
VU Research Portal

Column generation strategies and decomposition approaches for the two-stage
stochastic multiple knapsack problem
Tönissen, D. D.; van den Akker, J. M.; Hoogeveen, J. A.

published in
Computers and Operations Research
2017

DOI (link to publisher)
10.1016/j.cor.2017.02.009

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Tönissen, D. D., van den Akker, J. M., & Hoogeveen, J. A. (2017). Column generation strategies and
decomposition approaches for the two-stage stochastic multiple knapsack problem. Computers and Operations
Research, 83, 125-139. https://doi.org/10.1016/j.cor.2017.02.009

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 29. Mar. 2024

https://doi.org/10.1016/j.cor.2017.02.009
https://research.vu.nl/en/publications/768a4995-81a0-4a0b-9001-9b7eefc9722a
https://doi.org/10.1016/j.cor.2017.02.009

Computers and Operations Research 83 (2017) 125–139

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Column generation strategies and decomposition approaches for the

two-stage stochastic multiple knapsack problem

D.D. Tönissen

a , 1 , ∗, J.M. van den Akker b , J.A. Hoogeveen

b

a School of Industrial Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b Department of Information and Computing Sciences, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

a r t i c l e i n f o

Article history:

Received 7 June 2015

Revised 10 February 2017

Accepted 11 February 2017

Available online 13 February 2017

Keywords:

Two-stage stochastic programming

Recoverable robustness

Column generation

Branch-and-price

Multiple knapsack problem

a b s t r a c t

Many problems can be formulated by variants of knapsack problems. However, such models are deter-

ministic, while many real-life problems include some kind of uncertainty. Therefore, it is worthwhile to

develop and test knapsack models that can deal with disturbances. In this paper, we consider a two-

stage stochastic multiple knapsack problem. Here, we have a multiple knapsack problem together with

a set of possible disturbances. For each disturbance, or scenario, we know its probability of occurrence

and the resulting reduction in the sizes of the knapsacks. For each knapsack we decide in the first stage

which items we take with us, and when a disturbance occurs we are allowed to remove items from

the corresponding knapsack. Our goal is to find a solution where the expected revenue is maximized.

We use branch-and-price to solve this problem. We present and compare two solution approaches: the

separate recovery decomposition (SRD) and the combined recovery decomposition (CRD). We prove that

the LP-relaxation of the CRD is stronger than the LP-relaxation of the SRD. Furthermore, we investigate

numerous column generation strategies and methods to create additional columns outside the pricing

problem. These strategies reduce the solution time significantly. To the best of our knowledge, there is

no other paper that investigates such strategies so thoroughly.

© 2017 Elsevier Ltd. All rights reserved.

1

s

s

t

s

s

w

i

a

w

q

t

p

d

t

(

t

s

h

w

b

d

N

n

t

d

t

d

b

n

t

e

h

0

. Introduction

In this paper we consider a two-stage stochastic multiple knap-

ack problem (SMKP). The SMKP is a variant of the multiple knap-

ack problem, where we try to capture some of the uncertainties of

he real world. For the SMKP, we have initial (first stage) knapsack

izes, and we have a discrete set of scenarios where the knapsack

izes decrease. Each scenario occurs with a given probability, and

e restrict our second stage recovery decision to the removal of

tems. Consequently, no new items can be added to the knapsack,

nd we are not allowed to exchange items.

As an example, consider the following situation. There are m

orkers who perform jobs for clients. These clients issue n re-

uests all together; for each request j (j = 1 , . . . , n) , we know the

ime a j it takes to perform the job and the reward c j , which is only

aid if the job has been fully executed. We further assume that the

uration of the job and the size of the reward do not depend on

he worker who carries out the job. We know for each worker i
∗ Corresponding author.

E-mail addresses: d.d.tonissen@tue.nl (D.D. Tönissen), J.M.vandenAkker@uu.nl

J.M. van den Akker), J.A.Hoogeveen@uu.nl (J.A. Hoogeveen).
1 The research was performed while this author was at Utrecht University.

m

b

w

s

e

ttp://dx.doi.org/10.1016/j.cor.2017.02.009

305-0548/© 2017 Elsevier Ltd. All rights reserved.
(i = 1 , . . . , m) the amount of time b i that he/she can work during

he day in normal circumstances. The obvious goal is to find a fea-

ible plan that maximizes the total reward; hence, for each job, we

ave to determine whether we will accept it and, if accepted, who

ill do the job. We assume that the clients have to be informed

eforehand whether their request is accepted.

The problem sketched above is a typical example of the stan-

ard multiple knapsack problem (Kellerer et al. (2004)) , which is

 P -hard in the strong sense (Li’ang and Suyun 1986) when the

umber of knapsacks m is part of the input. There is a complica-

ion, however, in the form of a small probability that during the

ay one or multiple workers may get a message that he/she has

o leave early to attend some other, more urgent business. This re-

uces the available work time for a worker i who leaves early to
¯
 i < b i time units. Since each such probability is rather small, it is

o option to solve the problem on the basis of the available work

ime of b̄ i time units. Therefore, we settle for a solution in which

ach person works at most b i units of time, but in case one or

ultiple workers have to leave early, the planned jobs that cannot

e executed are cancelled. Hence, next to constructing a solution,

e determine beforehand what to do in case of a disturbance. In-

tead of maximizing the total reward, we then maximize the total

xpected reward.

http://dx.doi.org/10.1016/j.cor.2017.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.02.009&domain=pdf
mailto:d.d.tonissen@tue.nl
mailto:J.M.vandenAkker@uu.nl
mailto:J.A.Hoogeveen@uu.nl
http://dx.doi.org/10.1016/j.cor.2017.02.009

126 D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139

2

s

b

a

b

(

a

a

b

f

i

a

p

a

b

L

a

C

s

u

s

r

s

f

c

w

t

i

o

v

i

i

o

l

s

s

t

B

m

M

r

o

b

c

1

fl

k

c

i

s

p

p

o

w

t

I

t

i

p

a
The SMKP is defined as a multiple knapsack problem together

with a discrete scenario set S , which corresponds to the possible

disturbances. There are n items, and a j and c j denote the size and

value of item j , for j = 1 , . . . , n . There are m knapsacks; the stan-

dard size of knapsack i is equal to b i (i = 1 , . . . , m) . For each sce-

nario s ∈ S , we denote the corresponding size of knapsack i by

b s
i

(i = 1 , . . . , m) , and we assume that b s
i
≤ b i . The probability that

scenario s ∈ S occurs is equal to p s and we use p 0 to denote the

probability that there are no disturbances. We only allow recov-

ery by removing items. Our goal is to find a solution such that the

expected value is maximum.

This paper extends the two-stage stochastic single knapsack

problem introduced in van den Akker et al. (2016) (which itself

is an extension to Bouman, 2011) to multiple knapsacks. We use

the two decomposition approaches introduced in van den Akker

et al. (2016) : the separate recovery decomposition (SRD), and the

combined recovery decomposition (CRD). In the SRD formulation

the variables correspond to independent knapsack fillings for the

undisturbed situation and independent knapsack fillings for all of

the scenarios; one knapsack filling has to be selected for the undis-

turbed situation and one knapsack filling for each scenario. The

constraint that the knapsack fillings of the scenarios have to be

a subset of the knapsack filling for the undisturbed problem (it is

only allowed to remove items) is enforced in the master problem.

In the CRD formulation we have for each scenario a set of vari-

ables that correspond to a combination of a knapsack filling for

the undisturbed situation together with the optimal knapsack fill-

ing for the scenario that is compatible with the knapsack filling

for the undisturbed situation; the subset constraint is now directly

satisfied within the variables of the problem. Constraints are in-

cluded in the master problem to enforce the use of the same initial

knapsack filling in each scenario. The computational experiments

indicate that the SRD formulation performs better than the CRD

formulation for the two-stage stochastic single knapsack problem.

van den Akker et al. (2016) also study the demand robust shortest

path problem, which is a variant of the shortest path problem in

which the sink is unknown and the edges become more expensive

after the sink has been revealed. For the demand robust shortest

path problem the CRD formulation performs really well. The com-

putational experiments for the demand robust shortest path prob-

lem indicate the importance of finding a good approach for gener-

ating and adding columns to the master problem. This, in combi-

nation with generating additional columns in a smart way, reduces

the solution time usually by a factor of at least 10, and in some

examples, even by a factor of more than 50.

This paper provides an extensive computational study of col-

umn generation and column addition strategies. We investigate the

differences between the CRD and SRD formulations for the SMKP

in great detail. Finding the best (or at least a good) column gen-

eration and decomposition strategy is very important as it signif-

icantly reduces the solution time. Furthermore, this paper is the

first paper about the two-stage stochastic multiple knapsack prob-

lem.

The paper is organized as follows. In Section 2 we perform a

literature review. In Section 3 we present the decomposition ap-

proaches, and we prove that the CRD formulation has a stronger

LP-relaxation than the SRD formulation. In Section 4 we demon-

strate our method to generate good test instances for the SMKP. In

Section 5 we present and test our column generation approaches

and show that using a smarter approach can significantly decrease

the solution time (with a factor of ∼ 10) compared to naive ap-

proaches. We also study the influence of the number of knapsacks,

items and scenarios of the problem. In Section 6 we present our

branch-and-price algorithm, and in Section 7 we compare the per-

formance of the SRD and CRD formulations. In the final section, we

summarize our conclusions and present ideas for future research.
. Literature review

The multiple knapsack problem without disturbances can be

olved through dynamic programming in O(n · b m

max) time, where

 max is the maximum size of all knapsacks. In the literature,

n exact solution of this problem is often found by variants of

ranch-and-bound (Martello and Toth 1980) or bound-and-bound

 Martello and Toth, 1981; Pisinger, 1999) algorithms, where either

 Lagrangian or surrogate relaxation bound is used. In a bound-

nd-bound algorithm, the maximization problem uses a lower

ound besides an upper bound to determine which branches to

ollow in the decision tree. A slightly different approach is found

n Fukunaga (2011) , which integrates the bound-and-bound mech-

nism with a bin-orientated approach, using path-symmetry and

ath-dominance for pruning nodes.

Although we use an average case objective, our model

nd solution approach are inspired by the recoverable ro-

ustness literature. Recoverable robustness was introduced by

iebchen et al. (2009) for railway optimization, where it has gained

 lot of attention since then (see for example Cacchiani et al., 2008;

icerone et al., 2009). Recoverable robustness can be seen as two-

tage robust optimization, with the additional restriction that it

ses a pre-described, fast and simple recovery algorithm to make a

olution feasible for a set of given scenarios. This restriction makes

ecoverable robustness very suitable for combinatorial problems.

We are aware of two papers (Büsing et al., 2011a; 2011b) that

tudy the knapsack problem within the recoverable robustness

ramework. In Büsing et al. (2011b), the authors solve admission

ontrol problems on a single link of a telecommunication network

ith the help of a recoverable robust knapsack problem. The au-

hors consider a single knapsack problem, which has uncertainty

n the sizes and the revenues of the items. The recovery consists

f adding at most l items and removing at most k items. The

alue of k is determined as a fraction of the number of items

ncluded in the knapsack; similarly, l depends on the number of

tems that are not in the knapsack. The authors study the gain

f recovery by varying these fractions between 0 and 100%; al-

owing recovery yields a gain up to 45%. Furthermore, the authors

how that this problem is weakly N P -hard for a fixed number of

cenarios, and that the problem becomes strongly N P -hard when

he number of scenarios is part of the input. A follow-up paper

üsing et al. (2011a) presents an integer linear programming for-

ulation of quadratic size and evaluates the gain of recovery.

There is a lot of literature on the stochastic knapsack problem.

ost of the literature discusses the single knapsack problem with

andom item sizes. There are two ways to deal with a possible

verload. When an overload is acceptable, as long as its proba-

ility of occurrence is within a certain bound, then the knapsack

onstraint can be replaced by a chance constraint (Goel and Indyk,

999; Kleinberg et al., 20 0 0; Kosuch and Lisser, 2010). When over-

ow is not acceptable the last inserted item is removed from the

napsack (Bhalgat and Khanna, 2011; Dean et al., 2008) (in this

ase the items are added to the knapsack one by one and the size

s revealed when the item is added to the knapsack), the knap-

ack returns zero when it overflows (Chen and Ross 2014) , or a

enalty is incurred (Kleywegt and Papastavrou 2001) . In other pa-

ers, the profits are uncertain, and the objective is to find a set

f items that maximizes the probability to achieve some target re-

ard (Carraway et al., 1993; Henig, 1990; Morton and Wood, 1998).

Kosuch and Lisser (2011) , and Kosuch (2014) , both study a

wo-stage stochastic knapsack problem with random item sizes.

n Kosuch and Lisser (2011) , the item sizes are normally dis-

ributed, and recovery is limited to the addition and removal of

tems. A chance constraint is used in the first stage to restrict the

robability of an overload in the second stage. Because the sizes

re assumed to be normally distributed, no method is known to

D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139 127

e

g

p

fi

c

c

r

c

s

r

w

s

s

r

o

c

s

t

C

s

d

S

r

r

c

a

n

C

t

b

s

n

3

s

c

v

a

c

n

3

2

s

t

t

f

w

f

k

S

m

t

l

m

a

t

k

k

s

i

a

a

v

y

O

K

i

f

t

f

t

m

s∑
k

q

∑
k

∑

v

y

e

s

e

r

m

a

v

d

a

w

c

s

xactly evaluate the expectation of the second-stage solution for a

iven first-stage decision. Instead, a method is proposed to com-

ute lower bounds, and a branch-and-bound framework is used to

nd the first-stage solutions that provide the best lower bounds. To

alculate relative gaps, an upper bound is computed by solving a

ontinuous version of the problem with a stochastic gradient algo-

ithm. In Kosuch (2014) the items are discretely distributed, items

an also be exchanged and approximation algorithms are given for

pecial cases. Furthermore, the authors give a non-approximation

esult: the problem cannot be approximated in polynomial time

ith a better ratio than K

1/2 (where K is the number of second-

tage scenarios). Gaivoronski et al. (2011) study a quadratic two-

tage stochastic knapsack problem with random item sizes and

evenues, where (a part of) the information is revealed in the sec-

nd stage. The seconds stage allows for a recourse decision and a

hance constraint is used on the capacity of the knapsack in the

econd stage.

To the best of our knowledge there is no other literature

hat studies the two-stage stochastic multiple knapsack problem.

losely related is the work of van den Akker et al. (2016) , which

tudies the single knapsack version of this problem. Besides the

ecomposition approaches and branch-and-price algorithm (see

ection 1), van den Akker et al. (2016) test several other algo-

ithms on the two-stage stochastic knapsack problem. These algo-

ithms include branch-and-bound, dynamic programming and lo-

al search. The computational experiments indicate that the SRD

nd some of the local search algorithms perform well. The dy-

amic programming algorithm performs very poorly, while the

RD also has poor performance. Branch-and-bound performs bet-

er than the CRD, but the SRD outperforms branch-and-bound. We

elieve that the CRD performs poorly because for the two-stage

tochastic knapsack problem the pricing problem of the CRD is sig-

ificantly more difficult than that of the SRD.

. The decomposition approaches

In this section, the SRD and CRD formulations for the two-stage

tochastic multiple knapsack problem are presented, analyzed, and

ompared. For both formulations, integer linear programs are pro-

ided and we show how to solve them using a branch-and-price

lgorithm. Furthermore, we compare the two approaches theoreti-

ally. Let us start with the SRD formulation for the ease of expla-

ation.

.1. The separate recovery decomposition formulation

When there is only one knapsack (see van den Akker et al.,

016), one initial knapsack filling and one knapsack filling for each

cenario have to be selected in the SRD formulation. The constraint

hat the knapsack fillings of the scenarios have to be a subset of

he initial filling (we are only allowed to remove items) is en-

orced in the master problem. When there are more knapsacks,

e can apply a similar formulation, because we can describe any

easible solution of the SMKP by combining one initial multiple

napsack filling and a multiple knapsack filling for each scenario.

ince the multiple knapsack problem cannot be solved in polyno-

ial or pseudo-polynomial time we apply one more decomposi-

ion by considering the m knapsacks individually. The feasible so-

utions are now found by combining m initial knapsack fillings and

 knapsack fillings for each scenario. Thus, we need a total of

(| S| + 1) · m knapsack fillings, where m is the number of knapsacks

nd | S | the number of scenarios.

In our integer linear program, we work with binary variables

hat indicate whether we use a given knapsack filling for a given

napsack i (i = 1 , . . . , m) for a specific scenario s ∈ S . For each
napsack i , we define K i as the set of all feasible undisturbed knap-

ack fillings; K

s
i

is defined similarly for each scenario s ∈ S .

We use the following parameters to characterize a knapsack fill-

ng:

 i jk =

{
1 if item j belongs to knapsack filling k ∈ K i ,
0 otherwise;

s
i jq =

{
1 if item j belongs to knapsack filling q ∈ K

s
i
,

0 otherwise.

We define two types of decision variables:

 ik =

{
1 if knapsack filling k ∈ K i is selected

0 otherwise;

s
iq =

{
1 if knapsack filling q ∈ K

s
i

is selected,
0 otherwise.

bviously, we only introduce variables v ik and y s
iq

if k ∈ K i and q ∈

s
i
, respectively.

We define C ik as the reward of the items in the knapsack fill-

ng k for the initial solution of knapsack i ; C s
iq

is defined similarly

or recovery knapsack filling q and scenario s . For ease of nota-

ion, we use M = { 1 , . . . , m } for the knapsacks and N = { 1 , . . . , n }
or the items. The separate recovery decomposition formulation for

he SMKP is now

ax p 0
∑

i ∈ M

∑

k ∈ K i
C ik v ik +

∑

s ∈ S
p s

∑

i ∈ M

∑

q ∈ K s
i

C s iq y
s
iq

ubject to

 ∈ K i
v ik = 1 ∀ i ∈ M, (1)

∑

 ∈ K s
i

y s iq = 1 ∀ i ∈ M, s ∈ S, (2)

 ∈ K i
a i jk v ik −

∑

q ∈ K s
i

a s i jq y
s
iq ≥ 0 ∀ i ∈ M, j ∈ N, s ∈ S, (3)

i ∈ M

∑

k ∈ K i
a i jk v ik ≤ 1 ∀ j ∈ N, (4)

 ik ∈ { 0 , 1 } ∀ i ∈ M, k ∈ K i , (5)

s
iq ∈ { 0 , 1 } ∀ i ∈ M, s ∈ S, k ∈ K

s
i . (6)

Constraints (1) ensure that exactly one filling is selected for ev-

ry knapsack for the undisturbed situation, and Constraints (2) en-

ure that exactly one knapsack filling is selected for every recov-

ry situation. Constraints (3) guarantee that recovery is done by

emoving items, and Constraints (4) ensure that every item is in at

ost one selected initial knapsack.

We relax the integrality Constraints (5) and (6) and use branch-

nd-price Barnhart et al. (1998) to find the integral optimum. The

alue of the maximization objective increases if and only if the re-

uced costs are positive. Let λi , μis , π ijs and ρ j be the dual vari-

bles of Constraints (1) to (4) . The reduced cost of the variable v ik ,

hich we denote as c red (v ik), is then equal to

red (v ik) = p 0 C ik − λi −
∑

j∈ N

∑

s ∈ S
a i jk πi js −

∑

j∈ N
a i jk ρ j

=

∑

j∈ N
a i jk (p 0 c j −

∑

s ∈ S
πi js − ρ j) − λi ,

ince C ik =

∑

j∈ N c j a i jk .

128 D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139

m

s

x

∑

x

z

f

e

1

m

t

l

b

ρ

i

c

s

t

l

w

(

w

r

i

b

n

c

i

i

e

i

σ

p

n

o

t

w

t

<

3

v

t

t

To find a variable v ik with positive reduced cost, if one exists,

we maximize the above expression for the reduced cost by select-

ing the optimal values for a ijk subject to the constraint that the

resulting filling is feasible for the given knapsack i (i = 1 , . . . , m) .

This results in a knapsack problem where the revenue of item j

equals p 0 c j −
∑

s ∈ S πi js − ρ j , and the size of the knapsack equals

b i .

Similarly the reduced cost of the variable y s
iq

is given by

c red (y s iq) = p s C
s
iq − μis +

∑

j∈ N
a s i jq πi js =

∑

j∈ N
a i jk (p s c j + πi js) − μis .

Again, if we want to find a variable y s
iq

with maximum reduced

cost for a given knapsack i (i = 1 , . . . , m) and scenario s (s ∈ S),

then we have to solve a knapsack problem. Here the revenue of

item j equals p s c j + πi js , and the size of the knapsack equals b s
i
.

In both cases the pricing problem is a knapsack problem, which

can be solved in pseudo-polynomial time by dynamic program-

ming. We use a preprocessing step to remove items with negative

revenue or with a size larger than the knapsack size before start-

ing the algorithm. The complexity of the implemented algorithm

is O(min (2 n , n · b i)) . There are at most 2 n recursive calls, which

is the first part of the bound. Furthermore, the complexity of the

standard dynamic programming algorithm for the knapsack prob-

lem is O(n · b i) , as it iterates from 1 to n and from 0 to b i . Our im-

plementation only uses the knapsack sizes which actually can be

reached with the chosen items and can skip steps between 0 and

b i . Consequently, it cannot use more than O(n · b i) steps, which is

the second part of the bound.

3.2. The combined recovery decomposition formulation

When there is only one knapsack (see van den Akker et al.,

2016), a combination of an initial knapsack filling and the best sce-

nario knapsack filling given the initial knapsack filling is selected

for each scenario in the CRD formulation. The subset constraint is

now directly satisfied within the columns of the problem. We in-

clude constraints in the master problem to enforce the use of the

same initial knapsack filling in each scenario. Because the multi-

ple knapsack problem can not be solved in polynomial or pseudo-

polynomial time we again apply an additional decomposition by

considering the m knapsacks individually. Any feasible solution to

the SRMKP can now be described as combining an initial knapsack

filling for knapsack i and the best knapsack filling for that scenario

given the initial knapsack filling for each scenario. This gives a total

of | S | · m combined (initial/recovery) knapsack fillings.

We use two types of variables in our formulation. The first type

indicates whether item j (j = 1 , . . . , n) is included in the initial fill-

ing of knapsack i (i = 1 , . . . , m) . Therefore, we define

x i j =

{
1 if item j is contained in knapsack i ,
0 otherwise.

The second type of variables indicate whether a combined knap-

sack filling consisting of an initial and recovery filling for a specific

knapsack i (i = 1 , . . . , m) and scenario s (s ∈ S) is part the solution.

z s kqi =

⎧ ⎪ ⎨

⎪ ⎩

1 if the combination of initial knapsack k and

recovery knapsack q for scenario s ,
is selected for knapsack i ,

0 otherwise.

Obviously, we introduce a variable z s
kqi

only if it corresponds to

a feasible combined knapsack filling. We define KQ

s
i

as the set con-

taining all possible, feasible combinations (k, q) of an initial filling

k and a recovery q for knapsack i (i = 1 , . . . , m) and scenario s (s ∈
S). As before, we use the parameters a ijk to indicate whether item

j belongs to knapsack filling k of knapsack i .
We formulate the problem as follows:

ax p 0
∑

i ∈ M

∑

j∈ N
c j x i j +

∑

s ∈ S
p s

∑

i ∈ M

∑

(k,q) ∈ KQ s
i

C s iq z
s
kqi

ubject to ∑

(k,q) ∈ KQ s
i

z s kqi = 1 ∀ i ∈ M, s ∈ S, (7)

 i j −
∑

(k,q) ∈ KQ s
i

a i jk z
s
kqi = 0 ∀ i ∈ M, j ∈ N, s ∈ S, (8)

i ∈ M

x i j ≤ 1 ∀ j ∈ N, (9)

 i j ∈ { 0 , 1 } ∀ i ∈ M, j ∈ N, (10)

s
kqi ∈ { 0 , 1 } ∀ (k, q) ∈ KQ

s
i , i ∈ M, s ∈ S. (11)

Constraints (7) enforce that exactly one combination is selected

or each knapsack for every scenario. Constraints (8) ensure that in

ach scenario we have the same initial filling for knapsack i (i =
 , . . . , m) , whereas Constraints (9) ensure that every item is in at

ost one of the m knapsacks.

We use an LP-relaxation on the variables x ij and z s
kqi

and solve

he integer problem with branch-and-price, just as the SRD formu-

ation. Pricing is performed for every knapsack and scenario com-

ination. We denote the dual variables of Constraints (7) and (8) as

is and σ ijs . The reduced cost of a variable z s
kqi

for a given knapsack

 and scenario s is then equal to

red (z s kqi) = C s iq +

n ∑

j=1

a i jk σi js − ρis =

n ∑

j=1

a i jq p s c j +

n ∑

j=1

a i jk σi js − ρis .

In each iteration, we have a pricing problem for every scenario

 and knapsack i . This gives us a total of m · | S | combined (ini-

ial/recovery) knapsack fillings, among which we have to choose at

east one in every iteration. For each combined knapsack problem,

e have two possibilities: the scenario knapsack size decreases

 b s
i
< b i) or it stays the same (b i = b s

i
). When it does not change,

e use the same O(min (n · b i , 2
n)) dynamic programming algo-

ithm as for the SRD formulation, but in this case the revenue of

tem j is σi js + p s c j , because the found knapsack filling is used for

oth the initial and the recovery part of the column. If the sce-

ario knapsack size decreases, the initial and recovery situations

an become different. Because the recovery consists of removing

tems, we have three options for each item: We can take the item

nitially and as recovery, we can take it only initially, and we can

xclude it from the knapsack. The revenue of taking an item j both

nitially and as recovery is σi js + p s c j and for taking it initially is

ijs . Consequently, the dynamic programming algorithm has com-

lexity O(min (n · b s
i
· b i , 3

n)) .

To increase the solution speed, we use preprocessing to elimi-

ate as many items as possible. We remove items when the weight

f the item is larger than the initial knapsack size (a j > b i), when

he revenue is always negative (σi js + p s c j < 0), and when the

eight of the item is larger than the scenario knapsack size and

he revenue of taking the item initially is negative (a j > b s
i

and σ ijs

 0).

.3. Theoretical comparison

Before doing computational experiments, it is important to in-

estigate theoretical properties of the formulations. Table 1 shows

he main characteristics of the formulations, where m, n and | S | are

he number of knapsacks, items and scenarios.

D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139 129

Table 1

Comparing the decompositions.

SRD CRD

Number of constraints m + (m · | S|) + (m · n · | S|) + n (m · | S|) + (m · n · | S|) + n

Number of pricing problems m + (m · | S|) m · | S |

Pricing problem complexity O(min (n · b i , 2
n)) O(min (n · b i , 2

n)) or

O(min (n · b s
i
· b i , 3

n))

p

i

f

n

t

f

m

q

n

i

t

t

r

r

s

C

m

v

r

T

e

P

s

fi

F

s

v

v

S

t

x

s

o

a

p

i

s

f

c

a

o

v

b

s

l

s

q

Table 2

Items for the example.

Item Weight Revenue

Item 1 2 9

Item 2 1 5

Item 3 1 5

a

t

y

S

t

t

b

t

t

f

U

w

w

U∑

∑

w

f

s

e

t

W

i

The CRD formulation has m constraints and m possible pricing

roblems fewer than the SRD formulation. However, the complex-

ty of generating a column for the CRD formulation is higher than

or the SRD formulation when the column corresponds to a sce-

ario in which the size of the knapsack decreases. We expect that

he last characteristic is the reason why the SRD formulation per-

orms better for m = 1 in van den Akker et al. (2016) . Further-

ore, for m = 1 the knapsack size always decreases and conse-

uently the pricing problem is always more difficult. For m ≥ 2

ot all knapsack sizes have to decrease, in which case the pric-

ng problem complexity is only O(min (n · b i , 2
n)) . We can prove

hat the LP-relaxation of the CRD formulation is stronger than

hat of the SRD formulation. This theorem is similar to a theo-

em presented in van den Akker et al. (2016) , but does not di-

ectly follow from this theorem, since we also apply a decompo-

ition based on the m knapsacks. The theorem is in favor of the

RD formulation, because a strong upper bound generally prunes

ore nodes. We define Z SRD
LP

and Z CRD
LP

as the optimal solution

alues of the LP-relaxations of the SRD and CRD formulations,

espectively.

heorem 1. Z SRD
LP

≥ Z CRD
LP

, and there are instances for which the in-

quality is strict.

roof. We prove Z SRD
LP

≥ Z CRD
LP

by showing that for each given, fea-

ible solution for the LP-relaxation of the CRD formulation, we can

nd a solution for the SRD formulation with the same revenue.

urthermore, we show by example that there is at least one in-

tance for which Z SRD
LP

> Z CRD
LP

.

Assume that we have a feasible solution for the LP-relaxation

alue of the CRD formulation; this solution is characterized by the

alues for x ij and z s
kqi

.

Before indicating how to find the corresponding solution of the

RD formulation, we first remark that from Constraint (8) it follows

hat

 i j =

∑

(k,q) ∈ KQ 1
i

a i jk z
1
kqi ,

ince the constraint holds for all s ∈ S . We will specify the solution

f the SDR formulation on the basis of z 1
kqi

values, but choosing

ny other scenario will lead to the same solution. We use this ex-

ression to find the value v ik in the corresponding solution, which

ndicates how much of knapsack filling k ∈ K i is used for knap-

ack i in the initial solution of the SRD formulation. In the CRD

ormulation filling k is used in the initial solution for knapsack i in

ombination with all feasible recoveries q for which (k, q) ∈ KQ

1
i
,

nd such a combination is chosen with value z 1
kqi

. Hence, summing

ver the relevant fillings q , we find

 ik =

∑

q :(k,q) ∈ KQ 1
i

z 1 kqi ,

ut we would have found the same value for any scenario s ∈ S in-

tead of scenario 1. Next, we consider y s
iq

, which in the SRD formu-

ation indicates how much of knapsack filling q we use for knap-

ack i as a recovery for scenario s . In the CRD formulation, we use

 in combination with an initial filling k ; hence, we must sum over
ll possible initial fillings k such that (k, q) ∈ KQ

s
i
. This leads us to

he choice of

s
iq =

∑

k :(k,q) ∈ KQ s
i

z s kqi .

ince the choice of these values for the SRD formulation describes

he same solution as the CRD formulation, we know that this solu-

ion of the SRD formulation is feasible. A similar statement could

e made with respect to the value of the objective value, but for

he sake of completeness we will prove it below. We first prove

hat the first part of the value of the objective function is the same

or the SRD and CRD formulation. We have that

p 0
∑

i ∈ M

∑

k ∈ K i
C ik v ik = p 0

∑

i ∈ M

∑

k ∈ K i
C ik

∑

q :(k,q) ∈ KQ 1
i

z 1 kqi .

sing that
∑

k ∈ K i
∑

q :(k,q) ∈ KQ 1
i

=

∑

(k,q) ∈ KQ 1
i
, and C ik =

∑

j∈ N c j a i jk ,

e find that the last expression is equal to

p 0
∑

i ∈ M

∑

j∈ N

∑

(k,q) ∈ KQ 1
i

c j a i jk z
1
kqi = p 0

∑

i ∈ M

∑

j∈ N
c j x i j ,

hich is exactly the first part of the objective value of the CRD.

sing similar arguments we find that

s ∈ S
p s

∑

i ∈ M

∑

q ∈ K s
i

C s iq y
s
iq =

∑

s ∈ S
p s

∑

i ∈ M

∑

q ∈ K s
i

∑

k :(k,q) ∈ KQ s
i

C s iq z
s
kqi =

s ∈ S
p s

∑

i ∈ M

∑

(k,q) ∈ KQ s
i

C s iq z
s
kqi ,

hich shows that the second part of the values of the objective

unctions of the CDR and SDR formulations are the same.

Furthermore, we can illustrate by an example that for some in-

tances the objective value of the SRD formulation is larger. This

xample has one knapsack with size 3 and one scenario, in which

he size of the knapsack decreases to 2 with a probability of 0.3.

e have three items and their weights and rewards can be found

n Table 2 .

An optimal solution of the CRD formulation is:

• initial {1, 2} with recovery {1}.
• optimal objective is 0 . 7 · 14 + 0 . 3 · 9 = 12 . 5 .

For the SRD formulation the following solution is feasible:

• Initial: 0.5 times {1, 2} and 0.5 times {1, 3}
• Recovery: 0.5 times {1} and 0.5 times {2, 3}
• optimal objective is 0 . 7(0 . 5 · 14 + 0 . 5 · 14) + 0 . 3(0 . 5 · 9 + 0 . 5 ·

10) = 12 . 65 .

130 D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139

i

t

p

p

e

k

i

s

m

t[

N

i

2

[

T

s

m

t

k

b

[

T

a

p

f

s

g

a

s

t

s

a

t

i

c

c

t

s

[

a

[
The solution of the SRD formulation is not feasible for the

CRD formulation, as every recovery has to contain a subset of the

items of one initial situation. Therefore, the CRD formulation can-

not combine initial solutions, whereas the SRD formulation is al-

lowed to use combined recoveries. By using recoveries that are a

subset of more than one initial solution, it is possible that the SRD

formulation gives a solution with a larger solution value.

We can conclude that the LP-relaxation of the CRD formulation

is stronger than that of the SRD formulation, which implies that its

value is closer to the optimal integral solution. �

4. Generating random test instances

When doing extensive computational research, it is important

to have interesting instances for the two-stage stochastic multi-

ple knapsack problem. In this section we describe our technique to

generate good instances. The random data are always drawn from

the uniform distribution, thus we only specify the corresponding

interval. Knapsack sizes etc. are integral by default; if fractional,

these values are rounded down.

4.1. Generating the items

Pisinger (2004) describes different instance classes of the single

knapsack problem. We work with two main instance sets: a diverse

set and a more structured instance set. The larger and more diverse

instance set consists of all instance classes, while the more struc-

tured instance set focusses on the strongly correlated instances. For

the strongly correlated instances, the weight a j is drawn randomly

from [1, R] and the revenue is c j = a j +

R
10 , where R is a random

range parameter.

We consider strongly correlated instances because they corre-

spond to classical benchmark for the (multiple) knapsack problem,

and they are hard to solve. According to Pisinger (2004) these in-

stance are hard because of two reasons: “(a) The instances are ill-

conditioned in the sense that there is a large gap between the con-

tinuous and integer solution of the problem. (b) Sorting the items ac-

cording to decreasing efficiencies corresponds to a sorting according

to the weights. Thus for any small interval of the ordered items (i.e. a

core) there is a limited variation in the weights, making it difficult to

satisfy the capacity constraint with equality. ”.

4.2. Generating the knapsack sizes

Pisinger (1999) introduces two classes of knapsack sizes. The

first class has dissimilar sizes: the knapsack sizes b i (i = 1 , . . . , m −
1) are generated randomly from [

0 ,

(

K

n ∑

j=1

a j −
i −1 ∑

k =1

b k

)]

for i = 1 , . . . , m − 1 , (12)

where K is always set to 0.5. The other class has similar sizes,

which are generated randomly in the range [

0 . 4

n ∑

j=1

a j

m

, 0 . 6

n ∑

j=1

a j

m

]

for i = 1 , . . . , m − 1 . (13)

For both classes, the capacity of the m th class was set to

b m

= 0 . 5

n ∑

j=1

a j −
m −1 ∑

i =1

b i . (14)

To avoid trivial problems, they have to satisfy the following

properties:

1. All items can fit in at least one knapsack.
2. All knapsacks should have a size larger than or equal to the

weight of the smallest item.

3. All knapsack sizes should be smaller than the sum of the

weights of all items.

Pisinger checks if an instance satisfies these assumptions and

f not the instance is removed and a new one is created. We want

o do this differently and directly create instances that satisfy these

roperties. Therefore, we have to modify Eq (12) . To satisfy the first

roperty the size of at least one knapsack has to be larger than or

qual to the maximum item weight (a max). By property 2, the other

napsack sizes have to be larger than or equal to the minimum

tem weight (a min). The last property gives an upper bound on the

ize of the knapsack
∑ n

j=1 a j .

We want to focus on dissimilar instances. To generate these, we

odify Pisinger’s method, to create more diversity. Instead of set-

ing K = 0 . 5 , we generate K randomly from

a max + (m − 1) a min ∑ n
j=1 a j

+ 0 . 1 , 1 . 0

)
. (15)

ote that a max + (m − 1) a min in Eq. (15) , corresponds to the min-

mal summation over all knapsack sizes, due to properties 1 and

.

Our first knapsack size b 1 is generated randomly from

a max ,

(

K

n ∑

j=1

a j − (m − 1) a min

)]

. (16)

he lower bound a max guarantees that there is at least one knap-

ack with weight a max or more. The upper bound is equal to the

aximum size of all knapsacks together, from which we subtract

he minimum size of the other knapsacks. Consequently, the first

napsack always satisfies properties 1 to 3, and it is always possi-

le to generate m − 1 other knapsacks satisfying these properties.

The other knapsack sizes are generated randomly from

a min ,

(

K

n ∑

j=1

a j −
(

i −1 ∑

k =1

b k + (m − i) a min

))]

for i = 2 , . . . , m.

(17)

he lower bound ensures that the sizes of those knapsacks are

t least a min , such that property 2 is always satisfied. The up-

er bound is the maximum allowed size of all knapsacks together,

rom which we subtract the size of the already generated knap-

acks and the minimum size of the knapsacks that still have to be

enerated. Again, the knapsack size always satisfies the properties,

nd it is always possible to generate m − i other knapsacks that

atisfy these properties.

Experiments show that this method works well only when

here are a few knapsacks. When there are four or more knap-

acks, the first knapsack size is large, and the other knapsack sizes

re very small. Therefore, we improve the method by generating

he knapsack sizes in sets of three. We define W =

∑ n
j=1 a j

� m
3

	 , which

s the maximum weight of each set.

The last set can have fewer than three knapsacks and in that

ase, the weight is divided between those knapsacks. They can be-

ome slightly larger than the knapsacks of the other groups, but

his is not a problem because we want to generate diverse knap-

ack sizes.

K is now generated randomly from

a max + d a min

W

+ 0 . 1 , 1 . 0

)
with d = 3 if m ≥ 3 else d = m, (18)

nd the first knapsack has a size generated randomly from

a max , (K · W − (d − 1) a min)] . (19)

D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139 131

a

h

b .

4

b

c

w

s

k

a

s

t

a

w

a

e

g

s

0

t

a

r

a

g

s

[

o

k

i

e

t

=

t

s

c

1

k

r

c

d

b

r

e

t

a

s

s

f

Table 3

Instance sets.

Sets Number of u max D Knapsacks Items Scenarios

instances

Small 10 0 0 0 .5 2 0 .5 [2, 7] [4 ,21] 9 .8

Large 8400 0 .25 2 0 .5 [2 ,8] [4 ,39] 9 .9

Structured 2859 0 .5 3 1 .0 [1 ,12] [5 ,25] 38 .4

n

g

r

b

4

t

e

s

s

c

P

b

o

p

s

1

t

n

r

c

f

s

i

r

m

s

w

t

w

T

a

a

S

5

5

w

F

i

f

s

t
We denote r as the number of sets made so far. We gener-

te sets of d = min { 3 , m − 1 − (3 · r) } knapsacks, until m knapsacks

ave been generated randomly from

 i +1+3 r =

[

a min ,

(

K · W −
(

i −1 ∑

k =1

b k + (d − i) a min

))]

for i = 1 , . . . , d

(20)

.3. Generating the scenarios

For every generated initial instance (n, m , c j , a j (j = 1 , . . . , n) ,

 j (i = 1 , . . . , m)) we generate one set of scenarios. A scenario is

haracterized by the probability it occurs and the amounts by

hich one or more knapsacks decrease. We assume that only a

ubset of knapsacks is prone to disturbances. There are uncertain

napsacks, which can decrease in size in one or more scenarios,

nd fixed knapsacks, which will never decrease in size. The first

tep in generating the scenarios is to generate the set of uncer-

ain knapsacks. The size of each knapsack is uncertain with prob-

bility D . When D = 1 all knapsacks are uncertain and when D = 0

e have the classical multiple knapsack problem. We avoid D = 0 ,

nd when the generated set of uncertain knapsacks happens to be

mpty, we randomly select one knapsack and add it to the set. This

uarantees that we always have at least one scenario.

Even for uncertain knapsacks, there is a probability that their

ize will not decrease. The latter is generated randomly from [0.1,

.9]. For uncertain knapsacks, different decreases are possible and

his number is generated randomly from [1 , max] , where max is

 parameter. Every decrease has a relative probability of occur-

ence, which is uniformly generated in [1, r] (r is a parameter)

nd then normalized. For every possible decrease its amount is

iven by a fraction of the original knapsack size. Hence, the new

ize of the knapsack is f · b i , where f is generated randomly from

 u , 1.0], where u is a parameter. For every possible combination

f knapsack size decreases (including no decrease) of the different

napsacks, a scenario is generated. The probability of each scenario

s computed by multiplying the probabilities of the corresponding

vents for the separate knapsacks.

We demonstrate this with an example. Assume that we want

o generate an instance with 3 knapsacks, where D = 0 . 5 and max

 3 . We first determine which knapsacks are uncertain; suppose

hat there are two such knapsacks, which we denote by knap-

acks 1 and 2. Now we generate the probabilities that they do not

hange randomly from [0.1, 0.9]; the outcome is 0.7 for knapsack

 and 0.4 for knapsack 2. The next step is to generate for both

napsacks the number of possible decreases, which is generated

andomly from [1, 3]. The outcome is that knapsack 1 has one de-

rease and that knapsack 2 has two possible decreases, which we

enote by A and B. Subsequently, we generate the relative proba-

ility that decrease A and decrease B occurs for knapsack 2. These

elative probabilities are 0.2 for A and 0.8 for B. We further gen-

rate that knapsack 1 has initial size 20, and that it can decrease

o 18; knapsack 2 has initial size 28, and it can decrease to 25 (A)

nd 18 (B), respectively. Knapsack 3 has size 30, which stays the

ame for every possible scenario.

We translate this into a set of scenarios by enumerating all pos-

ibilities and computing the respective probabilities. We find the

ollowing set:

1. Knapsack 1 decreases in size from 20 to 18, and the other knap-

sacks stay the same; p 1 = 0 . 3 · 0 . 4 · 1 . 0 = 0 . 12 .

2. Knapsack 2 (case A) decreases in size from 28 to 25, and the

other knapsacks stay the same; p 2 = 0 . 7 · 0 . 6 · 0 . 2 · 1 . 0 = 0 . 084 .

3. Knapsack 2 (case B) decreases in size from 28 to 18, and the

other knapsacks stay the same; p = 0 . 7 · 0 . 6 · 0 . 8 · 1 . 0 = 0 . 366 .
3
4. Knapsacks 1 and 2 (case A) decrease in size, and knapsack 3

stays the same; p 4 = 0 . 3 · 0 . 6 · 0 . 2 · 1 . 0 = 0 . 036 .

5. Knapsacks 1 and 2 (case B) decrease in size, and knapsack 3

stays the same; p 5 = 0 . 3 · 0 . 6 · 0 . 8 · 1 . 0 = 0 . 144 .

Furthermore, we have the initial situation where the sizes do

ot change with probability p 0 = 0 . 7 · 0 . 4 · 1 . 0 = 0 . 28 .

This approach generates all possible scenarios. If we want to

enerate a given number of scenarios, we can select that number

andomly from the generated scenarios, and normalize the proba-

ilities.

.4. Our test sets

We generate the item sizes using R = 30 , and r = 3 for all our

est sets. Table 3 shows the other parameters with which we gen-

rate our test sets, the range for the number of items and knap-

acks and the average number of scenarios for each set of in-

tances.

The large instance set is a very diverse large test set that

ontains 700 instances for each of the instance classes from

isinger (2004) . For the small and large instance sets, all possi-

le scenarios are always generated, but for the structured set, we

nly select a part of the generated scenarios and normalize the

robabilities. The average number of knapsacks and items for the

mall set are 4.5 and 11.2, and for the large set they are 5.0 and

3.6 respectively. The structured instance set is specifically made

o study the influence of the number of knapsacks, items and sce-

arios on the CRD and SRD formulations. For this reason (and the

eason described in Section 4.1), all instances are from the strongly

onnected item class. The instances of this set are made using the

ollowing scheme. We considered each possible number of knap-

acks and items in their corresponding range, and we considered

nstances with 0, 1, 5, 10, 20, 30, ..., 100 scenarios; afterwards, we

emoved the instances that were meaningless (for example with

ore knapsacks than items). The instances with only one knap-

ack are representative of the two-stage knapsack problem, while

e have a normal knapsack or multiple knapsack problem when

here is no scenario. The instances with no scenario are associated

ith a dummy scenario in which the knapsack size stays the same.

his is necessary to make the CRD formulation possible. The aver-

ge number of knapsacks and items for the structured set are 6.7

nd 15.6 respectively.

All test sets can be found at http://home.ieis.tue.nl/dtonissen/

RMKP/instances.zip .

. Column generation strategies for solving the LP-relaxation

.1. Definition of strategies

When we apply column generation to solve the LP-relaxation,

e have to maximize the reduced cost of the relevant variables.

or the SRD formulation, these are the variables v ik and y s
iq

, which

ndicate whether knapsack filling k is used in the ILP formulation

or knapsack i and whether knapsack filling q is used for knap-

ack i in case of scenario s , respectively. For the CRD formula-

ion, we only need to consider the variables z s
kqi

, which indicate

http://home.ieis.tue.nl/dtonissen/SRMKP/instances.zip

132 D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139

Table 4

Average results for the methods for the 10 0 0 instances from the small test

set. Note that the averages are only over the instances that are solved for

that method.

Method Iterations Columns Pricing Time (ms.) Fail %

Interleaved 576 .1 601 .4 435 .6 8230 9 .9

Best 261 .7 283 .5 8628 .4 10328 13 .9

Best 25% 40 .6 936 .1 1371 .8 5848 6 .4

Best 50% 31 .7 1256 .3 1130 .7 5702 5 .9

Best 75% 30 .0 1267 .6 1077 .1 5683 6 .0

All 29 .4 1205 .4 10 0 0 .6 5780 6 .2

SingleS 275 .6 742 .4 553 .3 7229 8 .2

SingleK 153 .0 1245 .8 1024 .2 6193 6 .2

BestK 66 .3 1025 .9 2166 .7 7468 9 .2

BestS 132 .6 754 .2 4857 .1 9127 12 .3

h

t

u

t

s

fi

5

l

A

8

w

g

u

c

a

5

a

d

n

t

t

w

t

m

(

(

l

(

(

s

“

m

“

t

f

p

t

f

b

b

t

o

k
whether the combination of initial knapsack k and recovery knap-

sack q for scenario s is selected for knapsack i . The formulas for

the reduced cost can be found in Sections 3.1 and 3.2 , respectively.

Moreover, we showed in Section 3.2 that the pricing problem for a

given knapsack-scenario combination can be solved using dynamic

programming, which in principle yields one column per combina-

tion. We can choose, however, how many and which of the pric-

ing problems (subproblems) are solved per iteration and which

columns are added to the master problem. Hence, we define dif-

ferent strategies and decide empirically which one is the best.

We define the following basic strategies:

• Interleaved : This method goes through the subproblems from

knapsack 1 to m and scenario 1 to | S | and solves the subprob-

lems one by one. As soon as we find a subproblem with pos-

itive reduced cost, a column is created, added and the master

problem is solved; in the next iteration, we continue our search

with the next subproblem in the list.
• Best k : This method solves the subproblem for all knapsack-

scenario combinations, after which the k columns with the

highest positive reduced cost are added to the master problem.

This method has two special cases: “Best”, where only the best

column is added and “All”, where all columns with positive re-

duced cost are added to the master problem.
• SingleK : This method goes through the knapsacks from 1 to m .

In each iteration it solves the subproblems for all scenarios for

a specific knapsack. For each subproblem we add the column

with highest positive reduced cost to the master problem, after

which the master problem gets solved. Then the method con-

tinues to the next knapsack.
• BestK : This method solves the subproblems for each knapsack-

scenario combination and finds the column with the highest re-

duced cost. It then adds this column to the master problem, to-

gether with all other columns with positive reduced cost that

were determined for the same knapsack and other scenarios.
• SingleS : This method solves the pricing problem for all knap-

sacks for a specific scenario. All columns for that specific sce-

nario with a positive reduced cost are added to the master

problem and the master problem is solved. Then the method

continues to the next scenario.
• BestS : This method solves all subproblems and finds the sub-

problem with the highest reduced cost. It then adds the cor-

responding column to the master problem, together with the

columns with positive reduced cost that were determined for

the same scenario and other knapsacks.

Next to generating columns by solving the pricing problem, we can

generate additional columns to speed up convergence. For the CRD

formulation, we can use the fact that the initial solution has to

be the same for all scenarios. Suppose that we have solved the

pricing problem for scenario s and knapsack i from which we find

the feasible knapsack filling k for the initial solution. We can now

easily determine the optimal recovery with respect to the initial

knapsack filling k for each of the other | S| − 1 scenarios in S �{ s }

by solving a knapsack problem, where the item set is restricted to

the items available in k . Since we need these columns when we

want to use the initial filling k for knapsack i , we add the result-

ing columns to the master problem. A speed-up based on the same

principle was tested by van den Akker et al. (2016) .

The SRD formulation does not have this property. However, ad-

ditional knapsack fillings for the scenarios can be generated from

any initial knapsack filling by the same procedure. Unfortunately,

given a knapsack filling for a scenario, we are not able to find the

best filling for all other scenarios for the same knapsack. But we

can find the best initial filling for that knapsack, which has to be

a superset of the items from the scenario column. In that case, we
ave to find the best filling for the size difference between the ini-

ial situation and the scenario; moreover we are only allowed to

se items from the complementary set. The initial knapsack filling

hen becomes the union of the found items and the items in the

cenario knapsack filling. With this initial knapsack filling, we can

nd the knapsack fillings for the remaining scenarios.

.2. Experiments for the CRD formulation

We implemented our algorithms with the Java programming

anguage and used ILOG CPLEX 12.4 to solve the Linear Programs.

n ®Intel TM core i-5-3570K 3.40 GHz processor equipped with

GB of RAM was used for all experiments.

We started our experiments with the CRD formulation, first

ithout the speed-up and later with the speed-up in which we

enerate additional columns as described above. All strategies are

sed for these tests. For the “Best k” method, we used the special

ases “Best” and “All”, and we further chose k equal to 25%, 50%

nd 75% of the m · | S | columns that were generated per iteration.

.2.1. Initial assessment

We used the small test set from Section 4.4 , and we allowed

 maximum solution time of 1 min per instance; instances that

id not solve within that time are registered as a failure. This is

ecessary because some instances take a long time to solve, while

he smallest instances are solved in less than 1 ms. To be able

o compare the average solution time of the different methods,

e use the maximum allowed solution time as solution time for

he instances that we could not solve. Next to the name of the

ethod, we report in our tables: the average number of iterations

 iterations); the average number of columns that have been added

 columns); the average number of times we solve the pricing prob-

em (pricing); the average time it takes to solve the instances (time

ms.)), with a maximum of 1 min per instance; the failure rate

 fail %).

The results can be found in Table 4 . The best methods with re-

pect to the computational time and failure % are “Best 50%” and

Best 75%”, respectively. For the instances that are solved by both

ethods, we see that “Best 50%” performs significantly better than

Best 75%” with respect to the solution time (Wilcoxon signed-rank

est done with R version 3.0.1, p = 0 . 018). The method “Best” per-

orms worst, because it spends a lot of time solving the pricing

roblems, while it is only allowed to add one column per itera-

ion. The added column has the largest reduced cost, and there-

ore the “Best” method finds the solution with the smallest num-

er of columns of all methods. The “Best 50%” method has the

est balance between the number of solved pricing problems and

he number of added columns. The methods that are not based

n the “Best” method seem to be too restrictive. Adding the best

 columns based on their reduced cost seems to be the best. The

D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139 133

Table 5

Results with scenario based speed-up.

Method Iterations Columns Pricing Time (ms.) Fail %

InterleavedA 109 .8 1787 .1 94 .9 5159 5 .3

BestA 49 .1 789 .9 1698 .5 6002 7 .1

BestA 25% 12 .2 2210 .4 154 .7 5091 4 .6

BestA 50% 10 .3 2222 .7 112 .1 5981 6 .5

BestA 75% 9 .8 2313 .8 104 .5 6227 6 .9

AllA 9 .4 2302 .8 101 .0 6458 7 .4

SingleSA 53 .9 1900 .4 99 .9 4901 4 .9

SingleKA 40 .5 2412 .7 103 .9 6453 7 .1

BestKA 21 .8 2262 .3 269 .9 7242 8 .0

BestSA 25 .2 2110 .8 755 .6 6028 6 .0

“

4

t

5

m

t

s

c

g

t

s

g

f

t

c

f

m

A

7

f

c

p

(

s

w

s

s

7

a

t

1

i

f

p

t

t

b

n

n

i

e

t

a

f

t

a

Table 6

Results of “BestA k ”, while varying k .

Method Time (ms.) Fail % Method Time (ms.) Fail %

BestA 7816 10 .9 BestA m 5196 5 .7

BestA 5% 5899 7 .7 BestA 1 .5 m 5035 5 .6

BestA 10% 5896 7 .7 BestA 2 m 5022 5 .3

BestA 20% 5598 7 .7 BestA 2 .5 m 4994 5 .3

BestA 50% 5998 8 .2 BestA 3 m 4997 5 .3

AllA 6312 8 .7 BestA 4 m 5035 5 .3

Table 7

≥ 50 scenarios results large test set, with the time in seconds.

Method Iterations Columns Pricing Time (sec.) Fail %

BestA 0 .5 m 53 .3 15207 .1 20676 .6 48 .4 69 .4

BestA m 34 .3 18227 .3 16577 .9 47 .3 65 .3

BestA 1 .5 m 27 .7 20240 .7 15391 .5 47 .1 64 .4

BestA 2 m 23 .4 22197 .2 14924 .7 47 .8 65 .3

BestA 2 .5 m 21 .2 22998 .4 14 4 46 .3 48 .2 66 .9

BestA 3 m 19 .2 24233 .5 13767 .8 49 .4 70 .9

C

f

(

r

m

n

i

w

m

f

k

a

w

c

a

5

t

a

f

“

u

a

T

d

a

c

b

s

s

“

o

(

a

p

i

i

e
Best 50%” method is faster than the “Best” method by a factor of

.5 when the solution times of the two methods are compared on

he instances that both of them could solve.

.2.2. Introduction of the speed-up

When the speed-up is included, denoted by an A after the

ethod’s name, 6 out of 10 methods perform faster. Furthermore,

he methods require fewer iterations and the pricing problem is

olved less often, but this comes at the expense of having more

olumns. The results of the speed-up can be found in Table 5 .

The best results are obtained with the “BestA 25%” or the “Sin-

leSA” method. The “SingleSA” method is significantly faster than

he “BestA 25%” method for the instances that are solved by both

trategies, but “SingleSA” has a larger failure rate. These two strate-

ies are followed by the “InterleavedA” method. The inferior per-

ormance of the “SingleKA” method is as expected. The reason is

hat the pricing problem already considers all scenarios for a spe-

ific knapsack, while the speed-up again considers all scenarios

or the same knapsack. This means that we can generate a maxi-

um of | S| · (| S| − 1) columns for the same knapsack per iteration.

n explanation for the poor performance for the “Best 50%”, “Best

5%” and “All” strategies is that they produce many columns of in-

erior quality (lower reduced costs) per iteration. For each of those

olumns, | S| − 1 additional columns are generated, which are ex-

ected to be of inferior quality, too. Consequently, focusing on good

high reduced costs) columns becomes more important, when the

peed-up is used.

Comparing the solution time of the strategies is not straightfor-

ard due to the unsolved instances. However, we can compare two

trategies with each other by taking the average time over the in-

tances that are solved for both strategies. If we compare the “Best

5%” and “BestA 25%” methods in this way then we find an aver-

ge time of 1870 ms for the “Best 75%” method and 1461 ms for

he “BestA 25%” method, which is an improvement by a factor of

.3. Furthermore, there is also a decrease of 1.3 percentage point

n the failure rate. “BestA 25%” performs better than “Best” by a

actor of 5.4 for the instances that are solved by both strategies.

We further tweak the “Best k ” method by considering more

ossibilities for k than just multiples of 25% times m · | S |. Next

o varying the percentage with a step size of multiples of 5%, we

est variants of “Best k ” in which the number of columns that can

e added is a function of either the number of scenarios | S | or the

umber of knapsacks m . We denote this method by putting this

umber after the name of the method; for example “BestA 2 m ”

ndicates that we are allowed to add the best 2 m columns per it-

ration in method “BestA”.

To save space, we do not show the tables. The best result for

he methods where we varied the percentage is “BestA 5%” with

n average solution time of 4354 ms, where 3.6% of the instances

ailed. The best result for the methods “Best k ”, where k is a func-

ion of the number of knapsacks is the “Best 2 m ” method, with

n average solution time of 3621 ms and a failure rate of 2.6%.
ompared to the “Best 25%” method, which performed the best be-

ore this additional optimization, this is a significant improvement

Wilcoxon p = 2 . 2 e −16) by a factor of 1.5. Furthermore the failure

ate decreases by 2%.

Using the number of scenarios to decide how many columns

ay be added per iteration gives poor results relative to using the

umber of knapsacks. A possible explanation for this phenomenon

s the following. We assume that using the number of knapsacks

orks well, because of the combination with the speed-up. Re-

ember that for each column, the speed-up generates the columns

or the other | S| − 1 scenarios, and hence we always add at most

 · m · | S | columns. Similarly, when using the number of scenarios

s a guide we add a maximum of k · | S | 2 columns. Consequently,

hen using the number of knapsacks we always add a number of

olumns relative to the minimum number of columns needed for

 solution, which is not the case when the scenarios are used.

.2.3. Influence of the number of scenarios, items, and knapsacks on

he methods

We also test the impact of the number of scenarios, knapsacks

nd items. For this experiment, we used the large varied test set

rom Section 4 , with 8400 instances. We varied k in the method

BestA k ” between 0.5 and 4 times the number of knapsacks, and

sed “BestA”, “BestA 5%”, “BestA 10%”, “BestA 20%,” “BestA 50%”,

nd “AllA” for comparison.

The average results for the large test set can be found in

able 6 .

We see that the methods that use the number of knapsacks to

etermine the maximum number of allowed columns per iteration

lso work better for the larger test set than adding a preset per-

entage. The “BestA 2.5 m ” method solves the instances the fastest,

ut “Best 3 m ” is very close.

The results where we exclude the instances with fewer than 50

cenarios from the results (354 instances, 21.5 items and 7.3 knap-

acks on average), can be found in Table 7 .

When we only look at the results with 50 or more scenarios,

BestA 1.5m” has the best performance, instead of “BestA 2.5m”

r “BestA 3m”. When we take the set with 100 scenarios or more

123 instances) “BestA 0.5 m ” performs the best.

To test this hypothesis further, we generate 10 instances with

n average number of 300 scenarios (range 202–467), where we

urposefully keep the number of items and knapsacks small (6

tems and 3 knapsacks). These instances may seem small, but these

nstances have 900 possible pricing problems per iteration on av-

rage. The pricing problems can be solved quickly, since only a few

134 D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139

Table 8

Results for additional instances with many scenarios.

Iterations Columns Pricing Time (ms.)

BestA 25 .1 8095 25834 2759

BestA 0 .5 m 13 .5 8360 15631 2264

BestA m 10 .5 12367 15306 4328

BestA 2 m 9 .3 18370 18116 8488

Table 9

Results on larger test set with ≥ 25 items.

Method Iterations Columns Pricing Time (s) Fail %

BestA 1 .5 m 29 .6 3097 .3 2342 .3 37 .0 53 .1

BestA 2 m 26 .7 3563 .0 2292 .4 36 .6 52 .3

BestA 2 .5 m 25 .5 3772 .8 2195 .1 36 .3 52 .1

BestA 3 m 24 .4 4088 .9 2184 .1 36 .1 51 .3

BestA 4 m 23 .5 4874 .5 2318 .0 36 .0 50 .2

f

T

t

b

f

i

“

t

t

t

f

“

r

s

s

t

6

(

O

n

k

i

t

i

i

t

t

c

w

m

t

h

s

c

t

n

s

s

s

p

l

o

s

c

w

c

s

t

e

w

items are available, making these instances excellent for testing the

influence of the number of scenarios on the methods. The results

can be found in Table 8 .

These results indicate that the more scenarios there are for an

instance, the more important it becomes to add good columns. Fur-

thermore, we note that even though these instances have 300 sce-

narios and 900 possible pricing problems per iteration, they are

solved quickly.

We did similar experiments to test the influence of the number

of items and knapsacks. Since the time needed to solve the pric-

ing problem heavily depends on the number of items, it is prefer-

able to limit the number of times the pricing problem is solved for

instances with a large number of items. Consequently, we expect

that the more items the instances have, the more columns will be

added per iteration. The results for the subset of instances with 25

or more items (639 instances), which have 7.3 knapsacks and 29.8

scenarios on average, can be found in Table 9 .

The “BestA 4 m ” method has the smallest computation time for

these instances and has the fewest failures, supporting our hypoth-

esis. However, it solves the pricing problem more often on average

than the other methods do. We think that this is due to the fact

that this method solves many large instances that the other meth-

ods could not solve.

We created a test set with many items, namely 100 items, 3

knapsacks and 3 scenarios, to test the influence of the number of

items. However, as the computation time grows exponentially with

the number of items, only 3 out of the 10 instances could be solved

within an hour. Therefore, we decided not to show these results.

For non trivial instances it is necessary to increase the number of

items, when increasing the number of knapsacks. Consequently, we

could not do similar experiments for a large number of knapsacks

as the instances became too large to be solved within an hour.

5.3. Experiments for the SRD formulation

Based on the experimental results obtained in the previous sub-

section for the CRD formulation, we decided not to test all our

methods, but just the ones that performed reasonably well for

the CRD formulation. Therefore, we only test the methods “Inter-

leaved”, “Best”, “Best 0.5 m ”, “Best m ”, “Best 2 m ”, “Best 3 m ” and

“All”. We apply the speed-up defined in Section 5 in two different

ways. In speed-up I we generate additional columns for the ini-

tial knapsacks only, whereas in speed-up A we generate additional

columns for both the initial knapsacks and for all scenarios.

We first performed some initial experiments to further limit the

methods that were tested extensively. For these initial experiments

we took 420 instances from the large test set (8400 instances)
rom Section 4.4 and we set the maximum solution time at 1 min.

he results are found in Table 10 .

The “BestI 3 m ” method performed the best and “Interleaved”

he worst. When considering only the instances that are solved by

oth formulations, “BestI 3 m ” runs faster than “Interleaved” by a

actor of 11.1. On the basis of the results obtained on these 420

nstances, we selected the methods “AllI”, “BestI m ”, “BestI 2 m ”,

BestI 3 m ”, “BestA 0.5 m ” and “BestA m ” for our extensive compu-

ational tests, in which we solve all 8400 instances from the large

est set. The results can be found in Table 11 .

On the basis of solution time and failure rate we conclude that

he best method for the SRD formulation is the “BestI 3 m ” method,

ollowed by the “BestI 2 m ” method. The solution times for the

BestI 3 m ” method are, according to the paired Wilcoxon signed-

ank test (with a p-value of 0.01967), significantly better than the

olution times for the “BestI 2 m ” method for the instances that are

olved by both methods. We compare the SRD and CRD formula-

ions extensively in Section 7 .

. Branch-and-Price optimization

To find an optimal integer solution we apply branch-and-price

Barnhart et al. 1998) , which is a special case of branch-and-bound.

ur branching strategy is to choose an item and create m + 1

odes, which correspond to the decision of assigning the item to

napsack i (i = 1 , . . . , m) or exclude it from all knapsacks. Exclud-

ng an item from all knapsacks means that it cannot be in any ini-

ial filling and hence not in any recovery filling. If we include the

tem in a knapsack, then we have to use it initially and it can be

n the recovery solution of the knapsack. An upper bound is ob-

ained from the LP-relaxation, which is solved by column genera-

ion at each node. It is possible that our solution contains duplicate

olumns within the nodes of the branch-and-bound tree, because

e add additional columns outside the pricing problem. We re-

ove these duplicate columns, just before the child nodes inherit

hem. We derive an initial lower bound using the following greedy

euristic that is based on the outcome of the LP-relaxation. We

ort the items in descending re v enue
weight

order and the knapsacks in as-

ending size. We add item j ∈ N to knapsack i ∈ M if x ij > 0.5 in

he solution of the LP-relaxation and when adding the item does

ot violate the knapsack size. The remaining space in the knap-

acks is filled by adding the remaining items greedily to the knap-

acks, while keeping the total weight of the items for every knap-

ack smaller than or equal to the knapsack size.

Again we start with optimizing the CRD formulation. The ex-

eriments are done on the first 500 of the 8400 instances of the

arge test set introduced in Section 4.4 . This subset differs from the

ne with 420 instances used in Section 5.3 to avoid tailoring on a

mall fixed set. Because we solve the ILP instead of the LP, we in-

reased the time limit from 1 to 5 min. For our initial experiments

e employ a depth-first strategy.

Our first experiment is to test whether the order in which we

onsider the knapsacks in our branching rule matters. The conclu-

ion is that the differences are not significant, except for the option

o exclude the item from all knapsacks, which should be consid-

red as their last option. Next, we test the impact of the order in

hich we consider the items. We test the following options:

• Sort the items in order of ascending/descending weight.
• Sort the items in order of ascending/descending revenue.
• Sort the items in order of ascending/descending re v enue

weight
ratio.

• Sort the items on the basis of the x values from the LP-

relaxation, where the x value for an item i is defined as max j x ij ;

the items are then sorted in order of ascending/descending x

value, and in order of ascending | x − 0 . 5 | value.

D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139 135

Table 10

The effect of the speed-ups on the results for the column generation SRD formulation.

Normal Speed-up I Speed-up A

Time (ms.) Fail % Time (ms.) Fail % Time (ms.) Fail %

Interleaved 6271 .5 8 .1 5173 .6 6 .4 6706 .3 8 .6

Best 6357 .6 7 .9 4267 .3 5 .2 3437 .6 3 .3

All 3174 .9 3 .3 2638 .5 2 .6 6620 .3 8 .6

Best 0 .5 m 4753 .0 6 .0 3022 .3 3 .3 2955 .3 2 .9

Best m 4164 .5 4 .8 2804 .1 2 .9 3004 .6 2 .9

Best 2 m 4164 .5 4 .8 2528 .1 2 .6 3284 .4 3 .3

Best 3 m 3381 .9 3 .6 2457 .7 2 .1 3603 .0 3 .3

Table 11

Average results for the methods for all 8400 instances for the SRD formu-

lation.

Method Iterations Columns Pricing Time (ms.) Fail%

AllI 15 .6 1627 .8 1264 .9 2593 .7 2 .4

BestI m 28 .2 906 .3 3852 .6 2722 .9 2 .8

BestI 2 m 20 .9 1056 .1 2789 .0 2534 .6 2 .4

BestI 3 m 18 .8 1176 .4 2351 .1 2367 .0 2 .1

BestA 0 .5 m 26 .6 1473 .4 2325 .2 3059 .8 3 .1

BestA m 18 .2 1743 .1 1487 .7 2992 .3 3 .0

n

n

u

f

b

t

f

t

s

r

a

f

d

b

e

o

e

m

a

T

b

d

s

a

s

s

o

7

7

t

r

p

s

t

s

f

t

o

r

q

s

3

f

s

5

i

c

s

t

s

c

r

a

c

o

n

g

c

a

t

s

F

w

1

f

s

t

t

o

s

i

p

c

e

s

t

c

i

s

s

We call the latter ordering the most infeasible branching from

ow on. The best three methods and the method in which we do

ot sort (ascending index) can be found in Table 12 . In the col-

mn ‘snode’ we report the node in which the optimum solution is

ound, where we average over all instances that could be solved.

Compared to sorting in ascending index order, we see that the

est three sorting methods have fewer iterations, columns, calls

o the pricing problem, and nodes, whereas the solution node is

ound earlier. These are all indications that using one of those

hree ways to sort is a good idea. Sorting the items in order of de-

cending revenue seems to be the best both in time and in failure

ate. This method has more iterations, calls to the pricing problem

nd nodes than the other methods, which can be explained by the

act that the additional instances that this method solves are more

ifficult.

Furthermore, we compare the depth-first strategy with the

readth-first and a best bound strategy. For the best bound strat-

gy, we first calculate all the upper bounds of the children, instead

f doing this when we expand the child. The node we choose to

xpand is the node with the highest upper bound. It provides the

ost space for improvement and, in this way, we hope to find

 better lower bound that will prune many unevaluated nodes.

he depth-first strategy turns out to perform best. Therefore, our

ranching strategy is depth-first search, where we sort items in

escending revenue, and where excluding the item from all knap-

acks is our last option.

For the SRD formulation we have tested the branch-and-price

lgorithm in a similar way. The conclusion is that depth-first

earch, in combination with excluding the item from each knap-

ack as last option, and sorting the items in the most infeasible

rder is the best strategy.

. Comparison of the two formulations

.1. Comparison of the two formulations for the LP-relaxation

We use the large test set from Section 4.4 with 8400 instances

o compare the CRD and SRD formulations while solving the LP-

elaxation. For both formulations we use the solution method that

erformed best in the experiments of Section 5 . The results are

hown in Table 13 .
The SRD formulation has an easier pricing problem, but it has

o solve it more often than the CRD formulation. Furthermore, the

olution value of the LP-relaxation is higher than that of the CRD

ormulation in 47.4% of the cases, and it finds an integer solu-

ion less often. The quality of the LP-relaxation and non-integrality

f its solution have no effect on the solution time of the LP-

elaxation, but it will have a negative influence on the time re-

uired to solve the ILP formulation. The average time to find the

olution for the instances that are solved in both formulations is

.4 times faster for the SRD formulation (544 ms) than for the CRD

ormulation (1869.6 ms), which is significantly better (Wilcoxon

p = 2 . 2 e −16). Furthermore, the SRD formulation solves more in-

tances than the CRD formulation, with a failure rate of 2.1% versus

.3%.

We continue by comparing the formulations with respect to the

mpact of the number of scenarios, knapsacks and items on the

omputational performance. To test the effect of the number of

cenarios, we group the instances in subsets by defining a range for

he number of scenarios; the range is chosen such that each sub-

et contains at least 100 instances, except for the last one, which

ontains only 18 instances. After solving the instances, we plot the

esults for each subset in Fig. 1 , where one axis corresponds to the

verage number of scenarios in the subset, whereas the other axis

orresponds to the average solution time. Since we consider a lot

f different combinations of number of items, knapsacks, and sce-

arios, Fig. 1 would have been a cloud of data points without the

roupings, from which it would have been hard to draw any con-

lusions. Furthermore, we show in Fig. 1 that the solution times

nd the failure rates for the SRD formulation are consistently bet-

er than for the CRD formulation, irrespective of the number of

cenarios.

Next, we consider the influence of the number of knapsacks. In

ig. 2 we show the results. Here we group together the instances

ith an equal number of knapsacks, where each group contains

200 instances. In this figure, we indicate the average time and

ailure rate per group for both methods; each such point corre-

ponds to 1200 instances. Despite the fact that the SRD formula-

ion has m constraints and columns more than the CRD formula-

ion, the SRD formulation performs consistently better, irrespective

f the number of knapsacks (Fig. 2).

We also investigate the effect of the number of items. The re-

ults are depicted in Fig. 3 . Each point corresponds to at least 90

nstances with an equal number of items. The results are as ex-

ected: the more items, the better the SRD formulation performs

ompared to the CRD formulation.

The last test is done on an instance set with 10 randomly gen-

rated instances with exactly 100 items and 3.0 knapsacks, and 2.1

cenarios on average. The CRD formulation is only able to solve

hree of the ten instances within one hour. The SRD formulation

an solve all these instances and is faster by a factor 94.6 for the

nstances they both solved. The SRD formulation is even able to

olve 4 out of 5 instances with up to 200 items (3 knapsacks, 3

cenarios) within an hour.

136 D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139

Table 12

The best three results of item sorting compared to sorting them in ascending index.

Sort Iterations Columns Pricing Nodes snode Time (sec.) Fail%

Ascending index 4171 .8 291255 .8 71594 .8 841 .9 621 .4 93 .4 10 .0

Most infeasible 1949 .0 188481 .2 47518 .6 329 .7 172 .3 80 .4 8 .2

Descending weight 1679 .0 233156 .7 33962 .1 299 .9 200 .6 76 .4 7 .8

Descending revenue 2297 .8 215708 .6 48719 .7 451 .0 180 .9 74 .1 7 .0

Table 13

Results for solving the LP-relaxation for the large test set with the CRD and SRD formulations.

Method Iterations Columns Pricing Integer % Time (ms) Fail %

CRD: BestA 2 .5 m 13 .2 1767 .1 1304 .5 55 .7 4994 5 .3

SRD: BestI 3 m 18 .8 1176 .4 2351 .1 39 .4 2367 2 .1

200 400 600

0

2

4

6

8

·104

Scenarios

T
im

e
(m

s)

CRD
SRD

200 400 600

0

50

100

150

Scenarios

Fa
ilu

re
ra

te
in

%

CRD
SRD

Fig. 1. Solution time and failure rate in % for the CRD and SRD formulations per scenario.

2 4 6 8

0

1

2

·104

Knapsacks

T
im

e
(m

s)

CRD
SRD

2 4 6 8

0

10

20

30

Knapsacks

Fa
il

%

CRD
SRD

Fig. 2. Solution time and failure rate in % for the CRD and SRD formulations per knapsack.

Table 14

Results for the CRD and SRD formulations for the structured test set.

Method LP time (s) Integer % Nodes ILP time (sec.) Fail %

CRD BestA 2 .5 m 31 .1 61 .6 675 .3 103 .8 34 .5

SRD BestI 3 m 12 .8 38 .0 1821 .3 123 .6 41 .1

s

L

s

S

s

a

f

f

v

t

(

t

We can conclude that the SRD formulation performs better than

the CRD formulation for solving the LP-relaxation.

7.2. Comparison of the two formulations for finding the integer

solution

Finally, we test the performance of the SRD and CRD formu-

lations when using branch-and-price to solve the integer prob-

lem. For testing, we use the structured test set mentioned in

Section 4.4 , with a maximum solution time of 300 s. The results

of this test can be found in Table 14 .

As before, the SRD formulation outperforms the CRD formu-

lation for the LP-relaxation: the SRD formulation solves the in-
tances 2.4 times faster than the CRD formulation. However, the

P-relaxation of the CRD formulation is integral for 61.6% of the in-

tances, whereas this holds for only 38.0% of the instances for the

RD formulation. The number of nodes for the CRD formulation is

maller by a factor of 2.7, solving the ILP is faster by a factor of 1.2,

nd the ILP time is a factor 1.2 faster when compared to the SRD

ormulation. In addition, the CRD formulation has fewer columns,

ewer iterations, and a smaller failure rate of 28.5% (814 instances)

ersus 34.8% (995 instances). However, the difference in solution

ime between the instances that are solved by both formulations

62.5%) is not significant according to the Wilcoxon signed-rank

est (p = 0 . 72).

D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139 137

5 10 15 20 25 30

0

2

4

6
·104

Items

T
im

e
(m

s)

CRD
SRD

5 10 15 20 25 30

0

20

40

60

80

Items

Fa
il

%

CRD
SRD

Fig. 3. Solution time and failure rate in % for the CRD and SRD formulations per item.

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

Knapsacks

Fa
il

%

SRD
CRD

Fig. 4. Failure rate in % per number of knapsacks per method.

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

Knapsacks

T
im

e
(s

ec
.)

SRD
CRD

Fig. 5. Time in seconds per number of knapsacks for the SRD and CRD formulations.

e

n

n

n

a

S

i

p

f

t

t

i

C

k

t

i

l

b

o

s

a

p

m

a

f

I

m

s

s

o

i

r

p

i

r
Next, we compare the different formulations on instance prop-

rties such as the number of scenarios, knapsacks, and items. We

otice that the CRD formulation has fewer failures, uses fewer

odes on average, and finds the solution faster, irrespective of the

umber of scenarios and items.

With respect to the knapsacks, the CRD formulation also gener-

tes fewer nodes on average. However, it should be noted that the

RD formulation performs better than the CRD formulation on the

nstances with up to four knapsacks, while the CRD formulation

erforms better with more than four knapsacks. Fig. 4 depicts the

ailure rates for both formulations, while Fig. 5 depicts the solution

ime in seconds for the instances that both formulations were able

o solve.

For the instances with only one knapsack, the SRD formulation

s 10.2 times faster, while for the instances with 11 knapsacks the

RD formulation is 3.7 times faster. We can conclude that the more

napsacks the better the CRD formulation performs compared to

he SRD formulation. In Table 15 we compare the percentage of

nstances for which the LP-relaxation is solved with an integer so-

ution, the average and maximum integrality gap, and the num-
er of nodes for the CRD and SRD formulations for every number

f knapsacks. We only consider instances that both formulations

olved, and the ILP gap is defined as
Z LP
Z ILP

, i.e. the ratio of the LP

nd ILP value.

For the instances that are solved within 300 s, both decom-

osition formulations have very small integrality gaps: the maxi-

um gaps are 1.086 and 1.139, while the average gaps are 1.004

nd 1.008 for the CRD and SRD formulation, respectively. The CRD

ormulation performs consistently better than the SRD formulation.

rrespective of the number of knapsacks the CRD formulation finds

ore integral solutions for the LP-relaxation for the structured test

et, the integrality gap is smaller, and it needs fewer nodes. Con-

equently, the integrality gap cannot cause the CRD formulation to

utperform the SRD formulation when the number of knapsacks

ncreases, and therefore we conclude that there must be another

eason for this phenomenon.

The most logical explanation for it is the complexity of the

ricing problem; recall that the SRD pricing problem is solved

n O(min (n · b i , 2
n)) time, whereas that of the CRD formulation

equires O(min (n · b i , 2
n)) for the knapsacks with unaltered size,

138 D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139

Table 15

The effect of the number of knapsacks on the integer % and ILP gap.

CRD formulation SRD formulation

Knapsacks Integer % ILP gap Max gap Nodes Integer % ILP gap Max gap Nodes

all 61 .4 1 .004 1 .086 696 .9 38 .1 1 .008 1 .139 1235 .6

1 99 .4 1 .0 0 0 1 .006 0 .1 62 .3 1 .001 1 .017 15 .5

2 58 .1 1 .005 1 .047 534 .6 32 .1 1 .006 1 .047 358 .3

3 50 .0 1 .007 1 .086 576 .9 40 .3 1 .008 1 .094 247 .8

4 45 .3 1 .007 1 .068 846 .2 32 .1 1 .011 1 .139 1298 .8

5 54 .8 1 .004 1 .029 615 .7 38 .4 1 .008 1 .072 939 .4

6 57 .6 1 .006 1 .079 862 .5 37 .1 1 .010 1 .108 1190 .1

7 61 .6 1 .004 1 .037 1727 .9 37 .1 1 .007 1 .074 4094 .9

8 65 .9 1 .004 1 .047 889 .9 29 .6 1 .010 1 .079 1866 .6

9 59 .8 1 .004 1 .061 764 .3 34 .6 1 .009 1 .103 2566 .5

10 62 .2 1 .004 1 .054 638 .7 25 .8 1 .010 1 .060 445 .0

11 62 .9 1 .003 1 .038 471 .4 28 .3 1 .008 1 .064 1368 .1

12 63 .5 1 .004 1 .040 232 .0 30 .2 1 .009 1 .093 371 .6

Table 16

Results larger instances CRD and SRD formulations, with the time expressed

in minutes.

Method LP time (min.) Nodes ILP time (min.) Fail %

CRD BestA 2 .5 m 4 .0 40081 43 .8 63 .0

SRD BestI 3 m 1 .1 37803 47 .0 73 .2

t

s

8

g

s

s

t

1

f

t

e

o

t

t

t

w

e

f

b

l

a

t

L

i

o

i

S

i

w

f

F

t

p

t

t

b

C

e

t

t

t

t

p
and O(min (n · b s
i
· b i , 3

n)) for the knapsacks that decrease in size.

Monte Carlo simulations show that for a small number of knap-

sacks the fraction of hard pricing problems (O(min (n · b s
i
· b i , 3

n)))

is larger. When m = 1 there is only a difficult pricing problem,

when m = 2 we have that 77% of the pricing problems are hard,

when m = 3 , 4 , 5 this is approximately 69%, 66%, 65% respectively.

When m increases further the number of hard pricing problems

is approximately 64%. Furthermore, the average knapsack size be-

comes smaller when m increases to avoid trivial problems.

7.3. Results for larger instances

To gain more insight in how the formulations solve more dif-

ficult instances, we consider the instances with 25 items from

the structured test set and we allow a maximum solution time

of 60 min. This subset consists of 127 instances, with 7 knap-

sacks and 41.9 scenarios on average. Both formulations are able to

solve the LP-relaxation for all instances. The results can be found

in Table 16 .

The SRD method solves the LP-relaxation faster than the SRD

formulation, but the CRD formulation solves the ILP faster and

more instances get solved. Because there are only 26 instances that

are solved by both formulations, it is hard to make any conclu-

sions about the number of nodes, iterations and columns of both

formulations. For example the LP-relaxation of the CRD method is

stronger, but it still uses more nodes on average for the instances

it solves. The reason is that the CRD formulation is able to solve

larger (and more) instances than the SRD formulation. These larger

instances require more nodes to solve, which increases the average.

For the instances that are solved by both formulations, the SRD

formulation surprisingly performs faster (43.2 min vs 51.4 min).

However, based on the failure rate the CRD formulation performs

better.

The reason why so few instances (20.5%) are solved by both

methods, is that each method is best suited for different types

of instances. Again we make a distinction based on the num-

ber of knapsacks. For the instances with only one knapsack, the

SRD formulation performs more than 300 times faster (0.02 ver-

sus 6.3 min), while for 5 knapsacks and more the CRD formula-
ion performs a bit faster and has fewer failures. These results are

hown in Fig. 6 .

. Final remarks

In this paper, we introduce several column generation strate-

ies and different clever ways to generate additional columns out-

ide of the pricing problem. Optimizing the combination of these

trategies appears to be very important for the SMKP. It decreases

he solution time by a factor of 10.5, and the failure percentage by

1.3 points for the CRD formulation (small test set). For the SRD

ormulation, it decreases the solution time by factor of 11.1 and

he failure percentage by 6.0 points (large test set). Based on our

arlier paper (van den Akker et al. 2016) , we expected this kind

f results for the CRD formulation, but we show that it improves

he SRD formulation in a comparable manner too. Producing addi-

ional columns for each generated column decreases the solution

ime for the SRD formulation, but we obtain better results when

e only generate additional columns for the initial columns. We

xpect that the technique of creating additional columns will work

or most or even all problems that have a discrete set of scenarios,

ut this may depend on the recovery algorithm.

In terms of solution time for the LP-relaxation, the SRD formu-

ation outperformed the CRD formulation by a factor of 3.4, and

 decrease in failure percentage of 3.2 points for the structured

est set. On the other hand, however, the optimum solution of the

P-relaxation of the CRD formulation was integral for 55.7% of the

nstances, whereas for the SRD formulation this was the case for

nly 39.4% of the instances. For the integer linear program, more

nstances were solved with the CRD formulation than with the

RD formulation (71.5% versus 65.2%). However, there is no signif-

cant difference between the solution times for the instances that

ere solved by both. For the number of knapsacks, there is a per-

ormance difference between the CRD and the SRD formulation.

or four or fewer knapsacks, the SRD formulation performs bet-

er, while for five or more knapsacks, the CRD formulation is su-

erior. For the instances with only one knapsack, the SRD formula-

ion is 10.2 times faster, while for the instances with 11 knapsacks,

he CRD formulation is 3.7 times faster. No such differences can

e found for the number of scenarios and items; in all cases the

RD formulation appears to perform better. This is in line with our

arlier result that the performance is knapsack related.

The CRD formulation has a stronger LP-relaxation and more in-

eger solutions. However, the number of knapsacks appears to be

he main factor that determines which formulation is computa-

ionally better for the SMKP. The most logical explanation for it is

he complexity of the pricing problem. For the SRD formulation the

ricing problem is solved in O(min (n · b , 2 n)) time, whereas that
i

D.D. Tönissen et al. / Computers and Operations Research 83 (2017) 125–139 139

2 4 6 8 10 12
0

20

40

60

80

Knapsacks

T
im

e
(m

in
.)

ILP time SRD
ILP time CRD

2 4 6 8 10 12
0

50

100

150

Knapsacks

Fa
il

%

Fail % SRD
Fail % CRD

Fig. 6. Solution time in minutes and failure rate in % for the CRD and SRD formulations per knapsack.

o

s

s

a

l

a

p

6

c

t

b

t

s

M

n

b

i

F

s

b

e

t

m

e

a

T

B

m

p

A

w

r

a

R

A

B

B

B

B

B

C

C

C

C

D

F

G

G

H

K

K

K

K

K

K

L

L

M

M

M

P
f the CRD formulation requires O(min (n · b i , 2
n)) for the knap-

acks with unaltered size, and O(min (n · b s
i
· b i , 3

n)) for the knap-

acks that decrease in size. Monte Carlo simulations show that for

 small number of knapsacks the fraction of hard pricing prob-

ems (O(min (n · b s
i
· b i , 3

n))) is larger. When m = 1 there is only

 difficult pricing problem, when m = 2 we have that 77% of the

ricing problems are hard, and this converges to approximately

4% when m increases. Furthermore, the average knapsack size be-

omes smaller when m increases to avoid trivial problems.

We expect that larger instances can be solved by employing

echniques to prune more nodes in the branch-and-bound tree and

y using parallelization. The nodes in the branching tree often con-

ain symmetry, which is especially the case when there are knap-

acks with the same size or items with the same weight and size.

ethods that exploit this symmetry can be used to prune more

odes. It may also be possible to exploit the dominance relations

etween different items. Furthermore, there is considerable overlap

n the pricing problems, especially when the scenarios are similar.

inding a way to exploit this overlap is expected to decrease the

olution time considerably. We did not implement parallelization

ecause we focused on the properties of the formulation. How-

ver, all columns at an iteration are independent of each other and

herefore can be calculated at the same time.

Another option to investigate is heuristic methods. If a greedy

ethod is used such as removing the items in order of their rev-

nue or revenue to weight ratio, then we can calculate the initial

nd all scenario knapsack fillings within a single pricing problem.

his method is described in Section 5.3.4. of the Masters’ thesis of

ouman (2011) for the single two-stage stochastic knapsack. This

ethod can easily be adapted to multiple knapsacks and we ex-

ect that it will solve our instances faster.

cknowledgments

We thank Joachim Arts for proofreading this paper. We further

ant to thank the Area Editor Jean-Yves Potvin and the anonymous

eferees for their thorough reading and their helpful comments on

n earlier version of the paper; this has really improved the paper.

eferences

kker, J.M. , Bouman, P. , Hoogeveen, J. , Tönissen, D. , 2016. Decomposition ap-

proaches for recoverable robust optimization problems. Eur. J. Oper. Res. 251
(3), 739–750 .

arnhart, C. , Johnson, E. , Nemhauser, G. , Savelsbergh, M. , Vance, P. , 1998.

Branch-and-price: column generation for solving huge integer programs. Oper.
Res. 46, 316–329 .
P
halgat, A. , Goel, A. , Khanna, S. , 2011. Improved approximation results for stochastic

knapsack problems. In: Proceedings of the Twenty-Second Annual ACM-SIAM

Symposium on Discrete Algorithms. SIAM, pp. 1647–1665 .
ouman, P. , 2011. A Column Generation Framework for Recoverable Robustness. De-

partment of Information and Computing Sciences, Utrecht University Master’s
thesis .

üsing, C., Koster, A., Kutschka, M., 2011a. Recoverable Robust Knapsacks: �-
Scenarios. In: Pahl, J., Reiners, T., Voß, S. (Eds.). Lecture Notes in Computer Sci-

ence, Network Optimization, 6701 doi: 10.1007/978- 3- 642- 21527- 8 _ 65 .

üsing, C. , Koster, A. , Kutschka, M. , 2011b. Recoverable robust knapsacks: the dis-
crete scenario case. Optim. Lett. 5, 379–392 .

acchiani, V. , Caprara, A. , Galli, L. , Kroon, L. , Maróti, G. , 2008. Recoverable robustness
for railway rolling stock planning. OASIcs-OpenAccess Series in Informatics, 9.

Schloss Dagstuhl-Leibniz-Zentrum für Informatik .
arraway, R. , Schmidt, R. , Weatherford, L. , 1993. An algorithm for maximizing tar-

get achievement in the stochastic knapsack problem with normal returns. Naval

Res. Logist. (NRL) 40 (2), 161–173 .
hen, K. , Ross, S. , 2014. An adaptive stochastic knapsack problem. Eur. J. Oper. Res.

239 (3), 625–635 .
icerone, S. , DAngelo, G. , Di Stefano, G. , Frigioni, D. , Navarra, A. , Schachtebeck, M. ,

Schöbel, A. , 2009. Recoverable robustness in shunting and timetabling. In: Ro-
bust and Online Large-Scale Optimization. Springer, pp. 28–60 .

ean, B.C. , Goemans, M.X. , Vondrák, J. , 2008. Approximating the stochastic knapsack

problem: the benefit of adaptivity. Math. Oper. Res. 33 (4), 945–964 .
ukunaga, A. , 2011. A branch-and-bound algorithm for hard multiple knapsack prob-

lems. Ann. Oper. Res. 184, 97–119 .
aivoronski, A. , Lisser, A. , Lopez, R. , Xu, H. , 2011. Knapsack problem with probability

constraints. J. Global Optim. 49 (3), 397–413 .
oel, A. , Indyk, P. , 1999. Stochastic load balancing and related problems. In:

Foundations of Computer Science, 1999. 40th Annual Symposium on. IEEE,
pp. 579–586 .

enig, M. , 1990. Risk Criteria in a Stochastic Knapsack Problem. Oper. Res. 38 (5),

820–825 .
ellerer, H. , Pferschy, U. , Pisinger, D. , 2004. Knapsack Problems. Springer .

leinberg, J. , Rabani, Y. , Tardos, É. , 20 0 0. Allocating bandwidth for bursty connec-
tions. SIAM J. Comput. 30 (1), 191–217 .

leywegt, A. , Papastavrou, J. , 2001. The dynamic and stochastic knapsack problem
with random sized items. Oper. Res. 49 (1), 26–41 .

osuch, S. , 2014. Approximability of the two-stage stochastic knapsack problem

with discretely distributed weights. Discrete Appl. Math. 165, 192–204 .
osuch, S. , Lisser, A. , 2010. Upper bounds for the 0–1 stochastic knapsack problem

and a b&b algorithm. Ann. Oper. Res. 176 (1), 77–93 .
osuch, S. , Lisser, A. , 2011. On two-stage stochastic knapsack problems. Discrete

Appl. Math. 159 (16), 1827–1841 .
i’ang, Z. , Suyun, G. , 1986. Complexity of the 0/1 multiple knapsack problem. J.

Comput. Sci. Technol. 1, 46–50 .

iebchen, C. , Lübbecke, M. , Möhring, R. , Stiller, S. , 2009. The concept of recoverable
robustness, linear programming recovery, and railway applications. In: Robust

and Online Large-Scale Optimization. In: Lecture Notes in Computer Science,
5686. Springer Berlin Heidelberg, pp. 1–27 .

artello, S. , Toth, P. , 1980. Solution of the zero-one multiple knapsack problem. Eur.
J. Oper. Res. 4 (4), 276–283 .

artello, S. , Toth, P. , 1981. A bound and bound algorithm for the zero-one multiple

knapsack problem. Discrete Appl. Math. 3, 275–288 .
orton, D. , Wood, R. , 1998. On a stochastic knapsack problem and generalizations.

In: Advances in Computational and Stochastic Optimization, Logic Programming,
and Heuristic Search. Springer, pp. 14 9–16 8 .

isinger, D. , 1999. An exact algorithm for large multiple knapsack problems. Eur. J.
Oper. Res. 114, 528–541 .

isinger, D. , 2004. Where are the hard knapsack problems? Comput. Oper. Res. 32,

2272–2284 .

http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0004
http://dx.doi.org/10.1007/978-3-642-21527-8_65
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30038-2/sbref0028

	Column generation strategies and decomposition approaches for the two-stage stochastic multiple knapsack problem
	1 Introduction
	2 Literature review
	3 The decomposition approaches
	3.1 The separate recovery decomposition formulation
	3.2 The combined recovery decomposition formulation
	3.3 Theoretical comparison

	4 Generating random test instances
	4.1 Generating the items
	4.2 Generating the knapsack sizes
	4.3 Generating the scenarios
	4.4 Our test sets

	5 Column generation strategies for solving the LP-relaxation
	5.1 Definition of strategies
	5.2 Experiments for the CRD formulation
	5.2.1 Initial assessment
	5.2.2 Introduction of the speed-up
	5.2.3 Influence of the number of scenarios, items, and knapsacks on the methods

	5.3 Experiments for the SRD formulation

	6 Branch-and-Price optimization
	7 Comparison of the two formulations
	7.1 Comparison of the two formulations for the LP-relaxation
	7.2 Comparison of the two formulations for finding the integer solution
	7.3 Results for larger instances

	8 Final remarks
	 Acknowledgments
	 References

