
 1

MINIMIZING DEVIATION FROM SCHEDULED TIMES IN A

SINGLE MIXED-OPERATION RUNWAY

A. Rodríguez-Díaz
a
, B. Adenso-Díaz

b
, P.L. González-Torre

b

a
 INDRA SISTEMAS, Air Traffic Control

b
 Escuela Politécnica de Ingeniería de Gijón, Universidad de Oviedo, Spain

 Corresponding author: adenso@epsig.uniovi.es

 Fax: +34 985 182010
 Phone: +34 609 848525

A. Rodríguez-Díaz, B. Adenso-Diaz, P. González-Torre (2017) “Minimizing deviation

from scheduled times in a single mixed-operation runway”, COMPUTERS &

OPERATIONS RESEARCH, 78, 193-202.

Abstract

The dynamic nature of airports demands the development of scheduling algorithms

that are computationally efficient and therefore amenable to replanning when new

traffic events occur. The main objective of this research is to design an algorithm with

very low computational times able to minimize delays in the scheduled times of arrival

and departure flights in an airport with a mixed-operation runway, under wake vortex

separation and Constrained Position Shifting restrictions. The simulated annealing

algorithm obtains a 95% improvement on time delays in less than one second of

computation for the test instances generated, which means that it can be used online

for high-demand scenarios to reduce delays. It has also been tested in a public testbed

as well as in a real environment, showing an improvement of 30% in the time delays

of real operations at London Gatwick airport.

Keywords: scheduling, wake vortex separation, mixed-operation runway, constrained

position shifting, first-come first-served, simulated annealing

 2

 3

1. INTRODUCTION

Some 3.1 billion passengers made use of the global air transport network for their

business and tourism needs in 2013. The annual passenger total was up by

approximately 5% compared to 2012 and is expected to reach over 6.4 billion by 2030,

based on current projections (ICAO, 2014). The number of aircraft departures reached

33 million globally last year, establishing a new record and surpassing the 2012

departure figure by more than one million flights. Scheduled passenger traffic grew at

a rate of 5.2% (expressed in terms of revenue passenger-kilometres or RPKs) (ICAO,

2014).

Therefore, one of the central challenges facing the aviation industry is air traffic

demand growth, which results in congestion in many airports – primarily hubs (Flores-

Fillol, 2010). The economic cost of delay is enormous and will worsen as traffic

demand increases. In 2010, the annual cost of US delays was $32.9B (Ball et al.,

2010).

The efficiency and effectiveness of Air Traffic Management (ATM) is enabled by air

traffic flow management (ATFM). It contributes to the safety, efficiency, cost

effectiveness and environmental sustainability of an ATM system. ATFM aims to

enhance safety by ensuring the delivery of safe densities of traffic and by minimizing

traffic surges. Its purpose is to balance traffic demand and available capacity. ATFM

relies on the clear definition of capacities (i.e. number of flights that can be handled by

an airport or in a route sector), as well as on the analysis of forecasted traffic flows

(number of traffic flows that are expected in an airport or in an en route sector).

ATFM therefore relies on the exchange of information related to flights, airspace

availability and capacity. With ATFM, the various system stakeholders collaborate to

 4

reconcile system resource constraints with economic and environmental priorities

(Bertsimas et al., 2011).

The dynamic nature of the terminal area necessitates the development of scheduling

algorithms that are computationally efficient and therefore amenable to replanning

when new traffic events occur (Mukherjee and Hansen, 2009), such as when a new

aircraft enters the centre boundary or when data updates are obtained (Balakrishnan

and Chandran, 2010). The challenge lies in simultaneously achieving safety, efficiency

and equity, which are often competing objectives, and doing so in a reasonable amount

of time (Anagnostakis et al., 2001). Safety is achieved by maintaining separation

between aircraft and by satisfying downstream metering constraints; efficiency is

equivalent to achieving high throughput and/or low average delay; and equity is

modelled by limiting the deviation from a nominal order or by minimizing variance in

delay.

However, few solution approaches have been able to simultaneously model all three

components and optimally solve the runway scheduling problem in a computationally

tractable manner. One reason for this computational hurdle is that most runway

scheduling models are, from a theoretical perspective, inherently hard to solve

(Beasley et al., 2000).

Lieder et al. (2015) mention that no efficient methods have been proposed in the

literature for the arrival-landing problem (ALP) that are capable of solving large

problem instances. The most common solution approaches are dynamic programming

(DP) approaches (Dear, 1976); branch-and-bound (B&B) algorithms (Abela et al.,

1993); mixed-integer programming (MIP) formulations (Beasley et al., 2000), which

are solved with a standard solver; and heuristic solution approaches (Pinol & Beasley,

 5

2006). However, these implementations resort to heuristic or approximate approaches

that produce “good” solutions in short computational times (not in real time) but are

not suitable for large problems and therefore, not useful to apply in real environments.

Managing take-offs and landings of any airport is a complex problem that plays an

important role in airport management. Runways and air controllers are limited

resources, so air traffic needs to be planned carefully in order to limit peak demand

and satisfy as many airlines’ requirements as possible. However, unpredictable delays

make it almost impossible to schedule planes with precision and in advance

(Artiouchine et al., 2008). Indeed, the initial schedule needs to be reorganized when

planes are close enough to the airport, i.e. when they approach the TRACON

(Terminal Radar Approach Control Facilities – between 5 and 50 miles from the

airport), or are on the ground (delays on the ground cost half as much as they do in the

air) (Inniss and Ball, 2004).

Hence, congestion delays materialize either on the ground, where aircraft have to wait

before accessing a runway, or during the flight, where they are deviated from their

intended trajectory. Delays may also propagate through the whole transportation

network when the schedule buffers are tight. Congestion delays can be managed at a

strategic level (by runway expansion or shorter separation standards), a pre-tactical

level (by splitting flows and sectors) or a tactical level (by sequencing and re-

sequencing aircraft) (Gwiggner and Nagaoka, 2014).

Our work deals with the fact that aircraft scheduling needs fast algorithms that help air

traffic controllers to take real time decisions. These algorithms need to be able to

process large amounts of data in a very short time. In this paper, we will evaluate a

simulated annealing (SA) algorithm designed to calculate the landing and/or departure

 6

times, minimizing the total delay from the estimated landing time (ELDT) or from the

estimated time of departure (ETD), subject to wake vortex separation (WVS)

requirements and constrained position shifting (CPS). Following the Gwiggner and

Nagaoka (2014) classification, this research is placed at the tactical level and focused

on airports with single, mixed-operation runways that need to optimize their resources

to deal with capacity problems. We have considered three factors of interest for the

algorithm evaluation: number of aircraft, wake-turbulence category and number of

shifts of the aircraft from their initial position in the sequence. An important condition

that we propose to cover is to obtain online results as requested in real operations. To

our knowledge, no previous work has addressed this scenario.

The paper is organized as follows: Section 2 describes the problem of the runway

bottleneck and different approaches that have been studied in this field. In Section 3,

the proposed solution is presented and the SA algorithm defined. Section 4 provides a

description of the experimental tests carried out in order to analyse the behaviour of

the algorithm. Section 5 presents the numerical results obtained, not only from the

experimental tests but also from the results of the algorithm in the real environment of

Gatwick airport. Finally, a short summary is given in Section 6, together with

suggested topics for future research in this area.

2. PROBLEM DESCRIPTION AND PREVIOUS APPROACHES

The runway system, as a resource shared by all aircraft, creates a significant flow

“bottleneck” that increases delays. The flow of aircraft entering the airport radar range

is not very orderly (Soomer and Franx, 2008), but a regular, balanced supply of arrival

traffic is essential for the successful planning of dense arrival flows (Post and de

 7

Jonge, 1997). The main objective of this research is to explore the possibility of a

time-efficient metaheuristic to develop an algorithm that minimizes deviations from

the scheduled times of arrival and departure of flights in an airport. A scenario with a

single, mixed-operation runway will be considered, the goal being to deliver schedules

within a few seconds.

Based on the level of airport and air traffic control (ATC) system impact, as a result of

a constraint violation, two types of constraint can be distinguished (Anagnostakis et

al., 2001):

 Hard constraints. Being inviolable because they affect safety, they must be

satisfied by all generated solutions. One of the most limiting factors for the take-

off and landing frequency in airports is the danger of wake turbulence. Wake

vortex effects are generally proportional to aircraft weight and the lighter the

following aircraft, the more it suffers from wake vortex effects, therefore

demanding greater separation from the leading plane (Artiouchine et al., 2008).

The required separation times between successive aircraft (the WVS) depend on

the types of the two planes involved; the order in which aircraft land/take-off plays

an important role in the capacity of the runway (Bäuerle et al., 2007).

 Weak constraints can be violated but the smaller the violation the better the

solution quality. An example is the scheduled take-off times (or slots). A slot is the

scheduled time of departure or arrival available, or allocated to, an aircraft

movement on a specific date at the so-called capacity-constrained airports (also

referred to as slot-controlled, slot-restricted, slot-constrained, or slot-coordinated

airports). In flight scheduling, flights have an optimal schedule time to respond to

time-dependent demand and the requirement of frequency plans, of available fleets

 8

and of aircraft routings, among others. However, the capacity limit of runways

could mean that some flights cannot operate at their expected time. Hence, it is

acceptable to modify the schedule times of some flights from their optimal times

(Cao and Kanafani, 2000).

Controllers have limited flexibility in reordering aircraft, and requirements in

scheduling solutions are fairness and safety. In this study, WVSs (measured in

minimum time separations between flights) will be considered as hard constraints, and

time of arrival/departure and sequence order as weak constraints.

To tackle the latter, CPS is taken into account. The CPS approach is based on a

fundamental underlying principle that involves the specification of a parameter, which

limits the maximum number of position shifts (forward or rearward) that any aircraft

will receive with respect to its first-come, first-served (FCFS) position (Balakrishnan

and Chandran, 2010). Dear (1976) observed that CPS increases the runway throughput

rate, treats individual aircraft equitably and fits well within the capabilities of today's

computers because updating the solution avoids “global” re-sequencing, amongst other

characteristics.

Psaraftis (1980) was the first to develop a polynomial-time algorithm for scheduling

under CPS. This algorithm relied on all aircraft of the same type being identical, which

did not accommodate time-window restrictions on aircraft or precedence relationships

among aircraft, thus effectively scheduling all aircraft of a certain type in FCFS order.

Trivizas (1998) proposed a search-based algorithm. His model also failed to account

for time-window restrictions and precedence constraints. The difficulty of

incorporating all operational constraints within a CPS framework even led to a

conjecture by Carr (2004) that, in general, runway scheduling under CPS had

 9

exponential complexity.

Bianco et al. (2006) consider two parameters, namely the maximum position shifting

(MPS) to prevent an aircraft from being excessively delayed, and the relative position

shifting (RPS) to limit the pilots’ and controllers’ workloads during aircraft

resequencing.

Malaek and Naderi (2008) described a new procedure for the real time dynamic

scheduling of arrival aircraft via computing optimal sequences, which eliminates most

of the shortcomings in k-CPS (k being the maximum number of position shifts) while

respecting its optimal nature to minimize the makespan and mean delay time. The new

approach, referred to as dynamic position shifting (DPS), allows operational

considerations to be easily implemented. However, the complexity of computations

increases linearly with respect to the total number of aircraft and runways, due to the

elimination of recursive computations and the maximum number of allowable position

shifting being computed dynamically as a function of traffic flow. Their algorithm

behaves very similarly to that of FCFS in the normal traffic while it acts similarly to

that of k-CPS methods in heavy traffic. However, it is only valid for arrivals as it is

dependent on the transition times in the TRACON and the times required for aircraft

to travel from the meter fixes to the runway threshold.

There is an interesting stream of research on models and algorithms for the control of

a terminal manoeuvring area (TMA) that is based on job shop scheduling as discussed

in Bennell et al. (2013). From this point of view, the TMA can be viewed as a single-

machine (Bianco et al., 1999) or as a job shop scheduling problem (Bennell et al.,

2013). Bianco et al. (1999) show that the scheduling problem is equivalent to the

Cumulative Travelling Salesman Problem with Ready Times. The problem becomes

 10

more complex if both rescheduling and rerouting are implied in balancing the runway

workload and minimizing delay propagation. When taking these two problems

together into consideration, job shop methodology is a useful way of modelling the

problem. Therefore, heuristic algorithms are required to compute good quality

solutions in a short computation time (Samà et al., 2017). D’Ariano et al. (2012) use a

truncated branch and bound algorithm to compute aircraft schedules with fixed routes

which is then incorporated in a tabu search (TS) scheme for aircraft rerouting. Also

Samà et al. (2014) develop and compare different models for simultaneous aircraft

scheduling and routing, including strong traffic disturbances.

However, none of them can offer online solutions with their approaches. D’Ariano et

al. (2015) developed three formulations based in graphs that offer online solutions by

assigning to each aircraft the start time from the fixed, and all relevant points in such a

way that all aircraft conflicts are resolved. Samà et al. (2013) make use of alternative

graphs, which consist of dividing the problem into multiple steps, enabling the

dynamic management of aircraft for large time horizons. Graphs are also used by

Samà et al. (2016) to examine the trade-off between some classical performance

indicators (tardiness, priority, throughput, and number of deadline violations) in a very

complete and interesting study.

Other methodologies are present in the literature covering this scheduling problem.

For example, Tavakkoli-Moghaddam et al. (2012) examined ways of landing aircraft

with the least waiting time in time windows under critical conditions using a fuzzy

programming approach and an estimator for the landing sequence of planes. However,

the degree of satisfaction for more than 20 planes in the sequence is less than unity,

which makes this approach not particularly useful in real environments.

 11

Ernst et al. (1999) presented a specialized simplex algorithm, which evaluates the

landing times, and then a problem space search heuristic is used as well as a B&B

method for both single- and multiple-runway problems. Their objective is the landing

problem meeting the separation criteria between all pairs of planes (not just successive

ones) and where each plane has an allowable time window. However, the scenarios

described consider no more than 50 planes.

Metaheuristics approaches are also present in the literature, including hybrid genetic

algorithms (GAs). Ghizlane et al. (2013) studied the multiple runway case of the

aircraft landing problem (MRALP), through four hybrid algorithms that use two

computational heuristic search techniques, namely, TS and GAs, offering competitive

solutions in terms of quality and robustness. However, in the best-case scenario

(instances of fewer than 50 planes), results are achieved in more than 50 seconds.

Genetic search methods were previously studied by Hansen (2004), with the purpose

of investigating the utility of the genetic search approach using characteristic sets of

TMA problems instead of particular solutions for certain airports, and also by Hu and

Di Paolo (2009) who designed a GA with uniform crossover to tackle the aircraft

arrival sequencing and scheduling (ASS) problem in multi-runway systems. Other

than scheduling, Liu (2010) developed a solution procedure based on a genetic local

search (GLS) algorithm for solving the runway dependent Airport Layout Plan (ALP)

for determining the runway allocation, sequence and landing time for arriving aircraft.

However, these algorithms are evaluated with small sets of planes and without

considering their use in real environments.

Other metaheuristics that deal with more realistic scenarios were also considered.

Pinol and Beasley (2006) in their study presented the scatter search and bionomic

algorithm applied to landing problems involving up to 500 aircraft and five runways.

 12

None of these authors deals with the mixed-operation runway scheduling problem in

real time and with a large number of flights in the sequence. One of the main purposes

of this research is to develop an algorithm that can find good results in real time, in

order to be applied in real situations.

3. PROPOSED APPROACH

As stated above, the scenario considered is a sequence of flights in a single mixed-

operation runway subject to CPS. The scope under research here is to develop a

suitable model that finds a schedule as similar as possible to the optimal one in a very

short time. The optimal schedule is a sequence of flights with target times satisfying

the minimum safety separations that minimize the total delay time of the sequence

considered. Note that we have not considered programming aircraft before their

estimated time as some other, more schedule-oriented researches consider (e.g. Pinol

& Beasley, 2006; Salehipour et al., 2013), since this procedure is not always possible

in the TMA (as it implies manoeuvring operations, taxiing, etc.). This objective

allows not only reducing delays, but also maximizing runway capacity, thus reducing

congestion at airports.

According to the review of the literature, both exact and heuristic algorithms have

been developed for scheduling problems. Given the complexity of the problem, exact

methods do not perform as required for medium-sized instances (Salehipour et al.,

2013); researchers are using heuristic algorithms as solution approaches for the

problem. Although these algorithms do not guarantee optimal solutions, their

performance in delivering competitive schedules in short periods of time makes them

very attractive. When looking for a fast, meta-heuristic model, SA is on many

 13

occasions the chosen alternative, given its performance as well as its simplicity

(Bertsimas & Tsitsiklis, 1993; Salehipour et al., 2013).

The objective is thus to minimize delays in scheduled times – in other words, to

minimize the total cost (delay in the target times) considering the two following

constraints: a safety interval between successive operations determined by the WVS

and the runway capacity of the airport; and forcing each aircraft to comply with the

CPS restriction, which means that there is a limit to the maximum number of position

shifts (forwards or backwards) that any aircraft will receive with respect to its FCFS

position.

Figure 1 illustrates a pseudocode for the SA algorithm, where Sact is the actual solution

and Scand is the candidate solution to be compared with Sact. The parameters used for

developing the SA algorithm are:

To initial temperature

α lowering rate of the temperature

Tf final temperature

L number of times that the algorithm tries to find new solutions before

decreasing the temperature

As usual, when implementing SA metaheuristics an initial solution is defined as the

actual one Sact, to start exploring the solution space looking for a better candidate. To

allow scape from local optima, with a certain probability U(0,1) < e
(-δ/T)

, SA accepts

worse solutions during the search, allowing a more extensive exploration.

 The variables used in the following model are:

N total number of flights in the sequence

 14

WTCi wake turbulence category of flight i (which can be light, medium or

heavy)

WVSij wake vortex minimum separation between flights i and j

pi flight in position i in the sequence solution

vi position occupied by flight i in the sequence solution

ei estimated time of landing/arrival of flight i

ti target time of landing/arrival of flight i, computed taking into account

the refined planning times and WVS requirements

δ Difference between the cost (Scand) and cost (Sact)

ci Cost penalty for unit of delay of flight i

========== Figure 1 ==========

Table 1 shows the values considered in this paper for the separation times between

pairs of aircraft. These are average values based on real information from different

airports.

 ========== Table 1==========

Some authors (e.g. Bennell et al., 2013; Chandran & Balakrishnan, 2007) assume that

the separations satisfy the triangle inequality, that is:

WVSij ≤ WVSik+WVSkj for all aircraft types i, j, k (1)

However, Balakrishnan and Chandran (2010) prove that the triangle inequality does

not necessarily hold when both arrivals and departures are scheduled simultaneously.

Since we are considering mixed-operation runway airports, it is not possible for us to

assume triangle inequality and therefore the target times are calculated for each flight i

as:

 15

ti = max{ei; tj + WVSji} ∀j = 1, …, i-1 (2)

The objective function can then be defined as:

min C = min (i=1..N (|ti - ei|*ci) (3)

One of the main challenges when designing SA algorithms is how to guarantee the

generation of feasible solutions. In our particular case, a solution is feasible when its

flights in the sequence fulfil the CPS condition, and in addition the wake turbulence

category (WTC) separations are met.

Figure 2 shows an example of the process of generating a feasible solution regarding

the CPS constraint (note that WTC is easier to guarantee by just delaying the flight

times accordingly).

========== Figure 2 ==========

In order to generate feasible solutions, our procedure randomly chooses a position n

and defines the set n={n-CPS, n-CPS+1, …, n-1, n+1,…, n+CPS-1, n+CPS}

containing 2Δ flights “CPS-compatible” with flight n. Here Δ=(2 CPS)-1 represents

the number of flights that are potentially exchangeable with flight n.

Then, it is necessary to find an element n’ n fulfilling (4) and (5).

vn’ {n-CPS,…, n+CPS} (4)

p {n’-CPS,…, n’+CPS} (5)

In order to look for n’, the different elements of n are randomly evaluated until an n’

is found that meets both conditions. If both conditions are met, it is guaranteed that the

exchange (or swap) of n and n’ will lead to a new feasible solution Scand which will be

 16

evaluated and compared with Sact. Note that it will always be possible to find a feasible

solution around Sact, although not for any pair (n, n’) will it be possible. For example,

let us suppose an initial sequence {1,2,3} with CPS =1. If we obtain a random position

n=2 and swap it with n’=3, the sequence then becomes {1,3,2}; if the next random

position number is n=1, then we cannot find a CPS-compatible n’ with which to swap

flight 1. However, there will always be a feasible solution, which is returning to the

initial sequence {1,2,3}.

If the cost of Scand is lower than the cost of Sact, then the new current solution would be

Scand. In order to escape from a local minimum, the SA algorithm allows some worse

solutions Scand to become Sact with a probability U(0,1) < e
(-δ/T)

.

4. EXPERIMENTAL FRAMEWORK

Once the SA algorithm has been defined, a set of tests has to be conducted in order to

validate the behaviour of the algorithm. The idea is to generate a large number of

random instances for which we know the optimal result and compare them with the

solutions found by the algorithm.

Three factors have been identified in the previous literature review as potentially

influencing the results obtained. In order to quantify how relevant these factors are, we

have introduced them in the procedure for the generation of the instances:

 F1. Wake turbulence category of the flights in the sequence. We have considered

two different situations: one in which all the flights have WTC = Medium (F1.1.)

and another where all flights have a random WTC (F1.2.) between the three

categories considered (Heavy, Medium and Light). This allows us to analyse

whether having planes of the same WTC (i.e. each of them needs to satisfy the

 17

same separation between them, so the triangle inequality is satisfied) is relevant or

not for the performance of the algorithm.

 F2. Constrained position shifting. Five levels have been chosen for CPS = {1; 2; 3;

4; 5}, bearing in mind that controllers always wish to keep the sequence as similar

as possible to the FCFS sequence received.

 F3. Number of flights. In order to have a realistically managed size sequence of

planes in an airport with a single runway that can be held for a short period of time

(couple of hours), we have studied sequences of 50 (F3.1), 100 (F3.2), 150 (F3.3)

and 200 (F3.4) flights. Although it is not realistic for a real airport to consider so

large a sequence in a mixed-operation runway (the maximum throughput capacity

for a homogeneous fleet mix on a single runway is 60 flights per hour (Sherry,

2009), this will allow us to check the ability of the algorithm to manage extremely

large instances.

4.1. Instance generation

As previously outlined, once the factors have been identified, it is necessary to

generate a set of instances for which we know the optimal solution. This means

generating instances of the different number of flights considered (F3) with cost 0 that

fulfil the WTC considerations. These instances are then randomly shuffled in respect

of the five levels of CPS considered (F2). The instances generated as a result are then

considered as the input FCFS sequences for the algorithm.

Regarding the total number of instances to generate in our experiments, 50 replications

were generated for each of the 2x5x4 factor level combinations of the three factors

considered, giving a total of 40×50 = 2,000 instances. We have considered that the

 18

penalty cost for unit of delay of flight plan i is one in the generation of these instances.

The procedure followed to generate such feasible instances with cost 0 is the

following:

1. Let us suppose the flight sequence <1, 2, 3, 4, …> is the optimal solution

2. The optimal estimated times of the flights in the sequence are calculated, taking

into account their WTC separation restrictions.

3. In order to shuffle the flights according to the CPS limitation, a data structure is

generated. Each column represents the position of a flight in the sequence and

contains all the possible flights that can be in that position respecting the CPS

limitation.

========== Figure 3 ==========

Figure 3 shows an example of the last step for CPS = 2. For example, flight 4 can be

moved to positions (columns) {2, 3, 4, 5, 6} respecting the CPS = 2 limitation. In

order to create the random sequence that fulfils the CPS condition, we follow the next

steps:

i. Starting in the first column, we randomly choose a value among those

possible (for example 2 in Figure 3).

ii. The flight selected in the previous step is deleted from all the following

columns in order not to select it again (since it is not feasible to have a

repeated flight in the sequence).

iii. Go to the next column. If the flight in that column is its last chance to be

selected, it is automatically chosen (in Figure 3, flight 1 of the third

column). This happens when we are evaluating a column j where there is

 19

still available the flight j-CPS (it has not been deleted in previous steps). If

not, repeat the previous step for the successive columns.

4.2. SA Parameters tuning

The SA parameters are, as mentioned above, the initial (To) and final (Tf)

temperatures; the cooling rate (α); and the number of iterations at a certain temperature

(L), which was fixed at one.

In order to determine the optimal values for To, α, Tf, three levels of each parameter

were considered based on previous tests and SA literature (Aarts & Korst, 1989;

Dowsland & Adenso-Díaz, 2001; Van Laarhoven & Aarts, 1988): To {200, 600,

1,000}; α {0.99, 0.999, 0.9999}; Tf {0.01, 0.001, 0.0001}. Choosing five

instances out of the 50 generated for each of the 2x5x4 combinations of levels, makes

a total of (40 5) 3
3
 = 5,400 runs of the algorithm for testing the SA parameters.

Given that the data collected do not fulfil the normality assumptions (Kolmogorov-

Smirnov p = 0.000), in order to study the influence of each of the factors in the

minimization of the cost (or maximize the improvement percentage), a Kruskal-Wallis

analysis seems to be the most appropriate. The results of this non-parametric analysis

confirm that there are highly significant differences between the factors considered for

both levels of (p = 0.000) and To (p = 0.043), but not for Tf (p = 0.567). Level 3 of

both significant factors shows the best results (Table 2). Therefore, = 0.9999, To =

1,000 and Tf = 0.01 are the values chosen for the experiments to be carried out.

========== Table 2 ==========

 20

5. RESULTS

In this section we present the results obtained by the algorithm proposed with the SA

parameters tuned according to Section 4.2. We have used the testbed of 2,000

instances generated in Section 4.1, the 12 instances publicly available from OR-

Library (Beasley, 1990) involving from 10 to 500 aircraft, and finally a real sequence

of flights from Gatwick airport. The results are measured in terms of percentage of

improvement,

% improvement = (CFCFS – Csolution) / CFCFS (6)

where CFCFS and Csolution are the costs of the FCFS solution and the found solution,

calculated as described in equation (3).

5.1. Testbed

As can be seen in

Figure 4, for 828 out of 2,000 instances (41.4% of the total of instances generated), the

algorithm was able to find the optimal solution (which means finding the sequence of

cost 0); a 98.65% of instances achieved more than a 95% improvement in the cost of

the sequence.

========== Figure 4 ==========

A Kruskal-Wallis test was performed in order to test the importance of the three

 21

factors considered. Results show that F3 (i.e. number of flights) is not as significant (p

= 0.214) in the explanation of the improvement as are F1 (p = 0.001) and F2 (p =

0.000). This means that our algorithm’s efficiency does not depend on the number of

aircraft in the sequence considered. As shown in Table 3, factor F1.2 (different types

of plane) and factor F2.1 (CPS=1) were found to be the most difficult to manage for

the SA algorithm developed. These results are reasonable as factor F1.2 implies more

complexity since the triangle inequality is met and when CPS=1 the number of

possible reassignments of the aircraft in the sequence to find their best position is

smaller. On the other hand, and as would be expected, the best results are achieved for

high values of CPS (F2) and only one type of plane (F1.1).

Table 3 also shows the average percentage GAP as defined in Pinol & Beasley (2006).

The values of the GAPS obtained show that our algorithm is able to find the optimal

solution in all the cases. Lower bound values show that the worst case is a 90%

improvement for some cases.

========== Table 3 ==========

As mentioned in the objectives, computational time is very important in this study.

 22

Figure 5 and Figure 6 show that really good results are obtained in less than one

second. As would be expected, results improve as the algorithm makes more

interactions (i.e. as we allow longer computational times). As can be seen in

 23

Figure 5, in the 15,000 iterations, the results reached average improvements of 80% in

just 0.15 seconds while the 100% average improvement (i.e. solution sequence cost is

0) is reached in 0.25 seconds (in the 30,000 iteration).

========== Figure 5 ==========

========== Figure 6 ==========

Figure 6 shows the evolution of the improvement for the 2,000 instances in different

iterations. It can be seen that in the last iteration (50,000) almost all the instances have

an improvement in the cost of the sequence higher than 95%.

5.2. OR-Library Instances

For the sake of comparison with some publicly available sets of instances, we have

considered the 13 aircraft landing data files from the OR-Library (Beasley, 1990). In

order to be able to process those 13 instances, we needed to perform some necessary

 24

adjustments, given that those instances were not designed exactly for the problem we

are considering:

 We have considered that the order of the flights in the files is the FCFS

sequence.

 We have considered as the estimated time of landing the target landing time.

 Although no data about the WTC of each flight or the aircraft type is provided

by the OR-library, they consider a matrix of separation time required between

pairs of flights, what we can use directly.

 Since the CPS concept is not present in the OR-Library, we have computed the

instances for a range of CPS values, starting at 1 and up to 49 for all the

instances.

========== Table 4, 5 ==========

Results are compared to those obtained by Pinol & Beasley (2006) and Salehipour et

al. (2013) in Tables 4 and 5. Table 4 shows a comparison between the percentage of

improvement of the best solution found both by Pinol & Beasley (2006) and

Salehipour et al. (2013), and our SA, calculated related to the cost of the FCFS

sequence. As expected, the majority of the results obtained by these two sets of

authors are slightly better than the SA approach since their algorithms allow flights to

land earlier than their estimated time, while ours does not consider this possibility

based on usual airport operations. In spite of that, the percentage of improvement is

not very different in most cases. The Airland 6 case deserves a special mention as our

algorithm is able to improve on the results offered by the other authors. We must say

that Airland 6 is the only case in which the data do not allow us to consider an earlier

time of landing since the earliest landing time is equal to the ELDT. This is the

 25

situation for which the SA algorithm was designed, which makes it reasonable to

claim that the percentage improvement of the rest of the cases is obtained from

considering earlier times of landing.

The advantage regarding computational times of the SA algorithm as pursued (see

Table 5) must be stated, given the necessity of obtaining online support. Therefore, the

SA algorithm is able to obtain competitive improvements in the cost of the sequences

(in most cases in less than a second), even for those instances which are not exactly

aimed at the problem they tackle. Figure 7 shows a comparison between the

percentage of improvement of our algorithm and the optimal results of the instances. It

also reflects the difference in processing time, denoting as the processing time of Pinol

& Beasley (2006) and Salehipour et al. (2013), the minimum obtained by their

algorithms.

========== Figure 7==========

5.3. Case study

Once the validity of the proposed approach has been established using the generated

testbed, it is interesting to see what the algorithm behaviour is when using real data.

For this purpose, Gatwick airport was chosen because it is the UK’s second largest

airport and is the busiest single runway commercial airport in the world

(Gatwickairport, 2015).

Flight information was collected from 7
th

 September 2015 from 6:00 am to 9:00 am

(FlightRadar24, 2015). Unfortunately, FlightRadar provides only scheduled times and

not real times at the runway for landing and taking-off. Therefore, in order to compute

this real flight information, the following assumptions have been made:

 26

 The FCFS sequence has been created by arranging the flights according to their

“ready time” to land or take-off. Our algorithm considers the time that the

plane is at the runway, i.e. “ready time” represents the time where the plane is

at the runway ready to take-off or touching the runway at landing. Taking this

in mind:

o The “ready time” for a take-off has been calculated as its scheduled

time plus its real taxi time from the stand to the runway.

o The “ready time” for a landing has been calculated as its scheduled

time less its real taxi time from the runway to the stand.

The minimum time separation depending on the WTC of each flight considered is

based on Malaek and Naderi (2008). Since the WTC was not provided by

FlightRadar24, it has been obtained by searching for the aircraft model (which is

provided by FlightRadar24) in the International Civil Aviation Organization’s (ICAO)

database.

CPS is a theoretical parameter, so we have used 49 different values (from 1 to 49) to

see how this parameter can influence the results in a real case and thus try to determine

the optimal value of CPS. The SA parameter values used were the same as in our

testbed experiments, and found to work better.

The real cost of the sequence (calculated as the deviations of the actual landing/take-

off times of the flights) is 1,492 min. Our algorithm is able to reorganize the flights to

obtain an average cost of 507 min of deviations, which means the total delay is

reduced to a third of the real delay.

========== Figure 8 ==========

 27

Figure 8 shows the evolution of the percentage of improvement depending on the CPS

after running the SA algorithm. It can be seen that the improvement rises up to 30%

for CPS 10. This improvement is calculated as mentioned before, by comparing the

result with the cost of the FCFS sequence. This means that allowing flights to move up

to 10 positions respect their initial position in the sequence, results in a reduction of

the delay of the total sequence; however, allowing flights to move more positions

respect the initial FCFS does not mean that the total delay of the sequence continues

improving.

Regarding its potential implementation, the algorithm is able to deliver its solutions in

less than one second, which is a reasonable computational time to be used in real

environments, where controllers are used to obtaining online solutions.

It is worth noting that comparing the behaviour of the algorithm using real data has

certain limitations. Flightradar24 (2015) only provides the scheduled times of flights,

which are the ones we consider as estimated times. However, flight operations suffer

from unexpected delays (related to technical problems or weather conditions for

instance) that we cannot predict and take into account in the tests performed with our

algorithm. However, knowing the last update of real estimated times, the algorithm is

able to find better solutions by incorporating these delays in the calculation of the

 28

optimal target times for the sequences considered.

When implementing this algorithm in real environments it would be necessary to agree

the value of the CPS parameter with the controllers in order to obtain the best

performance of the algorithm that satisfies their requirements of minimizing the

movements of flights in the initial sequence.

6. CONCLUSIONS

Airports have a serious problem of saturation. A good schedule of runways is critical,

but not many optimization tools have been implemented on sites that are able to

deliver quick and efficient schedules.

In this paper, an SA algorithm for a specific case (considering WVS and CPS as

constraints) has been tuned and developed. The analysis of the results, after an

extensive experimental framework had been carried out (involving 2,000 instances for

validating the algorithm results), shows that for improvements of 95% in the deviation

from the target schedule, the algorithm presents good results in most cases, with just

15,000 iterations, in less than a quarter of a second. High CPS and only one type of

plane make it easier to solve the problem. Up to 200 planes were considered in our

data, with no reduction in efficiency.

In addition, a comparison with other algorithms that used a public library shows that

our algorithm obtains competitive results in a significantly less time, fulfilling the

objective of its online use. Also, real data from Gatwick airport were used to test the

behaviour of the algorithm in a real situation, obtaining around a 33% improvement in

the total delay of the sequence considered. Therefore, the algorithm can be used in real

 29

environments since the results are achieved in a very short time (less than one second

in most cases) and the improvements in the cost of sequence (without varying the

FCFS sequence completely) are valuable.

There are a number of topics for further research. In particular, taking slots (or time

windows) into account to make the algorithm more flexible and allowing flights to

come in ahead of their scheduled time would add value to this approach. Also,

extending the problem to multiple runways would be interesting, as main and busier

airports usually have a multiple-runway configuration. Finally, the possibility of

considering as an objective not only the total reduction delay but also the priority of

flights would be interesting.

Acknowledgements. This research was carried out with the financial support of the

Spanish Ministry of Science grant DPI2013-41469-P and the European Regional

Development Fund (ERDF). The authors are grateful to the anonymous referees for

their valuable comments and suggestions that have contributed to improving the

quality of this paper.

 30

7. REFERENCES

Aarts, E.H.L., Korst, J.H.M. (1989), Simulated Annealing and Boltzmann Machines,

Wiley, Chichester.

Abela, J., Abramson, D., Krishnamoorthy, M., De Silva, A., Mills, G. (1993).

“Computing optimal schedules for landing aircraft”. In Proceedings of the 12th

National Conference of the Australian Society for Operations Research. pp.71-90.

Anagnostakis, I., Clarke, J.P., Böhme, D., Völckers, U. (2001). “Runway operations

planning and control: Sequencing and scheduling”, Journal of Aircraft, vol.38, no.6,

pp.988-996.

Artiouchine, K., Baptise, P., Dürr, C. (2008). “Runway sequencing with holding

patterns”, European Journal of Operational Research, vol.189, pp.1254-1266.

Balakrishnan, H., Chandran, B.G. (2010). “Algorithms for scheduling runways

operations under constrained position shifting”, Operations Research, vol.58, no.6,

pp.1650-1665.

Ball, M., Barnhart, C., Dresner, M., Hansen, M., Neels, K., Odon, A., Peterson, E.,

Shery, L., Trani, A., Zou, B. (2010). “Total Delay Impact Study: A Comprehensive

Assessment of the Costs and Impacts of Flight Delay in the United States”. Technical

report of the National Center of Excellence for Aviation Operations Research

(NEXTOR), USA.

Bäuerle, N., Engelhardt-Funke, O., Kolonko, M. (2007): “On the waiting time of

arriving aircrafts and the capacity of airports with one or two runways”, European

Journal of Operational Research, vol.177, pp.1180-1196.

Beasley J. (1990). “OR-library: Distributing test problems by electronic mail”, Journal

of the Operational Research Society, vol.41, pp.1069-1072, Available from:

http://mscmga.ms.ic.ac.uk/info.html.

Beasley, J., Krishnamoorthy, M., Sharaiha, Y., Abramson, D. (2000). “Scheduling

aircraft landings – the static case”. Transportation Science, vol.34, no.2, pp.180-197.

http://mscmga.ms.ic.ac.uk/info.html

 31

Bennell, J.A., Mesgarpour, M., Potts, C.N. (2013). “Airport runway scheduling”.

Annals of Operations Research, vol. 204, no.1, pp.249-270. doi:10.1007/s10479-012-

1268-1.

Bertsimas, D., Lulli, G., Odoni, A. (2011). “An integer optimization approach to large-

scale air traffic flow management”. Operations Research, vol.59, no.1, pp.211-227.

doi:10.1287/opre.1100.0899.

Bertsimas, D., Tsitsiklis, J. (1993). “Simulated annealing”. Statistical Science, vol.8,

no.1, pp.10-15.

Bianco, L., Dell’Olmo, P., Giordani, S. (1999). “Minimizing total completion time

subject to release dates and sequence-dependent processing times”. Annals of

Operations Research, vol.86, no.1, pp.393-415.

Bianco, L., Dell’Olmo, P., Giordani, S. (2006). “Scheduling models for air traffic

control in terminal areas”. Journal of Scheduling, vol.9, no.3, pp.223-253.

doi:10.1007/s10951-006-6779-7.

Cao, J.M., Kanafani, A. (2000). “Value of runway time slots for airlines”. European

Journal of Operational Research, vol.126, pp.491-500. doi:10.1016/S0377-

2217(99)00304-5.

Carr, F.R. (2004). “Robust Decision-Support Tools for Airport Surface Traffic”,

Massachusetts Institute of Technology. Massachusetts.

Chandran, B., Balakrishnan, H. (2007). “A Dynamic Programming Algorithm for

Robust Runway Scheduling”. 2007 American Control Conference, pp.1161-1166.

IEEE. doi:10.1109/ACC.2007.4282922.

D’Ariano, A., Pacciarelli, D., Pistelli, M. (2012). “Aircraft retiming and rerouting in

vicinity of airports”. IET Intelligent Transport Systems, vol.6, no.4, pp.433-443.

doi:10.1049/iet-its.2011.0182.

D’Ariano, A., Pacciarelli, D., Pistelli, M., Pranzo, M. (2015). “Real-Time Scheduling

of Aircraft Arrivals and Departures in a Terminal Maneuvering Area”. Networks,

vol.65, no.3, pp. 212-227.

 32

Dear, R.G. (1976). “The dynamic scheduling of aircraft in the near terminal area:

Technical report”. Cambridge, MA: Flight Transportation Laboratory, Massachusetts

Institute of Technology.

Dowsland, K.A., Adenso-Díaz, B. (2001). “Diseño de heurísticas y fundamentos del

recocido simulado”. Revista Iberoamericana de Inteligencia Artificial, no.20, pp.24-

52.

Ernst, A.T., Krishnamoorthy, M., Storer, R.H. (1999). “Heuristic and Exact

Algorithms for Scheduling Aircraft Landings”. Networks, vol.34, pp.229-241.

FlightRadar24: www.flightradar24.com (last enquiry: 7
th

 September 2015).

Flores-Fillol, R. (2010) “Congested hubs”, Transportation Research-B, vol. 44, 358-

370.

Gatwickairport: www.gatwickairport.com (last enquiry: 7
th

 September 2015)

Ghizlane, B., El Khoukhi, F., Baccouche, M., Abdelhaq Belkadi, D.B. (2013). “Hybrid

Algorithms For The Multiple Runway Aircraft Landing Problem”. International

Journal of Computer Science and Applications, vol.10, no.2, pp.53-71.

Gwiggner, C., Nagaoka, S. (2014). “Data and queueing analysis of a Japanese air-

traffic flow”. European Journal of Operational Research, vol.235, no.1, pp.265-275.

doi:10.1016/j.ejor.2013.10.056.

Hansen, J.V. (2004). “Genetic search methods in air traffic control”. Computers &

Operations Research, vol.31, no.3, pp.445-459. doi:10.1016/S0305-0548(02)00228-9.

Hu, X.B., Di Paolo, E. (2009). “An efficient genetic algorithm with uniform crossover

for air traffic control”. Computers and Operations Research, vol.36, no.1, pp.245-259.

doi:10.1016/j.cor.2007.09.005.

ICAO (2014), Air Navigation Report. www.icao.int (last enquiry: 13
th

 October 2015).

http://www.flightradar24.com/
http://www.gatwickairport.com/
http://www.icao.int/

 33

Inniss, T., Ball, M.O. (2004): “Estimating one-parameter airport arrival capacity

distribution for air traffic flow management”, Air Traffic Control Quarterly, vol.12,

no.3, pp.223-251.

Lieder, A., Briskorn, D., Stolletz, R. (2015). “A dynamic programming approach for

the aircraft landing problem with aircraft classes”. European Journal of Operational

Research, vol.243, no.1, pp.61-69. doi:10.1016/j.ejor.2014.11.027.

Liu, Y.-H. (2010). “A genetic local search algorithm with a threshold accepting

mechanism for solving the runway dependent aircraft landing problem”. Optimization

Letters, vol.5, no.2, pp.229–245. doi:10.1007/s11590-010-0203-0.

Malaek, S.M.B., Naderi, E. (2008). “A New Scheduling Strategy for Aircraft Landings

under Dynamic Position Shifting”, IEEE Aerospace Conference, pp.1-8.

Mukherjee, A., Hansen, M. (2009) “A dynamic rerouting model for air traffic flow

management”, Transportation Research-B, vol. 43, no. 1, 159-171.

Pinol, H., Beasley, J.E. (2006). “Scatter Search and Bionomic Algorithms for the

aircraft landing problem”. European Journal of Operational Research, vol.171, no.2,

pp.439-462. doi:10.1016/j.ejor.2004.09.040.

Post, W., de Jonge, H.W.G. (1997): “Free flight in a ground controlled ATM

environment”, Technical Report, National Aerospace Laboratory NLR, Netherlands.

Psaraftis, H.N. (1980). “A dynamic approach for sequencing groups of identical jobs”,

Operations Research, vol.28, no.6, pp.1347-1359.

Salehipour, A., Modarres, M., Naeni, L. M. (2013). “An efficient hybrid meta-

heuristic for aircraft landing problem”. Computers and Operations Research, vol.40,

no.1, pp.207-213.

Samà, M., D’Ariano, A., D’Ariano, P., Pacciarelli, D. (2014). “Optimal aircraft

scheduling and routing at a terminal control area during disturbances”. Transportation

Research Part C: Emerging Technologies, vol.47, no.1, pp.61-85.

 34

Samà, M., D’Ariano, A., D’Ariano, P., Pacciarelli, D. (2016). “Scheduling models for

optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and

violations considerations”. Omega. doi:10.1016/j.omega.2016.04.003.

Samà, M., D'Ariano, A., Corman, F., Pacciarelli, D. (2017). “Metaheuristics for

efficient aircraft scheduling and re-routing at busy terminal control areas”,

Transportation Research C: Emerging technologies, in press, DOI:

10.1016/j.trc.2016.08.012.

Samà, M., D’Ariano, A., Pacciarelli, D. (2013). “Rolling horizon approach for aircraft

scheduling in the terminal control area of busy airports”. Transportation Research

Part E, vol.60, pp.140-155.

Sherry, L. (2009), “Capacity of a single runway”, Center for Air Transportation

Systems Research, George Mason University, USA.

Soomer, M.J., Franx, G.J. (2008): “Scheduling aircraft landings using airlines’

preferences”, European Journal of Operational Research, vol.190, pp.277-291.

Tavakkoli-Moghaddam, R., Yaghoubi-Panah, M., Radmehr, F. (2012): “Scheduling

the sequence of aircraft landings for a single runway using a fuzzy programming

approach”, Journal of Air Transport Management, vol.25, pp.15-18.

Trivizas, D.A. (1998), “Optimal scheduling with maximum position shift (MPS)

constraints: a runway scheduling application”, Journal of Navigation, vol.51, no.2,

pp.250-266.

Van Laarhoven, P.J.M., Aarts, E.H.L. (1988). Simulated Annealing – Theory and

Applications. Kluwer, Dordrecht.

 35

WTC Leader WTC Follower Separation (seconds)

H H 1,000

H M 300

H L 300

M H 180

M M 180

M L 180

L H 60

L M 60

L L 60

Table 1. Separations considered for each pair of aircraft WTC

 36

Parameters Levels Mean

Standard

deviation

95% Confidence

Interval

Lower

Bound

Upper

Bound

α

0.9900 91.404 0.195 91.020 91.787

0.9990 95.360 0.195 94.977 95.744

0.9999 96.806 0.195 96.423 97.190

To

200 94.073 0.195 93.690 94.457

600 94.668 0.195 94.285 95.052

1,000 94.829 0.195 94.445 95.212

Table 2. Descriptive results for improvement (%) regarding α and To parameters

in the initial tuning process

 37

Factors Levels Mean

Average

percentage

gap

Lower

bound

Std.

deviation

95% Confidence

Interval

Lower

Bound

Upper

Bound

F1

1 99.877 0 90.36 0.329 99.857 99.897

2 98.789 0 92.23 1.032 98.725 98.854

F2

1 98.733 0 90.36 1.580 98.573 98.892

2 99.373 0 90.36 0.791 99.295 99.451

3 99.564 0 97.81 0.511 99.513 99.614

4 99.537 0 95.51 0.520 99.486 99.588

5 99.460 0 94.29 0.607 99.401 99.520

F3

50 99.369 0 90.77 0.952 99.284 99.453

100 99.320 0 92.63 0.916 99.239 99.401

150 99.363 0 92.20 0.879 99.285 99.441

200 99.309 0 90.36 0.994 99.222 99.397

Table 3. Descriptive results for improvement (%) regarding F1, F2 and F3.

Percentage GAP means the difference in percentage between the optimal solution

and the best solution. Lower bound shows the worst result obtained by the

algorithm. The standard deviation shows the amount of variation of the results

obtained in these trials.

 38

Table 4. Comparative results for improvement (%) related to the FCFS sequence

between the Zbest result of Pinol & Beasley (2006) instances and the SA solution

 %improvementbest %improvementSA

Airland1 98.26% 97.14%

Airland2 97.26% 96.81%

Airland3 98.58% 97.21%

Airland4 96.81% 94.33%

Airland5 96.44% 94.49%

Airland6 0% 58.42%

Airland7 60.99% 0%

Airland8 98.92% 98.30%

Airland9 84.77% 72.22%

Airland10 77.21% 55.37%

Airland11 81.30% 67.10%

Airland12 80.21% 65.84%

Airland13 74.91% 62.33%

 39

 Pinol &

Beasley (2006)

Salehipour et al. (2013) SA

 timeSS timeBA timecplex timeSA+VND timeSA+VNS timeSS timeSA

Airland1 4 60 0.66 0 0 4 0.42

Airland2 6 90 0.49 1.59 1.38 6 0.55

Airland3 8 99 0.39 1.78 1.73 8 0.71

Airland4 8 95 5.12 1.98 2.85 8 0.73

Airland5 9 100 20.44 1.85 1.89 9 0.70

Airland6 158 274 0.1 2.12 2.14 158 0.92

Airland7 195 79 0.86 2,68 2.65 195 1.3

Airland8 42 287 0.98 7.1 7.31 42 1.46

Airland9 119 554 1000 11.59 10.12 119 2.18

Airland10 227 925 1000 20.12 20.75 227 2.54

Airland11 256 1417 1000 24.17 33.84 256 2.85

Airland12 381 2011 1000 219.03 198.85 381 3.31

Airland13 1237 5852 1000 566.82 528.84 1237 4.59

Table 5. Comparative results of processing time (sec) results for Pinol & Beasley

(2006) instances for the following algorithms: SA, BA (Pinol & Beasley, 2006);

CPLEX, SA+VND, SA+VNS, SS (Salehipour et al., 2013); SA (the proposed

algorithm)

 40

INPUT (To, α, Tf , L)

T  To

Sact  Generate_initial_solution

WHILE T ≥ Tf DO

 BEGIN

 FOR cont  1 TO L(T) DO

 BEGIN

 Scand  Select_solution_N(Sact)

 δ  cost(Scand) – cost (Sact)

 IF (U(0,1) < e
(-δ/T)

 OR (δ <0)

 THEN Sact  Scand

END

 T  α(T)

 END

{OUTPUT: best Sact visited}

Figure 1. Simulated annealing algorithm structure

 41

Figure 2. Process for generating a CPS feasible solution (CPS = 2):

a) Choose a random position p; b) Find the flight occupying position p;

c) Calculate the range of positions (3) that could be exchanged with flight n; d)

Choose a random flight n’ from 3 fulfilling (4) and (5);

e) Exchange n and n’ to obtain a valid solution.

 42

Figure 3. Example of instance generation (CPS = 2). At each iteration (column) a

flight not deleted is randomly chosen, avoiding it from being selected later. When

it is the last opportunity for a flight, it is forced to be chosen (case of flight 1 in

column 3). Final feasible sequence: <2; 4; 1; 5; 3; 6; 8; 7; 10; 9;…>

 43

Figure 4. Pareto chart for the improvement obtained for the 2,000 instances

generated. The SA algorithm finds the optimal solution for 41.5% of the

instances, while only for less than 2% of the cases, the improvement found by the

algorithm was smaller than 95%.

41%	

99%	 100%	

0%	

20%	

40%	

60%	

80%	

100%	

0	

500	

1000	

1500	

2000	

100%	 95%-99%	 <=95%	

Number	of	instances	

 44

0	

0,05	

0,1	

0,15	

0,2	

0,25	

0,3	

0,35	

0,4	

0,45	

0	

20	

40	

60	

80	

100	

5000	 10000	15000	20000	25000	30000	35000	40000	45000	50000	

seconds	%	improvement	

itera ons	

%	improvement	

me	(sec.)	

Figure 5. Evolution of the percentage of improvement (continuous line) and

computational time average (dots) in seconds for the 2,000 instances generated

 45

Figure 6. Average of the percentage of improvement for the 2,000 instances,

depending on the number of iterations

-100	

-50	

0	

50	

100	
%	

instances	

it.5000	 it.10000	 it.50000	

 46

Figure 7. Comparison of different algorithms using the OR-Library instances,

regarding percentage of improvement (continuous lines) and computational time

in seconds (dotted lines)

 47

Figure 8. Evolution of the percentage of improvement for Gatwick airport real

data, for different CPS values

0,00%	

5,00%	

10,00%	

15,00%	

20,00%	

25,00%	

30,00%	

35,00%	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	 47	 49	

CPS	

%	improvement	

