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Abstract 

The dynamic nature of airports demands the development of scheduling algorithms 

that are computationally efficient and therefore amenable to replanning when new 

traffic events occur. The main objective of this research is to design an algorithm with 

very low computational times able to minimize delays in the scheduled times of arrival 

and departure flights in an airport with a mixed-operation runway, under wake vortex 

separation and Constrained Position Shifting restrictions. The simulated annealing 

algorithm obtains a 95% improvement on time delays in less than one second of 

computation for the test instances generated, which means that it can be used online 

for high-demand scenarios to reduce delays. It has also been tested in a public testbed 

as well as in a real environment, showing an improvement of 30% in the time delays 

of real operations at London Gatwick airport.  

 

Keywords: scheduling, wake vortex separation, mixed-operation runway, constrained 

position shifting, first-come first-served, simulated annealing 
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1. INTRODUCTION 

Some 3.1 billion passengers made use of the global air transport network for their 

business and tourism needs in 2013. The annual passenger total was up by 

approximately 5% compared to 2012 and is expected to reach over 6.4 billion by 2030, 

based on current projections (ICAO, 2014). The number of aircraft departures reached 

33 million globally last year, establishing a new record and surpassing the 2012 

departure figure by more than one million flights. Scheduled passenger traffic grew at 

a rate of 5.2% (expressed in terms of revenue passenger-kilometres or RPKs) (ICAO, 

2014).  

Therefore, one of the central challenges facing the aviation industry is air traffic 

demand growth, which results in congestion in many airports – primarily hubs (Flores-

Fillol, 2010). The economic cost of delay is enormous and will worsen as traffic 

demand increases. In 2010, the annual cost of US delays was $32.9B (Ball et al., 

2010).  

The efficiency and effectiveness of Air Traffic Management (ATM) is enabled by air 

traffic flow management (ATFM). It contributes to the safety, efficiency, cost 

effectiveness and environmental sustainability of an ATM system. ATFM aims to 

enhance safety by ensuring the delivery of safe densities of traffic and by minimizing 

traffic surges. Its purpose is to balance traffic demand and available capacity. ATFM 

relies on the clear definition of capacities (i.e. number of flights that can be handled by 

an airport or in a route sector), as well as on the analysis of forecasted traffic flows 

(number of traffic flows that are expected in an airport or in an en route sector). 

ATFM therefore relies on the exchange of information related to flights, airspace 

availability and capacity. With ATFM, the various system stakeholders collaborate to 
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reconcile system resource constraints with economic and environmental priorities 

(Bertsimas et al., 2011).  

The dynamic nature of the terminal area necessitates the development of scheduling 

algorithms that are computationally efficient and therefore amenable to replanning 

when new traffic events occur (Mukherjee and Hansen, 2009), such as when a new 

aircraft enters the centre boundary or when data updates are obtained (Balakrishnan 

and Chandran, 2010). The challenge lies in simultaneously achieving safety, efficiency 

and equity, which are often competing objectives, and doing so in a reasonable amount 

of time (Anagnostakis et al., 2001). Safety is achieved by maintaining separation 

between aircraft and by satisfying downstream metering constraints; efficiency is 

equivalent to achieving high throughput and/or low average delay; and equity is 

modelled by limiting the deviation from a nominal order or by minimizing variance in 

delay.  

However, few solution approaches have been able to simultaneously model all three 

components and optimally solve the runway scheduling problem in a computationally 

tractable manner. One reason for this computational hurdle is that most runway 

scheduling models are, from a theoretical perspective, inherently hard to solve 

(Beasley et al., 2000).  

Lieder et al. (2015) mention that no efficient methods have been proposed in the 

literature for the arrival-landing problem (ALP) that are capable of solving large 

problem instances. The most common solution approaches are dynamic programming 

(DP) approaches (Dear, 1976); branch-and-bound (B&B) algorithms (Abela et al., 

1993); mixed-integer programming (MIP) formulations (Beasley et al., 2000), which 

are solved with a standard solver; and heuristic solution approaches (Pinol & Beasley, 
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2006). However, these implementations resort to heuristic or approximate approaches 

that produce “good” solutions in short computational times (not in real time) but are 

not suitable for large problems and therefore, not useful to apply in real environments.  

Managing take-offs and landings of any airport is a complex problem that plays an 

important role in airport management. Runways and air controllers are limited 

resources, so air traffic needs to be planned carefully in order to limit peak demand 

and satisfy as many airlines’ requirements as possible. However, unpredictable delays 

make it almost impossible to schedule planes with precision and in advance 

(Artiouchine et al., 2008). Indeed, the initial schedule needs to be reorganized when 

planes are close enough to the airport, i.e. when they approach the TRACON 

(Terminal Radar Approach Control Facilities – between 5 and 50 miles from the 

airport), or are on the ground (delays on the ground cost half as much as they do in the 

air) (Inniss and Ball, 2004).  

Hence, congestion delays materialize either on the ground, where aircraft have to wait 

before accessing a runway, or during the flight, where they are deviated from their 

intended trajectory. Delays may also propagate through the whole transportation 

network when the schedule buffers are tight. Congestion delays can be managed at a 

strategic level (by runway expansion or shorter separation standards), a pre-tactical 

level (by splitting flows and sectors) or a tactical level (by sequencing and re-

sequencing aircraft) (Gwiggner and Nagaoka, 2014).  

Our work deals with the fact that aircraft scheduling needs fast algorithms that help air 

traffic controllers to take real time decisions. These algorithms need to be able to 

process large amounts of data in a very short time. In this paper, we will evaluate a 

simulated annealing (SA) algorithm designed to calculate the landing and/or departure 
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times, minimizing the total delay from the estimated landing time (ELDT) or from the 

estimated time of departure (ETD), subject to wake vortex separation (WVS) 

requirements and constrained position shifting (CPS). Following the Gwiggner and 

Nagaoka (2014) classification, this research is placed at the tactical level and focused 

on airports with single, mixed-operation runways that need to optimize their resources 

to deal with capacity problems. We have considered three factors of interest for the 

algorithm evaluation: number of aircraft, wake-turbulence category and number of 

shifts of the aircraft from their initial position in the sequence. An important condition 

that we propose to cover is to obtain online results as requested in real operations. To 

our knowledge, no previous work has addressed this scenario. 

The paper is organized as follows: Section 2 describes the problem of the runway 

bottleneck and different approaches that have been studied in this field. In Section 3, 

the proposed solution is presented and the SA algorithm defined. Section 4 provides a 

description of the experimental tests carried out in order to analyse the behaviour of 

the algorithm. Section 5 presents the numerical results obtained, not only from the 

experimental tests but also from the results of the algorithm in the real environment of 

Gatwick airport. Finally, a short summary is given in Section 6, together with 

suggested topics for future research in this area.  

 

2. PROBLEM DESCRIPTION AND PREVIOUS APPROACHES 

The runway system, as a resource shared by all aircraft, creates a significant flow 

“bottleneck” that increases delays. The flow of aircraft entering the airport radar range 

is not very orderly (Soomer and Franx, 2008), but a regular, balanced supply of arrival 

traffic is essential for the successful planning of dense arrival flows (Post and de 
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Jonge, 1997). The main objective of this research is to explore the possibility of a 

time-efficient metaheuristic to develop an algorithm that minimizes deviations from 

the scheduled times of arrival and departure of flights in an airport. A scenario with a 

single, mixed-operation runway will be considered, the goal being to deliver schedules 

within a few seconds.  

Based on the level of airport and air traffic control (ATC) system impact, as a result of 

a constraint violation, two types of constraint can be distinguished (Anagnostakis et 

al., 2001):  

 Hard constraints. Being inviolable because they affect safety, they must be 

satisfied by all generated solutions. One of the most limiting factors for the take-

off and landing frequency in airports is the danger of wake turbulence. Wake 

vortex effects are generally proportional to aircraft weight and the lighter the 

following aircraft, the more it suffers from wake vortex effects, therefore 

demanding greater separation from the leading plane (Artiouchine et al., 2008). 

The required separation times between successive aircraft (the WVS) depend on 

the types of the two planes involved; the order in which aircraft land/take-off plays 

an important role in the capacity of the runway (Bäuerle et al., 2007). 

 Weak constraints can be violated but the smaller the violation the better the 

solution quality. An example is the scheduled take-off times (or slots). A slot is the 

scheduled time of departure or arrival available, or allocated to, an aircraft 

movement on a specific date at the so-called capacity-constrained airports (also 

referred to as slot-controlled, slot-restricted, slot-constrained, or slot-coordinated 

airports). In flight scheduling, flights have an optimal schedule time to respond to 

time-dependent demand and the requirement of frequency plans, of available fleets 
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and of aircraft routings, among others. However, the capacity limit of runways 

could mean that some flights cannot operate at their expected time. Hence, it is 

acceptable to modify the schedule times of some flights from their optimal times 

(Cao and Kanafani, 2000).  

Controllers have limited flexibility in reordering aircraft, and requirements in 

scheduling solutions are fairness and safety. In this study, WVSs (measured in 

minimum time separations between flights) will be considered as hard constraints, and 

time of arrival/departure and sequence order as weak constraints.  

To tackle the latter, CPS is taken into account. The CPS approach is based on a 

fundamental underlying principle that involves the specification of a parameter, which 

limits the maximum number of position shifts (forward or rearward) that any aircraft 

will receive with respect to its first-come, first-served (FCFS) position (Balakrishnan 

and Chandran, 2010). Dear (1976) observed that CPS increases the runway throughput 

rate, treats individual aircraft equitably and fits well within the capabilities of today's 

computers because updating the solution avoids “global” re-sequencing, amongst other 

characteristics. 

Psaraftis (1980) was the first to develop a polynomial-time algorithm for scheduling 

under CPS. This algorithm relied on all aircraft of the same type being identical, which 

did not accommodate time-window restrictions on aircraft or precedence relationships 

among aircraft, thus effectively scheduling all aircraft of a certain type in FCFS order. 

Trivizas (1998) proposed a search-based algorithm. His model also failed to account 

for time-window restrictions and precedence constraints. The difficulty of 

incorporating all operational constraints within a CPS framework even led to a 

conjecture by Carr (2004) that, in general, runway scheduling under CPS had 
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exponential complexity. 

Bianco et al. (2006) consider two parameters, namely the maximum position shifting 

(MPS) to prevent an aircraft from being excessively delayed, and the relative position 

shifting (RPS) to limit the pilots’ and controllers’ workloads during aircraft 

resequencing. 

Malaek and Naderi (2008) described a new procedure for the real time dynamic 

scheduling of arrival aircraft via computing optimal sequences, which eliminates most 

of the shortcomings in k-CPS (k being the maximum number of position shifts) while 

respecting its optimal nature to minimize the makespan and mean delay time. The new 

approach, referred to as dynamic position shifting (DPS), allows operational 

considerations to be easily implemented. However, the complexity of computations 

increases linearly with respect to the total number of aircraft and runways, due to the 

elimination of recursive computations and the maximum number of allowable position 

shifting being computed dynamically as a function of traffic flow.  Their algorithm 

behaves very similarly to that of FCFS in the normal traffic while it acts similarly to 

that of k-CPS methods in heavy traffic. However, it is only valid for arrivals as it is 

dependent on the transition times in the TRACON and the times required for aircraft 

to travel from the meter fixes to the runway threshold. 

There is an interesting stream of research on models and algorithms for the control of 

a terminal manoeuvring area (TMA) that is based on job shop scheduling as discussed 

in Bennell et al. (2013). From this point of view, the TMA can be viewed as a single-

machine (Bianco et al., 1999) or as a job shop scheduling problem (Bennell et al., 

2013). Bianco et al. (1999) show that the scheduling problem is equivalent to the 

Cumulative Travelling Salesman Problem with Ready Times. The problem becomes 
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more complex if both rescheduling and rerouting are implied in balancing the runway 

workload and minimizing delay propagation. When taking these two problems 

together into consideration, job shop methodology is a useful way of modelling the 

problem. Therefore, heuristic algorithms are required to compute good quality 

solutions in a short computation time (Samà et al., 2017). D’Ariano et al. (2012) use a 

truncated branch and bound algorithm to compute aircraft schedules with fixed routes 

which is then incorporated in a tabu search (TS) scheme for aircraft rerouting. Also 

Samà et al. (2014) develop and compare different models for simultaneous aircraft 

scheduling and routing, including strong traffic disturbances.  

However, none of them can offer online solutions with their approaches. D’Ariano et 

al. (2015) developed three formulations based in graphs that offer online solutions by 

assigning to each aircraft the start time from the fixed, and all relevant points in such a 

way that all aircraft conflicts are resolved. Samà et al. (2013) make use of alternative 

graphs, which consist of dividing the problem into multiple steps, enabling the 

dynamic management of aircraft for large time horizons. Graphs are also used by 

Samà et al. (2016) to examine the trade-off between some classical performance 

indicators (tardiness, priority, throughput, and number of deadline violations) in a very 

complete and interesting study.   

Other methodologies are present in the literature covering this scheduling problem. 

For example, Tavakkoli-Moghaddam et al. (2012) examined ways of landing aircraft 

with the least waiting time in time windows under critical conditions using a fuzzy 

programming approach and an estimator for the landing sequence of planes. However, 

the degree of satisfaction for more than 20 planes in the sequence is less than unity, 

which makes this approach not particularly useful in real environments.  
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Ernst et al. (1999) presented a specialized simplex algorithm, which evaluates the 

landing times, and then a problem space search heuristic is used as well as a B&B 

method for both single- and multiple-runway problems. Their objective is the landing 

problem meeting the separation criteria between all pairs of planes (not just successive 

ones) and where each plane has an allowable time window. However, the scenarios 

described consider no more than 50 planes.  

Metaheuristics approaches are also present in the literature, including hybrid genetic 

algorithms (GAs). Ghizlane et al. (2013) studied the multiple runway case of the 

aircraft landing problem (MRALP), through four hybrid algorithms that use two 

computational heuristic search techniques, namely, TS and GAs, offering competitive 

solutions in terms of quality and robustness. However, in the best-case scenario 

(instances of fewer than 50 planes), results are achieved in more than 50 seconds. 

Genetic search methods were previously studied by Hansen (2004), with the purpose 

of investigating the utility of the genetic search approach using characteristic sets of 

TMA problems instead of particular solutions for certain airports, and also by Hu and 

Di Paolo (2009) who designed a GA with uniform crossover to tackle the aircraft 

arrival sequencing and scheduling (ASS) problem in multi-runway systems. Other 

than scheduling, Liu (2010) developed a solution procedure based on a genetic local 

search (GLS) algorithm for solving the runway dependent Airport Layout Plan (ALP) 

for determining the runway allocation, sequence and landing time for arriving aircraft. 

However, these algorithms are evaluated with small sets of planes and without 

considering their use in real environments.  

Other metaheuristics that deal with more realistic scenarios were also considered. 

Pinol and Beasley (2006) in their study presented the scatter search and bionomic 

algorithm applied to landing problems involving up to 500 aircraft and five runways.  
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None of these authors deals with the mixed-operation runway scheduling problem in 

real time and with a large number of flights in the sequence. One of the main purposes 

of this research is to develop an algorithm that can find good results in real time, in 

order to be applied in real situations.  

 

3. PROPOSED APPROACH   

As stated above, the scenario considered is a sequence of flights in a single mixed-

operation runway subject to CPS. The scope under research here is to develop a 

suitable model that finds a schedule as similar as possible to the optimal one in a very 

short time. The optimal schedule is a sequence of flights with target times satisfying 

the minimum safety separations that minimize the total delay time of the sequence 

considered. Note that we have not considered programming aircraft before their 

estimated time as some other, more schedule-oriented researches consider (e.g. Pinol 

& Beasley, 2006; Salehipour et al., 2013), since this procedure is not always possible 

in the TMA (as it implies manoeuvring operations, taxiing, etc.).  This objective 

allows not only reducing delays, but also maximizing runway capacity, thus reducing 

congestion at airports.   

According to the review of the literature, both exact and heuristic algorithms have 

been developed for scheduling problems. Given the complexity of the problem, exact 

methods do not perform as required for medium-sized instances (Salehipour et al., 

2013); researchers are using heuristic algorithms as solution approaches for the 

problem. Although these algorithms do not guarantee optimal solutions, their 

performance in delivering competitive schedules in short periods of time makes them 

very attractive. When looking for a fast, meta-heuristic model, SA is on many 
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occasions the chosen alternative, given its performance as well as its simplicity 

(Bertsimas & Tsitsiklis, 1993; Salehipour et al., 2013). 

The objective is thus to minimize delays in scheduled times – in other words, to 

minimize the total cost (delay in the target times) considering the two following 

constraints: a safety interval between successive operations determined by the WVS 

and the runway capacity of the airport; and forcing each aircraft to comply with the 

CPS restriction, which means that there is a limit to the maximum number of position 

shifts (forwards or backwards) that any aircraft will receive with respect to its FCFS 

position.  

Figure 1 illustrates a pseudocode for the SA algorithm, where Sact is the actual solution 

and Scand is the candidate solution to be compared with Sact. The parameters used for 

developing the SA algorithm are:  

To  initial temperature 

α lowering rate of the temperature 

Tf  final temperature 

L  number of times that the algorithm tries to find new solutions before 

decreasing the temperature 

 

As usual, when implementing SA metaheuristics an initial solution is defined as the 

actual one Sact, to start exploring the solution space looking for a better candidate. To 

allow scape from local optima, with a certain probability U(0,1) < e
(-δ/T)

, SA accepts 

worse solutions during the search, allowing a more extensive exploration. 

 The variables used in the following model are: 

N total number of flights in the sequence  
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WTCi wake turbulence category of flight i (which can be light, medium or 

heavy) 

WVSij  wake vortex minimum separation between flights i and j 

pi  flight in position i in the sequence solution 

vi  position occupied by flight i in the sequence solution 

ei estimated time of landing/arrival of flight i 

ti target time of landing/arrival of flight i, computed taking into account 

the refined planning times and WVS requirements 

δ  Difference between the cost (Scand) and cost (Sact) 

 

ci Cost penalty for unit of delay of flight i 

 

 

========== Figure 1 ========== 

Table 1 shows the values considered in this paper for the separation times between 

pairs of aircraft. These are average values based on real information from different 

airports. 

   ========== Table 1========== 

Some authors (e.g. Bennell et al., 2013; Chandran & Balakrishnan, 2007) assume that 

the separations satisfy the triangle inequality, that is: 

WVSij ≤ WVSik+WVSkj for all aircraft types i, j, k    (1) 

However, Balakrishnan and Chandran (2010) prove that the triangle inequality does 

not necessarily hold when both arrivals and departures are scheduled simultaneously. 

Since we are considering mixed-operation runway airports, it is not possible for us to 

assume triangle inequality and therefore the target times are calculated for each flight i 

as:  
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ti = max{ei; tj + WVSji} ∀j = 1, …, i-1     (2) 

The objective function can then be defined as: 

min C  = min ( i=1..N (|ti - ei|*ci)    (3) 

One of the main challenges when designing SA algorithms is how to guarantee the 

generation of feasible solutions. In our particular case, a solution is feasible when its 

flights in the sequence fulfil the CPS condition, and in addition the wake turbulence 

category (WTC) separations are met. 

Figure 2 shows an example of the process of generating a feasible solution regarding 

the CPS constraint (note that WTC is easier to guarantee by just delaying the flight 

times accordingly).  

========== Figure 2 ========== 

In order to generate feasible solutions, our procedure randomly chooses a position n 

and defines the set n={n-CPS, n-CPS+1, …, n-1, n+1,…, n+CPS-1, n+CPS} 

containing 2Δ flights “CPS-compatible” with flight n. Here Δ=(2 CPS)-1 represents 

the number of flights that are potentially exchangeable with flight n.  

Then, it is necessary to find an element n’   n fulfilling (4) and (5).  

vn’  {n-CPS,…, n+CPS}       (4) 

p  {n’-CPS,…, n’+CPS}       (5) 

In order to look for n’, the different elements of n are randomly evaluated until an n’ 

is found that meets both conditions. If both conditions are met, it is guaranteed that the 

exchange (or swap) of n and n’ will lead to a new feasible solution Scand which will be 
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evaluated and compared with Sact. Note that it will always be possible to find a feasible 

solution around Sact, although not for any pair (n, n’) will it be possible.  For example, 

let us suppose an initial sequence {1,2,3} with CPS =1. If we obtain a random position 

n=2 and swap it with n’=3, the sequence then becomes {1,3,2}; if the next random 

position number is n=1, then we cannot find a CPS-compatible n’ with which to swap 

flight 1. However, there will always be a feasible solution, which is returning to the 

initial sequence {1,2,3}.  

If the cost of Scand is lower than the cost of Sact, then the new current solution would be 

Scand. In order to escape from a local minimum, the SA algorithm allows some worse 

solutions Scand to become Sact with a probability U(0,1) < e
(-δ/T)

.  

 

4. EXPERIMENTAL FRAMEWORK 

Once the SA algorithm has been defined, a set of tests has to be conducted in order to 

validate the behaviour of the algorithm. The idea is to generate a large number of 

random instances for which we know the optimal result and compare them with the 

solutions found by the algorithm.   

Three factors have been identified in the previous literature review as potentially 

influencing the results obtained. In order to quantify how relevant these factors are, we 

have introduced them in the procedure for the generation of the instances: 

 F1. Wake turbulence category of the flights in the sequence. We have considered 

two different situations: one in which all the flights have WTC = Medium (F1.1.) 

and another where all flights have a random WTC (F1.2.) between the three 

categories considered (Heavy, Medium and Light). This allows us to analyse 

whether having planes of the same WTC (i.e. each of them needs to satisfy the 
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same separation between them, so the triangle inequality is satisfied) is relevant or 

not for the performance of the algorithm.  

 F2. Constrained position shifting. Five levels have been chosen for CPS = {1; 2; 3; 

4; 5}, bearing in mind that controllers always wish to keep the sequence as similar 

as possible to the FCFS sequence received.  

 F3. Number of flights. In order to have a realistically managed size sequence of 

planes in an airport with a single runway that can be held for a short period of time 

(couple of hours), we have studied sequences of 50 (F3.1), 100 (F3.2), 150 (F3.3) 

and 200 (F3.4) flights. Although it is not realistic for a real airport to consider so 

large a sequence in a mixed-operation runway (the maximum throughput capacity 

for a homogeneous fleet mix on a single runway is 60 flights per hour (Sherry, 

2009), this will allow us to check the ability of the algorithm to manage extremely 

large instances.   

 

4.1. Instance generation 

As previously outlined, once the factors have been identified, it is necessary to 

generate a set of instances for which we know the optimal solution. This means 

generating instances of the different number of flights considered (F3) with cost 0 that 

fulfil the WTC considerations. These instances are then randomly shuffled in respect 

of the five levels of CPS considered (F2). The instances generated as a result are then 

considered as the input FCFS sequences for the algorithm.  

Regarding the total number of instances to generate in our experiments, 50 replications 

were generated for each of the 2x5x4 factor level combinations of the three factors 

considered, giving a total of 40×50 = 2,000 instances. We have considered that the 
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penalty cost for unit of delay of flight plan i is one in the generation of these instances. 

The procedure followed to generate such feasible instances with cost 0 is the 

following:  

1. Let us suppose the flight sequence <1, 2, 3, 4, …> is the optimal solution 

2. The optimal estimated times of the flights in the sequence are calculated, taking 

into account their WTC separation restrictions. 

3. In order to shuffle the flights according to the CPS limitation, a data structure is 

generated. Each column represents the position of a flight in the sequence and 

contains all the possible flights that can be in that position respecting the CPS 

limitation.  

========== Figure 3 ========== 

Figure 3 shows an example of the last step for CPS = 2. For example, flight 4 can be 

moved to positions (columns) {2, 3, 4, 5, 6} respecting the CPS = 2 limitation. In 

order to create the random sequence that fulfils the CPS condition, we follow the next 

steps: 

i. Starting in the first column, we randomly choose a value among those 

possible (for example 2 in Figure 3).  

ii. The flight selected in the previous step is deleted from all the following 

columns in order not to select it again (since it is not feasible to have a 

repeated flight in the sequence). 

iii. Go to the next column. If the flight in that column is its last chance to be 

selected, it is automatically chosen (in Figure 3, flight 1 of the third 

column). This happens when we are evaluating a column j where there is 
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still available the flight j-CPS (it has not been deleted in previous steps). If 

not, repeat the previous step for the successive columns. 

 

4.2. SA Parameters tuning 

The SA parameters are, as mentioned above, the initial (To) and final (Tf) 

temperatures; the cooling rate (α); and the number of iterations at a certain temperature 

(L), which was fixed at one.  

In order to determine the optimal values for To, α, Tf, three levels of each parameter 

were considered based on previous tests and SA literature (Aarts & Korst, 1989; 

Dowsland & Adenso-Díaz, 2001; Van Laarhoven & Aarts, 1988): To  {200, 600, 

1,000}; α  {0.99, 0.999, 0.9999}; Tf  {0.01, 0.001, 0.0001}. Choosing five 

instances out of the 50 generated for each of the 2x5x4 combinations of levels, makes 

a total of (40 5) 3
3
 = 5,400 runs of the algorithm for testing the SA parameters.  

Given that the data collected do not fulfil the normality assumptions (Kolmogorov-

Smirnov p = 0.000), in order to study the influence of each of the factors in the 

minimization of the cost (or maximize the improvement percentage), a Kruskal-Wallis 

analysis seems to be the most appropriate. The results of this non-parametric analysis 

confirm that there are highly significant differences between the factors considered for 

both levels of  (p = 0.000) and To (p = 0.043), but not for Tf (p = 0.567).  Level 3 of 

both significant factors shows the best results (Table 2). Therefore,  = 0.9999, To = 

1,000 and Tf  = 0.01 are the values chosen for the experiments to be carried out.  

========== Table 2 ========== 
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5. RESULTS  

In this section we present the results obtained by the algorithm proposed with the SA 

parameters tuned according to Section 4.2. We have used the testbed of 2,000 

instances generated in Section 4.1, the 12 instances publicly available from OR-

Library (Beasley, 1990) involving from 10 to 500 aircraft, and finally a real sequence 

of flights from Gatwick airport. The results are measured in terms of percentage of 

improvement,  

% improvement = (CFCFS – Csolution ) / CFCFS     (6) 

where CFCFS and Csolution are the costs of the FCFS solution and the found solution, 

calculated as described in equation (3). 

5.1. Testbed 

As can be seen in  

 

 

 

 

Figure 4, for 828 out of 2,000 instances (41.4% of the total of instances generated), the 

algorithm was able to find the optimal solution (which means finding the sequence of 

cost 0); a 98.65% of instances achieved more than a 95% improvement in the cost of 

the sequence. 

========== Figure 4 ========== 

A Kruskal-Wallis test was performed in order to test the importance of the three 
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factors considered. Results show that F3 (i.e. number of flights) is not as significant (p 

= 0.214) in the explanation of the improvement as are F1 (p = 0.001) and F2 (p = 

0.000). This means that our algorithm’s efficiency does not depend on the number of 

aircraft in the sequence considered. As shown in Table 3, factor F1.2 (different types 

of plane) and factor F2.1 (CPS=1) were found to be the most difficult to manage for 

the SA algorithm developed. These results are reasonable as factor F1.2 implies more 

complexity since the triangle inequality is met and when CPS=1 the number of 

possible reassignments of the aircraft in the sequence to find their best position is 

smaller. On the other hand, and as would be expected, the best results are achieved for 

high values of CPS (F2) and only one type of plane (F1.1).  

Table 3 also shows the average percentage GAP as defined in Pinol & Beasley (2006). 

The values of the GAPS obtained show that our algorithm is able to find the optimal 

solution in all the cases. Lower bound values show that the worst case is a 90% 

improvement for some cases.  

========== Table 3 ========== 

As mentioned in the objectives, computational time is very important in this study.  
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Figure 5 and Figure 6 show that really good results are obtained in less than one 

second. As would be expected, results improve as the algorithm makes more 

interactions (i.e. as we allow longer computational times). As can be seen in  
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Figure 5, in the 15,000 iterations, the results reached average improvements of 80% in 

just 0.15 seconds while the 100% average improvement (i.e. solution sequence cost is 

0) is reached in 0.25 seconds (in the 30,000 iteration). 

========== Figure 5 ========== 

========== Figure 6 ========== 

Figure 6 shows the evolution of the improvement for the 2,000 instances in different 

iterations. It can be seen that in the last iteration (50,000) almost all the instances have 

an improvement in the cost of the sequence higher than 95%.  

 

5.2. OR-Library Instances 

For the sake of comparison with some publicly available sets of instances, we have 

considered the 13 aircraft landing data files from the OR-Library (Beasley, 1990). In 

order to be able to process those 13 instances, we needed to perform some necessary 
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adjustments, given that those instances were not designed exactly for the problem we 

are considering: 

 We have considered that the order of the flights in the files is the FCFS 

sequence. 

 We have considered as the estimated time of landing the target landing time. 

 Although no data about the WTC of each flight or the aircraft type is provided 

by the OR-library, they consider a matrix of separation time required between 

pairs of flights, what we can use directly.  

 Since the CPS concept is not present in the OR-Library, we have computed the 

instances for a range of CPS values, starting at 1 and up to 49 for all the 

instances. 

========== Table 4, 5 ========== 

Results are compared to those obtained by Pinol & Beasley (2006) and Salehipour et 

al. (2013) in Tables 4 and 5. Table 4 shows a comparison between the percentage of 

improvement of the best solution found both by Pinol & Beasley (2006) and 

Salehipour et al. (2013), and our SA, calculated related to the cost of the FCFS 

sequence. As expected, the majority of the results obtained by these two sets of 

authors are slightly better than the SA approach since their algorithms allow flights to 

land earlier than their estimated time, while ours does not consider this possibility 

based on usual airport operations. In spite of that, the percentage of improvement is 

not very different in most cases. The Airland 6 case deserves a special mention as our 

algorithm is able to improve on the results offered by the other authors. We must say 

that Airland 6 is the only case in which the data do not allow us to consider an earlier 

time of landing since the earliest landing time is equal to the ELDT. This is the 
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situation for which the SA algorithm was designed, which makes it reasonable to 

claim that the percentage improvement of the rest of the cases is obtained from 

considering earlier times of landing.    

The advantage regarding computational times of the SA algorithm as pursued (see 

Table 5) must be stated, given the necessity of obtaining online support. Therefore, the 

SA algorithm is able to obtain competitive improvements in the cost of the sequences 

(in most cases in less than a second), even for those instances which are not exactly 

aimed at the problem they tackle. Figure 7 shows a comparison between the 

percentage of improvement of our algorithm and the optimal results of the instances. It 

also reflects the difference in processing time, denoting as the processing time of Pinol 

& Beasley (2006) and Salehipour et al. (2013), the minimum obtained by their 

algorithms.  

========== Figure 7========== 

5.3. Case study 

Once the validity of the proposed approach has been established using the generated 

testbed, it is interesting to see what the algorithm behaviour is when using real data. 

For this purpose, Gatwick airport was chosen because it is the UK’s second largest 

airport and is the busiest single runway commercial airport in the world 

(Gatwickairport, 2015).  

Flight information was collected from 7
th

 September 2015 from 6:00 am to 9:00 am 

(FlightRadar24, 2015). Unfortunately, FlightRadar provides only scheduled times and 

not real times at the runway for landing and taking-off. Therefore, in order to compute 

this real flight information, the following assumptions have been made: 
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 The FCFS sequence has been created by arranging the flights according to their 

“ready time” to land or take-off. Our algorithm considers the time that the 

plane is at the runway, i.e. “ready time” represents the time where the plane is 

at the runway ready to take-off or touching the runway at landing. Taking this 

in mind:  

o The “ready time” for a take-off has been calculated as its scheduled 

time plus its real taxi time from the stand to the runway.  

o The “ready time” for a landing has been calculated as its scheduled 

time less its real taxi time from the runway to the stand.  

The minimum time separation depending on the WTC of each flight considered is 

based on Malaek and Naderi (2008). Since the WTC was not provided by 

FlightRadar24, it has been obtained by searching for the aircraft model (which is 

provided by FlightRadar24) in the International Civil Aviation Organization’s (ICAO) 

database.  

CPS is a theoretical parameter, so we have used 49 different values (from 1 to 49) to 

see how this parameter can influence the results in a real case and thus try to determine 

the optimal value of CPS. The SA parameter values used were the same as in our 

testbed experiments, and found to work better.  

The real cost of the sequence (calculated as the deviations of the actual landing/take-

off times of the flights) is 1,492 min. Our algorithm is able to reorganize the flights to 

obtain an average cost of 507 min of deviations, which means the total delay is 

reduced to a third of the real delay. 

========== Figure 8 ========== 
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Figure 8 shows the evolution of the percentage of improvement depending on the CPS 

after running the SA algorithm. It can be seen that the improvement rises up to 30% 

for CPS 10. This improvement is calculated as mentioned before, by comparing the 

result with the cost of the FCFS sequence. This means that allowing flights to move up 

to 10 positions respect their initial position in the sequence, results in a reduction of 

the delay of the total sequence; however, allowing flights to move more positions 

respect the initial FCFS does not mean that the total delay of the sequence continues 

improving.  

Regarding its potential implementation, the algorithm is able to deliver its solutions in 

less than one second, which is a reasonable computational time to be used in real 

environments, where controllers are used to obtaining online solutions.  

It is worth noting that comparing the behaviour of the algorithm using real data has 

certain limitations. Flightradar24 (2015) only provides the scheduled times of flights, 

which are the ones we consider as estimated times. However, flight operations suffer 

from unexpected delays (related to technical problems or weather conditions for 

instance) that we cannot predict and take into account in the tests performed with our 

algorithm. However, knowing the last update of real estimated times, the algorithm is 

able to find better solutions by incorporating these delays in the calculation of the 
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optimal target times for the sequences considered. 

When implementing this algorithm in real environments it would be necessary to agree 

the value of the CPS parameter with the controllers in order to obtain the best 

performance of the algorithm that satisfies their requirements of minimizing the 

movements of flights in the initial sequence.  

 

6. CONCLUSIONS 

Airports have a serious problem of saturation. A good schedule of runways is critical, 

but not many optimization tools have been implemented on sites that are able to 

deliver quick and efficient schedules.  

In this paper, an SA algorithm for a specific case (considering WVS and CPS as 

constraints) has been tuned and developed. The analysis of the results, after an 

extensive experimental framework had been carried out (involving 2,000 instances for 

validating the algorithm results), shows that for improvements of 95% in the deviation 

from the target schedule, the algorithm presents good results in most cases, with just 

15,000 iterations, in less than a quarter of a second. High CPS and only one type of 

plane make it easier to solve the problem. Up to 200 planes were considered in our 

data, with no reduction in efficiency.  

In addition, a comparison with other algorithms that used a public library shows that 

our algorithm obtains competitive results in a significantly less time, fulfilling the 

objective of its online use. Also, real data from Gatwick airport were used to test the 

behaviour of the algorithm in a real situation, obtaining around a 33% improvement in 

the total delay of the sequence considered. Therefore, the algorithm can be used in real 
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environments since the results are achieved in a very short time (less than one second 

in most cases) and the improvements in the cost of sequence (without varying the 

FCFS sequence completely) are valuable. 

There are a number of topics for further research. In particular, taking slots (or time 

windows) into account to make the algorithm more flexible and allowing flights to 

come in ahead of their scheduled time would add value to this approach. Also, 

extending the problem to multiple runways would be interesting, as main and busier 

airports usually have a multiple-runway configuration. Finally, the possibility of 

considering as an objective not only the total reduction delay but also the priority of 

flights would be interesting.  
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WTC Leader WTC Follower Separation (seconds) 

H H 1,000 

H M 300 

H L 300 

M H 180 

M M 180 

M L 180 

L H 60 

L M 60 

L L 60 

 

Table 1. Separations considered for each pair of aircraft WTC 
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Parameters Levels Mean 

Standard 

deviation 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

α 

0.9900 91.404 0.195 91.020 91.787 

0.9990 95.360 0.195 94.977 95.744 

0.9999 96.806 0.195 96.423 97.190 

To 

200 94.073 0.195 93.690 94.457 

600 94.668 0.195 94.285 95.052 

1,000 94.829 0.195 94.445 95.212 

Table 2. Descriptive results for improvement (%) regarding α and To parameters 

in the initial tuning process  
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Factors Levels Mean 

Average 

percentage 

gap 

Lower 

bound 

Std. 

deviation 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

F1 

1 99.877 0 90.36 0.329 99.857 99.897 

2 98.789 0 92.23 1.032 98.725 98.854 

F2 

1 98.733 0 90.36 1.580 98.573 98.892 

2 99.373 0 90.36 0.791 99.295 99.451 

3 99.564 0 97.81 0.511 99.513 99.614 

4 99.537 0 95.51 0.520 99.486 99.588 

5 99.460 0 94.29 0.607 99.401 99.520 

F3 

50 99.369 0 90.77 0.952 99.284 99.453 

100 99.320 0 92.63 0.916 99.239 99.401 

150 99.363 0 92.20 0.879 99.285 99.441 

200 99.309 0 90.36 0.994 99.222 99.397 

Table 3. Descriptive results for improvement (%) regarding F1, F2 and F3. 

Percentage GAP means the difference in percentage between the optimal solution 

and the best solution. Lower bound shows the worst result obtained by the 

algorithm. The standard deviation shows the amount of variation of the results 

obtained in these trials. 
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Table 4. Comparative results for improvement (%) related to the FCFS sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

between the Zbest result of Pinol & Beasley (2006) instances and the SA solution  

 

 

 

 

  

 %improvementbest %improvementSA 

Airland1 98.26% 97.14% 

Airland2 97.26% 96.81% 

Airland3 98.58% 97.21% 

Airland4 96.81% 94.33% 

Airland5 96.44% 94.49% 

Airland6 0% 58.42% 

Airland7 60.99% 0% 

Airland8 98.92% 98.30% 

Airland9 84.77% 72.22% 

Airland10 77.21% 55.37% 

Airland11 81.30% 67.10% 

Airland12 80.21% 65.84% 

Airland13 74.91% 62.33% 
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 Pinol & 

Beasley (2006) 

Salehipour et al. (2013) SA 

 timeSS timeBA timecplex timeSA+VND timeSA+VNS timeSS timeSA 

Airland1 4 60 0.66 0 0 4 0.42 

Airland2 6 90 0.49 1.59 1.38 6 0.55 

Airland3 8 99 0.39 1.78 1.73 8 0.71 

Airland4 8 95 5.12 1.98 2.85 8 0.73 

Airland5 9 100 20.44 1.85 1.89 9 0.70 

Airland6 158 274 0.1 2.12 2.14 158 0.92 

Airland7 195 79 0.86 2,68 2.65 195 1.3 

Airland8 42 287 0.98 7.1 7.31 42 1.46 

Airland9 119 554 1000 11.59 10.12 119 2.18 

Airland10 227 925 1000 20.12 20.75 227 2.54 

Airland11 256 1417 1000 24.17 33.84 256 2.85 

Airland12 381 2011 1000 219.03 198.85 381 3.31 

Airland13 1237 5852 1000 566.82 528.84 1237 4.59 

Table 5. Comparative results of processing time (sec) results for Pinol & Beasley 

(2006) instances for the following algorithms: SA, BA (Pinol & Beasley, 2006); 

CPLEX, SA+VND, SA+VNS, SS (Salehipour et al., 2013); SA (the proposed 

algorithm) 
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INPUT (To, α, Tf , L) 

T  To 

Sact  Generate_initial_solution 

WHILE T ≥ Tf DO 

                         BEGIN 

   FOR  cont  1 TO L(T) DO 

               BEGIN 

     Scand  Select_solution_N(Sact)   

     δ  cost(Scand) – cost (Sact) 

     IF (U(0,1) < e
(-δ/T)

 OR (δ <0) 

     THEN Sact  Scand 

END 

   T  α(T) 

   END 

{OUTPUT: best Sact visited} 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Simulated annealing algorithm structure  
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Figure 2. Process for generating a CPS feasible solution (CPS = 2):  

a) Choose a random position p; b) Find the flight occupying position p;  

c) Calculate the range of positions ( 3) that could be exchanged with flight n; d) 

Choose a random flight n’ from 3 fulfilling (4) and (5);  

e) Exchange n and n’ to obtain a valid solution.  
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Figure 3. Example of instance generation (CPS = 2). At each iteration (column) a 

flight not deleted is randomly chosen, avoiding it from being selected later. When 

it is the last opportunity for a flight, it is forced to be chosen (case of flight 1 in 

column 3). Final feasible sequence: <2; 4; 1; 5; 3; 6; 8; 7; 10; 9;…> 
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Figure 4. Pareto chart for the improvement obtained for the 2,000 instances 

generated. The SA algorithm finds the optimal solution for 41.5% of the 

instances, while only for less than 2% of the cases, the improvement found by the 

algorithm was smaller than 95%. 
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Figure 5. Evolution of the percentage of improvement (continuous line) and 

computational time average (dots) in seconds for the 2,000 instances generated 
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Figure 6. Average of the percentage of improvement for the 2,000 instances, 

depending on the number of iterations 
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Figure 7. Comparison of different algorithms using the OR-Library instances, 

regarding percentage of improvement (continuous lines) and computational time 

in seconds (dotted lines) 
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Figure 8. Evolution of the percentage of improvement for Gatwick airport real 

data, for different CPS values 
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