
ar
X

iv
:1

50
1.

05
88

2v
3

 [
cs

.A
I]

 3
0

N
ov

 2
01

5

Efficient local search limitation strategy for single machine total

weighted tardiness scheduling with sequence-dependent setup

times

Anand Subramanian, Katyanne Farias

Departamento de Engenharia de Produção
Universidade Federal da Paráıba, Brazil

anand@ct.ufpb.br, katyannefaraujo@gmail.com

Working Paper, UFPB – November 2015

Abstract

This paper concerns the single machine total weighted tardiness scheduling with sequence-dependent

setup times, usually referred as 1|sij |
∑

wjTj . In this NP-hard problem, each job has an associated

processing time, due date and a weight. For each pair of jobs i and j, there may be a setup time

before starting to process j in case this job is scheduled immediately after i. The objective is to

determine a schedule that minimizes the total weighted tardiness, where the tardiness of a job is

equal to its completion time minus its due date, in case the job is completely processed only after

its due date, and is equal to zero otherwise. Due to its complexity, this problem is most commonly

solved by heuristics. The aim of this work is to develop a simple yet effective limitation strategy

that speeds up the local search procedure without a significant loss in the solution quality. Such

strategy consists of a filtering mechanism that prevents unpromising moves to be evaluated. The

proposed strategy has been embedded in a local search based metaheuristic from the literature and

tested in classical benchmark instances. Computational experiments revealed that the limitation

strategy enabled the metaheuristic to be extremely competitive when compared to other algorithms

from the literature, since it allowed the use of a large number of neighborhood structures without

a significant increase in the CPU time and, consequently, high quality solutions could be achieved

in a matter of seconds. In addition, we analyzed the effectiveness of the proposed strategy in two

other well-known metaheuristics. Further experiments were also carried out on benchmark instances

of problem 1|sij |
∑

Tj .

1 Introduction

This paper deals with the single machine total weighted tardiness scheduling with sequence-

dependent setup times, a well-known problem in the scheduling literature, which can be

defined as follows. Given a set of jobs J = {1, . . . , n} to be scheduled on a single ma-

chine, for each job j ∈ J , let pj be the processing time and dj be the due date with a

non-negative weight wj. Also, consider a setup time sij that is required before starting to

process job j ∈ J in case this job is scheduled immediately after job i ∈ J . The objective

is to determine a schedule that minimizes the total weighted tardiness
∑

wjTj , where the

tardiness Tj of a job j ∈ J depends on its associated completion time Cj and is given

by max{Cj − dj , 0}. Based on the notation proposed in Graham et al. (1979) we will

hereafter denote this problem as 1|sij|
∑

wjTj.

1

http://arxiv.org/abs/1501.05882v3

Departamento de Engenharia de Produção – UFPB Working Paper

A special version of problem 1|sij|
∑

wjTj arises when setup times are not considered.

Such version is usually referred to as 1||
∑

wjTj , which is known to be NP-hard in a

strong sense Lawler (1977); Lenstra et al. (1977). Therefore, problem 1|sij|
∑

wjTj is

also NP-hard since it includes problem 1||
∑

wjTj as a particular case.

Given the complexity of problem 1|sij|
∑

wjTj , most methods proposed in the literature

are based on (meta)heuristics. In particular, local search based metaheuristics had been

quite effective in generating high quality solutions for this problem (Kirlik and Oğuz, 2012;

Xu et al., 2013; Subramanian et al., 2014). Nevertheless, one of the main limitations of

such methods is the computational cost of evaluating a move during the local search.

Typically, the number of possible moves in classical neighborhoods such as insertion and

swap is O(n2), whereas the complexity of evaluating each move from these neighborhoods

is O(n), when performed in a straightforward fashion. Hence, the overall complexity of

examining these neighborhoods is O(n3).

Recently, Liao et al. (2012) presented a sophisticated method that reduces the com-

plexity of enumerating and evaluating all moves from the aforementioned neighborhoods

from O(n3) to O(n2logn). However, in practice, this procedure is only useful for very

large instances. For example, they showed empirically that the advantage of using their

approach for the neighborhood swap starts to be visibly significant only for instances with

more than around 1000 jobs.

The aim of this work is to develop a simple yet effective strategy that speeds up the local

search procedure without a significant loss in the solution quality. Such strategy consists of

a filtering mechanism that prevents unpromising moves to be evaluated. The idea behind

this approach relies on a measurement that must be computed at runtime. In our case,

we use the setup variation, which can be computed in O(1) time to estimate if a move is

promising or not to be evaluated. Moreover, the bottleneck of traditional implementations

limits the number of neighborhoods to be explored in the local search. Our proposed

strategy enables the use of a large number of neighborhoods, such as moving blocks of

consecutive jobs, which is likely to lead to high quality solutions. In fact, Xu et al. (2013)

showed that this type of neighborhood may indeed lead to better solutions for problem

1|sij|
∑

wjTj .

The proposed local search strategy has been tested in classical benchmark instances

using the ILS-RVND metaheuristic (Subramanian, 2012). Computational experiments

revealed that the limitation strategy enabled the metaheuristic to be extremely competi-

tive when compared to other algorithms from the literature, since it allowed the use of a

large number of neighborhood structures without a significant increase in the CPU time

and, consequently, high quality solutions could be achieved in a matter of seconds. In

addition, we analyzed the effectiveness of the proposed strategy in two other well-known

metaheuristics. Further experiments were also carried out on benchmark instances of

problem 1|sij|
∑

Tj .

The remainder of the paper is organized as follows. Section 2 presents a review of the

2

Departamento de Engenharia de Produção – UFPB Working Paper

algorithms proposed in the literature for solving the problem 1|sij|
∑

wjTj . Section 3 de-

scribes the proposed local search methodology, including the neighborhood structures and

the new limitation strategy. Section 4 presents the computational experiments. Section

5 contains the concluding remarks of this work.

2 Literature Review

One of the first methods proposed for problem 1|sij|
∑

wjTj was that of Raman et al.

(1989). It consists of a constructive heuristic based on a static dispatching rule. Lee et al.

(1997) later developed a three-phase method, where the first performs a statistical analysis

on the instance to define the parameters to be used, the second is a constructive heuristic

that is based on dynamic dispatching rule called Apparent Tardiness Cost with Setups

(ATCS), while the third performs a local search by means of insertion and swap moves.

The 1|sij|
∑

wjTj literature remained practically unchanged for nearly two decades

until Cicirello and Smith (2005) developed five randomized based (meta)heuristic ap-

proaches, more precisely, Limited Discrepancy Search (LDS); Heuristic-Biased Stochastic

Sampling (HBSS); Value-Biased Stochastic Sampling (VBSS); hill-climbing incorporated

to VBSS (VBSS-HC) and finally a Simulated Annealing (SA) algorithm. The authors

also proposed a set of 120 instances that has become the most used benchmark dataset

for the problem. Cicirello (2006) later implemented a Genetic Algorithm (GA) with a

new operator called Non-Wrapping Order Crossover (NWOX) that maintains not only

the relative order of the jobs in a sequence, but also the absolute one.

Three metaheuristics were implemented by Lin and Ying (2007), more specifically,

SA, GA and Tabu Search (TS), whereas Ant Colony Optimization (ACO) based algo-

rithms were put forward by Liao and Cheng (2007), Anghinolfi and Paolucci (2008) and

Mandahawi et al. (2011). The latter authors actually developed a variant of ACO, called

Max-Min Ant System (MMAS), that was capable of generating better solutions when

compared to the other two.

Valente and Alves (2008) developed a Beam Search (BS) algorithm, while a Discrete

Particle Swarm Optimization (DSPO) heuristic was proposed by Anghinolfi and Paolucci

(2009). Tasgetiren et al. (2009) put forward a Discrete Differential Evolution (DDE) al-

gorithm that was enhanced by the NEH constructive heuristic of Nawaz et al. (1983)

combined with concepts of the metaheuristic Greedy Randomized Adaptive Search Pro-

cedure (GRASP) (Feo and Resende, 1995) and some priority rules such as the Earliest

Weighted Due Date (EWDD) and ATCS. The authors also implemented destruction and

construction procedures to determine a mutant population. Bożejko (2010) proposed

a parallel Scatter Search (ParSS) algorithm combined with a Path-Relinking scheme.

Chao and Liao (2012) implemented a so-called Discrete Electromagnetism-like Mecha-

nism (DEM), which is a metaheuristic based on the electromagnetic theory of attraction

and repulsion.

3

Departamento de Engenharia de Produção – UFPB Working Paper

Kirlik and Oğuz (2012) developed a Generalized Variable Neighborhood Search (GVNS)

algorithm combined with a Variable Neighborhood Descent (VND) procedure for the local

search composed of the following neighborhoods: swap, 2-block insertion and job (1-block)

insertion. Xu et al. (2013) suggested an Iterated Local Search (ILS) approach that uses a

l-block insertion neighborhood structure with l ∈ {1, 2, . . . , 18}. The authors empirically

showed that this neighborhood was capable of finding better solutions when compared to

job insertion and 2-block insertion. The perturbation mechanism also applies the same

type of move, but with l ∈ {18, 19, . . . , 30}.

Subramanian et al. (2014) also implemented an ILS algorithm, but combined with a

Randomized VND procedure (RVND) that uses the neighborhoods insertion, 2-block in-

sertion, 3-block insertion, swap and block reverse (a.k.a. twist). Diversification moves

are performed using the double-bridge perturbation (Martin et al., 1991), which was orig-

inally developed for the Traveling Salesman Problem (TSP). An alternative version of

the proposed ILS-RVND algorithm that accepts solutions with same cost during the local

search was suggested. In this latter approach, a tabu list is used to avoid cycling.

Deng and Gu (2014) put forward an Enhanced Iterated Greedy (EIG) algorithm that

generates an initial solution using the ATCS heuristic, performs local search with swap

and insertion moves and perturbs a solution by applying successive insertion moves. Some

elimination rules were also suggested for the swap neighborhood.

Xu et al. (2014) proposed different versions of a Hybrid Evolutionary Algorithm (HEA)

by combining two population updating strategies with three crossover operators, including

the linear order crossover operator (LOX). The initial population is generated at random

and a local search is applied using the neighborhood l-block as in Xu et al. (2013). The

version that yielded the best results was denoted LOX⊕B. Guo and Tang (2015) suggested

a Scatter Search (SS) based algorithm that combines many ideas from different methods

such as ATCS, VNS and DDE with a new adaptive strategy for updating the reference

set.

To the best of our knowledge, the ILS-RVND heuristic of Subramanian et al. (2014),

the ILS of Xu et al. (2013) and the HEA of Xu et al. (2014) are the best algorithms, at

least in terms of solution quality, proposed for problem 1|sij|
∑

wjTj .

Tanaka and Araki (2013) proposed an exact algorithm, called Successive Sublimation

Dynamic Programming (SSDP), that was capable of solving instances of the benchmark

dataset of Cicirello and Smith (2005). At first, a column generation or a conjugate subgra-

dient procedure is applied over the lagrangean relaxation of the original problem, solved

by dynamic programming. Next, some constraints are added to the relaxation until there

is no difference between the lower and upper bounds, which increases the number of

states in the dynamic programming. Unnecessary states are removed in order to decrease

the computational time and the memory used. A branching scheme is integrated to the

method to solve the harder instances. Despite capable of solving all instances to opti-

mality, the computational time was, on average, rather large, more specifically 32424.55

4

Departamento de Engenharia de Produção – UFPB Working Paper

seconds, varying from 0.54 seconds to 30 days.

Table 1 shows a summary of the methods proposed for problem 1|sij|
∑

wjTj. For the

sake of comparison we also included, when applicable, the neighborhoods used in each

method. It can be observed that most algorithms used the neighborhoods insertion and

swap. Moreover, it is interesting to notice that almost all population based algorithms

rely on local search at a given step of the method.

Table 1: Summary of the methods proposed for problem 1|sij |
∑

wjTj

Work Year Method Neighborhoods used

Raman et al. (1989) 1989 Constructive heuristic –

Lee et al. (1997) 1997 Constructive heuristic –

LDS, HBSS, VBSS
Cicirello and Smith (2005) 2005

VBSS-HC, SA
Not reported

Cicirello (2006) 2006 GA –

Liao and Juan (2007) 2007 ACO Insertion, swap

Lin and Ying (2007) 2007 GA, SA, TS Insertion, swap

Insertion1, 2-block swap,
Valente and Alves (2008) 2008 BS

3-block swap

Anghinolfi and Paolucci (2008) 2008 ACO Insertion, swap

Anghinolfi and Paolucci (2009) 2009 DPSO Insertion, swap

Tasgetiren et al. (2009) 2009 DDE Insertion

Bożejko (2010) 2010 ParSS Swap

Mandahawi et al. (2011) 2011 ACO Insertion

Chao and Liao (2012) 2012 DEM Insertion2

Insertion,
Kirlik and Oğuz (2012) 2012 GVNS

2-block insertion, swap

Tanaka and Araki (2013) 2013 SSDP (exact) –

Xu et al. (2013) 2013 ILS l-block insertion3

Deng and Gu (2014) 2014 EIG insertion, swap

Insertion, 2-block insertion,
Subramanian et al. (2014) 2014 ILS-RVND

3-Insertion, swap, block reverse

Xu et al. (2014) 2014 HEA l-block insertion3

Guo and Tang (2015) 2015 SS Insertion, 2-block insertion, swap, 3-opt
1: Choose the job with the largest weighted tardiness and insert that job after n/3 jobs.

2: Random insertion, insertion of the best job in the best position, insertion of a random job in the best position.

3: With l ∈ {1, 2, . . . , 18}.

3 Local Search Methodology

In this section we describe in detail the local search methodology adopted in this work.

At first, we introduce the proposed local search limitation strategy used to speed up the

local search process. Next, we present the neighborhood structures considered in our

implementation and how we compute the move evaluation using a block representation.

Finally, we show how we have embedded the developed approach into the ILS-RVND

metaheuristic (Subramanian, 2012).

5

Departamento de Engenharia de Produção – UFPB Working Paper

3.1 Limitation Strategy

Enumerating and evaluating all moves of a given neighborhood of a 1|sij|
∑

wjTj solu-

tion are usually very time consuming, often being the bottleneck of local search based

algorithms proposed for this problem. Liao et al. (2012) developed a rather complicated

procedure that runs in O(n2logn) time for preprocessing the auxiliary data stuctures nec-

essary for performing the move evaluation of the neighborhoods swap, insertion and block

reverse in constant time. Nevertheless, they themselves showed, for example, that for

the neighborhood swap, their approach only start to be notably superior for instances

containing more than ≈ 1000 jobs. Therefore, it was thought advisable to use the simple

and straightforward move evaluation procedures in Section 3.2, even though their result-

ing overall complexity is O(n3). However, instead of enumerating all possible moves from

each neighborhood, we decided to evaluate only a subset of them, selected by means of a

novel local search limitation strategy.

Our proposed local search limitation strategy is based on a very simple filtering mech-

anism that efficiently chooses the neighboring solutions to be evaluated during the search.

The criterion used to decide weather a move should be evaluated or not is based on the

setup variation of that move, which can be computed in O(1) time. In other words, for

every potential move, one computes the setup variation and the move is only considered

for evaluation if the variation does not exceed a given threshold value. The motivation

for adopting such criterion was based on the empirical observation that the larger the

increase on the total setup of a sequence due to a move, the smaller the probability of

improvement on the total weighted tardiness.

It is worthy of note that, very recently, Guo and Tang (2015) had independently de-

veloped a similar but not identical approach to disregard unpromising moves based on

the total setup time instead of the setup variation. More specifically, moves are not con-

sidered for evaluation if the total setup time of a solution to be evaluated is greater than

a threshold value that is computed by multiplying the average setup of the instance by

a random number selected from the interval between 0.2 and 0.3. However, they did not

report any result of the impact of this strategy on the performance of the local search.

Let N be the set of neighborhoods used in a local search algorithm. A threshold value

max∆sv for the setup variation is assigned for each neighborhood v ∈ N , meaning that a

move from a neighborhood v ∈ N will only be evaluated if its associated setup variation

is smaller than or equal to max∆sv . Since an adequate value for each max∆sv may be

highly sensitive to the instance data as well as the neighborhood, we did not impose any

predetermined value for them. Instead, they are estimated during a learning phase, when

a preliminary local search is performed without any filter.

The learning phase occurs during the first iterations of the local search. Initially,

max∆sv, ∀v ∈ N , is set to a sufficiently large number M so as to allow the evaluation

of any move, i.e., no filter is applied at this stage. Let ∆sv, ∀v ∈ N , be a list composed

of the values of the setup variations associated to each improving move of a particular

6

Departamento de Engenharia de Produção – UFPB Working Paper

neighborhood. This list is updated with the addition of a new value every time an

improving move occurs.

At the end of the learning phase, the list ∆sv, ∀v ∈ N , is sorted in ascending order.

Define θ as an input parameter, where 0 ≤ θ ≤ 1. The element from this ordered list

associated to the position ⌊θ · |∆sv|⌋ is then chosen as threshold value for the parameter

max∆sv, ∀v ∈ N . Note that the larger the θ, the larger the max∆sv and thus more

moves are likely to be evaluated, leading to a more conservative limitation policy.

Consider an example where ∆sswap = [−6,−4,−4,−2, 0, 1, 4, 7, 12, 20]. If θ = 0.95,

then ⌊θ · |∆sv|⌋ = ⌊0.95 · 10⌋ = 9. The value of the parameter max∆sswap will thus be

the one associated with the position 9 of ∆sswap, that is, max∆sswap = 12.

Note that one need not necessarily perform an exhaustive local search, i.e. enumerate

all possibles moves from a neighborhood during the learning phase. What is really relevant

is the size of the list ∆sv. On one hand, if the size of the sample (|∆sv|) is too small

and not really representative, then an inaccurate value for max∆sv will be estimated.

On the other hand, storing a large sample may imply in spending a considerable amount

of iterations in the learning phase, which can dramatically affect the performance of the

algorithm in terms of CPU time.

The presented limitation strategy can be easily embedded into any local search based

metaheuristic. For example, in case of multi-start metaheuristics such as GRASP, one can

consider the learning phase (i.e., perform the search without any filters) only for a given

number of preliminary iterations before triggering the limitation scheme. In case of other

metaheuristics that systematically alternate between intensification and diversification

such as TS, VNS and ILS, one can choose different stopping criteria for the learning

phase such as the number of calls to the local search procedure or even a time limit.

Population based metaheuristics that rely on local search for obtaining good solutions

can also employ a similar scheme.

3.2 Neighborhood structures

In order to better describe the neighborhood structures employed during the local search

we use the following block representation. Let π = {π0, π1, π2, . . . , πn} be an arbitrary

sequence composed of n jobs, where π0 = 0 is a dummy job that is used for considering

the setup s0π1
required for processing the first job of the sequence. A given block B can be

defined as a subsequence of consecutive jobs. Figure 1 shows an example of a sequence of

10 jobs (plus the dummy job) divided into 4 blocks, namely B0 = π0, B1 = {π1, π2, π3, π4},

B2 = {π5, π6, π7} and B3 = {π8, π9, π10}.

Let a and b be the position of the first and last jobs of a block Bt in the sequence,

respectively, and let b′ be the position of the last job of the predecessor block Bt−1 in the

sequence with associated completion time C b′. The cost of the block Bt, i.e., its total

weighted tardiness, can be computed in O(|Bt|) steps as shown in Alg. 1. Note that if

|Bt| = 1, the procedure will not execute the loop from a + 1 to b described in lines 7-12

7

Departamento de Engenharia de Produção – UFPB Working Paper

Figure 1: Example of a schedule divided into 4 blocks

because in this case a = b which implies in b < a + 1.

Algorithm 1 CompCostBlock

1: Procedure CompCostBlock(b′, a, b, π, C b′)
2: cost← 0
3: Ctemp← C b′ + sπ

b′
πa + pπa ⊲ Global variable that stores a temporary completion time

4: if Ctemp > dπa then ⊲ dπa is the due date of job πa

5: cost← wπa × (Ctemp− dπa) ⊲ wπa is the weight of job πa

6: end if

7: for a′ = a + 1 . . . b do

8: Ctemp← Ctemp + sπ
a′

−1
π
a′

+ pπ
a′

9: if Ctemp > dπ
a′

then

10: cost← cost+ wπ
a′
× (Ctemp − dπ

a′
)

11: end if

12: end for

13: return cost
14: end CompCostBlock.

It is easy to verify that the total cost of a sequence can be obtained by the sum of the

costs of the blocks defined for that sequence. In the example given in Fig. 1 the total

cost of the sequence is equal to the sum of the cost of blocks B0, B1, B2 and B3.

When performing move evaluations it is quite useful to define an auxiliary data struc-

ture that stores the cumulated weighted tardiness up to a certain position of the sequence.

Therefore, we have decided to define an array g for that purpose. For example, the el-

ement g5 of the array stores the cumulated weighted tardiness up to the 5th position of

the sequence.

We now proceed to a detailed description of the neighborhood structures used in our

approach.

3.2.1 Swap

The swap neighborhood structure simply consists of exchanging the position of two jobs in

the sequence, as depicted in Figure 2. It is possible to observe that the modified solution

can be divided into 6 blocks. Alg. 2 shows how to compute the cost of a solution in

O(n− i) steps. Note that one can always assume that i < j for every swap move.

Algorithm 2 CompCostSwap

1: Procedure CompCostSwap(π, i, j, g, C)
2: f ← gi−1 ⊲ Variable that stores the cost to be evaluated
3: Ctemp← Cπi−1

4: f ← f + CompCostBlock(i− 1, j, j, π, Ctemp) ⊲ Cost of block 4
5: f ← f + CompCostBlock(j, i+ 1, j − 1, π, Ctemp) ⊲ Cost of block 3
6: f ← f + CompCostBlock(j − 1, i, i, π, Ctemp) ⊲ Cost of block 2
7: f ← f + CompCostBlock(i, j + 1, n, π,Ctemp) ⊲ Cost of block 5
8: return f
9: end CompCostSwap.

8

Departamento de Engenharia de Produção – UFPB Working Paper

Figure 2: Exchanging the position of two jobs

Alg. 3 presents the pseudocode of the neighborhood swap considering the limitation

strategy described in Section 3.1. At first, the best sequence π∗ is considered to be the

same as the original one, i.e., π (line 2). Next, for every pair of positions i and j (with

j > i) of π (lines 3-16), the setup variation is computed in constant time (line 5). If this

variation is smaller than or equal to max∆sswap (lines 6-14), then the cost of sequence

π′, which is a neighbor of π generated by exchanging the position of customers πi and πj ,

is computed using Alg. 2 (line 7). In case of improvement (lines 6-13), the best current

solution is updated (line 9) and if the learning phase is activated, that is, if max∆sswap =

M , list ∆sswap is updated by adding the value associated to the setup variation computed

in line 5 (lines 10-12). Finally, the procedure returns the best sequence π∗ found during

the search (line 17).

Algorithm 3 Swap

1: Procedure Swap(π, g, C,∆sswap, max∆sswap)
2: π∗ ← π; f∗ ← f(π);
3: for i = 1 . . . n− 1 do

4: for j = i+ 1 . . . n do

5: setupV ariation = −sπi−1πi
− sπiπi+1 − sπj−1πj

− sπjπj+1

+sπi−1πj
+ sπjπi+1 + sπj−1πi

+ sπiπj+1

6: if setupV ariation ≤ max∆sswap then

7: f(π′) = CompCostSwap(π, i, j, l, g, C) ⊲ π′ is a neighbor of π
8: if f(π′) < f∗ then

9: π∗ ← π′; f∗ ← f(π′)
10: if max∆sswap = M then ⊲ Learning phase activated
11: ∆sswap ← ∆sswap ∪ setupV ariation
12: end if

13: end if

14: end if

15: end for

16: end for

17: return π∗;
18: end Swap.

3.2.2 l-block insertion

The l-block insertion neighborhood consists of moving a block of length l forward (i < j)

or backward (i > j), as shown in Figs. 3 and 4, respectively. In this case the resulting

solution in both cases can be represented by 5 blocks. Algs. 4 and 5 describe how to

evaluate a cost of moving a block forward and backward in O(n− i) and O(n− j) steps,

respectively.

9

Departamento de Engenharia de Produção – UFPB Working Paper

Figure 3: Forward insertion of a block of length l

Algorithm 4 CompCostl-blockF

1: Procedure CompCostl-blockF(π, i, j, l, g, C)
2: f ← gi−1 ⊲ Variable that stores the cost to be evaluated
3: Ctemp← Cπi−1

4: f ← f + CompCostBlock(i− 1, i+ l, j, π, Ctemp) ⊲ Cost of block 3
5: f ← f + CompCostBlock(j, i, i− 1 + l, π, Ctemp) ⊲ Cost of block 2
6: f ← f + CompCostBlock(i− 1 + l, j + 1, n, π,Ctemp) ⊲ Cost of block 4
7: return f
8: end CompCostFl-block.

Figure 4: Backward insertion of a block of length l

Algorithm 5 CompCostl-blockB

1: Procedure CompCostl-blockB(π, i, j, l, g, C)
2: f ← gj−1 ⊲ Variable that stores the cost to be evaluated
3: Ctemp← Cπj−1

4: f ← f + CompCostBlock(j − 1, i, i− 1 + l, π, Ctemp) ⊲ Cost of block 3
5: f ← f + CompCostBlock(i− 1 + l, j, i− 1, π, Ctemp) ⊲ Cost of block 2
6: f ← f + CompCostBlock(i− 1, i+ l, n, π,Ctemp) ⊲ Cost of block 4
7: return f
8: end CompCostBl-block.

It is worth mentioning that one can check at any time if the partial cost of the solution

under evaluation is already worse than the best current cost. If so, the evaluation can

be interrupted because it is already known that the solution under evaluation cannot be

better than the current one. In some cases this may help speeding up the move evaluation

process.

Let L be a set composed of different values for the parameter l. In practice one can

define a single neighborhood considering all values of l ∈ L at once (see Xu et al. (2013)),

or define multiple neighborhoods where each of them is associated with a given value of

l ∈ L. In our implementation we decided for the latter option.

10

Departamento de Engenharia de Produção – UFPB Working Paper

Alg. 6 shows the pseudocode of the neighborhood l-block taking into account the

limitation strategy described earlier. This algorithm, which is divided into two parts,

follows the same rationale of Alg. 3 in both of them. The main difference is related to

the range of the positions i and j, which depends on the value of l. In part one (lines

3-16) the search is performed forward, whereas in part 2 it is performed backward (lines

17-30).

Algorithm 6 l-blockInsertion

1: Procedure l-blockInsertion(π, l, g, C,∆sl-block,max∆sl-block)
2: π∗ ← π; f∗ ← f(π);

⊲ Moving the l-block forward
3: for i = 1 . . . n− l do
4: for j = i+ 1 . . . n do

5: setupV ariation = −sπi−1πi
− sπi−1+lπi+l

− sπjπj+1

+sπi−1πi+l
+ sπjπi

+ sπi−1+lπj+1

6: if setupV ariation ≤ max∆sl-block then

7: f(π′) = CompCostl-blockF(π, i, j, l, g, C) ⊲ π′ is a neighbor of π
8: if f(π′) < f∗ then

9: π∗ ← π′; f∗ ← f(π′)
10: if max∆sl-block = M then ⊲ Learning phase activated
11: ∆sl-block ← ∆sl-block ∪ setupV ariation;
12: end if

13: end if

14: end if

15: end for

16: end for

⊲ Moving the l-block backward
17: for i = 2 . . . n− l + 1 do

18: for j = 1 . . . i− 1 do

19: setupV ariation = −sπj−1πj
− sπi−1πi

− sπi−1+lπi+1

+sπj−1πi
+ sπj−1+lπj

+ sπi−1πi+1

20: if setupV ariation ≤ max∆sl-block then

21: f(π′) = CompCostl-blockB(π, i, j, l, g, C) ⊲ π′ is a neighbor of π
22: if f(π′) < f∗

then

23: π∗ ← π′; f∗ ← f(π′)
24: if max∆sl-block = M then ⊲ Learning phase activated
25: ∆sl-block ← ∆sl-block ∪ setupV ariation
26: end if

27: end if

28: end if

29: end for

30: end for

31: return π∗;
32: end l-blockInsertion.

3.3 Embedding the proposed approach in the ILS-RVND metaheuristic

In this section we explain how we embedded the proposed approach in the ILS-RVND

metaheuristic (Subramanian, 2012). The reason for choosing this metaheuristic to test our

local search limitation strategy is that it was found capable of generating highly compet-

itive results not only for problem 1|sij|
∑

wjTj (Subramanian et al., 2014), as mentioned

in Section 2, but also for other combinatorial optimization problems (Subramanian et al.,

2010; Subramanian, 2012; Silva et al., 2012; Penna et al., 2013; Subramanian and Battarra,

2013; Martinelli et al., 2013; Vidal et al., 2015). Moreover, the referred method relies on

very few parameters and it can be considered relatively simple, which makes it quite

practical and also easy to implement.

Alg. 7 highlights the differences between the original version of ILS-RVND and a

11

Departamento de Engenharia de Produção – UFPB Working Paper

new one, called ILS-RVNDFast, that includes the additional steps (line 3 and lines 17-

22) described in Section 3.1 for speeding up the the local search. It can be observed

that the learning phase is limited to the first iteration of the algorithm, where the list

∆sv, ∀v ∈ N , is populated during the local search (line 9). The value of max∆sv, ∀v ∈ N

is then estimated after the end of the first iteration. Parameters IR and IILS correspond

to the number of restarts of the metaheuristic and the number of consecutive ILS itera-

tions without improvements, respectively. An exception occurs during the learning phase,

which is more costly, where the number of ILS iterations is IILS/2. In both algorithms

the initial solution (line 5) is generated using a simple randomized insertion heuristic,

whereas the perturbation (line 14) is performed by a mechanism called double-bridge,

which consists of exchanging two blocks of a sequence at random. The reader is referred

to Subramanian et al. (2014) for implementation details about these procedures.

The local search method of both algorithms is performed by a RVND procedure, which

consists of selecting an unexplored neighborhood at random whenever another one fails to

find an improved solution. In case of improvement, all neighborhoods are reconsidered to

be explored. Note that in both algorithms the set L associated to the l-block neighborhood

is provided as an input parameter to be tuned (see Section 4.1), as opposed to the ILS-

RVND presented in Subramanian et al. (2014) where this set was predefined as L =

{1, 2, 3}, that is, the l-block neighborhoods were limited to 1-, 2- and 3-block insertion.

In addition, the neighborhood block reverse was also used in a restricted fashion by the

authors, but it was not considered here because it did not seem to be crucial for obtaining

high quality solutions.

One last remark is that the algorithm stops when a sequence π with cost f(π) = 0 is

found. When this happens it is clear that an optimal solution was obtained and thus there

is no point in continuing the search. This was not originally considered in the ILS-RVND

presented in Subramanian et al. (2014), but it has been considered here in both versions.

12

D
ep

a
rta

m
en

to
d
e
E
n
g
en

h
a
ria

d
e
P
ro
d
u
çã
o
–
U
F
P
B

W
o
rk
in
g
P
a
p
er

Algorithm 7 ILS-RVND vs ILS-RVNDFast

1: Procedure ILS-RVND(IR, IILS , L)
2: f∗ ← ∞
3:
4: for iter = 1 . . . IR do

5: π ← GenerateInitialSolution()
6: π̂ ← π
7: iterILS ← 0
8: while iterILS ≤ IILS do

9: π ← RVND(π,L)
10: if f(π) < f(π̂) then

11: π̂ ← π
12: iterILS ← 0
13: end if

14: π ← Perturb(π̂)
15: iterILS ← iterILS + 1
16: end while

17:
18:
19:
20:
21:
22:
23: if f(π̂) < f∗

then

24: π∗ ← π̂; f∗ ← f(π̂)
25: end if

26: end for

27: return π∗

28: end ILS-RVND.

Procedure ILS-RVNDFast(IR, IILS , θ, L)
f∗ ← ∞
max∆sv ←M ;∆sv ← NULL,∀v ∈ N
for iter = 1 . . . IR do

π ← GenerateInitialSolution()
π̂ ← π
iterILS ← 0
while iterILS ≤ IILS do ⊲ or iterILS ≤ IILS/2 when iter = 0

π ← RVND(π,L,∆s,max∆s)
if f(π) < f(π̂) then

π̂ ← π
iterILS ← 0

end if

π ← Perturb(π̂)
iterILS ← iterILS + 1

end while

if iter = 1 then

for v = 1 . . . |N | do
∆sv ← sort(∆sv)
max∆sv ← value associated to the position ⌊θ · |∆sv|⌋ of list ∆sv

end for

end if

if f(π̂) < f∗ then

π∗ ← π̂; f∗ ← f(π̂)
end if

end for

return π∗

end ILS-RVNDFast.

1
3

Departamento de Engenharia de Produção – UFPB Working Paper

4 Computational Experiments

The ILS-RVND and ILS-RVNDFast algorithms were coded in C++ and the experiments

were performed in an Intel Core i7 with 3.40 GHz and 16 GB of RAM running under

Linux Mint 13. Only a single thread was used in our testing.

The 120 instances of Cicirello and Smith (2005) were used to evaluate the performance

of the proposed algorithms. Each of them has 60 jobs and is characterized by three

parameters: τ , which is related to the tightness of the due date; R, which specifies

the range of the due dates; η, which refers to the size of the average setup time with

respect to the size of the average processing time. The authors created 12 groups of 10

instances by combining the following parameters: τ = {0.3, 0.6, 0.9}, R = {0.25, 0.75}

and η = {0.25, 0.75}, as shown in Table 2.

Table 2: Group of instances generated by Cicirello and Smith (2005) for problem 1|sij |
∑

wjTj

Group Instances Configuration

1 1-10 τ = 0.3, R = 0.25, η = 0.25

2 11-20 τ = 0.3, R = 0.25, η = 0.75

3 21-30 τ = 0.3, R = 0.75, η = 0.25

4 31-40 τ = 0.3, R = 0.75, η = 0.75

5 41-50 τ = 0.6, R = 0.25, η = 0.25

6 51-60 τ = 0.6, R = 0.25, η = 0.75

7 61-70 τ = 0.6, R = 0.75, η = 0.25

8 71-80 τ = 0.6, R = 0.75, η = 0.75

9 81-90 τ = 0.9, R = 0.25, η = 0.25

10 91-100 τ = 0.9, R = 0.25, η = 0.75

11 101-110 τ = 0.9, R = 0.75, η = 0.25

12 111-120 τ = 0.9, R = 0.75, η = 0.75

4.1 Parameter Tuning

To have a better idea of the impact of the modifications introduced in the original ILS-

RVND, we decided to use the same configuration for the number of ILS iterations as in

Subramanian et al. (2014), that is, IILS = 4 × n. However, since each iteration of the

algorithm became much faster after implementing the limitation strategy (see Section 4.3)

we decided to set IR = 20, instead of IR = 10, as in Subramanian et al. (2014), because it

seemed to provide a better compromise between solution quality and computational time.

A set of 17 challenging instances was selected for tuning the parameters L and θ, namely

instances 1, 2, 3, 4, 5, 7, 8. 9, 10, 11, 13, 14, 15, 16, 18, 20 and 24. The criterion used for

choosing these instances was based on the difficulty faced by the ILS-RVND implemented

in Subramanian et al. (2014) in finding their corresponding optimal solutions.

Let Best Gap be the gap between the best solution found in 10 runs and the optimal

solution; Worst Gap be the gap between the worst solution found in 10 runs and the

optimal solution; and Avg. Gap be the average gap between the average solution of 10

runs and the optimal solution. In the tables presented hereafter, Arithm. Mean of Best

Gaps (%) corresponds to the arithmetic mean of the Best Gaps, Geom. Mean of Avg.

14

Departamento de Engenharia de Produção – UFPB Working Paper

Gaps (%) denotes the geometric mean of the Avg. Gaps, Geom. Mean of Worst Gaps (%)

indicates the geometric mean of the Worst Gaps and Arithm. Mean of Avg. Time (s) is

the arithmetic mean of the average times in seconds. Given a set of q positive numbers,

the geometric mean can be defined as the qth root of the product of all numbers of the

set. The reason for using the geometric mean is because it normalizes the different ranges,

that is, the possible significant differences among the Gaps. Hence, the geometric mean

was adopted in some of the cases as an attempt to perform a fair comparison between the

solutions found for each configuration tested. However, we used the arithmetic mean for

the Best Gaps because in many cases the best solution found coincided with the optimal

solution. In this case, the gap is equal to zero and thus the value is disregarded from the

computation of the geometric mean, which may result in a misleading result when many

values are not considered.

We have tested 34 different combination of neighborhoods, more precisely, we consid-

ered L = {1, . . . , 4} to L = {1, . . . , 20} incrementing one l-block neighborhood at a time

and we tried each possibility with and without swap. Therefore, the goal of this exper-

iment was not only to calibrate the parameter L, but also to investigate the benefits of

including the neighborhood swap. For this testing, we have arbitrarily set θ = 0.90 and we

ran the algorithm 10 times for each instance. Table 3 shows the average results obtained

for the 17 instances mentioned above with the different combinations of neighborhoods.

We decided to adopt the configuration L = {1, . . . , 13} + swap because it seemed to offer

a good balance between solution quality and computational time.

Five different values for the parameter θ was tested, in particular, 0,80, 0.85, 0.90, 0.95

and 1.00, and the results can be found in Table 4. As expected, it can be observed that the

average computational time is directly proportional to θ since more moves are considered

for evaluation as the value of θ increases. Note that θ = 1.00 implies that max∆sv is

equal to the largest setup variation associated to an improving move of neighborhood

v ∈ N that occurred during the learning phase. We decided to adopt θ = 0.90 because

solutions of similar quality were obtained when compared to θ = 1.00, but approximately

four times faster.

4.2 Comparison with the literature

In this section we compare the best, average and worst results found by ILS-RVNDFast over

10 runs with the best methods available in the literature. We specify below the algorithms

considered for comparison as well as the type of result reported by the associated work.

ACOAP: Ant Colony Optimization of Anghinolfi and Paolucci (2008). Best of 10

runs.

DPSO: Discrete Particle Swarm Optimization of Anghinolfi and Paolucci (2009). Best

of 10 runs.

DDE: Discrete Differential Evolutionary heuristic of Tasgetiren et al. (2009). Best of

10 runs.

15

Departamento de Engenharia de Produção – UFPB Working Paper

Table 3: Results for the parameter tuning of L with and without the neighborhood swap

Arithm. Mean of Geom. Mean of Geom. Mean of Arithm. Mean of
Neighborhoods

Best Gaps (%) Avg. Gaps (%) Worst Gaps (%) Avg. Times (s)

L = {1, . . . , 4} 2.95 2.94 5.02 6.44

L = {1, . . . , 4} + swap 3.23 2.76 4.93 6.12

L = {1, . . . , 5} 2.29 2.07 4.12 6.66

L = {1, . . . , 5} + swap 2.43 1.94 3.22 6.96

L = {1, . . . , 6} 1.95 1.44 3.01 7.66

L = {1, . . . , 6} + swap 1.44 1.38 2.95 7.51

L = {1, . . . , 7} 1.07 1.13 2.60 15.58

L = {1, . . . , 7} + swap 1.72 1.07 2.05 7.95

L = {1, . . . , 8} 0.82 1.16 2.61 12.75

L = {1, . . . , 8} + swap 2.05 1.18 1.98 8.22

L = {1, . . . , 9} 1.42 1.09 2.21 10.11

L = {1, . . . , 9} + swap 1.24 0.90 1.68 8.68

L = {1, . . . , 10} 1.92 0.91 1.79 10.96

L = {1, . . . , 10} + swap 1.11 0.79 1.74 9.23

L = {1, . . . , 11} 1.05 1.00 1.84 12.15

L = {1, . . . , 11} + swap 0.75 0.88 1.70 9.72

L = {1, . . . , 12} 0.30 0.79 1.64 9.47

L = {1, . . . , 12} + swap 0.51 0.79 1.70 9.73

L = {1, . . . , 13} 1.06 0.80 1.94 10.02

L = {1,. . . ,13} + swap 0.12 0.74 1.39 9.85

L = {1, . . . , 14} 1.03 0.68 1.58 10.33

L = {1, . . . , 14} + swap 0.39 0.84 1.69 10.24

L = {1, . . . , 15} 1.15 0.78 1.66 10.40

L = {1, . . . , 15} + swap 1.35 0.71 1.49 10.42

L = {1, . . . , 16} 1.01 0.89 1.81 10.70

L = {1, . . . , 16} + swap 0.31 0.70 1.49 11.00

L = {1, . . . , 17} 0.81 0.78 1.56 11.29

L = {1, . . . , 17} + swap 0.75 0.80 1.52 11.39

L = {1, . . . , 18} 0.83 0.77 1.60 11.72

L = {1, . . . , 18} + swap 0.31 0.71 1.57 11.63

L = {1, . . . , 19} 0.13 0.74 1.53 11.74

L = {1, . . . , 19} + swap 0.90 0.90 1.83 11.81

L = {1, . . . , 20} 1.32 0.93 1.72 12.16

L = {1, . . . , 20} + swap 1.07 0.74 1.41 11.94

Table 4: Results for the parameter tuning of θ

Arithm. Mean of Geom. Mean of Geom. Mean of Arithm. Mean of
θ

Best Gaps (%) Avg. Gaps (%) Worst Gaps (%) Avg. Times (s)

0.80 0.15 0.97 2.05 7.44

0.85 1.25 0.78 1.56 8.11

0.90 1.11 0.75 1.59 10.12

0.95 1.51 0.66 1.34 16.81

1.00 0.91 0.74 1.70 41.74

16

Departamento de Engenharia de Produção – UFPB Working Paper

GVNS: General Variable Neighborhood Search of Kirlik and Oğuz (2012). Best of 20

runs.

ILSXLC: Iterated Local Search of Xu et al. (2013). Best and average of 100 runs.

ILS-RVNDSBP: Iterated Local Search + Randomized Variable Neighborhood Descent

of Subramanian et al. (2014). Best and average of 10 runs.

LOX⊕B: Hybrid Evolutionary Algorithm of Xu et al. (2014). Best and average of 20

runs.

Opt: Optimal solution found by the exact algorithm of Tanaka and Araki (2013).

Table 5 presents the results found by ILS-RVNDFast and also by the algorithms men-

tioned above, except ACOAP for space restriction reasons. The average times reported

in this table are in seconds. It can be observed that the proposed algorithm was capable

of finding the optimal solution for all instances, except for instance 24. Moreover, it is

possible to verify that the mean of the average times of ILS-RVNDFast was approximately

13 seconds.

Table 5: Results for the instances of Cicirello and Smith (2005)

DPSO DDE GVNS ILSXLC ILS-RVNDSBP LOX⊕B ILS-RVNDFast

Inst Opt Avg.
Best Best Best Best Avg. Best Avg. Best Avg. Best Avg. Worst

Time

1 453 531 474 471 453 480.3 459 470.4 453 462.2 453 457.5 459 8.5

2 4794 5088 4902 4878 4794 4887.0 4866 4910.4 4794 4841.5 4794 4813.8 4842 11.1

3 1390 1609 1465 1430 1390 1457.5 1414 1433.9 1390 1401.8 1390 1393 1395 10.8

4 5866 6146 5946 6006 5866 5978.4 5906 5982 5866 5871.2 5866 5866 5866 7.0

5 4054 4339 4084 4114 4074 4215.9 4084 4129 4054 4096.9 4054 4072 4084 10.9

6 6592 6832 6652 6667 6592 6750.3 6607 6665.5 6592 6617.2 6592 6593.5 6607 9.1

7 3267 3514 3350 3330 3267 3404.2 3350 3394.2 3267 3319.0 3267 3281.2 3296 14.2

8 100 132 114 108 100 106.2 105 109.6 100 102.1 100 101 102 7.7

9 5660 6153 5803 5751 5660 5840.8 5673 5760.1 5660 5699.5 5660 5665.2 5673 11.3

10 1740 1895 1799 1789 1740 1793.0 1768 1783.5 1740 1756.8 1740 1746.3 1761 9.3

11 2785 3649 3294 2998 2830 3125.0 2934 3062.8 2798 2871.0 2785 2858.1 2894 8.19

12 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

13 3904 4430 4194 4068 3942 4141.9 4014 4103.1 3904 3986.5 3904 3949.0 3978 7.86

14 2075 2749 2268 2260 2081 2315.1 2219 2279.4 2075 2179.3 2075 2128.2 2174 9.45

15 724 1250 964 935 775 891.3 896 953.6 724 794.8 724 771 809 7.1

16 3285 4127 3876 3381 3285 3413.5 3325 3415.3 3285 3306.6 3285 3296.2 3301 9.3

17 0 75 61 0 0 13.6 0 31.1 0 2.5 0 0 0 1.2

18 767 971 857 845 767 813.5 787 812.5 767 789.0 767 776.4 789 8.6

19 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

20 1757 2675 2111 2053 1757 1938.9 1789 1920.2 1757 1790.9 1757 1757.8 1761 7.5

21 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

22 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

23 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

24 761 1043 1033 920 773 1037.2 1004 1028 761 1027.8 773 967.9 1030 24.5

25 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

26 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

27 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.2

28 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

29 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

30 0 0 0 0 0 28.2 0 0 0 24.9 0 0 0 0.2

31 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

32 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

33 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

34 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

35 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

36 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

37 0 186 107 46 0 293.3 0 119 0 77.4 0 18.0 56 16.8

Continued on next page

17

Departamento de Engenharia de Produção – UFPB Working Paper

Table 5: (Continued)

DPSO DDE GVNS ILSXLC ILS-RVNDSBP LOX⊕B ILS-RVNDFast

Inst Opt Avg.
Best Best Best Best Avg. Best Avg. Best Avg. Best Avg. Worst

Time

38 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

39 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

40 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 < 0.1

41 69102 69102 69242 69242 69102 69318.2 69102 69200 69102 69222.7 69102 69102 69102 21.2

42 57487 57487 57511 57511 57487 57644.6 57487 57489.4 57487 57558.0 57487 57487 57487 17.5

43 145310 145883 145310 145310 145310 145930.5 145310 145771.7 145310 145659.6 145310 145370 145794 15.3

44 35166 35331 35289 35289 35166 35328.3 35166 35251.4 35166 35253.8 35166 35166 35166 13.0

45 58935 59175 58935 59025 58935 59018.6 58935 58944 58935 58974.6 58935 58935 58935 19.7

46 34764 34805 34764 34764 34764 35034.8 34764 34817.3 34764 34896.8 34764 34764 34764 18.6

47 72853 73378 73005 72853 72853 73160.4 72853 73028 72853 73070.6 72853 72853 72853 16.6

48 64612 64612 64612 64612 64612 64719.6 64612 64638.9 64612 64699.6 64612 64612 64612 30.2

49 77449 77771 77641 77833 77449 78176.6 77449 77794.2 77449 78091.2 77449 77449 77449 15.4

50 31092 31810 31565 31292 31092 31580.6 31092 31359.8 31092 31194.6 31092 31092 31092 17.0

51 49208 49907 49927 49761 49208 50082.5 49208 49638.3 49208 49510.6 49208 49373.2 49621 8.2

52 93045 94175 94603 93106 93045 94653.3 93045 93722.2 93045 93782.8 93045 93045 93045 15.5

53 84841 86891 84841 84841 84841 86465.3 84841 85422.4 84841 86566.7 84841 84841 84841 13.5

54 118809 118809 119226 119074 118809 120150.8 118809 119194.9 118809 119639.6 118809 118872 119117 11.7

55 64315 68649 66006 65400 64315 66055.4 64315 65240.2 64315 65106.7 64315 64315 64315 12.8

56 74889 75490 75367 74940 74889 75472.9 74889 75038.9 74889 75060.2 74889 74894.1 74940 13.8

57 63514 64575 64552 64575 63514 65195.4 63514 64195.4 63514 64494.3 63514 63593.2 64306 9.5

58 45322 45680 45322 45322 45322 46286.1 45322 45495.2 45322 45781.0 45322 45322 45322 11.1

59 50999 52001 52207 51649 50999 51954.0 50999 51463.4 50999 51348.2 50999 51162.8 51233 10.9

60 60765 63342 60765 61755 60765 62498.8 60765 61843.8 60765 61397.4 60765 60866.7 61782 7.7

61 75916 75916 75916 75916 75916 75998.5 75916 75916 75916 76094.9 75916 75916 75916 28.8

62 44769 44769 44769 44769 44769 44840.0 44769 44775 44769 44833.1 44769 44769 44769 24.7

63 75317 75317 75317 75317 75317 75536.9 75317 75317 75317 75627.0 75317 75317 75317 27.1

64 92572 92572 92572 92572 92572 92609.8 92572 92572 92572 92650.5 92572 92572 92572 23.1

65 126696 126696 126696 126696 126696 127080.1 126696 126696 126696 127428.5 126696 126696 126696 27.5

66 59685 59685 59685 59685 59685 59927.3 59685 59685 59685 60034.8 59685 59685 59685 32.0

67 29390 29390 29390 29390 29390 29415.8 29390 29390.4 29390 29397.0 29390 29390 29390 21.9

68 22120 22120 22120 22120 22120 22264.6 22120 22159.2 22120 22143.0 22120 22120 22120 26.3

69 71118 71118 71118 71118 71118 71307.7 71118 71118 71118 71164.6 71118 71118 71118 23.8

70 75102 75102 75102 75102 75102 75427.4 75102 75123 75102 75433.9 75102 75102 75102 26.5

71 145007 145771 145007 145007 145007 147119.7 145007 145561.2 145007 146653.5 145007 145272 146121 21.3

72 43286 43994 43904 43286 43286 45678.3 43286 43706.4 43286 44177.7 43286 43286 43286 18.7

73 28785 28785 28785 28785 28785 29054.4 28785 28803.8 28785 29129.3 28785 28785 28785 18.1

74 29777 30734 30313 30136 29777 30765.0 29777 30248 29777 30378.2 29777 29777 29777 15.0

75 21602 21602 21602 21602 21602 22450.0 21602 21790.8 21602 22130.9 21602 21617.6 21758 15.2

76 53555 53899 53555 54024 53555 54529.2 53555 53752.2 53555 53819.2 53555 53717.6 54024 13.9

77 31817 31937 32237 31817 31937 33374.4 31817 32126.4 31817 32797.0 31817 31973.6 32237 21.2

78 19462 19660 19462 19462 19462 20381.8 19462 19481.8 19462 19871.3 19462 19481.8 19660 11.2

79 114999 114999 114999 114999 114999 116196.8 114999 114999 114999 116054.9 114999 114999 114999 14.5

80 18157 18157 18157 18157 18157 19274.4 18157 18300.7 18157 18660.2 18157 18157 18157 13.6

81 383485 383703 383485 383485 383485 383903.1 383485 383485 383485 383662.7 383485 383485 383485 13.3

82 409479 409544 409544 409479 409479 409815.6 409479 409544 409479 409922.4 409479 409486 409544 20.5

83 458752 458787 458752 458752 458752 458922.1 458752 458771.8 458752 458980.5 458752 458756 458787 23.1

84 329670 329670 329670 329670 329670 329969.7 329670 329800.5 329670 329978.1 329670 329675 329720 19.2

85 554766 555130 554993 554766 554766 555107.2 554766 554822 554766 555118.6 554766 554771 554773 25.6

86 361417 361417 361417 361417 361417 361826.3 361417 361417 361417 361576.4 361417 361417 361417 20.1

87 398551 398551 398670 398551 398551 398623.8 398551 398562.9 398551 398645.1 398551 398551 398551 17.3

88 433186 433519 433186 433244 433186 433564.4 433186 433235.6 433186 433463.8 433186 433219 433244 22.7

89 410092 410092 410092 410092 410092 410187.3 410092 410092 410092 410411.9 410092 410092 410092 18.1

90 401653 401653 401653 401653 401653 401825.5 401653 401663.2 401653 401843.7 401653 401653 401653 17.4

91 339933 343029 340508 339933 339933 340079.3 339933 339961.8 339933 340025.4 339933 339933 339933 27.0

92 361152 361152 361152 361152 361152 362030.6 361152 361399.5 361152 362196.9 361152 361152 361152 8.6

93 403423 406728 404548 404917 403423 405344.0 403423 404407.6 403423 404958.1 403423 403456 403757 11.5

94 332941 332983 333020 332949 332941 333319.3 332949 332979.7 332941 333178.9 332941 332968 333020 7.6

95 516926 521208 517011 517646 516926 518751.3 516926 517316.5 516926 518849.9 516926 517115 517398 11.0

96 455448 459321 457631 457631 455448 457814.4 455448 456178.1 455448 458241.3 455448 455650 457249 12.0

97 407590 410889 409263 407590 407590 408437.8 407590 407590 407590 408981.6 407590 407590 407590 12.0

98 520582 522630 523486 520582 520582 522055.2 520582 521145.8 520582 522093.9 520582 520582 520582 14.1

99 363518 365149 364442 363977 363518 364803.2 363518 364000.7 363518 364709.5 363518 363728 363977 10.7

100 431736 432714 431736 432068 431736 433105.8 432068 432396 431736 432781.5 431736 431736 431736 10.8

101 352990 352990 352990 352990 352990 353033.1 352990 352990 352990 353004.9 352990 352990 352990 17.8

Continued on next page

18

Departamento de Engenharia de Produção – UFPB Working Paper

Table 5: (Continued)

DPSO DDE GVNS ILSXLC ILS-RVNDSBP LOX⊕B ILS-RVNDFast

Inst Opt Avg.
Best Best Best Best Avg. Best Avg. Best Avg. Best Avg. Worst

Time

102 492572 493069 492748 492572 492572 492832.6 492572 492572 492572 492914.3 492572 492572 492572 14.2

103 378602 378602 378602 378602 378602 378834.0 378602 378602 378602 378934.1 378602 378602 378602 15.0

104 357963 357963 357963 357963 357963 358174.6 357963 357995.6 357963 358077.2 357963 357968 358017 18.2

105 450806 450806 450806 450806 450806 450812.4 450806 450806.2 450806 450889.9 450806 450806 450806 19.1

106 454379 455152 454379 454379 454379 454851.6 454379 454379 454379 455091.8 454379 454379 454379 22.5

107 352766 352867 352766 352766 352766 353002.3 352766 352826.2 352766 353153.6 352766 352766 352766 18.1

108 460793 460793 460793 460793 460793 461112.6 460793 460793 460793 461390.3 460793 460793 460793 28.7

109 413004 413004 413004 413004 413004 413426.1 413004 413130.2 413004 413643.8 413004 413006 413019 16.9

110 418769 418769 418769 418769 418769 419030.4 418769 418834.2 418769 418954.5 418769 418769 418769 13.4

111 342752 342752 342752 342752 342752 343768.0 342752 342805.2 342752 343687.6 342752 342752 342752 17.4

112 367110 369237 367110 367110 367110 369592.0 367110 367970.4 367110 368861.7 367110 367110 367110 17.6

113 259649 260176 260872 259649 259649 259909.2 259649 259676.9 259649 260246.4 259649 259649 259649 9.6

114 463474 464136 465503 463474 463474 465440.2 463474 464377.1 463474 465440.2 463474 463508 463813 8.4

115 456890 457874 457289 457189 456890 458414.7 456890 457046.1 456890 458414.7 456890 456923 457189 17.0

116 530601 532456 530803 530601 530601 531410.8 530601 530614.4 530601 531410.8 530601 530601 530601 10.9

117 502840 503199 502840 503046 502840 503600.9 502840 502991.5 502840 503600.9 502840 502840 502840 13.8

118 349749 350729 349749 349749 349749 352050.9 349749 350326.2 349749 352050.9 349749 349749 349749 15.5

119 573046 573046 573046 573046 573046 573759.3 573046 573122.1 573046 573759.3 573046 573046 573046 12.0

120 396183 396183 396183 396183 396183 398005.1 396183 396592.5 396183 398005.1 396183 396183 396183 15.4

Mean 13.07

Table 6 presents a summary of the results found by ILS-RVNDFast compared with

those achieved by several heuristics from the literature. A direct comparison with some

of the algorithms such as ACOAP, DPSO, DDE and GVNS becomes quite hard because

the average results were not reported by the authors. With respect to the best solutions,

our algorithm clearly outperforms these four by a good margin. Even our average and

worst solutions are, in most cases, better or equal than the best ones of such methods.

The average and worst solutions of ILS-RVNDFast are always equal or better than

the average solutions of ILSXLC. The same happened to ILS-RVNDSBP and LOX⊕B,

except for few cases where the worst solutions of ILS-RVNDFast were not better than

the average solution of these two methods. Worst solutions were only reported for ILS-

RVNDSBP, where all them are either equal or worse than those of ILS-RVNDFast. The

results suggest that our algorithm is very competitive in terms of solution quality.

Table 6: Summary of the results found by ILS-RVNDFast compared to several heuristic methods from
the literature

ACOAP DPSO DDE GVNS ILSXLC ILS-RVNDSBP LOX⊕B

#Best improved 84 66 52 44 6 20 1

#Best equaled 36 54 68 76 114 100 118

#Best worse 0 0 0 0 0 0 1

#Avg. better than the Best 84 65 51 42 2 19 0

#Avg. equal to the Best 34 49 57 64 76 74 76

#Avg. improved – – – – 101 83 101

#Avg. equaled – – – – 19 37 19

#Avg. worse – – – – 0 0 0

#Worst better than the Best 82 59 47 34 0 13 0

#Worst equal to the Best 34 52 51 69 76 78 76

#Worst better than the Avg. – – – – 101 69 91

#Worst equal to the Avg. – – – – 19 37 20

#Worst improved – – – – – 82 –

#Worst equaled – – – – – 38 –

#Worst worse – – – – – 0 –

Table 7 shows the time in seconds spent by ILS-RVNDFast to find or improve the

19

Departamento de Engenharia de Produção – UFPB Working Paper

solutions found by the algorithms that were chosen for comparison. In this case the

stopping criterion no longer depends on the number of restarts, but on a target value

from the literature. The algorithm was executed 10 times for each instance and we report

the mean (arithmetic), median, minimum and maximum of the average times by group

required to find or improve the target value. We also report the average values considering

all instances at once (last column of the table).

Table 7: Average time in seconds required by ILS-RVNDFast to find or improve the solutions found by
different algorithms from the literature

Group

1 2 3 4 5 6 7 8 9 10 11 12
All

A
C
O

A
P

B
e
st

Mean 0.5 0.2 0.2 0.2 1.2 1.0 2.9 3.4 7.2 2.2 2.9 1.7 2.0
Median 0.3 0.1 < 0.1 < 0.1 0.7 0.9 2.7 1.8 1.9 1.1 2.3 1.5 0.9
Min 0.3 < 0.1 < 0.1 < 0.1 0.2 0.5 0.4 0.7 0.4 0.5 0.3 0.3 < 0.1
Max 1.6 0.7 1.2 1.7 3.5 1.5 5.5 12.3 47.2 11.6 6.7 4.5 47.2

D
P
S
O

B
e
st

Mean 0.6 0.3 0.4 0.4 3.1 2.8 5.1 7.5 3.8 2.2 3.7 3.3 2.8
Median 0.4 0.3 < 0.1 < 0.1 2.8 2.1 3.9 6.7 2.9 1.8 2.9 3.3 2.2
Min 0.2 < 0.1 < 0.1 < 0.1 0.9 0.4 2.2 3.3 1.9 0.3 0.7 0.1 < 0.1
Max 1.3 1.1 2.3 3.7 9.6 8.7 15.3 15.5 8.1 6.3 7.9 6.0 15.5

D
D
E

B
e
st

Mean 2.1 0.7 1.0 0.5 4.9 3.9 5.5 9.0 12.5 5.2 5.8 4.5 4.6
Median 1.6 0.4 < 0.1 < 0.1 3.8 4.0 3.1 8.0 4.6 3.3 5.4 4.4 3.0
Min 1.3 < 0.1 < 0.1 < 0.1 0.9 1.6 0.8 3.4 1.0 1.0 1.6 0.9 < 0.1
Max 7.3 2.7 7.9 5.1 15.5 6.9 21.3 22.3 81.8 23.9 12.9 8.7 81.8

G
V
N
S

B
e
st

Mean 2.3 1.4 11.4 1.0 3.6 5.2 5.8 15.0 14.9 4.0 4.7 4.8 6.2
Median 2.2 1.4 < 0.1 < 0.1 2.6 5.3 4.1 6.3 5.8 3.5 3.5 3.8 3.1
Min 0.6 < 0.1 < 0.1 < 0.1 0.8 2.8 1.6 3.0 2.8 2.6 1.9 2.1 < 0.1
Max 4.4 3.0 113.1 9.9 8.1 8.1 15.4 82.9 81.3 10.1 11.9 8.6 113.1

IL
S
X
L
C

B
e
st

Mean 21.4 17.0 282.21 5.5 6.0 8.3 3.8 9.2 14.8 11.1 4.2 8.3 32.62

Median 17.8 8.1 < 0.1 < 0.1 5.2 8.0 3.0 7.5 6.5 5.6 3.9 4.2 4.9
Min 2.3 < 0.1 < 0.1 < 0.1 1.6 4.2 1.8 2.9 1.0 2.0 1.7 2.2 < 0.1
Max 54.6 47.9 2820.4 54.8 13.4 13.7 8.8 17.0 52.1 32.6 8.6 42.0 2820.4

A
v
g

Mean 1.5 1.6 0.3 0.4 2.4 2.1 2.5 2.6 2.8 2.6 1.9 2.5 1.9
Median 1.3 1.8 < 0.1 < 0.1 1.8 2.2 2.1 2.6 2.4 2.7 1.6 2.3 1.9
Min 0.9 < 0.1 < 0.1 < 0.1 1.3 0.9 1.7 1.0 1.6 1.3 0.7 0.9 < 0.1
Max 3.0 2.6 2.4 4.4 4.1 3.1 4.1 5.2 5.3 4.8 4.5 4.0 5.3

IL
S
-R

V
N
D

S
B
P

B
e
st

Mean 4.1 2.6 5.3 4.3 5.5 11.4 4.6 17.1 18.4 9.3 5.2 7.1 7.9
Median 3.2 2.9 < 0.1 < 0.1 5.6 10.5 3.0 8.3 5.0 4.9 4.6 4.7 4.1
Min 1.7 < 0.1 < 0.1 < 0.1 2.2 5.7 1.4 3.4 1.6 2.9 1.8 3.0 < 0.1
Max 7.3 5.2 52.0 43.2 8.7 25.6 19.3 88.6 67.7 35.7 14.4 29.8 88.6

A
v
g

Mean 1.9 1.6 1.5 0.6 4.1 5.0 4.2 8.0 8.5 5.7 3.7 4.0 4.1
Median 2.0 1.8 < 0.1 < 0.1 3.4 5.3 4.2 7.3 4.3 3.7 3.8 3.8 3.2
Min 1.3 < 0.1 < 0.1 < 0.1 2.0 2.6 1.2 5.0 1.4 2.3 1.4 0.6 < 0.1
Max 2.5 3.1 14.1 5.5 9.4 6.5 8.1 16.7 41.8 24.4 7.6 9.6 41.8

L
O
X
⊕
B B

e
st

Mean 48.1 87.6 1685.83 5.5 6.0 8.3 3.8 15.8 14.8 11.1 4.2 8.3 158.34

Median 21.0 28.9 < 0.1 < 0.1 5.2 8.0 3.0 7.5 6.5 5.6 3.9 4.2 4.9
Min 2.3 < 0.1 < 0.1 < 0.1 1.6 4.2 1.8 2.9 1.0 1.9 1.7 2.2 < 0.1
Max 281.3 318.5 16856.4 54.8 13.4 13.7 8.8 82.9 52.1 32.6 8.6 42.0 16856.4

A
v
g

Mean 4.0 3.3 2.2 0.6 3.9 4.7 2.4 5.6 2.6 2.2 1.7 2.6 3.0
Median 3.5 3.5 < 0.1 < 0.1 3.4 4.8 2.5 4.7 2.8 2.2 1.5 1.8 2.4
Min 2.8 < 0.1 < 0.1 < 0.1 1.8 1.4 0.9 1.9 0.5 1.5 0.5 0.5 < 0.1
Max 7.6 6.6 20.0 5.6 7.9 10.3 4.7 11.8 4.5 3.8 4.2 8.4 20.0

O
p
ti
m
a
l Mean 48.1 122.9 1685.83 5.5 6.0 8.3 3.8 15.8 14.8 11.1 4.2 8.3 161.25

Median 21.0 28.9 0.01 < 0.1 5.2 8.0 3.0 7.5 6.5 5.6 3.9 4.2 4.9
Min 2.3 < 0.1 < 0.1 < 0.1 1.6 4.2 1.8 2.9 1.0 2.0 1.7 2.2 < 0.1
Max 281.3 605.0 16856.4 54.8 13.4 13.7 8.8 82.9 52.1 32.6 8.6 42.0 16856.4

1: 0.1 seconds disregarding instance 24
2: 9.2 seconds disregarding instance 24
3: 0.2 seconds disregarding instance 24
4: 18.0 seconds disregarding instance 24
5: 20.9 seconds disregarding instance 24

On one hand, it can be observed from Table 7 that ILS-RVNDFast was capable of finding

or improving the best solutions of ACOAP, DPSO, DDE, GVNS and ILS-RVNDSBP in

20

Departamento de Engenharia de Produção – UFPB Working Paper

only 2.0, 2.8, 4.6, 6.2 and 7.9 seconds, on average, respectively. On the other hand,

ILS-RVNDFast spent, on average, 32.6, 158.3 and 161.2 seconds to find or improve the

best solutions of ILSXLC, LOX⊕B and the optimal solutions, respectively. However, if we

disregard instance 24, these values significantly decrease to 9.2, 18.0 and 20.9 seconds,

respectively.

Moreover, ILS-RVNDFast found or improved the average solutions of ILSXLC, ILS-

RVNDSBP and LOX⊕B in only 1.9, 4.1 and 3.0 seconds, respectively, on average. It is

worth mentioning that the average solutions of ILSXLC in Xu et al. (2013) and LOX⊕B in

Xu et al. (2014) were obtained in 100 seconds on an Intel Core i3 3.10 GHz with 2.0 GB

of RAM, whereas the average solutions of ILS-RVNDSBP were obtained in 23.4 seconds on

an Intel Core i5 3.20 GHz with 4.0 GB of RAM. The hardware configuration of these two

machines is slightly inferior than the one used in our experiments (Intel Core i7 with 3.40

GHz and 16 GB of RAM), and thus does not justify the considerable difference in terms of

CPU time between ILS-RVNDFast and the three other methods. Therefore, from Tables

5-7, we can conclude that ILS-RVNDFast is, on average, remarkably faster and clearly

more efficient than those three heuristic algorithms, which are the best ones available in

the literature for problem 1|sij|
∑

wjTj .

4.3 Impact of the proposed local search limitation strategy

In this section we investigate the effect of the proposed local search limitation strategy

on the performance of the algorithm. We start by analyzing the average percentage of

moves that were not evaluated per neighborhood in all groups of instances, as shown in

Table 8. It can be verified that the proportion of moves that were not considered for

evaluation varied according to the characteristics of the group, ranging, on average, from

69.6% (Group 7) to 98.8% (Group 2).

Table 8: Average percentage of moves that were not evaluated

Group
Neighborhoods

1 2 3 4 5 6 7 8 9 10 11 12

1-block insertion 87.7 96.2 89.4 94.9 81.7 93.9 78.5 91.6 89.3 94.5 88.5 94.9

2-block insertion 92.7 96.9 90.9 96.7 82.2 93.7 75.2 90.0 84.6 93.1 83.4 93.9

3-block insertion 95.0 97.9 91.4 96.6 82.0 93.6 73.7 89.8 80.3 91.8 78.8 92.6

4-block insertion 96.4 99.0 86.3 96.4 85.5 94.9 74.6 90.9 80.1 91.8 78.1 92.3

5-block insertion 96.6 99.5 86.7 97.1 83.7 95.6 73.3 91.1 80.7 91.0 78.9 92.5

6-block insertion 96.8 99.6 79.0 95.5 85.8 95.0 75.2 91.1 81.9 90.7 79.5 91.8

7-block insertion 97.5 99.5 78.7 95.5 84.1 95.1 72.6 89.8 81.7 91.0 79.0 92.4

8-block insertion 97.5 99.5 79.1 96.5 83.4 93.9 69.3 89.0 78.9 90.4 75.7 92.0

9-block insertion 96.5 99.5 79.4 94.0 80.4 94.0 65.1 87.5 77.7 90.6 74.8 90.2

10-block insertion 96.7 99.6 83.4 94.7 79.0 92.9 63.9 85.7 75.2 88.9 71.2 89.5

11-block insertion 96.4 99.4 79.1 94.9 76.7 92.5 61.4 84.5 71.3 87.3 69.8 89.1

12-block insertion 96.2 99.5 71.5 92.1 74.7 91.4 58.3 83.9 69.4 86.8 66.5 87.6

13-block insertion 94.9 99.3 72.7 92.8 72.4 90.4 55.0 82.6 67.0 86.2 63.5 86.0

Swap 89.7 98.3 87.3 96.8 81.7 95.4 78.0 92.5 90.1 94.8 89.7 95.7

Mean 95.0 98.8 82.5 95.3 80.9 93.7 69.6 88.6 79.1 90.6 77.0 91.5

Since a very large number of moves were not considered for evaluation, we decided to

conduct an experiment to verify the level of accuracy of the limitation strategy. Table 9

shows, for each neighborhood and for each group, the average percentage of improving

21

Departamento de Engenharia de Produção – UFPB Working Paper

moves that were not evaluated, here denoted as lost improving moves. We can observe

that the average percentage of lost improving moves was relatively small in all cases (never

more than 11%), thus ratifying the effectiveness of the proposed limitation strategy.

Table 9: Average percentage of improving moves that were not evaluated

Group
Neighborhoods

1 2 3 4 5 6 7 8 9 10 11 12

1-block insertion 10.9 8.2 1.8 2.3 9.4 10.0 10.0 9.6 9.6 9.7 9.7 9.6

2-block insertion 10.0 8.7 1.3 1.0 9.9 9.6 9.8 9.9 10.0 10.0 9.8 9.7

3-block insertion 9.9 8.8 2.8 2.9 9.3 9.9 9.9 9.6 9.7 10.4 9.6 9.7

4-block insertion 9.9 7.8 2.6 1.2 9.8 9.9 9.6 9.4 9.9 10.0 9.8 10.0

5-block insertion 9.8 7.8 1.3 1.2 9.9 9.7 9.7 9.8 10.2 10.1 9.7 10.0

6-block insertion 9.3 6.8 2.0 1.0 9.9 10.5 9.6 9.6 10.4 10.3 10.1 10.3

7-block insertion 9.6 7.7 1.3 2.0 9.1 10.0 9.8 9.8 9.8 10.1 9.8 9.7

8-block insertion 9.1 7.0 1.4 1.3 9.7 9.7 9.6 9.9 9.7 9.0 9.3 10.2

9-block insertion 9.5 7.3 1.7 1.3 10.1 9.6 9.7 9.9 10.5 10.0 9.4 10.3

10-block insertion 9.7 7.5 1.6 1.3 10.5 10.3 9.7 9.4 9.8 10.4 9.5 10.0

11-block insertion 9.4 7.7 1.5 2.2 9.7 10.2 9.4 9.8 9.6 10.0 10.5 9.6

12-block insertion 9.5 8.2 1.6 1.4 9.0 10.6 9.8 9.5 9.4 9.9 9.9 10.4

13-block insertion 9.7 7.7 1.7 1.3 10.2 10.5 10.2 10.0 9.4 10.3 9.8 10.1

Swap 9.8 9.7 2.3 1.1 9.2 9.6 9.2 9.9 9.5 9.5 9.5 10.0

Mean 9.7 7.9 1.8 1.5 9.7 10.0 9.7 9.7 9.8 10.0 9.8 10.0

Tables 10 and 11 present, for every group of instances, the average time in seconds

spent by each neighborhood in a complete execution of ILS-RVND and ILS-RVNDFast,

respectively. The impact of the limitation strategy on the average time spent during the

local search is clearly visible. It is possible to verify that a neighborhood search in ILS-

RVNDFast is, on average, about 6 times faster than in ILS-RVND. Also, we can see that

the level of CPU time reduction for each group is proportional to the number of moves

that were not evaluated, as shown in Table 8.

Table 10: Average time in seconds spent by each neighborhood in ILS-RVND

Group
Neighborhoods

1 2 3 4 5 6 7 8 9 10 11 12

1-block insertion 6.3 5.3 0.9 1.0 6.5 7.6 8.0 9.4 6.7 6.9 5.6 7.6

2-block insertion 6.2 5.1 0.8 0.9 5.9 7.0 6.9 8.0 6.1 6.3 5.2 7.0

3-block insertion 5.8 4.8 0.8 0.8 5.5 6.4 6.0 6.9 5.8 5.9 4.8 6.5

4-block insertion 5.8 4.8 0.7 0.8 5.3 6.2 5.7 6.6 5.7 5.8 4.7 6.4

5-block insertion 5.6 4.6 0.7 0.8 5.0 5.9 5.2 6.0 5.4 5.6 4.5 6.1

6-block insertion 5.3 4.5 0.7 0.8 4.7 5.6 4.9 5.6 5.1 5.3 4.3 5.8

7-block insertion 5.2 4.3 0.7 0.8 4.6 5.4 4.6 5.3 4.9 5.1 4.1 5.6

8-block insertion 5.0 4.3 0.7 0.8 4.4 5.2 4.4 5.0 4.7 4.9 3.9 5.3

9-block insertion 4.9 4.2 0.7 0.7 4.2 5.0 4.1 4.8 4.5 4.6 3.8 5.1

10-block insertion 4.7 4.0 0.6 0.7 4.0 4.8 3.9 4.6 4.3 4.4 3.6 4.9

11-block insertion 4.6 3.8 0.6 0.7 3.9 4.6 3.8 4.4 4.1 4.2 3.5 4.7

12-block insertion 4.4 3.7 0.6 0.7 3.7 4.4 3.6 4.2 3.9 4.0 3.3 4.5

13-block insertion 4.2 3.5 0.6 0.7 3.6 4.2 3.5 4.1 3.8 3.9 3.1 4.3

Swap 3.1 2.5 0.4 0.4 3.1 3.5 3.9 4.2 3.0 3.0 2.5 3.4

Mean 5.1 4.3 0.7 0.8 4.6 5.4 4.9 5.7 4.9 5.0 4.1 5.5

Finally, Table 12 compares the overall results found by ILS-RVND against those of

ILS-RVNDFast. We did not report the gap values for Groups 3 and 4 because the optimal

solution for all instances, except for instance 24, is zero. The geometric means of Group

7 were also not reported in the table because the average gap of almost all instances were

zero. In this last analysis we can observe that the speedup achieved by ILS-RVNDFast

does not come at the expense of solution quality. The results demonstrate that there is

22

Departamento de Engenharia de Produção – UFPB Working Paper

Table 11: Average time in seconds spent by each neighborhood in ILS-RVNDFast

Group
Neighborhoods

1 2 3 4 5 6 7 8 9 10 11 12

1-block insertion 1.2 0.6 0.2 0.1 1.8 1.1 2.3 1.6 1.2 0.9 1.1 0.9

2-block insertion 0.9 0.6 0.2 0.1 1.7 1.0 2.3 1.5 1.4 0.9 1.3 1.0

3-block insertion 0.7 0.5 0.1 0.1 1.4 0.9 2.2 1.3 1.6 1.0 1.4 1.0

4-block insertion 0.7 0.5 0.2 0.1 1.3 0.9 2.1 1.2 1.6 1.0 1.5 1.0

5-block insertion 0.7 0.4 0.2 0.1 1.2 0.8 1.8 1.1 1.5 1.0 1.4 1.0

6-block insertion 0.6 0.4 0.2 0.1 1.1 0.8 1.8 1.0 1.4 1.0 1.3 0.9

7-block insertion 0.6 0.4 0.2 0.1 1.1 0.8 1.8 1.0 1.3 0.9 1.3 0.9

8-block insertion 0.6 0.4 0.2 0.1 1.1 0.7 1.8 1.0 1.4 0.9 1.3 0.9

9-block insertion 0.6 0.4 0.2 0.1 1.2 0.7 1.9 1.1 1.4 0.9 1.3 0.9

10-block insertion 0.6 0.4 0.2 0.1 1.2 0.7 1.8 1.1 1.5 0.9 1.4 0.9

11-block insertion 0.5 0.3 0.2 0.1 1.3 0.8 1.9 1.1 1.5 0.9 1.5 0.9

12-block insertion 0.5 0.3 0.2 0.1 1.3 0.8 1.8 1.1 1.6 0.9 1.5 1.0

13-block insertion 0.6 0.3 0.2 0.1 1.4 0.8 1.9 1.2 1.7 1.0 1.5 1.0

Swap 0.7 0.3 0.1 0.1 0.9 0.5 1.2 0.7 0.6 0.5 0.5 0.5

Mean 0.7 0.4 0.2 0.1 1.3 0.8 1.9 1.1 1.4 0.9 1.3 0.9

no clear difference between both algorithms when it comes to the average gap between

the average/best solutions and the optimal solution.

Table 12: ILS-RVND results vs ILS-RVNDFast results

Group

1 2 3 4 5 6 7 8 9 10 11 12
Mean

Arithm. Mean of ILS-RVND 0.02 0.26 – – 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21

Best Gap (%) ILS-RVNDFast 0.07 0.45 – – 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

Geom. Mean of ILS-RVND 0.32 0.90 – – 0.03 0.24 – 0.19 0.00 0.03 0.00 0.02 0.12

Avg. Gap (%) ILS-RVNDFast 0.30 1.02 – – 0.04 0.10 – 0.18 0.00 0.02 0.00 0.01 0.08

Geom. Mean of ILS-RVND 0.84 2.00 – – 0.13 0.97 – 1.17 0.01 0.08 0.02 0.15 0.40

Worst Gap (%) ILS-RVNDFast 0.72 2.07 – – 0.33 0.49 – 0.92 0.01 0.10 0.01 0.07 0.31

Arithm. Mean of ILS-RVND 71.2 59.8 9.6 10.6 64.7 76.2 68.7 79.6 68.1 70.2 57.1 77.4 69.3

Avg. Times (s) ILS-RVNDFast 10.0 5.9 2.5 1.7 18.5 11.5 26.2 16.3 19.7 12.5 18.4 13.8 13.1

4.4 Impact of the proposed limitation strategy on the performance of other

metaheuristics

In order to validate the generality of the proposed limitation strategy, we performed

experiments with other local search based metaheuristics, namely GRASP and VNS. In

the section we present the results obtained by such metaheuristics with and without the

addition of such strategy.

4.4.1 GRASP

GRASP (Feo and Resende, 1995) is a multi-start metaheuristic where at each restart a

solution is generated using a greedy randomized approach and then possibly improved by

a local search procedure. The level of greediness/randomness of the constructive phase is

controlled by a parameter 0 ≤ α ≤ 1. In our implementation the value of α was chosen

at random from the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. The local search is performed by the

RVND procedure with the same neighborhoods used in the ILS algorithm. The number

23

Departamento de Engenharia de Produção – UFPB Working Paper

of restarts was set to 5000, where the first 250 restarts are associated with the learning

phase, which is equivalent to 5% of the number of restarts, as in ILS, while the value of

θ was set to the same used in ILS, i.e., 0.90.

Table 13 shows the average results of 10 runs found by GRASP without and with

the limitation strategy (GRASPFast). We can observe that GRASPFast was, on aver-

age, roughly 2 times faster than GRASP without significantly affecting the quality of

the solutions obtained, thus illustrating the effectiveness of the limitation strategy when

considering a standard and non-tailored implementation of the metaheuristic.

Table 13: GRASP results vs GRASPFast results

Group

1 2 3 4 5 6 7 8 9 10 11 12
Mean

Arithm. Mean of GRASP 3.07 12.70 – – 0.26 2.68 0.11 2.64 0.04 0.36 0.02 0.37 2.22

Best Gap (%) GRASPFast 3.07 11.61 – – 0.28 1.80 0.04 3.01 0.03 0.38 0.02 0.27 2.05

Geom. Mean of GRASP 5.21 15.45 – – 0.81 3.99 0.23 4.61 0.13 0.60 0.08 0.62 3.17

Avg. Gap (%) GRASPFast 4.92 16.81 – – 0.87 3.92 0.28 4.61 0.12 0.57 0.08 0.57 3.27

Geom. Mean of GRASP 7.39 21.17 – – 1.32 5.41 0.53 6.80 0.25 0.92 0.17 0.94 4.49

Worst Gap (%) GRASPFast 7.19 22.03 – – 1.39 5.67 0.73 6.93 0.22 0.92 0.16 0.88 4.61

Arithm. Mean of GRASP 93.2 73.6 20.9 13.7 134.1 126.8 185.7 164.2 153.5 115.3 138.5 136.2 113.0

Avg. Times (s) GRASPFast 50.1 24.6 15.5 6.8 91.3 58.4 138.9 84.1 105.5 51.4 95.0 64.0 65.5

Avg. of time spend by GRASP 6.3 5.0 1.4 0.9 9.2 8.7 12.9 11.4 10.6 7.9 9.6 9.4 7.8

the neighborhood (s) GRASPFast 3.2 1.5 1.0 0.4 6.2 3.8 9.5 5.6 7.2 3.4 6.5 4.2 4.4

Avg. of moves not evaluated (%) 66.2 86.6 48.6 68.1 46.5 71.5 37.2 64.8 43.8 71.8 43.7 69.1 59.8

Avg. of improving moves not evaluated (%) 10.6 9.2 3.5 1.9 13.1 13.4 15.4 15.5 14.2 14.5 14.5 14.5 11.7

4.4.2 VNS

VNS (Mladenović and Hansen, 1997) is a local search based metaheuristic that alternates

between local search (intensification) and perturbation (diversification) procedures. The

local optimal solutions are perturbed by means of one of the existing neighborhood op-

erators. A local search is then applied over this perturbed solution. If the local optimal

solution is not improved, a different neighborhood is used to perturb such incumbent so-

lution. RVND was used as the local search procedure and the total number of iterations

was set to 1000, where the first 5% (50 iterations) are related to the learning phase. The

value of θ and the neighborhoods were the same adopted in ILS and GRASP.

The average results of 10 runs obtained by VNS without and with the limitation

strategy (VNSFast) can be found in Table 14. There were practically no difference in

terms of solution quality between VNS and VNSFast, but the latter was approximately 2

times faster than the first. The results suggest that the proposed limitation strategy was

also effective for a straightforward implementation of this metaheuristic.

24

Departamento de Engenharia de Produção – UFPB Working Paper

Table 14: VNS results vs VNSFast results

Group

1 2 3 4 5 6 7 8 9 10 11 12
Mean

Arithm. Mean of VNS 0.05 0.94 – – 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10

Best Gap (%) VNSFast 0.02 0.29 – – 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.04

Geom. Mean of VNS 0.85 1.74 – – 0.13 0.67 0.08 0.96 0.02 0.12 0.02 0.14 0.47

Avg. Gap (%) VNSFast 0.95 2.07 – – 0.22 0.73 0.14 1.37 0.02 0.10 0.02 0.11 0.57

Geom. Mean of VNS 2.60 3.95 – – 0.39 1.78 0.40 2.96 0.06 0.38 0.06 0.49 1.31

Worst Gap (%) VNSFast 2.93 6.94 – – 0.66 1.73 0.55 4.04 0.08 0.33 0.06 0.39 1.77

Arithm. Mean of VNS 80.4 61.4 13.3 10.9 93.6 94.2 100.1 96.1 102.5 88.7 92.7 98.7 77.7

Avg. Times (s) VNSFast 34.1 13.7 7.4 4.0 56.4 38.2 64.3 42.8 57.9 32.9 53.2 38.2 36.9

Avg. of time spend by VNS 5.7 4.4 0.9 0.8 6.7 6.7 7.1 6.8 7.3 6.3 6.6 7.0 5.5

the neighborhood (s) VNSFast 2.4 1.0 0.5 0.3 4.0 2.7 4.6 3.0 4.1 2.3 3.8 2.7 2.6

Avg. of moves not evaluated (%) 74.4 95.8 70.2 84.0 51.0 73.2 44.9 69.0 53.9 76.0 52.4 74.5 68.3

Avg. of improving moves not evaluated (%) 10.3 9.7 11.4 12.5 11.5 12.8 12.1 13.8 12.1 14.0 12.2 13.8 12.2

4.5 Results for problem 1|sij|
∑

Tj

With a view of better assessing the robustness of the limitation strategy, we decided to

test ILS-RVND and ILS-RVNDFast on benchmark instances of problem 1|sij|
∑

Tj , namely

those generated by Rubin and Ragatz (1995), containing 32 instances ranging from 15 to

45 jobs, and those suggested by Gagné et al. (2002), also containing 32 instances but

ranging from 55 to 85 jobs. In this case the configuration adopted after tuning the

parameters by using the same rationale presented in Section 4.1 was L = {1, . . . , 13} +

swap and θ = 0.75.

We compare the results found by ILS-RVNDFast not only withGVNS (Kirlik and Oğuz,

2012), ILS-RVNDSBP (Subramanian et al., 2014) and LOX⊕B (Xu et al., 2014), where

in the latter the authors only reported the best of 100 executions, but also with the algo-

rithms listed below along with the type of result presented.

ACOGPG: Ant Colony of Gagné et al. (2002). Best, worse, average and median of 20

runs for the instances proposed by the authors. Furthermore, the best solutions found by

ACOGPG for the instances of Rubin and Ragatz (1995) were reported by Liao and Cheng

(2007).

TabuGGP: TS and VNS of Gagné et al. (2005). Best of 10 runs for the instances of

Gagné et al. (2002), while the results found for the instances of Rubin and Ragatz (1995)

were reported by Ying et al. (2009).

GRASPGS: GRASP of Gupta and Smith (2006). Best, worse, average and median

of 20 runs for the instances of Gagné et al. (2002).

ACOLJ: Ant Colony of Liao and Cheng (2007). Best of 10 runs for all instances.

ILSANK: Iterated Local Search of Arroyo et al. (2009). Best, worse and average of 20

runs for the instances of Gagné et al. (2002).

IG: Iterated Greedy of Ying et al. (2009). Best of 10 runs for all instances.

Opt: Optimal solution found by the exact algorithm of Tanaka and Araki (2013), ex-

25

Departamento de Engenharia de Produção – UFPB Working Paper

cept for instances 851 and 855. For these instances, the authors provide a lower bound of

357 and 254, respectively.

Tables 15 and 16 compare the results found by ILS-RVNDFast with the best known

methods found in the literature. The proposed algorithm was capable of finding the

optimal solutions of all cases, except for instances 751, 851 and 855. The average com-

putational time was 0.7 seconds for the instances of Rubin and Ragatz (1995) and 12.5

seconds for the instances of Gagné et al. (2002).

Table 15: Results for the instances of Rubin and Ragatz (1995)

ACOGPG TabuGGP ACOLJ IG GVNS ILS-RVNDSBP LOX⊕B ILS-RVNDFast

Inst. n Opt. Avg. Time
Best Best Best Best Best Best Avg. Best Best Avg. Worst

(s)

401 15 90 90 90 90 90 90 90 90.0 90 90 90 90 < 0.1

402 15 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

403 15 3418 3418 3418 3418 3418 3418 3418 3418.0 3418 3418 3418 3418 0.1

404 15 1067 1067 1067 1067 1067 1067 1067 1067.0 1067 1067 1067 1067 0.1

405 15 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

406 15 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

407 15 1861 1861 1861 1861 1861 1861 1861 1861.0 1861 1861 1861 1861 < 0.1

408 15 5660 5660 5660 5660 5660 5660 5660 5660.0 5660 5660 5660 5660 0.1

501 25 261 261 261 263 261 261 261 261.0 261 261 261 261 0.2

502 25 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

503 25 3497 3497 3503 3497 3497 3497 3497 3497.0 3497 3497 3497 3497 0.2

504 25 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

505 25 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

506 25 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

507 25 7225 7268 7225 7225 7225 7225 7225 7225.0 7225 7225 7225 7225 0.2

508 25 1915 1945 1915 1915 1915 1915 1915 1915.0 1915 1915 1915 1915 0.4

601 35 12 16 12 14 12 12 12 12.7 12 12 12 12 0.6

602 35 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

603 35 17587 17685 17605 17654 17587 17587 17587 17590.6 17587 17587 17589.0 17607 0.7

604 35 19092 19213 19168 19092 19092 19092 19092 19092.9 19092 19092 19092.9 19101 1.3

605 35 228 247 228 240 228 228 228 229.2 228 228 228.6 229 0.7

606 35 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

607 35 12969 13088 12969 13010 12969 12969 12969 12974.2 12969 12969 12969 12969 0.7

608 35 4732 4733 4732 4732 4732 4732 4732 4732.0 4732 4732 4732 4732 1.6

701 45 97 103 98 103 103 99 97 99.6 97 97 98.1 100 1.4

702 45 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

703 45 26506 26663 26506 26568 264961 26506 26506 26508.8 26506 26506 26508.1 26519 1.9

704 45 15206 15495 15213 15409 15206 15206 15206 15206.0 15206 15206 15206 15206 3.9

705 45 200 222 200 219 200 202 200 203.6 200 200 202.4 204 1.6

706 45 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

707 45 23789 24017 23804 23931 23794 23789 23789 23790.5 23789 23789 23789 23789 2.3

708 45 22807 23351 22873 23028 22807 22807 22807 22807.0 22807 22807 22807 22807 3.7

Avg. 0.7
1: Value smaller than the optimum reported by Tanaka and Araki (2013).

A summary of the comparison between ILS-RVNDFast and the other methods from the

literature is presented in Table 17. From this table, it can be observed that ILS-RVNDFast

visibly outperforms the existing heuristics in terms of solution quality. Moreover, our best

and average solutions were never worse than those found by other heuristics.

Table 18 summarizes the results found by ILS-RVND and ILS-RVNDFast. The geo-

metric mean of the instances involving 15 and 25 jobs were not reported because the gaps

of both groups were zero. Regarding the quality of the solution obtained, both methods

produced similar results, but ILS-RVNDFast was, on average, approximately 7 times faster

26

Departamento de Engenharia de Produção – UFPB Working Paper

Table 16: Results for the instances of Gagné et al. (2002)

ACOGPG TabuGGP ACOLJ IG GVNS ILS-RVNDSBP LOX⊕B ILS-RVNDFast

Inst. n Opt. Avg. Time
Best Best Best Best Best Best Avg. Best Best Avg. Worst

(s)

551 55 183 212 185 183 183 194 185 193.1 183 183 189.8 194 2.8

552 55 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

553 55 40498 40828 40644 40676 40598 40540 40498 40533.5 40498 40498 40524.1 40583 3.8

554 55 14653 15091 14711 14684 14653 14653 14653 14653.0 14653 14653 14653 14653 8.9

555 55 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

556 55 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

557 55 35813 36489 35841 36420 35827 35830 35830 35837.5 35813 35813 35816.9 35834 5.0

558 55 19871 20624 19872 19888 19871 19871 19871 19871.0 19871 19871 19871 19871 8.1

651 65 247 295 268 268 268 264 259 268.2 247 247 258.7 262 5.6

652 65 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

653 65 57500 57779 57602 57584 57584 57515 57508 57556.1 57500 57500 57538.5 57603 7.8

654 65 34301 34468 34466 34306 34306 34301 34301 34305.4 34301 34301 34302.6 34309 15.8

655 65 0 13 2 7 2 4 4 6.0 2 0 2.3 4 5.2

656 65 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

657 65 54895 56246 55080 55389 55080 54895 54895 54942.8 54895 54895 54937.7 55042 8.9

658 65 27114 29308 27187 27208 27114 27114 27114 27114.0 27114 27114 27114 27114 18.7

751 75 225 263 241 241 – 241 237 243.0 229 227 235.6 239 8.2

752 75 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

753 75 77544 78211 77739 77663 77663 77627 77559 77636.5 77544 77544 77575.3 77606 14.3

754 75 35200 35826 35709 35630 35250 35219 35209 35227.7 35200 35200 35217.7 35239 32.4

755 75 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

756 75 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

757 75 59635 61513 59763 60108 59763 59716 59644 59724.2 59635 59635 59696.2 59773 17.0

758 75 38339 40277 38789 38704 38431 38339 38339 38369.5 38339 38339 38352.3 38426 34.2

851 85 3601 453 384 455 390 402 381 392.4 381 372 381.3 387 16.4

852 85 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

853 85 97497 98540 97880 98443 97880 97595 97497 97632.9 97497 97497 97534.1 97559 22.7

854 85 79042 80693 80122 79553 79631 79271 79090 79187.9 79086 79042 79128.5 79218 58.5

855 85 2581 333 283 324 283 280 274 279.2 270 262 267.0 272 18.1

856 85 0 0 0 0 0 0 0 0.0 0 0 0 0 < 0.1

857 85 87011 89654 87244 87504 87244 87075 87064 87135.8 87011 87011 87049.1 87155 27.4

858 85 74739 77919 75533 75506 75029 74755 74739 74783.4 74739 74739 74763.3 74792 62.8

Avg. 12.5
1: Best upper bound found by Tanaka and Araki (2013); optimality not proven.

Table 17: Summary of the results found by ILS-RVNDFast compared to several heuristic methods from
the literature (1|sij |

∑
Tj)

ACOGPG TabuGGP GRASPGS ACOLJ ILSANK IG GVNS ILS-RVNDSBP LOX⊕B

#Best improved 36 29 19 32 19 19 18 13 5

#Best equaled 28 35 13 32 13 43 46 51 59

#Best worse 0 0 0 0 0 0 0 0 0

#Avg. better than the Best 36 26 19 32 18 18 15 6 1

#Avg. equal to the Best 28 32 13 30 13 38 39 39 39

#Avg. improved 23 – 23 – 23 – – 27 –

#Avg. equaled 9 – 9 – 9 – – 37 –

#Avg. worse 0 – 0 – 0 – – 0 –

#Worst better than the Best 36 22 18 30 15 14 7 1 0

#Worst equal to the Best 28 32 13 30 13 38 41 40 39

#Worst better than the Avg. 23 – 23 – 23 – – 12 –

#Worst equal to the Avg. 9 – 9 – 9 – – 36 –

#Worst improved 23 – 23 – 23 – – 11 –

#Worst equaled 9 – 9 – 9 – – 33 –

#Worst worse 0 – 0 – 0 – – 20 –

#Reported values 32 / 641 64 32 64 32 622 64 64 64
1: 64 for the best solutions and 32 for the average and worse solutions.

2: Results for the instance 751 not reported and the value reported for instance 703 is smaller than the optimum.

27

Departamento de Engenharia de Produção – UFPB Working Paper

than ILS-RVND.

Table 18: ILS-RVND results vs ILS-RVNDFast results (1|sij |
∑

Tj)

n

15 25 35 45 55 65 75 85 Mean

Arithm. Mean of ILS-RVND 0.00 0.00 0.00 0.00 0.34 0.30 0.34 1.01 0.25

Best Gap (%) ILS-RVNDFast 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.61 0.09

Geom. Mean of ILS-RVND – – 0.01 0.77 1.10 2.27 0.95 1.83 0.15

Avg. Gap (%) ILS-RVNDFast – – 0.09 0.78 1.26 1.22 0.99 1.60 0.12

Geom. Mean of ILS-RVND – – 0.07 2.05 1.52 3.05 1.53 2.36 0.35

Worst Gap (%) ILS-RVNDFast – – 0.20 1.71 2.09 1.64 1.37 2.24 0.34

Arithm. Mean of ILS-RVND 0.1 0.5 3.7 11.1 22.2 54.3 90.6 195.9 47.3

Avg. Times (s) ILS-RVNDFast < 0.1 0.1 0.7 1.8 3.6 7.8 13.3 25.7 6.6

Avg. of time spend by ILS-RVND < 0.1 0.1 0.6 1.8 3.7 9.0 15.1 32.6 7.8

the neighborhood (s) ILS-RVNDFast < 0.1 < 0.1 0.1 0.3 0.7 1.5 2.5 4.7 1.2

Avg. of moves not evaluated (%) 83.8 91.4 94.2 94.6 93.6 93.8 93.3 95.0 92.5

Avg. of improving moves not evaluated (%) 22.1 13.5 18.3 18.5 16.2 18.6 16.7 18.9 17.8

5 Concluding Remarks

In this paper we proposed a simple but very efficient local search limitation strategy

for problem 1|sij|
∑

wjTj. This strategy aims at speeding up the local search process

by avoiding evaluations of unpromising moves. The setup variation is used to estimate

whether or not a move should be evaluated. In particular, a move is only evaluated if

the setup variation is smaller than a given threshold value, which in turn depends on the

characteristics of the instance and on the neighborhood structure. Therefore, instead of

tuning a value for this threshold a priori, we developed a procedure that automatically

estimates a value for this parameter. Furthermore, we presented a detailed description of

how the limitation strategy can be incorporated into the neighborhoods swap and l-block

insertion.

The proposed approach was embedded in the ILS-RVND algorithm Subramanian

(2012), which is a simple local search based metaheuristic that was successfully applied to

many combinatorial optimization problems, including the 1|sij|
∑

wjTj Subramanian et al.

(2014). This enhanced version of the algorithm was denoted as ILS-RVNDFast. Extensive

computational experiments were carried out on well-known benchmark instances and the

results obtained suggest that ILS-RVNDFast is capable of producing extremely competi-

tive results both in terms of average solutions and CPU time. When analyzing the impact

of the limitation strategy, it was possible to confirm that the high speedups achieved did

not come at the expense of solution quality. As a result, a considerable number of neigh-

borhoods could be used without significantly increasing the CPU time, which was crucial

for the high performance of ILS-RVNDFast.

We performed similar experiments with standard and non-tailored implementations of

28

Departamento de Engenharia de Produção – UFPB Working Paper

other well-known local search based metaheuristics, namely GRASP and VNS, and the

versions with the limitation strategy were approximately 2 times faster, without significant

loss in solution quality, than those without the inclusion of such strategy. Finally, we also

performed experiments with ILS-RVNDFast on benchmark instances of problem 1|sij|
∑

Tj

and the results obtained ratified the effectiveness of the limitation strategy in a related

problem.

Acknowledgments

The authors would like to thank Arthur Kramer for valuable discussions concerning the

move evaluation schemes. This research was partially supported by the Conselho Nacional

de Desenvolvimento Cient́ıfico e Tecnológico (CNPq), grant 471158/2012-7.

References

Anghinolfi, D. and Paolucci, M. (2008), A new ant colony optimization approach for the

single machine total weighted tardiness scheduling problem. International Journal of

Operations Research, v. 5, p. 44–60.

Anghinolfi, D. and Paolucci, M. (2009), A new discrete particle swarm optimization

approach for the single-machine total weighted tardiness scheduling problem with

sequence-dependent setup times. European Journal of Operational Research, v. 193,

n. 1, p. 73–85.

Arroyo, J. E. C., Nunes, G. V. P. and Kamke, E. H. Iterative local search heuristic for

the single machine scheduling problem with sequence dependent setup times and due

dates. Yu, G., Köppen, M., Chen, S.-M. and Niu, X. (Eds.), HIS (1), p. 505–510. IEEE

Computer Society, 2009.

Bożejko, W. (2010), Parallel path relinking method for the single machine total weighted

tardiness problem with sequence-dependent setups. Journal of Intelligent Manufactur-

ing, v. 21, n. 6, p. 777–785.

Chao, C.-W. and Liao, C.-J. (2012), A discrete electromagnetism-like mechanism for

single machine total weighted tardiness problem with sequence-dependent setup times.

Applied Soft Computing, v. 12, n. 9, p. 3079–3087.

Cicirello, V. A. Non-wrapping order crossover: An order preserving crossover operator

that respects absolute position. Proceedings of the Genetic and Evolutionary Computa-

tion Conference, p. 1125–1131. ACM Press, 2006.

Cicirello, V. A. and Smith, S. F. (2005), Enhancing stochastic search performance by

value-biased randomization of heuristics. Journal of Heuristics, v. 11, p. 5–34.

29

Departamento de Engenharia de Produção – UFPB Working Paper

Deng, G. and Gu, X. (2014), An iterated greedy algorithm for the single-machine total

weighted tardiness problem with sequence-dependent setup times. International Journal

of Systems Science, v. 45, n. 3, p. 351–362.

Feo, T. A. and Resende, M. G. C. (1995), Greedy randomized adaptive search procedures.

Journal of Global Optimization, v. 6, n. 2, p. 109–133.

Gagné, C., Gravel, M. and Price, W. L. (2005), Using metaheuristic compromise pro-

gramming for the solution of multiple-objective scheduling problems. Journal of the

Operational Research Society, v. 56, n. 6, p. 687–698.

Gagné, C., Price, W. L. and Gravel, M. (2002), Comparing an aco algorithm with other

heuristics for the single machine scheduling problem with sequence-dependent setup

times. The Journal of the Operational Research Society, v. 53, n. 8, p. 895–906.

Graham, R., Lawler, E., Lenstra, J. and Kan, A. Optimization and approximation in

deterministic sequencing and scheduling: a survey. P.L. Hammer, E. J. and Korte,

B. (Eds.), Discrete Optimization II Proceedings of the Advanced Research Institute on

Discrete Optimization and Systems Applications of the Systems Science Panel of NATO

and of the Discrete Optimization Symposium co-sponsored by IBM Canada and SIAM

Banff, Aha. and Vancouver, volume 5 of Annals of Discrete Mathematics, p. 287–326.

Elsevier, 1979.

Guo, Q. and Tang, L. (2015), An improved scatter search algorithm for the single ma-

chine total weighted tardiness scheduling problem with sequence-dependent setup times.

Applied Soft Computing, v. , n. 0, p. –. Forthcoming.

Gupta, S. R. and Smith, J. S. (2006), Algorithms for single machine total tardiness

scheduling with sequence dependent setups. European Journal of Operational Research,

v. 175, n. 2, p. 722–739.

Kirlik, G. and Oğuz, C. (2012), A variable neighborhood search for minimizing total

weighted tardiness with sequence dependent setup times on a single machine. Computers

& Operations Research, v. 39, n. 7, p. 1506–1520.

Lawler, E. L. A ”pseudopolynomial” algorithm for sequencing jobs to minimize total

tardiness. P.L. Hammer, E.L. Johnson, B. K. and Nemhauser, G. (Eds.), Studies in

Integer Programming, volume 1 of Annals of Discrete Mathematics, p. 331–342. Elsevier,

1977.

Lee, Y. H., Bhaskaran, K. and Pinedo, M. (1997), A heuristic to minimize the total

weighted tardiness with sequence-dependent setups. IIE Transactions, v. 29, n. 1, p.

45–52.

Lenstra, J., Kan, A. R. and Brucker, P. Complexity of machine scheduling problems.

P.L. Hammer, E.L. Johnson, B. K. and Nemhauser, G. (Eds.), Studies in Integer Pro-

gramming, volume 1 of Annals of Discrete Mathematics, p. 343–362. Elsevier, 1977.

30

Departamento de Engenharia de Produção – UFPB Working Paper

Liao, C.-J. and Cheng, C.-C. (2007), A variable neighborhood search for minimizing

single machine weighted earliness and tardiness with common due date. Computers &

Industrial Engineering, v. 52, n. 4, p. 404–413.

Liao, C.-J. and Juan, H.-C. (2007), An ant colony optimization for single-machine tardi-

ness scheduling with sequence-dependent setups. Computers & Operations Research, v.

34, n. 7, p. 1899–1909.

Liao, C.-J., Tsou, H.-H. and Huang, K.-L. (2012), Neighborhood search procedures for

single machine tardiness scheduling with sequence-dependent setups. Theoretical Com-

puter Science, v. 434, p. 45–52.

Lin, S.-W. and Ying, K.-C. (2007), Solving single-machine total weighted tardiness prob-

lems with sequence-dependent setup times by meta-heuristics. The International Jour-

nal of Advanced Manufacturing Technology, v. 34, n. 11-12, p. 1183–1190.

Mandahawi, N., Al-Shihabi, S. and Altarazi, S. (2011), A max-min ant system to minimize

total tardiness on a single machine with sequence dependet setup times implementing

a limited budget local search. International Journal of Research & Reviews in Applied

Sciences, v. 6.

Martin, O., Otto, S. W. and Felten, E. W. (1991), Large-step markov chains for the

traveling salesman problem. Complex Systems, v. 5, p. 299–326.

Martinelli, R., Poggi, M. and Subramanian, A. (2013), Improved bounds for large scale

capacitated arc routing problem. Computers & Operations Research, v. 40, n. 8, p.

2145–2160.

Mladenović, N. and Hansen, P. (1997), Variable neighborhood search. Computers &

Operations Research, v. 24, n. 11, p. 1097–1100.

Nawaz, M., Jr, E. E. E. and Ham, I. (1983), A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega, v. 11, n. 1, p. 91–95.

Penna, P., Subramanian, A. and Ochi, L. (2013), An iterated local search heuristic for

the heterogeneous fleet vehicle routing problem. Journal of Heuristics, v. 19, n. 2, p.

201–232.

Raman, N., Rachamadugu, R. V. and Talbot, F. (1989), Real-time scheduling of an

automated manufacturing center. European Journal of Operational Research, v. 40, n.

2, p. 222–242.

Rubin, P. A. and Ragatz, G. L. (1995), Scheduling in a sequence dependent setup envi-

ronment with genetic search. Computers & Operations Research, v. 22, n. 1, p. 85–99.

Genetic Algorithms.

31

Departamento de Engenharia de Produção – UFPB Working Paper

Silva, M. M., Subramanian, A., Vidal, T. and Ochi, L. S. (2012), A simple and effec-

tive metaheuristic for the minimum latency problem. European Journal of Operational

Research, v. 221, n. 3, p. 513–520.

Subramanian, A. Heuristic, Exact and Hybrid Approaches for Vehicle Routing Problems.

PhD thesis, Universidade Federal Fluminense, Niterói, Brazil, 2012.

Subramanian, A. and Battarra, M. (2013), An iterated local search algorithm for the

travelling salesman problem with pickups and deliveries. Journal of the Operational

Research Society, v. 64, n. 3, p. 402–409.

Subramanian, A., Drummond, L., Bentes, C., Ochi, L. and Farias, R. (2010), A par-

allel heuristic for the vehicle routing problem with simultaneous pickup and delivery.

Computers & Operations Research, v. 37, n. 11, p. 1899–1911.

Subramanian, A., Battarra, M. and Potts, C. N. (2014), An iterated local search heuris-

tic for the single machine total weighted tardiness scheduling problem with sequence-

dependent setup times. International Journal of Production Research, v. 52, n. 9, p.

2729–2742.

Tanaka, S. and Araki, M. (2013), An exact algorithm for the single-machine total weighted

tardiness problem with sequence-dependent setup times. Computers & Operations Re-

search, v. 40, n. 1, p. 344–352.

Tasgetiren, M. F., Pan, Q.-K. and Liang, Y.-C. (2009), A discrete differential evolution

algorithm for the single machine total weighted tardiness problem with sequence depen-

dent setup times. Computers & Operations Research, v. 36, n. 6, p. 1900–1915.

Valente, J. M. and Alves, R. A. (2008), Beam search algorithms for the single machine total

weighted tardiness scheduling problem with sequence-dependent setups. Computers &

Operations Research, v. 35, n. 7, p. 2388–2405.

Vidal, T., Battarra, M., Subramanian, A. and Erdoǧan, G. (2015), Hybrid metaheuristics

for the clustered vehicle routing problem. Computers & Operations Research., v. 58, p.

87 – 99.

Xu, H., Lü, Z. and Cheng, T. (2013), Iterated local search for single-machine scheduling

with sequence-dependent setup times to minimize total weighted tardiness. Journal of

Scheduling, v. 17, p. 271–287.

Xu, H., Lü, Z., Yin, A., Shen, L. and Buscher, U. (2014), A study of hybrid evolutionary

algorithms for single machine scheduling problem with sequence-dependent setup times.

Computers & Operations Research, v. 50, p. 47 – 60.

Ying, K.-C., Lin, S.-W. and Huang, C.-Y. (2009), Sequencing single-machine tardiness

problems with sequence dependent setup times using an iterated greedy heuristic. Expert

Systems with Applications, v. 36, n. 3, Part 2, p. 7087–709.

32

	1 Introduction
	2 Literature Review
	3 Local Search Methodology
	3.1 Limitation Strategy
	3.2 Neighborhood structures
	3.2.1 Swap
	3.2.2 l-block insertion

	3.3 Embedding the proposed approach in the ILS-RVND metaheuristic

	4 Computational Experiments
	4.1 Parameter Tuning
	4.2 Comparison with the literature
	4.3 Impact of the proposed local search limitation strategy
	4.4 Impact of the proposed limitation strategy on the performance of other metaheuristics
	4.4.1 GRASP
	4.4.2 VNS

	4.5 Results for problem 1|sij|Tj

	5 Concluding Remarks

