions for a real-world
production planning problem with uncertainty in its operating conditions.
Specifically, we consider the sets of solutions obtained for different single and
multi-objective formulations, given a limited budget of fitness evaluations
(each of which requires a simulation replication).

Unique features of our experiments are as follows: (i) We contrast the use
of several possible robustness measures, as well as different choices of sam-
ple size; (ii) The final quality of solutions is assessed using a large number of
simulations, which provide a comprehensive picture of the fitness distribution
associated with each solution (such picture is not available during optimiza-
tion); (iii) The final solution sets are compared along a range of criteria,
including measures of variability, average and worst case performance.

The remainder of this paper is organized as follows: In Section 2, we
introduce the problem analysed and describe the ESO and EMO models. We
present the details of the benchmark analysis and performance assessment
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in Section 3 and 4, respectively, and the results obtained are presented in
Section 5. Finally, conclusions derived from this study are given in Section 6.

2. Simulation-Based Optimization Model

In production planning, profitability is not the only criterion that needs
to be considered during the specification of a production plan, but the ro-
bustness of that plan is also relevant [41].

In this study we address a production planning problem of a real manufac-
turing system. Detailed features of this manufacturing system are presented
in Diaz [19, p. 29-42]. The robustness of production plans is a criterion that
needs to be considered here because the system analysed is subject to failures
of its production lines, which may cause deviations between a plan and its
actual outcome. Consequently, we aim to identify a set of production plans
that makes evident the trade-off between profitability and robustness.

Here, a production plan x is a vector of 41 decision variables, where each
decision variable xl,j indicates the number of lots of product j to be manu-
factured in production line l during a finite planning horizon of one month.
This batch manufacturing system has a set M = {1, 2, . . . , 7} of indepen-
dent production lines and is able to manufacture 31 different products. A
feature of this system is that only a subset Aj ⊆ M of production lines can
manufacture a specific product j. Additionally, this manufacturing system
has insufficient capacity to fully cover demand requirements and is subject to
serious and non-serious failures of its production lines. We also consider that
near-perfect and imperfect repairs can be undertaken after the occurrence of
a failure as well as the deterioration caused by previous failures.

Simulation-based optimization (SBO) is an attractive approach to ad-
dress this problem, for it can accurately capture the inherent uncertainty and
complexity of the manufacturing system, while searching for near-optimal
solutions for the problem analysed [21, 46, 20]. The SBO model consists
of a simulation model and an EA coupled in a black-box fashion. Produc-
tion plans specified by the optimizer are simulated by the simulation model,
which returns the realization of that production plan. Those simulated re-
sponses are then used by the optimizer to compute the fitness values of a
given production plan.

The simulation model used in this study is the one presented in Diaz [19,
p. 126-136]. This simulation model developed in SimEvents� (The Math-
Works, Inc., 2014) models the manufacturing system analysed. It employs a
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combination of discrete-event simulation (DES) and Markov chains to model
realistic features of manufacturing systems such as different types of produc-
tion line failure, near-perfect and imperfect repairs as well as the deterioration
of production lines due to previous failures.

The reader is referred to Diaz [19, p. 126-136] for a detailed description of
the simulation model, whereas further details about the optimization model
are provided in Section 2.1.

2.1. Optimization Model

Here, we address an extended version of the stochastic multidimensional
multiple bounded knapsack problem with assignment restrictions (d-MBKARS)
problem [19, p. 91-92] that considers a robustness measure as a second objec-
tive. In this problem we do not penalize deviations from a plan and we refer
to it as the multi-objective d-MBKARS (M-d-MBKARS) problem without
penalty. Its integer linear programming (ILP) formulation, in the context of
the problem analysed, is as follows:

maximize f1(x) =
1

γ

γ∑
r=1

31∑
j=1

∑
l∈Aj

vj × sl,j,r
(1)

and either

minimize f2(x) =

√√√√1

γ

γ∑
r=1

( 31∑
j=1

∑
l∈Aj

vj × sl,j,r − f1(x)
)2

(2)

or

maximize f3(x) = min
r=1,2,...,γ

31∑
j=1

∑
l∈Aj

vj × sl,j,r
(3)

subject to
31∑
j=1

∑
l∈Aj

wi,j × xl,j ≤ ci (i = 1, 2, . . . , 13), (4)
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∑
l∈Aj

xl,j � bj (j = 1, 2, . . . , 31). (5)

where sl,j,r is obtained by simulating a production plan x (vector that con-
tains all decision variables xl,j) using the simulation model. In this sense, sl,j,r
corresponds to the number of lots of product j manufactured in production
line l during the r-th simulation replication given a production plan x. γ is
the total number of simulation replications performed to compute fitness of a
production plan, please see Section 2.1.1 for details about γ. The simulation
model can be seen here as the function g(x) able to map a production plan
x onto the actual production sr (vector that contains all simulated responses
sl,j,r) without the requirement of a closed form formulation. In other words
sr is the realization of a production plan x during the r-th simulation repli-
cation. vj is the marginal (per lot) contribution to profit of product j, wi,j is
the amount of resource i deployed by manufacturing one lot of product j and
ci is the amount of resource i available at the beginning of the manufacturing
process.

We represent in the form of Equation 4 the design capacities of produc-
tion lines, the amount of labour needed to manufacture one lot of product j
in production line l and the situation where a product manufactured in this
system is subsequently used as raw material during the manufacturing of
another product. We also impose additional constraints in the form of Equa-
tion 5 to avoid that the production level of product j exceeds its maximum
demand bj. Please note that in this study, a production plan x is feasible if
it satisfies the set of constraints imposed as Equations 4 and 5.

2.1.1. Evolutionary Optimizers

For the multi-objective SBO (MSBO) approach, we require an optimizer
able to find a set of solutions that are non-dominated and are widely spread
over the approximated Pareto front. EAs are attractive optimizers for Pareto
optimization not only due to their wide applicability, flexibility [8] and ease
of use [9], but also because multiple non-dominated solutions can be found
in a single iteration [3, 13, 8]. The optimizer used in the MSBO approach is
NSGA II, a well-known EMO algorithm commonly employed as benchmark
in multi-objective optimization [8], that has been successfully used to solve
SBO problems (see Brownlee and Wright [5] and Sanchez et al. [45] for recent
examples).

In the MSBO approach, in addition to optimizing a performance measure
(maximize average profit), we simultaneously optimize a robustness measure
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in order to explicitly capture as a second objective the robustness of a pro-
duction plan. Two different measures of robustness are evaluated in the
multi-objective approach, the standard deviation of profit and the minimum
profit. The minimization of the standard deviation tries to reduce the varia-
tion in profitability, whereas the maximization of the minimum profit tries to
improve the worst case scenario derived from a production plan. In this sense
the first MSBO model (MSBO-1) tries to simultaneously maximize average
profit (Equation 1) and minimize the standard deviation of profit (Equa-
tion 2), subject to the set of constraints in the form of Equations 4 and 5.
The second MSBO model (MSBO-2) differs from MSBO-1 in that, instead
of minimizing the standard deviation, MSBO-2 tries to maximize minimum
profit (Equation 3). Both multi-objective models, MSBO-1 and MSBO-2,
use NSGA II as optimizer.

Two different single-objective SBO (SSBO) models are also evaluated,
the first SSBO model (SSBO-1) tries to maximize average profit (Equation 1)
subject to the set of constraints in the form of Equations 4 and 5, whereas
the second SSBO model (SSBO-2) tries to maximize minimum profit (Equa-
tions 3), subject to the same set of constraints. Both single-objective models
employ as optimizer the MI-LXPM algorithm proposed by Deep et al. [16].

In order to make a fair comparison between MSBO and SSBO approaches,
we use the same parameters and operators for both optimizers, except for
unavoidable discrepancies that arise due to the different mechanics of both
GAs. Both optimizers use a population size of 100 individuals and employ
binary tournament selection, Laplace crossover (crossover probability: 0.8)
and power mutation (mutation probability: 0.005) as operators. See Deep
et al. [16] for more details about the last two operators and the parameter
values used. Also the constraint-handling method proposed by Deb [12] and
the truncation procedure described in Deep et al. [16], which ensures compli-
ance with integer constraints after crossover and mutation, are implemented
in both optimizers.

It is important to mention that the selection criterion in NSGA II is based
on the crowded-comparison operator [15], although it employs a binary tour-
nament selection operator. Moreover, the way elitism is incorporated in both
optimizers differs. In MI-LXPM, elitism is incorporated by having an elite
set with a default size of one [17, 18]. We do not adjust this parameter, as we
are aiming to maintain good levels of diversity throughout the optimization
process. In NSGA II elitism is incorporated by combining the entire parent
and offspring populations before extracting the new population.
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Given the stochastic nature of simulation responses (sl,j,r) and due to the
nature of the objectives optimized (a sample of independent fitness values is
required to compute the fitness of an individual), all fitness values are com-
puted across a number γ of independent fitness evaluations. Two explicit av-
eraging strategies are implemented in every single and multi-objective model.
In strategy A, fitness is computed across 10 independent fitness evaluations
(γ = 10), whereas in strategy B, fitness is computed across 30 independent
fitness evaluations (γ = 30). The letter A or B is added to the notation of
the different models according to the explicit averaging strategy that they
employ, e.g. MSBO-1A and MSBO-1B.

Explicit averaging is a very expensive approach in terms of computational
effort. This computational expense becomes even more critical when explicit
averaging is applied in the context of SBO, where expensive simulation repli-
cations are required to compute multiple fitness values of entire populations.
Therefore, in order to boost the optimization performance of NSGA II and
MI-LXPM, and reduce their computational effort, we devise the specialized
initialization operator presented in the following subsection. We also use a
parallel implementation in all models to speed up computations.

2.2. Initialization Operator

This initialization operator creates up to 22 individuals of the GA’s ini-
tial population and the rest of individuals are randomly initialized. In order
to support both objectives, the initialization operator is implemented in two
phases. The first phase creates solutions that are biased towards maximiza-
tion of average profit, whereas the second phase tries to generate solutions
that are biased towards minimization of the standard deviation of profit.

In the first phase, 200 numerical values of c′l are generated. c′l is the
number of hours that production line l was available during a working month
(24 days) and is computed as follows:

c′l =
31∑
j=1

sl,j × t (l = 1, 2, . . . , 7), (6)

where sl,j is obtained by simulating in the simulation model a production
plan that fully utilizes the theoretical capacity of all production lines and
t corresponds to the manufacturing time per lot (in hours) when no failure
occurs, which according to the company is 8 hours for all product lots. Sub-
sequently, for each set of c′l an ILP solution is found by solving the following
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ILP problem:

maximize f(x) =
31∑
j=1

∑
l∈Aj

vj × xl,j (7)

subject to
31∑
j=1

∑
l∈Aj

wi,j × xl,j ≤ ci (i = 1, 2, . . . , 6), (8)

31∑
j=1

wl,j × xl,j ≤ c′l (xl,j ∈ Z≥0; l = 1, 2, . . . , 7). (9)

Here, capacities of production lines are not represented in the form of Equa-
tion 8 as other resource constraints, but in the form of Equation 9, where c′l
is used as the right hand side (RHS).

Duplicates among those 200 ILP solutions are eliminated in order to main-
tain diversity and only 10 ILP solutions are chosen, as described bellow, to
be part of the set W , which is incorporated into the GA’s initial population.
If the number of ILP solutions left is less than or equal to 10, all of them
are included into W , whereas if the number of solutions left is greater than
10, average fitness is computed for every ILP solution across 30 independent
fitness evaluations by solving Equation 1 with γ = 30. The 10 solutions with
the highest average profits are then incorporated into W .

The second phase of this initialization operator simulates (using the sim-
ulation model) every ILP solution contained in W and incorporates into
the GA’s initial population one simulated response s per each ILP solution
contained in W . Those simulated responses (s) might evidence a poor per-
formance in terms of average profit, since they may not utilize efficiently
the resources of the manufacturing system, but their standard deviations of
profit should be lower than or equal to the standard deviations of the corre-
sponding ILP solutions from which the simulated responses were obtained.
This is because sl,j ≤ xl,j, and thus sl,j is more likely to be fully realized than
xl,j.

Finally, we also incorporate into the GA’s initial population the solution
x∗ obtained by optimizing Equation 7 subject to the set of constraints in the
form of Equations 4 and 5, as well as the solution x′∗ obtained by optimizing
Equation 7, subject to the set of constraints in the form of Equation 5,
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Equation 8 and the following:

31∑
j=1

wl,j × xl,j ≤ E[Cl] (l = 1, 2, . . . , 7), (10)

where the expected effective capacity E[Cl] of production line l is used as the
RHS of the corresponding constraint. E[Cl] is computed as follows:

E[Cl] = cl − cl
t
×

2∑
T=1

3∑
s=0

p
FT,s

l × E[Λl,T ] (l = 1, 2, . . . , 7), (11)

where E[Λl,T ] is the expected value (given in hours) of the random variable

Λl,T , which models the delay caused by a repair service. p
FT,s

l is the steady
state probability [7, p. 13–18] of state FT,s, please see Diaz [19] for details
about state FT,s. x

∗ and x′∗ are incorporated into the GA’s initial population
because they might contain useful alleles, especially under low levels of fitness
variability.

3. Benchmark Analysis

The benchmark analysis undertaken here aims to investigate the following
points:

First, we want to analyse the impact that the common practice in robust
optimization of maximizing the worst case scenario [24] has on the optimiza-
tion performance of the MSBO and SSBO approaches studied here. To do
this we compare the solutions returned by multi-objective models that use
the sample standard deviation as robustness measure (MSBO-1A, MSBO-1B)
to the solutions obtained with multi-objective models that use the sample
minimum instead (MSBO-2A, MSBO-2B). We also compare the solutions
returned by single-objective models that maximize average profit (SSBO-
1A, SSBO-1B) to the solutions obtained with single-objective models that
maximize minimum profit (SSBO-2A, SSBO-2B).

Second, we intend to investigate how the allocation of limited compu-
tations between refinement of fitness values and longer optimization runs
affects the optimization performance of the single and multi-objective mod-
els analysed, and whether the impact of this differs between the different
formulations. To do this we compare (for every single and multi-objective
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model) two sets of solutions: the ones obtained when fitness values are com-
puted across 10 (explicit averaging strategy A) and 30 (explicit averaging
strategy B) fitness evaluations.

Third, we want to investigate to what extent ESO optimization is able
to generate, from a diverse final population, trade-off solutions between per-
formance and robustness by optimizing a single measure that implicitly con-
siders robustness, and how this compares to EMO optimization, where ro-
bustness is considered explicitly as an additional objective. To do this, we
compare the solutions returned by the different single and multi-objective
models.

Finally, in order to understand how performance differences evolve with
increasing uncertainty levels across the different models analysed, we address
the points mentioned above in two different problem instances, presented in
Table 1. Table 1 shows the values assigned to pl, ζl, ϕl and μl,T , which are
necessary to compute (as shown in Diaz [19] the transition probability ma-
trix of each production line for both problem instances analysed in this study.
pl is the probability that a production line failure occurs (either serious or
non-serious) during the manufacturing of the next product lot, given that
the production line is in state O0 (no non-serious failure has occurred after a
perfect repair and the production line was operative during the manufactur-
ing of the current product lot). ζl determines the probability that a serious
failure occurs during the manufacturing of the next product lot, given that
the production line is in state O0 and given that a production line failure
occurs during the manufacturing of the next product lot. The deterioration
of a production line caused by a non-serious failure is modelled by raising
pl and ζl to the power of ϕl. The random variable Λl,T is modelled by an
exponential probability density function (PDF) with known mean μl,T . The
value of μl,T depends on the failure type of the production line, where T = 1
denotes a serious failure and T = 2 a non-serious one. Please see Diaz [19] for
a detailed description of the simulation model. Please note that artificial val-
ues have been assigned to the different pl, ζl, ϕl and μl,T , due to the difficulty
of obtaining real data for those parameters. In this manufacturing system,
some products can be manufactured in several production lines (production
lines 2, 3 and 4), and according to historical information provided by the
company most of the failures occur on production lines 2, 3 and 4, which
makes them crucial for the robustness of a production plan. For this reason
only those production lines have been assigned with a positive pl.

In order to investigate the points mentioned above, 30 independent runs
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Instance 1 Instance 2 Instance 1 and 2
Production

pl pl μl,1 (d) μl,2 (d) ζl ϕlline (l)
1 0.00 0.00 — — — —
2 0.05 0.10 1.00 0.33 0.02 0.80
3 0.15 0.20 1.50 0.60 0.05 0.50
4 0.10 0.15 1.00 0.33 0.04 0.70
5 0.00 0.00 — — — —
6 0.00 0.00 — — — —
7 0.00 0.00 — — — —

Table 1: Values of pl, μl,T , ζl and ϕl per production line and problem instance.

of every model are executed on both problem instances. To make a fair
comparison, all models are evaluated upon a limited computational budget
of 45000 independent simulation replications per run, excluding the fitness
evaluations needed by the specialized initialization operator. In this sense,
a run of models MSBO-1A, MSBO-2A, SSBO-1A and SSBO-2A terminates
after 45 generations, whereas a run of models MSBO-1B, MSBO-2B, SSBO-
1B and SSBO-2B terminates after 15 generations. The main features of every
model are presented in Table 2, those parameters have been set based on
preliminary experiments. All those models are implemented in MATLAB�

R2014a (The MathWorks, Inc., 2014) and all computations are executed in
parallel on a 12 core Intel(R) Xeon(R) CPU L5640 @ 2.27GHz with 24 GB
of RAM running Scientific Linux, release 6.2.

4. Performance Assessment

To assess the “real” quality of the final population returned by the dif-
ferent optimizers (as compared to the “fitness estimates” used during the
actual optimization process), we use a large number of simulation runs (100)
to determine the profit distribution for each solution. These results are then
used to identify the subsets of solutions that are non-dominated with respect
to their average profit and standard deviation/minimum profit (measured in
United States Dollar (USD)).

The performance assessment of different optimizers in terms of the qual-
ity of solutions is a complex issue when multiple objectives are involved [38].
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Objective 1 Objective 2 γ Generations
MSBO-1A max mean min std. dev. 10 45
MSBO-2A max mean max minimum 10 45
MSBO-1B max mean min std. dev. 30 15
MSBO-2B max mean max minimum 30 15
SSBO-1A max mean — 10 45
SSBO-2A max minimum — 10 45
SSBO-1B max mean — 30 15
SSBO-2B max minimum — 30 15

Table 2: Objective/s, γ and number of generations across the different models analysed.

This assessment becomes even more complicated when EAs are used as op-
timizers, since a different set of solutions may be returned in every run of
each EA (due to the randomized search mechanism of EAs) [32].

Different approaches to assess performance of multi-objective optimiz-
ers have been proposed in the existing literature, the reader is referred
to Knowles et al. [32] for a comprehensive review of existing techniques. Here,
in order to evaluate the points of interest mentioned in Section 3, we use the
multiple sets of non-dominated solutions obtained with every model (MSBO-
1A, MSBO-1B, MSBO-2A, MSBO-2B, SSBO-1A, SSBO-1B, SSBO-2A and
SSBO-2B) to compute samples of values for the hypervolume indicator [22].
We then conduct Mann-Whitney U tests [36] on the samples of hypervolume
values in order to derive statistical inferences about the relative performance
of two models expressed in the form of the following hypotheses:

Ho : stochastic homogeneity of hypervolume values
Ha : stochastic heterogeneity of hypervolume values
In this sense, Mann-Whitney U tests tell us if one model outperforms

other model in terms of the quality of approximation sets generated, un-
der the assumption that the hypervolume indicator reflects the preference
of the decision maker [32]. A non-parametric test (Mann-Whitney U test)
is employed because distributions of the samples analysed do not fulfil the
normality assumption.

The use of the hypervolume indicator might favour multi-objective for-
mulations over single-objective formulations given that diversity is explicitly
considered in the former models, but not in the latter ones. In order to resolve
this potential issue and make a fair comparison between single and multi-
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objective models, we apply the attainment function approach [10, 11]. This
approach summarizes the outcome of multiple runs of the different models in
the form of empirical attainment functions 1 (EAF) [1], and thus enable us to
identify the region/s where performance differences arise between single and
multi-objective models, in both objective spaces analysed (i average profit
vs. standard deviation of profit and ii average profit vs. minimum profit).
We employ the eaf package presented in López-Ibánez et al. [35] to create
plots of the median (objective vectors attained by at least half of the runs)
and best (best objective vector ever achieved) attainment surfaces as well as
to illustrate the differences between EAFs obtained with different models.

5. Results

While many measures of robustness have been proposed in the exist-
ing literature [27], the sample minimum (worst case scenario for maximiza-
tion problems) is particularly popular [24], see Chen et al. [6], Zhang et al.
[50], Goh and Tan [25], Ong et al. [40] and Tsutsui [47] for some examples.
Yet, given that the sample minimum is a biased estimator for the popula-
tion [35], it is possible that its use as a robustness measure may mislead
selection operators and steer an EA towards undesirable regions of the ob-
jective space. Our results provide evidence supporting the intuition that the
use of less biased statistics as robustness measures reduces the computational
effort needed to obtain reliable fitness estimates, thus reducing the likelihood
of choosing bad solutions over good ones during the optimization and making
it possible to allocate more computational effort to the optimization proce-
dure. This can be seen in results from Mann-Whitney U tests (presented in
Tables 3 and 4 for problem instance 1 and Tables A.5 and A.6 for problem
instance 2 located in Appendix 8.A), which statistically show that in both ob-
jective spaces analysed (i average profit vs. standard deviation of profit and
ii average profit vs. minimum profit) multi-objective models that used the
sample standard deviation as robustness measure (MSBO-1A and MSBO-
1B) achieved stochastically larger (p < .01) hypervolume values than their

1An attainment function describes the probability of an algorithm finding at least one
solution whose objective vector dominates or is equal to a specific objective vector in a
single run [11, 23]. The attainment function can be approximated from the outcomes of
several independent runs of an algorithm, such approximation is known as the empirical
attainment function [35].
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Figure 1: CDFs of hypervolume values obtained with multi-objective models (MSBO-1A,
MSBO-2A, MSBO-1B, MSBO-2B) in the objective space of average profit vs. standard
deviation of profit in problem instance 1.

counterparts (MSBO-2A and MSBO-2B) that used the sample minimum as
robustness measure. Figures 1 and 2 also support this finding in problem
instance 1, by showing that the cumulative distribution functions (CDFs) of
hypervolume values obtained with MSBO-2A and MSBO-2B are dominated
(first and second-order stochastic dominance) by the CDFs of hypervolume
values obtained with MSBO-1A and MSBO-1B, respectively.

For the multi-objective models, our results also reveal that, given the
number of fitness evaluations considered here, the allocation of more compu-
tations to obtain more reliable fitness estimates (explicit averaging strategy
B) is a better strategy than optimizing across a higher number of gener-
ations using less reliable fitness estimates (explicit averaging strategy A).
This finding is supported by Figures 1 and 2 for problem instance 1, which
show that in both objective spaces (i average profit vs. standard deviation
of profit and ii average profit vs. minimum profit) CDFs of hypervolume
values obtained with multi-objective models implementing explicit averag-
ing strategy B (MSBO-1B and MSBO-2B) dominate (first-order stochastic
dominance) the CDFs of hypervolume values obtained with their correspond-

18



Figure 2: CDFs of hypervolume values obtained with multi-objective models (MSBO-1A,
MSBO-2A, MSBO-1B, MSBO-2B) in the objective space of average profit vs. minimum
profit in problem instance 1.

ing counterparts implementing strategy A (MSBO-1A and MSBO-2A). This
finding is also corroborated by results from Mann-Whitney U tests, pre-
sented in Tables 3 and 4, which reveal that hypervolume values obtained
with both multi-objective approaches implementing strategy B (MSBO-1B
and MSBO-2B) are stochastically larger (p < .01) than the ones obtained
with their corresponding counterparts implementing strategy A (MSBO-1A
and MSBO-2A), in both objective spaces. Supportive results for problem
instance 2 can be found in Figures A.9 and A.10 and in Tables A.5 and A.6
presented in Appendix 8.A.

It is important to note that in both problem instances, having more re-
liable fitness estimates significantly improved (p < .01) the optimization
performance of all multi-objective models in both objective spaces analysed
(i average profit vs. standard deviation of profit and ii average profit vs. min-
imum profit). For single-objective models in problem instance 1, the imple-
mentation of strategy B significantly improved (p < .01) the optimization
performance of the single-objective model trying to maximize the sample
minimum, but only in the solution space of average profit vs. standard de-
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(a) Instance 1

(b) Instance 2

Figure 3: CDFs of hypervolume values obtained with the best multi-objective model
(MSBO-1B) and all single-objective models (SSBO-1A, SSBO-2A, SSBO-1B and SSBO-
2B) in the objective space of average profit vs. standard deviation of profit.
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(a) Instance 1

(b) Instance 2

Figure 4: CDFs of hypervolume values obtained with the best multi-objective model
(MSBO-1B) and all single-objective models (SSBO-1A, SSBO-2A, SSBO-1B and SSBO-
2B) in the objective space of average profit vs. minimum profit.
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viation (see Table 3 and A.5, where SSBO-2B achieved stochastically larger
hypervolume values (p < .01) than SSBO-2A), whereas under higher un-
certainty level (problem instance 2), strategy B improved the optimization
performance of the model mentioned above not only in the solution space
of average profit vs. standard deviation, but also in the solution space of
average profit vs. minimum profit (see Figures 3b and 4b, where the CDF
of hypervolume values obtained with SSBO-2B dominate the CDFs of hy-
pervolume values obtained with SSBO-2A - first and second-order stochastic
dominance, respectively). These results are interesting because they pro-
vide evidence that using less biased statistics as objective/s might reduce
the computational effort (number of samples) needed to obtain reliable fit-
ness estimates, and thus demonstrate that not only the level of uncertainty,
but also the choice of objective/s have an impact on the noise sensitivity
of the optimization approach. Our results also seem to suggest that the
multi-objective approach is more sensitive to noise than the single-objective
approach, but further investigation is still required to support this claim.
This may occur because in the single-objective case the solution selection
during the optimization procedure only considers one noisy fitness estimate,
whereas in the multi-objective case the noise affecting the optimization comes
from two different noisy fitness estimates, which makes the solution selection
more difficult. Although we cannot claim that multi-objective approaches
are in general more noise sensitive than single-objective approaches, as this
will highly depend on the choice of objective/s, we can say that our ex-
periments demonstrate that for the multi-objective models considered here,
allocating more computational effort towards the generation of more reliable
fitness estimates seems to be more beneficial than optimizing across more
generations.

Our results identified MSBO-1B as the best multi-objective model in
both objective spaces analysed in problem instance 1 and 2. In the solution
space of average profit vs. standard deviation of profit, this finding is con-
firmed by results from Mann-Whitney U tests (Tables 3 and A.5) and by
analysing Figures 1 and A.9, which indicate that MSBO-1B outperformed
all its multi-objective contestants (MSBO-1A, MSBO-2A and MSBO-2B).
Furthermore, hypervolume values from non-dominated solutions found with
MSBO-1B in the solution space of average profit vs. minimum profit were
stochastically larger (p < .01) (see Tables 4 and A.6) than hypervolume val-
ues obtained with any other multi-objective model (MSBO-1A, MSBO-2A
and MSBO-2B), in both problem instances. For problem instance 1, these
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results are corroborated by Figure 2, where the CDF of hypervolume val-
ues obtained with MSBO-1B dominates the CDFs obtained with MSBO-1A
(first-order stochastic dominance), MSBO-2A (first-order stochastic domi-
nance) and MSBO-2B (second-order stochastic dominance).

It is not surprising that MSBO-1B outperforms both, MSBO-2A and
MSBO-2B, in the solution space of average profit vs. standard deviation of
profit, since MSBO-1B explicitly optimizes both criteria. However, it is sur-
prising that MSBO-1B also outperforms MSBO-2A and MSBO-2B in the
solution space of average profit vs. minimum profit, considering that maxi-
mization of minimum profit is an objective in MSBO-2A and MSBO-2B, but
not in MSBO-1B. This counter-intuitive result further supports our finding
that the use of the sample minimum as robustness measure may undermine
the optimization performance of the EAs analysed, instead of returning more
robust solutions, as reported in Ong et al. [40] and Tsutsui [47], compared
to less biased statistics such as the sample mean or the sample standard de-
viation. Having a more biased statistic (sample minimum) as one of the two
noisy fitness estimates may be the reason why MSBO-2B was outperformed
in both objective spaces (based on CDFs and results from Mann-Whitney
U tests) by MSBO-1B, which uses a less biased statistic (sample standard
deviation) as fitness estimate. It is probably due to the less reliable fitness
estimates that MSBO-1A performed badly (based on CDFs and results from
Mann-Whitney U tests) in both objective spaces in terms of hypervolume
values compared to MSBO-1B, which has more refined fitness estimates.

Our results also demonstrate that the simultaneous optimization of av-
erage profit as a performance measure and standard deviation of profit as a
robustness measure (MSBO-1B) consistently generated better sets of trade-
off solutions not only between average profit and standard deviation of profit,
but also between average profit and minimum profit, than any other model
analysed here. The supporting evidence for this finding is provided by results
from Mann-Whitney U tests (Tables 3 and 4 for problem instance 1 and Ta-
bles A.5 and A.6 for problem instance 2), which determined that MSBO-1B
achieved stochastically larger (p < .01) hypervolume values than any of the
single-objective models in both objective spaces analysed. The superiority
of MSBO-1B is also illustrated in Figures 3 and 4, where the CDFs of hy-
pervolume values obtained with MSBO-1B dominate (first-order stochastic
dominance) all the CDFs obtained with the single-objective models (SSBO-
1A, SSBO-2A, SSBO-1B and SSBO-2B).

Finally, the median and best attainment surfaces, presented in Figures 5, 6, 7
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and 8, illustrate that in problem instance 1 and 2, respectively, the regions at-
tained in both objective spaces with the best multi-objective model (MSBO-
1B) are more attractive than the ones attained with the different single-
objective models (SSBO-1A, SSBO-2A, SSBO-1B and SSBO-2B). The ad-
vantage of MSBO-1B over single-objective models is also confirmed by look-
ing at the shaded areas in those figures. Shaded areas point out the regions
of the objective space where the EAF of one model is larger by at least 20%
than the EAF of the other model, and thus dark regions indicate the location
in the objective space where one model outperforms the other. Darker areas
indicate larger differences between the estimated probability values of two
models.

This finding is somewhat surprising when considering performance for
one of the extremes of the Pareto front (e.g. high average profit, high mini-
mum profit): as the single-objective optimizer is focusing on the optimization
of a specific criterion, we may expect it to outperform the multi-objective
optimizer in the corresponding region of the front. However, this does not
occur. This appears to indicate that the simultaneous consideration of multi-
ple objectives allows for a more comprehensive description (and recognition)
of good solutions during the optimization: the solutions identified by the
multi-objective approach “stand up” to the scrutiny of 100 simulations dur-
ing final performance assessment, while the single-objective solutions “drop”
in performance.

6. Conclusion

We have considered interactions between the choice of optimization paradigm
(multi-objective versus single-objective), robustness criterion and sample size
in the context of a production planning problem that is subject to machine
failures. This problem is an example of a much larger set of logistics and en-
gineering design problems in which the performance of a solution is subject
to uncertainty in the operating or environmental conditions [34, 33, 30].

As may be expected, our results suggest that a dedicated multi-objective
approach is able to consistently generate sets of solutions that present bet-
ter trade-offs between performance and robustness than a single-objective
approach. More surprisingly though, we observe that the single-objective
models do not outperform the multi-objective ones in extreme regions of the
Pareto front, indicating that the multi-objective approach is able to benefit
from a more comprehensive description of solution quality.
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Figure 5: Median (dashed line) and best (continuous line) attainment surfaces of the best
multi-objective model and all single-objective models in the objective space of average
profit vs. standard deviation of profit in problem instance 1.
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Figure 6: Median (dashed line) and best (continuous line) attainment surfaces of the best
multi-objective model and all single-objective models in the objective space of average
profit vs. minimum profit in problem instance 1.
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Figure 7: Median (dashed line) and best (continuous line) attainment surfaces of the best
multi-objective model and all single-objective models in the objective space of average
profit vs. standard deviation of profit in problem instance 2.
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Figure 8: Median (dashed line) and best (continuous line) attainment surfaces of the best
multi-objective model and all single-objective models in the objective space of average
profit vs. minimum profit in problem instance 2.
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We further establish that optimization performance for this problem is
significantly affected by the choice of robustness measure. In particular, the
use of the sample minimum as the robustness measure negatively impacts on
the quality of the final solutions, for both single-objective and multi-objective
optimizers. In conjunction with our experiments with sample size, we find
that a larger number of evaluation replicates (i.e. more computational effort)
is needed to obtain reliable estimates for this measure, compared to less
biased statistics such as the sample mean or the sample standard deviation.

While our results for the multi-objective optimizers are generally positive,
we do identify a sensitivity of this approach to the number of evaluation repli-
cates employed in estimating fitness values. In particular, our results show
that an increase in sample size (from 10 to 30) leads to a distinct performance
improvement for all multi-objective models, while the effect is much less pro-
nounced for the comparable single-objective models. These results highlight
the importance of carefully adjusting this parameter in multi-objective for-
mulations for similar problems, and we speculate that this may be due to the
simultaneous impact of noise in two objectives.
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Appendix A. Results from Problem Instance 2

Figure A.9: CDFs of hypervolume values obtained with multi-objective models (MSBO-
1A, MSBO-2A, MSBO-1B, MSBO-2B) in the objective space of average profit vs. standard
deviation of profit in problem instance 2.

Figure A.10: CDFs of hypervolume values obtained with multi-objective models (MSBO-
1A, MSBO-2A, MSBO-1B, MSBO-2B) in the objective space of average profit vs. minimum
profit in problem instance 2.
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