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Abstract

SelfSplit is a simple static mechanism to convert a sequential tree-search code
into a parallel one. In this paradigm, tree-search is distributed among a set of
identical workers, each of which is able to autonomously determine—without
any communication with the other workers—the job parts it has to process.
SelfSplit already proved quite e↵ective in parallelizing Constraint Program-
ming solvers. In the present paper we investigate the performance of SelfSplit
when applied to a Mixed-Integer Linear Programming (MILP) solver. Both ad-
hoc and general purpose MILP codes have been considered. Computational re-
sults show that SelfSplit, in spite of its simplicity, can achieve good speedups
even in the MILP context.

Keywords: parallel computing, enumerative algorithms, mixed-integer
programming, computational analysis

1. Introduction

Parallel computation uses multiple computing elements simultaneously in
order solve a given problem. As such, it usually requires breaking the original
task to be executed into smaller parts, that are solved independently and con-
currently by di↵erent workers. The obvious goal of a parallel algorithm is to be5

able to solve a given problem faster than its sequential counterpart; ideally, we
would like the parallel algorithm to scale linearly with the number of workers
that we assign to it.

Tree-search algorithms, as those used in mathematical and combinatorial
optimization, appear to be naturally and easily parallelizable, and indeed ex-10

periments with parallel branch-and-bound algorithms date back to the early
1970s, see for example [1]. The basic idea is that each worker is assigned a
subset of branch-and-bound nodes, so that the complete tree is split among

⇤Corresponding author
Email addresses: matteo.fischetti@unipd.it (Matteo Fischetti),

michele.monaci@unibo.it (Michele Monaci), domenico.salvagnin@unipd.it (Domenico
Salvagnin)

Preprint submitted to Computers and Operations Research January 11, 2018



the workers. However, it did not take long to realize that branch-and-bound is
only deceitfully easy to parallelize, and good scalability is in general very hard15

to achieve. An excellent and very recent overview of the current state of the
art with respect to solution of Mixed-Integer Programming (MIP) problems in
parallel is given in [2]. Parallelizing state-of-the-art MIP solvers in particular
appears to be extremely challenging, for many di↵erent reasons:

• Sophisticated solvers are in general inherently harder to parallelize, as20

they exploit a wide range of algorithmic techniques whose purpose is to
limit the size of the search tree. Most obviously, MIP solvers spend a large
amount of time in the shallowest nodes of tree, in particular at the root
node.

• MIP solver performance is very dependent on the order in which nodes in25

the tree are processed. Replicating such order in a parallel algorithm is
di�cult and requires additional coordination, that limits the scalability of
the method.

• The shape of the search tree is not known a-priori as the tree is constructed
dynamically. In addition, the shape of the tree can be considerably di↵er-30

ent from instance to instance and is, most of the times, unbalanced. This
poses additional challenges for balancing the workload among workers,
i.e., making sure they are all busy doing useful computations.

• MIP solvers collect and exploit a wide amount of global information, which
need to be shared among workers in order to avoid the parallel algorithm35

to perform redundant computations.

• MIP users often rely on the overall algorithm being deterministic, i.e., the
solver will produce the very same tree and solution when fed with the
same input data and run on the same hardware. This is harder to achieve
in general for parallel branch-and-bound codes, and requires additional40

coordination and synchronization, again at the expense of scalability.

Because of the above, load balancing (i.e., the strategy used to move data
around among workers to make sure that they are all busy doing useful work),
has been the subject of active research in the last decades. The two main ap-
proaches to load balancing for tree-search algorithms1 are static load balancing,45

in which information is moved only once at the very beginning of the algo-
rithm, and dynamic load balancing, in which information is moved throughout
the algorithm as needed.

1In a recently developed paradigm for parallel computations, MapReduce [3], the user
is required to define a map function to be applied to logical input “records” to produce
intermediate key/value pairs, and a reduce function to be applied to all objects that share
the same key. The method is mostly suited for applications with a very large input and
very predictable processing flow. As such, MapReduce is not a good candidate for tree-search
algorithms, and will not be discussed further in this paper.
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In a static load balancing scheme, each worker processes nodes independently
and reports the final result when done. If the initial assignment of nodes to50

workers is unbalanced, the scheme will not redistribute the work, and some
workers will stay idle until the whole process is done. The advantages of a
static scheme are simplicity and little communication. The downside is that
static schemes are in general less e�cient, as there is no recourse to the initial
assignment of workload even if it turns out to be uneven. Four di↵erent classes55

of static schemes are surveyed in [4], namely:

• Root initialization: One worker processes the initial part of the tree. Once
enough open nodes are generated, they are broadcasted to the other work-
ers for processing, according to some rules.

• Enumerative initialization: The root node is broadcasted to each worker,60

that then (redundantly) processes the initial part of the tree. When the
number of nodes equals the number of workers, the i-th worker keeps the
i-th open node and discard the rest.

• Selective initialization: The root node is broadcasted again to all workers.
Each worker then generates a single path from the root, and then enumer-65

ates the corresponding subtree. Note that this requires a sophisticated
scheme to ensure workers work on di↵erent parts of the tree without over-
lap and without missing any node (for correctness). This is the approach
proposed in [5].

• Direct initialization: Each worker directly creates a node from a certain70

depth of the tree, and then enumerates the corresponding subtree. This
is a viable approach only when the search tree structure is known in ad-
vance. A similar approach was recently proposed [6] to parallelize limited
discrepancy search (LDS, see [7]), where the leaves of the complete LDS
tree are deterministically assigned to the workers, and each worker pro-75

cesses a subtree only if it contains a leaf assigned to it.

The last two approaches (selective and direct initialization) cannot be eas-
ily added to a state-of-the-art MIP solver, if not at the expense of generating
very artificial (and thus potentially much worse than the sequential counterpart)
trees. For example, the shape of the tree usually depends on the nodes explored80

so far, and thus a näıve implementation of selective initialization would not even
guarantee correctness of the algorithm. For these reasons, most static variants
proposed in the literature for MIP branch-and-bound are somehow based on
the first two approaches above, namely root and enumerative initialization. For
example, [8] computationally evaluated the root initialization approach on sim-85

ple branch-and-bound codes for three specific optimization problems (quadratic
assignment, graph partitioning, and weighted vertex cover). This is also the
approach taken by the GAMS framework described in [9], in which nodes are
initially generated according to a best-estimate strategy. Enumerative initial-
ization has been implemented in the framework PEBBL [10].90
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Di↵erent static schemes have also been implemented recently, like bet-and-
run [11, 12] and the racing ramp-up scheme of the UG framework [13].

In a dynamic load balancing scheme, workload is reallocated to the available
workers whenever needed. This of course requires communication among the
workers, but can be instrumental to keep the work balanced. Dynamic schemes95

have been the subject of extensive research in the field, and many schemes
have been proposed in the literature, with varying degrees of generality and
success. Broadly, dynamic strategies can be categorized based on the degree
of centralization of the mechanism: centralized schemes involving one or more
managers are generally called work-sharing schemes, whereas schemes in which100

transfers are initiated by individual workers are usually called work-stealing ; see,
for example, [14, 15, 16]. Clearly, dynamic strategies can require a significant
amount of communication and synchronization among the workers.

Di↵erent (hybrid) strategies for a parallel implementation of tree search al-
gorithms have been proposed and developed during the years [17], including the105

work-stealing approach where the set of active nodes is periodically distributed
among the workers [18, 19, 13, 10, 20, 21], thus requiring an elaborated load
balancing strategy. Depending on the implementation, this may yield a deter-
ministic or a nondeterministic algorithm, with the deterministic option being in
general less e�cient because of synchronization overhead. In any case, a non-110

negligible amount of communication and synchronization is needed among the
workers, with negative e↵ects on scalability [22, 23].

A notable example of a hybrid strategy for CP solvers was recently developed
in [24]. In this approach, a master problem enumerates the partial solutions
associated with a subset of the variables of the problem to solve (an approach115

similar to root initialization). Each such partial solution is then processed by
a worker in a second step; the number of variables to consider is chosen so
as to have significantly more subproblems than workers. All subproblems are
put into a queue and dynamically distributed to workers as needed (usually, a
subproblem is assigned to a given worker as soon as the worker is idle).120

In [25], we showed how to modify a given deterministic (sequential) tree-
search algorithm to let it run on a set of, say, K identical workers. The approach,
called SelfSplit, is in the spirit of [8] and is based on the following main
features:

1. each worker works on the whole input data and is able to autonomously125

decide the parts it has to process;
2. in the initial sampling phase, all workers execute exactly the same search

and generate the same tree nodes;
3. after the sampling phase, each worker skips the open nodes that “belong

to the other workers” (according to some deterministic rules);130

4. no communication between the workers is required (besides the final se-
lection of the best solution);

5. the resulting algorithm can be implemented to be deterministic;
6. in most cases, the modification only requires a few lines of codes.
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Note that SelfSplit assumes that all workers are identical (i.e., use the135

same hardware and OS) as the initial sampling phase must be identical for all
workers; this situation arises, e.g., in a shared-memory multi-core machine, or
in a cluster of identical machines. SelfSplit can be considered a case of enu-
merative initialization, as the initial part of the tree is redundantly constructed
in parallel by all workers; a key feature, however, is that it does not stop as soon140

as the number of open nodes equals the number of workers, but it continues in
order to have significantly more nodes, as done in [8, 24].

The results reported in [25] show that SelfSplit is in fact very well suited
for Constraint Programming applications. Indeed, SelfSplit was implemented
within the CP solver Gecode 4.0 [26], and tested on several instances taken from145

the repository of modeling examples bundled with Gecode. As the goal of [25]
was to measure the scalability of the method, only some specific instances were
addressed, namely instances which are either infeasible or in which one is re-
quired to find all feasible solutions – as the parallel speedup for finding a first
feasible solution can be completely uncorrelated to the number of workers, mak-150

ing the results hard to analyze. The SelfSplit algorithm was ran with number
of workers K 2 {1, 4, 16, 64}. Each worker was configured to use only a single
thread, to guarantee a deterministic behavior during the sampling phase, and
hence the correctness of the algorithm. According to Table 1 (taken from [25])
even on moderately easy instances, that can be solved less than one minute,155

SelfSplit can achieve an almost linear speedup with up to 16 workers, and
the speedup is still good for K = 64. On harder instances, the method scales
almost linearly also with 64 workers. In all cases, the resulting algorithm is
deterministic.

time (s) speedup
instance K = 1 K = 4 K = 16 K = 64
golomb 12 41.5 3.84 14.31 41.50
golomb 13 1,195.8 4.00 15.67 57.49
golomb 14 19,051.9 3.97 15.71 61.34
partition 16 30.0 3.75 13.64 46.15
partition 18 354.8 3.90 14.78 54.58
partition 20 4,116.4 3.86 15.64 59.40
ortholatin 5 29.3 3.89 13.95 36.63
sports 10 98.7 3.91 14.51 44.86
hamming 7 4 10 32.3 3.85 14.04 40.38
hamming 7 3 6 2,402.4 3.91 15.44 59.76

Table 1: Speedups for the Constraint Programming solver Gecode, taken from [25].

Because of lack of communication among workers, one could argue that160

SelfSplit is not suitable for solvers that collect/learn important global infor-
mation during the search, as this information can be crucial to reduce the search
tree. A notable example is Mixed-Integer Linear Programming (MILP), whose
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solvers are indeed very hard to parallelize. We note however that most MILP
solvers do collect their main global information (cuts, pseudocosts, incumbent,165

etc.) in their early nodes, i.e., during sampling, thus all such information is au-
tomatically available to all workers. Therefore, performing the sampling phase
redundantly in parallel by all workers has the advantage of sharing a potentially
big amount of global information without communication—a distinguishing fea-
ture of SelfSplit.170

In the present paper we investigate the potential of SelfSplit in a MILP
context. We first report artificial experiments aimed at studying the SelfSplit
behavior “in vitro”.

We then address the actual parallelization of both ad-hoc and general pur-
pose MILP solvers, namely (i) the branch-and-bound code for the Asymmetric175

Traveling Salesman Problem (ATSP) of [27], (ii) the more-sophisticated ATSP
branch-and-cut algorithm given in [28] and in [29], and (iii) the specific branch-
and-cut code for uncapacitated facility location [30] that uses MILP callbacks.
In all the above cases, SelfSplit appears as the only viable option to exploit a
cluster of computers without a complete code redesign. In addition, we address180

(iv) the general-purpose commercial MILP solver IBM ILOG CPLEX 12.6.1 and
compare its internal distributed versions, as well as some reference static meth-
ods, with SelfSplit.

Computational results are reported, showing that SelfSplit performs very
well on codes (i), (ii) and (iii) above, and has a reasonably good performance on185

(iv) as well. Though better results could probably be obtained by using more
sophisticated approaches, considerable speedups can be obtained using a simple
scheme such as SelfSplit, that requires (almost) no communication among the
workers and only very marginal changes to the deterministic algorithm to be
parallelized.190

The outline of the paper is as follows. Section 2 reviews the basic SelfSplit
algorithm, along with possible variants aimed at improving load balancing. Sec-
tions 3 and 4 study the e↵ect of di↵erent SelfSplit parameters on the result-
ing load balancing. Section 5 reports computational results in various MILP
settings. Finally, in Section 6 we draw some conclusions and outline possible195

directions of future work.

2. The SelfSplit paradigm

SelfSplit addresses the parallelization of a given deterministic algorithm,
called the original algorithm in what follows, that solves a given problem by
breaking it (recursively) into subproblems called nodes. The main SelfSplit200

features are outlined below; more details can be found in [25]. The SelfSplit

scheme is as follows:

a) Each worker reads the original input data and receives an additional input
pair (k,K), where K is the total number of workers and k 2 {1, . . . ,K}
identifies the current worker. The input is assumed to be of manageable205

size, so no parallelization is needed at this stage.

6



b) The same deterministic computation is initially performed, in parallel, by
all workers. This initial part of the computation is called sampling phase.
No communication at all is involved in this stage. It is assumed that
the sampling phase is not a bottleneck in the overall computation, so the210

fact that all workers perform redundant work introduces an acceptable
overhead.

c) When enough open nodes have been generated, the sampling phase ends
and each worker applies a deterministic rule to color them, i.e., to identify
(and skip) the nodes that do not belong to it as they will be processed by215

other workers. No communication among workers is involved in this stage.
It is assumed that processing the subtrees is the most time-consuming part
of the algorithm, so the fact that all workers perform non-overlapping work
is instrumental for the e↵ectiveness of SelfSplit.

d) When a worker ends its own job, it communicates its final output to a220

merge worker that process it as soon as it receives it. The merge worker
can in fact be one of the K workers, say worker 1, that merges the output
of the other workers after having completed its own job. We assume
that output merging is not a bottleneck of the overall computation, as
it happens, e.g., for enumerative algorithms where only the best solution225

found by each worker needs to be communicated.

It is worth stressing here that the SelfSplit scheme is not fault tolerant
and that it strongly depends on the assumption that all processors are identical
and do in fact generate precisely the same tree in the sampling phase. This
assumption applies to a shared-memory multi-core machine, or to a tightly230

controlled cluster of identical machines. In the latter case, it is crucial to ensure
that all machines in the cluster are in fact absolutely identical. The described
SelfSplit framework provides no check to ensure all processes produce identical
results in the sampling phase, though some kind of hash function could be
implemented to provide such a check. Doing sampling on a single processor and235

then moving the instances to remote machines afterwards is another possibility
which is not addressed in the present paper.

In its simplest “vanilla” version, step c) is implemented by just assigning
each open node n a (deterministic) pseudo-random integer c(n) 2 {1, . . . ,K},
with the rule that each worker k will skip all nodes n with c(n) 6= k.240

Note that all steps but d) requires absolutely no communication among work-
ers. SelfSplit is therefore well suited for those computational environments
where communication among workers is unreliable or time consuming.

Though very desirable, the absence of communication implies the risk that
workload is quite unbalanced, i.e., lucky and unlucky workers can complete245

their computation at very di↵erent points in time. To contrast this drawback,
SelfSplit follows the recipe of [8, 24] to keep a significant number of open
nodes for each worker after sampling.

SelfSplit is straightforward to implement if the original algorithm is se-
quential, and the random/hash function used to color a node is deterministic250
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and identical for all workers. The algorithm can however be applied even if the
original algorithm is itself parallel (and, of course, deterministic), provided that
the pseudo-random coloring in Step 3 is done at the proper time.

A more elaborate version (see [25] for details), aimed at improving workload
balancing among workers, can be devised using an auxiliary queue S of paused255

nodes for each worker (so, there is no need for communication). The modified
algorithm reads as follows:

1. As before, two integer parameters (k,K) are added to the original input.
2. A paused-node queue S is introduced and initialized to empty.
3. Whenever the modified algorithm is about to process a node n, a boolean260

function NODE PAUSE(n) is called: if NODE PAUSE(n) is true, node
n is not solved and it is moved into S and the next node is considered;
otherwise the processing of node n continues as usual and no modified
action takes place.

4. When there are no nodes left to process, the sampling phase ends. All265

nodes n in S, if any, are popped out and assigned a color c(n) between
1 and K, according to a deterministic rule. Again, coloring is done inde-
pendently by each worker.

5. All nodes n whose color c(n) is di↵erent from the input parameter k are
just discarded. The remaining nodes are processed (in any order and270

possibly in a nondeterministic way) till completion.

With respect to its vanilla counterpart, the coloring phase in Step 4 has
more chances to determine a balanced workload split among the workers than
its vanilla counterpart, at the expense of a slightly more elaborate implemen-
tation. In the paused-node version, both the decision of moving a node into275

S as well as the color actually assigned to a node are based on an estimate of
the computational di�culty of the node. The idea is to move a node in S if
it is expected to be significantly easier than the root node (original problem),
but not too easy as this would lead to an exceedingly time-consuming sampling
phase. Estimating the di�culty of a (sub-)problem is a topic well-studied in280

the literature, both for specific classes of models, as done for example for QAP
in [31], and for general MIPs, as done in [32, 33, 34]. However, most methods
are rather computationally intensive, while for the purposes of SelfSplit we
need something cheap and that can be computed using node-local information
only. For these reasons, within NODE PAUSE, a rough estimate of the di�-285

culty of a node is obtained in [25] by computing the logarithm of the cardinality
of the Cartesian product of the current domains of the integer variables, to be
compared with the same measure computed at the end of the root node. For
problems involving binary variables only, this figure coincides with the num-
ber of free variables at the node. To cope with the intrinsic approximation290

involved in this estimate, the following adaptive scheme can be used to improve
SelfSplit robustness. At the end of the sampling phase, if the number of nodes
in S is considered too small for the number K of available workers, then the
internal parameters of NODE PAUSE are updated in order to make the move
into the queue S less likely. The sampling procedure is then continued after295
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putting the nodes in S back into the branch-and-bound queue—or the overall
method is just restarted from scratch.

As to node coloring, the color c(n) associated with each node n in S can be
obtained in three steps: (1) compute a score estimating the di�culty of each
node n, (2) sort the nodes by decreasing scores, and (3) assign a color c between300

1 and K, in round-robin, so as to split node scores evenly among workers.

3. Statistical Load Balancing

As SelfSplit is intended to be a communication-free scheme, it can achieve
a proper load balancing only in a statistical sense. Intuitively, if all subproblems
have a similar level of di�culty, we can hopefully balance the workload assigned305

to the workers. In addition, the larger the number of subproblems that are
assigned to each worker, the higher the chances that all workers will have to
perform a comparable work. Although basic probability theory guarantees that
this happens for very large numbers only, in practice we need to check whether
a reasonable load balancing can be obtained (on average) even with “small”310

numbers – the method would clearly be unpractical if millions of subproblems
had to be assigned to each worker to obtain a good balancing.

In order to computationally evaluate whether statistical load balancing is a
viable option, we performed a preliminary artificial experiment, randomly gen-
erating a number of virtual subproblems with di↵erent di�culties and assigning315

them to workers. The experiment works as follows:

• randomly generate N (say) integer numbers from a given distribution.
In our scheme we fixed N = K ⇥ M , where K is the number of work-
ers and M is a parameter counting the number of subproblems that we
would like to assign to each worker. These random numbers measure the320

computational di�culty of each subproblem expressed, e.g., in terms of
enumeration nodes;

• randomly assign M subproblems to each worker; and

• evaluate the speedup that we would obtain with this assignment, w.r.t.
a single worker scenario in which a single worker has to process all the325

nodes of all subproblems.

Note that this is admittedly a gross simplification of a real-world scenario
for many reasons:

• We are completely ignoring the overhead needed to generate the subprob-
lems (sampling phase).330

• We are assuming that all nodes require the same computational e↵ort,
regardless of their location in the tree and the order in which a worker
processes them. Thus, we are also implicitly assuming that no interaction
whatsoever exists between the subproblems assigned to the same worker.

9



• We are assuming that the set of nodes evaluated would be same in both335

parallel and sequential cases. Almost no practical algorithm achieves this.

On the other hand, our simple experiment is computationally cheap (hence
it can be repeated several times with di↵erent random seeds) and side-e↵ects
free, so it might provide meaningful insights into the problem. For each choice of
the parameters (namely, type of random distribution, K, and M), we repeated340

the simulation 10, 000 times and recorded the population of speedups, so as to
evaluate the speedup as a random variable for which we can compute classical
statistical measures, e.g., average, standard deviation and percentiles.

The most natural choice for the initial distribution would be an “ideal”
distribution that yields subproblems of (almost) the same di�culty; however,345

such a policy can only be a very rough approximation of real situations, mainly
for two reasons:

1. it is very di�cult to accurately predict the size of the search tree associated
to a given subproblem starting from the pieces of information available
before solving it;350

2. even if we were able to predict the “inherent” di�culty of a given sub-
problem, the underlying solver may still considerably vary in performance,
because of performance variability.

Thus, we chose two random distributions, namely a uniform distribution and a
Pareto distribution.355

The uniform distribution models the case in which subproblems are well-
behaved and their di�culty varies uniformly in a given range. In our experi-
ments, we considered two possible ranges, namely [100k, 200k] and [100k, 1M ],
which correspond to the cases in which our estimates can be wrong by a factor
of 2 and 10, respectively.360

The Pareto distribution, on the other hand, models the more realistic case in
which subproblems follow an heavy-tail distribution, which does arise for some
classes of problem solved by enumerative algorithms (see [35]). In this case,
there is no bound on how wrong our estimates can be (even worse, arbitrarily
bad subproblems show up with non negligible probability). The general Pareto365

(type I) distribution has a probability density function defined as ↵/x↵+1, where
parameter ↵ controls the heavy-tailedness of the distribution. In particular, the
distribution has no finite moments of order n � ↵ (thus, the lower the ↵, the
more heavy-tail the distribution). In accordance with [35], in our experiments
we chose ↵ = 0.5 and ↵ = 1.5. Note that we are not claiming that all MILP370

instances fall into one of the distributions that we have chosen, nor that those
distributions are comprehensive, in the sense that they cover all possible cases.
We have chosen those two as extreme cases of behaviours that can actually
happen in practice.

The results of our tests are depicted in Figure 1, where we show boxplots375

[36] for the chosen four distributions, for M = 10, 100 and 1, 000, and for
K 2 {4, 16, 64}. Each box extends from the lower to the upper quartile, while
the horizontal line within each box shows the median of the corresponding pop-
ulation. The whiskers extend from the box to show the range of the data.
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(a) K = 4

(b) K = 16

(c) K = 64

Figure 1: Boxplots for statistical load balancing for di↵erent values of the number of workers.
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Our results show that the distribution of the speedup is highly influenced by380

the distributions from which the subproblems sizes are drawn, whereas marginal
e↵ects are experienced when changing the values of M , provided the latter be
“large enough”. Indeed, while almost linear speedups can be obtained (on av-
erage) starting from a uniform distribution or from a very mildly heavy-tailed
one, that is not the case with strongly heavy-tailed distributions, even assigning385

1, 000 subproblems to each worker. Interestingly, the subproblem distributions
also a↵ect the variance of the speedup population, with the most heavy-tailed
ones leading again to the worst results. Indeed, for these distributions, paral-
lelizing a single enumeration tree via a static load balancing method seems to
be problematic, while a bet-and-run approach [11] is likely to provide better390

results. Finally, the number of workers K is a marginal factor when “well-
behaved” distributions are concerned, but turns into a very important one with
heavy-tailed distributions. This shows that, even in this simplified experiment,
the average speedup that can be obtained does not scale very well with the
number of workers in the heavy-tailed case.395

The main conclusion of this artificial experiment is a further confirma-
tion that a static load balancing method like SelfSplit can yield reasonable
speedups only on relatively well-behaved classes of problems, while it is most
likely to fail for instances coming from strongly unbalanced distributions. Be-
cause of the gross simplifications of the artificial experiment, however, it is not400

possible to predict from it at which point a static method will stop providing
reasonable speedups. Note that more sophisticated analyses can be found in
the literature (e.g., in [37]), but none of them provides a close-enough approx-
imation of a real MILP solver. Hence we decided to not pursue this approach
further.405

4. Node-pausing strategies comparison

Di↵erent criteria can be used to implement the NODE PAUSE function.
Preliminary computational tests showed that measuring the e↵ectiveness of such
a criterion can be very di�cult (or even misleading) if directly implemented
within a solver. The reason is that many state-of-the-art implementations of410

enumerative methods exhibit a high performance variability, and di↵erences in
the shape of the tree can be caused by changes that are supposed to be perfor-
mance neutral. The issue is particularly severe in the MILP case [38], but any
solver that bases some of its decisions on pieces of information collected during
the search itself—such as pseudocosts, nogood clauses, or primal bounds—is415

sensitive to this phenomenon.
To compare di↵erent strategies in a clean environment, we set up a further

artificial experiment as follows. Using the callback mechanism of a commercial
MILP solver, namely IBM ILOG CPLEX 12.5.1, we collected the branch-and-cut
trees enumerated when solving all the instances in the MIPLIB 2010 testbed.420

The solver was run with default options, in single-thread mode; for each instance
we provided the optimal (or best known) solution on input to the solver, while
disabling primal heuristics to minimize their variability e↵ect. For each run,
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we used callback functions to store the associated enumeration tree, saving for
each node some relevant informations, e.g., indices of descendant nodes, domain425

of integer variables, depth and alike. Then we discarded all the trees with less
than 500, 000 nodes, remaining with 32 instances. In this way we collected
and stored a number of frozen enumeration trees that are significant (both in
terms of size and shape) for our experiments. We want to stress that, in these
artificial experiments, we are not interested in computing times, and that we430

take no action that may interfere with the behaviour of the solver, thus keeping
the frozen trees as close as possible to the default ones.

We then simulated the behavior of di↵erent NODE PAUSE criteria on the
frozen trees. This experimental environment has several advantages:

• all strategies are compared on the same set of trees;435

• with most node-pausing strategies, the final partitioning is independent
of the order of visit of the nodes;

• it is computationally very cheap to test many alternative strategies, as no
real enumeration is taking place—only tree visits.

On the other hand, the environment is admittedly artificial, and relies on as-440

sumptions that are likely to be violated in practical implementations. In par-
ticular, as in the previous section, we are assuming that both sequential and
parallel codes will enumerate the very same tree for a given instance. In ad-
dition, speedup is computed by considering the size of the subtrees assigned
to the di↵erent workers, again implicitly assuming that all nodes take the same445

amount of time to process. As such, the speedups we measured are only a rough
approximation of the real speedup in computing time. Still, this is a finer ap-
proximation than the one given in the previous section, as we are considering
“real” enumeration trees.

We compared two simple criteria for estimating the di�culty of a given node450

n, to be used within the boolean function NODE PAUSE():

• volume: we compute the volume of the Cartesian product of the domains
of the integer variables in the model, i.e.,

V (n) =
Y

j2J

(uj � lj + 1) (1)

where J denotes the set of integer variables and {lj , . . . , uj} is the domain
of variable j at node n. This measure is compared against the one com-455

puted at the end of the root node, say V (1). Value NODE PAUSE=true
is returned if the ratio V (1)/V (n) is above a given threshold, say ⇢. To
avoid overflow, in the implementation we consider the logarithms of the
above expressions.

• depth: value NODE PAUSE=true is returned if the node depth in the460

tree is larger than a given threshold ✓.
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Note that we do not need to maintain timestamps for the individual nodes:
as the trees are fixed, and the strategies we compare are based on node-local
information only, we just need to visit the trees (in any order) to simulate
the e↵ect of the di↵erent NODE PAUSE strategies. Di↵erent NODE PAUSE465

strategies will generate di↵erent frontiers S, i.e., open nodes n to be assigned to
workers. Before actually assigning them, we sort the nodes according to their
expected di�culty. We considered the following options:

• ideal: Sorting (by decreasing order) with respect to the actual number of
nodes in the subtree rooted at n. Of course, this number is not available in470

a real implementation, but it is nevertheless interesting to consider what
would happen if we had a perfect oracle able to predict the size of the
subtrees.

• score: Sorting (by increasing order) with respect to the score

score(n) = 103 · dualBound(n) + depth(n)

• volume: Sorting (by decreasing order) with respect to the volume given475

by the Cartesian product of the domains of the integer variables in the
model, defined by (1).

• random: nodes are just shu✏ed according to a random permutation.

Note that, in this phase, the di�culty measure has a di↵erent purpose than
in the NODE PAUSE function. Indeed, within the NODE PAUSE function we480

are not interested in ranking nodes, but rather to assess whether a given node
has become “easy” enough. Conversely, here we need a ranking among nodes,
hence the di↵erent strategies.

Finally, we considered two strategies for coloring the nodes:

• offline: nodes are assigned to the workers in round-robin, as in the485

SelfSplit paradigm, and no communication or synchronization is needed.

• online: nodes are assigned to the first available worker by a master sched-
uler. Note that, again, we use the size of the subtrees as a proxy for time,
so the next subtree is assigned to the worker whose sum of nodes assigned
to it so far is a minimum. This is supposed to yield a better load balanc-490

ing, at the expenses of communication between the workers. Note that
this is exactly the kind of communication that we would like to avoid
when using our self-splitting framework; nevertheless it is interesting to
measure how much of the theoretical speedup is lost when forbidding any
synchronization among workers.495

As to the parameter ⇢ or ✓ used by NODE PAUSE() in its volume or depth
case, respectively, for each instance we tried several candidates and kept the
best one. This is equivalent to assuming that NODE PAUSE() is able to auto-
matically determine the best parameter for each instance (the so-called“Virtual
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offline online

volume depth volume depth

ideal 10.77 10.20 12.51 12.65
score 10.25 9.78 12.31 12.44
volume 9.87 9.32 11.91 12.06
random 9.92 9.42 11.57 11.31

Table 2: Comparison of the two methods (speedups with 16 workers).

Best Case” scenario). The outcome of this preliminary experiment is reported500

in Table 2 for the case of K = 16 workers.
A first comment about the results in Table 2 is that all options produce a

speedup of about 10 or more (out of 16 workers), which is an extremely good
figure. Of course, those numbers must be taken with great care, as they are the
result of an artificial experiment on a limited set of instances chosen to need505

big enumeration trees. Still, they indicate that if we could enumerate the very
same tree in parallel that we would do in the sequential case, then we could
reasonably achieve good speedups even with a static load balancing method like
SelfSplit. Note also that, for both volume and depth, the internal parameter
(⇢ or ✓) is chosen a posteriori in an optimal way, instance by instance, while a510

practical implementation can only guess it (or use a dynamic update policy):
this also explains the somewhat optimistic figures obtained in the experiment.

As expected, the online approach works better than its offline counter-
part, the speedup di↵erence being interpretable as the “price of communication”
that SelfSplit has to pay to avoid any communication among workers. This515

di↵erence is of about 20%, which is not negligible, but reasonable considering
that we are also not paying the overhead incurred by a deterministic parallel
method with synchronization points.

A surprising result is instead that the sorting option ideal is only slightly
better than its score counterpart, meaning that a perfect estimate of the node520

di�culty is not really required in our setting. In addition, using the same for-
mula to evaluate node di�culty in function NODE PAUSE() and for sorting
of nodes seems not to be e↵ective, and suggests the adoption of two distinct
criteria. An explanation is that a statistical workload balancing among workers
occurs in any case, making the node di�culty estimation less critical. This is525

confirmed by the fact that the random option leads to a performance deteriora-
tion of just 10%, which is much less than what we would have expected.

5. SelfSplit for Mixed-Integer Linear Programming

We next address three di↵erent applications of SelfSplit to parallelize
enumerative MILP codes of di↵erent degree of complexity (and performance530

variability). All the experiments of this section were executed on a cluster of
identical Intel Xeon E3-1220V2 machines running at 3.10 GHz, with 16GB of
RAM each, in single thread mode.
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5.1. Parallelization of a sequential ATSP branch-and-bound code

Our first exercise was to apply SelfSplit to the sequential branch-and-535

bound code of [27] for the Asymmetric Traveling Salesman Problem (ATSP).
This is an optimized yet legacy FORTRAN code of about 3,000 lines based
on the following main ingredients: (i) lower bounds are computed by a very
e�cient parametrized code for the assignment problem relaxation, (ii) branching
is based on subtours, and can produce more than two children per node, (iii)540

a best-bound-first tree exploration strategy is used; see [27] for details. We
implemented two variants of SelfSplit where:

a) The optimal solution value is provided on input to the solver;

b) The value of the overall best incumbent is periodically written/updated
on a single global file; each worker periodically reads it and only uses it to545

possibly abort its own run (just 46 new lines of code added to the original
code).

In all cases, we implemented SelfSplit in its simplest variant, ending the
sampling phase when the number of open nodes in the branch-and-bound tree
was equal to 1, 000.550

According to our preliminary computational tests, variant b) often achieves
a more-than-linear speedup in that SelfSplit is able to find the optimal ATSP
solution much quicker than the sequential version, thus saving a considerable
number of nodes. This is because, after sampling, diversified solution subspaces
are searched in parallel by the K workers, increasing the chances of early finding555

good feasible solutions. The improved behavior of SelfSplit as a heuristic is
of course a positive side e↵ect of our method, however it is not strictly related
to parallelization as it could be simulated by a sequential implementation not
using the rigid best-bound search strategy of the original ATSP code. To better
evaluate the speedup coming from the parallel processing of tree nodes, we560

therefore decided to concentrate on variant a) above.
Our experiments are aimed at evaluating the speedup that SelfSplit can

achieve on di�cult instances requiring a large number of tree nodes, given for
granted that for easy instances no parallelization technique working at the tree-
search level can produce interesting speedups. Our testbed then contains in-565

stances randomly generated as in class B in [27], which were the hardest in-
stances for our code among those considered by [27]. Namely, the cost of each
arc (i, j) in the graph is defined as cij = �ij + ↵ij where �ij = �ji and ↵ij

are uniformly random integers in [1, . . . , 1, 000] and in [1, . . . , 20], respectively.
We randomly generated 100 instances with 200 vertices and 100 instances with570

250 vertices, and solved all of them with the branch-and-bound code of [27] in
sequential mode, providing the optimal solution value on input. Then, we dis-
regarded all instances that turned out to be “too easy” with these settings, i.e.,
that could be solved in less than 1,000 wall-clock seconds on our machine. The
resulting benchmark was finally composed of 20 instances—6 with 200 nodes575

and 14 with 250 nodes. Note that our instance filtering policy (though based
on the performance of the sequential solver alone) is not unfair, as we are not
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comparing the behavior of di↵erent solvers but the speedups resulting from the
parallelization of a single solver.

Table 3 gives the outcome of our experiments and reports:580

• the average (in geometric mean) computing time for the sequential version
of the code, and

• the average speedups (geometric mean) that were obtained with di↵erent
values of K with respect to the sequential version of the code, again in
terms of computing time.585

time (sec) time speedup
K = 1 K = 4 K = 16 K = 32 K = 64
1,504 7.76 13.37 21.56 30.55

Table 3: Parallelization of a sequential ATSP branch-and-bound code.

Figures of Table 3 show that an almost linear speedup can be obtained
with up to 16 workers, whereas some saturation occurs for larger values of K.
Taking into account that only a very minor code change was implemented, the
SelfSplit performance on these instances can be considered very good.

Our results confirm the findings of [8], namely, that simple branch-and-bound590

codes for specific applications can e↵ectively be parallelized by no-communica-
tion paradigms like SelfSplit. Indeed, the experiments reported in Section 3
suggest that this is mainly due to the low performance variability experienced
by simple enumeration codes—that by the way makes them rather appealing in
a massively distributed setting.595

Finally, we observe that parallelization of branch-and-bound algorithms for
ATSP has already been tested in the literature. The first attempt was presented
in [39] with a synchronous master-slave approach that yields poor results. A
parallel branch-and-bound based on the assignment problem lower bound and
on a subtour elimination branching rule was presented in [40, 41]. In their al-600

gorithm, multiple workers can cooperate either in exploring a single node of the
enumeration tree or in simultaneously solving di↵erent nodes; in any case a con-
siderable communication is required among workers. Using an architecture with
K = 14 processors on randomly generated instances, this algorithm reported an
average speedup from 0.85 to 11.24 depending on the size of the instance (from605

50 to 500 cities).

5.2. Parallelization of a sequential ATSP branch-and-cut code

We then addressed a more sophisticated ATSP code, namely the sequential
branch-and-cut code of [28] and of [29]. This is FORTRAN code of about 10,000
lines where node bounds are computed through an LP solver (IBM ILOG CPLEX610

12.6.1 in our case). Various classes of facet-defining ATST cuts—including
SEC’s, SD’s, and DK’s (see, [42] and [43, 44, 45])—are separated at each
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tree node, and variables are dynamically generated and/or fixed according to a
Lagrangian pricing mechanism. A best-bound tree exploration is implemented,
and primal heuristics are applied for an early update of the incumbent.615

In this more challenging setting, a paused-node version of SelfSplit was
implemented, according to the following trivial scheme that required just 11 new
lines of code to implement. Each time a node is popped from the active-node
queue, we count the number of open nodes. As soon as this number becomes
larger than NO (say), the sampling phase ends and the node lower bound is used620

as the node-di�culty measure used for node coloring. In our implementation
we set NO = max{160, 5K}, where parameters 160 and 5 (not tuned to avoid
overfitting) are intended to guarantee a reasonable number of nodes for each
worker—which is nontrivial, as branch-and-cut codes for specific problems tend
to produce a small number of open nodes due to the e↵ectiveness of their ad-hoc625

cutting planes.
We considered randomly generated instances with n = 200 and n = 250

nodes. According to [28], the most challenging instances for our sequential
branch-and-cut code correspond to instances of type C in [27], in which the
coordinates of each node are randomly generated in [1, . . . , 1, 000] and the cost630

of each arc (i, j) is given by cij = dij + ↵ij , where dij = dji is the Euclidean
distance between i and j (rounded down) and ↵ij is a uniformly random integer
in [1, . . . , 20].

As in the previous experiments, we ran our sequential code on all instances,
providing the optimal ATSP solution value on input, and removed all those635

problems that were solved within 1,000 seconds. This produced a benchmark
of 44 instances—22 with 200 nodes, and 22 with 250 nodes. Table 4 reports the
same information as Table 3 for both the sequential and the SelfSplit version
of our code.

time (sec) time speedup
K = 1 K = 4 K = 16 K = 32 K = 64
2,465 6.74 10.89 14.54 17.91

Table 4: Parallelization of a sequential ATSP branch-and-cut code.

In this case too, SelfSplit produces considerable speedups for K  16,640

though the current figures are less impressive that those of Table 3. This be-
havior was not unexpected, as the branch-and-cut ATSP code has more vari-
ability than the branch-and-bound one addressed in the previous subsection,
and we know from the previous discussions that variability can interfere with
scalability. In addition, as already mentioned, branch-and-cut codes for specific645

problems typically produce a limited number of nodes, making SelfSplit less
attractive due to the sampling-phase overhead incurred when several workers
are available.
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5.3. Parallelization of a branch-and-bound code based on callbacks

Our third set of experiments concerns the applicability of SelfSplit to a650

specific branch-and-cut algorithm implemented within a generic MILP solver
through callbacks—an approach that became customary in recent years. In this
setting, SelfSplit appears to be the only viable option to exploit a cluster
of identical computers. Indeed, to the best of our knowledge, the presence
of callbacks prevents the usage of the standard distributed version of a MILP655

solver.
We considered the state-of-the-art branch-and-cut code of [30] for the Unca-

pacitated Facility Location (UFL) problem with linear costs, that uses Benders
decomposition and ad-hoc heuristics. The code is written in C language (about
5,000 lines including comments) and is built on top of IBM ILOG CPLEX 12.6.1.660

It includes a number of callbacks to derive Benders cuts (within the so-called
lazyconstraint and usercut callabacks) and to implement ad-hoc heuris-
tics (within the so-called heuristic callback). The code itself is multi-thread
and exploits all the cores detected in the single computer where it is run.

We implemented a very general vanilla SelfSplit framework to be applied665

when enumeration takes place, i.e., after some preliminary deterministic heuris-
tics are executed. To better exploit all the cores of each computer, each worker
runs the MILP solver in its multi-thread mode. The overall framework is im-
plemented to be deterministic only in the sampling phase and nondeterministic
afterwards. This is consistent with the original code, which is nondeterministic,670

the only changes being the definition of parameters associated with the current
worker, the total number of workers (K), the number of nodes in the sampling
phase (say NSAMPLE), and the name of a syncronization file used to share the
incumbent.

Our SelfSplit implementation works according to the following three passes.675

We initially save the value of the MILP solver parameters that we need to
change, and execute pass 1 (i.e., the sampling phase) running the MILP solver
in deterministic mode and imposing the given node limit and a best-bound
strategy. Note that this phase is fully deterministic, so it will be executed
identically and independently by each worker. When the node limit is reached,680

the second pass can start.
In the second pass, we activate a dummy callback that just removes from the

MIP tree all the open nodes that are not to be processed on the given worker,
i.e., with a wrong color. When all such nodes are killed, we are ready for the
third pass.685

In the third (and last) pass, we deactivate the above SelfSplit additional
callback, restore the original MILP solver parameters (including the node limit,
reduced by the number of nodes already explored), and execute the MILP solver
to process the open nodes left after the second pass. During this last run, from
time to time the incumbent solution is written/updated/read on the synchro-690

nization file by using appropriate callbacks, i.e., we allow for a minimal commu-
nication among workers. As the original code is anyway nondeterministic, we
actually use the read solution to possibly update the incumbent of each worker.
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As a technical observation, it is worth mentioning that the above implemen-
tation can install its own callbacks only once, before pass 1, as (un)installing695

them at a later time would reset the internal problem and cancel the tree.
Therefore we pass to the callbacks the pass number (1, 2, or 3) so each callback
function knows when it has to be applied or it must be skipped. In addition,
all SelfSplit-specific callbacks are installed on top of the callbacks already
installed in the original code, meaning that each SelfSplit-specific callback700

eventually calls the original callback function (if not undefined) before its final
return statement.

To evaluate the speedup obtained by the above SelfSplit implementation,
we addressed a class of hard UFL instances from the literature. To be specific, we
considered the Koerkel-Ghosh [46] instances ga500c and gs500c, some of which705

have been solved by [30] for the first time. Table 5 compares the performance
of three codes:

• ORIG: the original (nondeterministic) code as implemented by [30], run on
a single 4-core computer;

• SS(1): our SelfSplit variant with just one worker (K = 1), run on a710

single 4-core computer;

• SS(16): our SelfSplit variant with 16 workers (K = 16), run on a Blade
cluster with 16 identical 4-core computers.

For all codes, the multi-thread version of IBM ILOG CPLEX 12.6.1 was run on
each 4-core computer. Both SelfSplit codes were run with NSAMPLE=1,000.715

For the first two codes and for each instance, the table reports the required
number of nodes and the computing time (in wall-clock seconds). For SS(16),
we report the minimum and maximum computing time among all workers, and
the total number of nodes (computed as the sum of the nodes for all workers).
Note that the total number figures includes the 16,000 unavoidable nodes spent720

in sampling phase.
Reported speedups sp1 and sp2 are with respect to ORIG and SS(1), re-

spectively, the latter being in our opinion the most relevant one as it measures
the e�cacy of our node-distribution scheme. The final lines of the table report
averages and geometric means.725

As expected, SS(1) is significantly slower than ORIG as the former deviates
from the default (best-tuned) strategy and cannot use the more e�cient oppor-
tunistic mode during sampling. As to SS(16), in all cases it is much faster than
both ORIG and SS(1), with speedups ranging from about 5 to 12. In particular,
the speedup with respect to SS(1) is 9.07 on average, and 8.66 in geometric730

mean. Thus SelfSplit performs rather well in this setting.

5.4. Parallelization of a general-purpose MILP solver

Our last set of experiments concerns the applicability of SelfSplit to a
fully general MILP solver. This is indeed the most challenging setting for our
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ORIG SS(1) SS(16)

instance time nodes time nodes time time nodes speedup speedup
(min) (max) (tot) wrt ORIG wrt SS(1)

ga500c-1 4,330 65,643 4,175 67,085 275 875 103,002 4.9 4.7
ga500c-2 11,235 187,799 14,422 142,936 336 1,832 194,332 6.1 7.8
ga500c-3 11,214 156,055 25,542 222,400 403 2,088 222,263 5.3 12.2
ga500c-4 10,327 153,690 19,498 179,123 375 1,828 180,629 5.6 10.6
ga500c-5 10,558 197,417 17,777 203,943 330 1,964 246,407 5.3 9.0
gs500c-1 5,047 75,105 4,891 76,779 310 1,031 115,060 4.8 4.7
gs500c-2 5,296 81,622 9,919 99,203 292 1,053 126,971 5.0 9.4
gs500c-3 12,501 193,123 21,273 195,316 364 2,199 254,205 5.6 9.6
gs500c-4 8,247 127,432 18,066 170,671 374 1,529 180,073 5.3 11.8
gs500c-5 16,959 276,844 27,809 277,546 380 2,650 343,940 6.3 10.4
average 9,571 151,473 16,337 163,500 343 1,704 196,688 5.4 9.1
geo.mean 8,798 137,626 13,936 149,264 341 1,608 184,435 5.4 8.7

Table 5: Comparison among di↵erent versions of the UFL code.

method, due to the large performance variability experienced in many di�cult735

MILP instances.
We implemented SelfSplit in its node-pause version using IBM ILOG CPLEX

12.6.1 through callback functions. This implementation does not require an
explicit queue S, as only the queue of the solver is used. In particular, it
is enough to attach a flag to each node to indicate whether it is paused or740

not. In order to interfere as little as possible with the default solver strategies,
while keeping the overall goal of having an e↵ective and fast sampling step,
we implemented a more sophisticated sampling phase for this general case. At
each node n we compute the ratio V (1)/V (n), where V (n) and V (1) give a
measure of the domain at the current node and after the root node, respectively,745

as defined by (1): if this ratio is above a given threshold, say ⇢, the node is
paused. However, we actually pause a node only if its depth is above a given
threshold (equal to 10 in our implementation) and in any case we do not pause
any node during the first 2, 000 nodes. As explained in Section 2, during the
sampling phase we always extract from the queue a non-paused node, if any.750

One additional detail is that, when selecting a node during sampling, we always
follow the solver’s default strategy if we are in a dive (unless we stumble upon
a paused node), while if we are backtracking, we pick a non-paused node of
minimal depth (i.e., we follow a breadth-first-with-diving policy). If the tree
contains only paused nodes, and there is a su�ciently large number of nodes,755

say N , the sampling phase is terminated and colors are assigned to the nodes.
Otherwise, the current value of ⇢ is increased by a quantity equal to � (say), and
function NODE PAUSE is re-executed for each node. In our implementation
we used the same parameters for all instances, namely ⇢ = 5, N = 2, 000 and
� = 10.760

We decided to provide the optimal solution on input to the MILP solver and
to disable all heuristics. We used this setting to have deterministic results, i.e.,
that do not depend on the actual instant in which each worker updates its own
incumbent solution. On the other hand, in our view this is not too far from a
production implementation involving some limited amount of communication,765
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in which the incumbent value is shared among workers.
In this set of experiments we addressed all the problems contained in the

MIPLIB 2010 [38] library of instances. This testbed includes 358 problems
arising from di↵erent sources and with di↵erent characteristics. In particular,
observe that we may encounter both instances that require millions of nodes770

to be solved, as well as instances that can be solved with “small” enumeration
trees.

Table 6 compares the performances of IBM ILOG CPLEX 12.6.1 in its default
settings (with empty callbacks) and of algorithm SS(1), i.e., SelfSplit with 1
worker. The comparison is performed for 5 di↵erent random seeds separately,775

to mitigate the e↵ects of performance variability of the MILP solver (see, e.g.,
[11]). For each random seed and algorithm, we report the number of instances
solved to proven optimality and the geometric mean of the associated computing
time—a time equal to 10, 000 was counted for those instances that were not
solved to optimality for any reason (e.g., memory requirements or alike).780

CPLEX(1) SS(1)

seed #opt time #opt speedup

0 174 965.74 174 1.00
1 175 909.64 177 0.99
2 175 965.47 176 0.99
3 175 964.66 177 0.98
4 177 961.22 175 0.98

Table 6: IBM ILOG CPLEX 12.6.1 vs SelfSplit in a single-worker setting.

The results of Table 6 show that the slowdown incurred when deviating from
the MILP solver default node-selection policy (that SelfSplit changes during
the sampling phase to improve workload balancing) was just 1-2% on average;
this indicates that SS(1) achieves the fundamental goal of not interfering too
much with the fine-tuned solver’s strategies during the sampling phase, and is785

thus a very close approximation of a state-of-the-art commercial solver in its
default setting.

We then considered the availability of a system with 16 single-thread ma-
chines (each acting as a worker) and compared di↵erent ways to exploit this
architecture without communication. Using the default random seed of the790

solver (namely, seed 0), we then compared the reference solver, IBM ILOG CPLEX

12.6.1 with one thread, which we will denote as CPLEX(1), against SelfSplit
with K = 16 (denoted by SS(16)), and against a simpler static method inspired
by the literature. The simpler static method behaves as follow:

• It forces a breadth-first node selection strategy during the sampling phase.795

• It stops as soon as N open nodes are available, where N is an input
parameter.
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• When sampling is done, nodes are assigned to the available workers in a
round-robin fashion.

We tested the scheme above using N = 16 and N = 2000. In the following,800

the corresponding algorithms will be denoted as STATIC 16 and STATIC 2000,
respectively.

We report aggregated results on this comparison in Table 7. As usual, for
each method, we report the number of instances solved to optimality. In addi-
tion, the table gives the shifted geometric mean of the computing time for the805

reference solver, and the speedups for the remaining methods. To evaluate how
the di↵erent methods behave as the instances get harder to solve, we divided the
instances into di↵erent subsets, based on their hardness. To avoid any bias in
the comparison, the level of di�culty is defined by taking all the solvers under
comparison into account. First, the set all is defined by keeping all the models810

but those for which one of the solvers encountered a failure of some sort or
where numerical di�culties led to di↵erent optimal objective values for the two
solvers (both values being actually correct due to feasibility tolerances). Then,
we considered all the instances that were solved by at least one solver, and fur-
ther divided the testbed into 5 subclasses [n, 10k] (for n 2 {0, 1, 10, 100, 1k}),815

each containing the subset of models for which at least one of the solvers took
at least n seconds.

According to the table, the more sophisticated sampling strategy of SS(16)
indeed pays o↵, and SS(16) clearly outperforms the simpler static methods. In
addition, the gap between SS(16) and the static methods increases significantly820

as we consider the subset of harder models.

CPLEX(1) SS(16) STATIC 16 STATIC 2000

class #opt time #opt speedup #opt speedup #opt speedup

all 81 1399.52 89 1.30 83 1.11 86 1.07
[0, 10k] 81 172.09 89 1.76 83 1.26 86 1.15
[1, 10k] 74 221.37 82 1.83 76 1.28 79 1.16

[10, 10k] 59 421.24 67 2.06 61 1.34 64 1.20
[100, 10k] 38 1214.74 46 2.62 40 1.38 43 1.28
[1k, 10k] 25 2110.34 33 2.87 27 1.26 30 1.30

Table 7: Parallelization of a state-of-the-art MILP solver: comparison among static methods.

Finally, we compared SS(16) against the distributed algorithms implemented
in IBM ILOG CPLEX 12.6.1. In particular, we compared it against the following
schemes:

• algorithm RAMPUP, i.e., the default version of the distributed version of IBM825

ILOG CPLEX 12.6.1 that applies an infinite rampup phase;

• algorithm DYNAMIC, which is a more sophisticated implementation of the
distributed version of IBM ILOG CPLEX 12.6.1 that applies an initial ram-
pup and eventually applies some dynamic load balancing techniques.
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Note that the first algorithm corresponds to the No Communication config-830

uration for workers considered in [12], which is actually considered one of best
options to parallelize a MILP solver in a distributed environment (i.e., without
communication).

To keep our computational settings as clean as possible, we did not in-
vestigate possible alternative schemes, obtained either with di↵erent levels of835

communication (as proposed, e.g., in [12]) or through mixed methods in which
di↵erent strategies are used for di↵erent sets of workers.

Computational results are reported in Table 8, whose rows and columns have
the same meaning as in Table 7.

CPLEX(1) SS(16) DYNAMIC RAMPUP

class #opt time #opt speedup #opt speedup #opt speedup

all 174 959.34 193 1.32 208 1.20 192 1.12
[0, 10k] 174 244.18 193 1.57 208 1.35 192 1.21
[1, 10k] 174 244.18 193 1.57 208 1.35 192 1.21

[10, 10k] 153 341.90 172 1.63 187 1.43 171 1.27
[100, 10k] 85 1391.51 104 2.05 119 2.16 103 1.60
[1k, 10k] 53 2981.75 72 2.15 87 3.23 71 1.83

Table 8: Parallelization of a state-of-the-art MILP solver.

According to Table 8, the performance of SS(16) is competitive with the840

distributed strategies implemented by the commercial solver IBM ILOG CPLEX

12.6.1. Surprisingly, it is even the fastest method if considering the whole
testbed. However, it cannot match the number of instances solved to optimality
by DYNAMIC. In addition, when we consider harder and harder models, DYNAMIC
takes the lead, which is not unexpected given its dynamic load balancing capa-845

bilities. Still, it is worth noting that SS(16) slightly dominates RAMPUP, both in
runtime and number of instances solved, on all subsets.

6. Conclusions and future work

We have investigated the performance on MILP problems of SelfSplit, the
deterministic and (almost) communication free parallelization paradigm for tree850

search methods presented in [25].
Artificial experiments have been reported, aimed at evaluating the behav-

ior of SelfSplit “in vitro”. Our experiments highlight the role of perfor-
mance variability and heavy-tail distributions in limiting scalability in a low-
communication distributed setting.855

Two di↵erent implementations of SelfSplit have been considered, that only
require very minor changes of the deterministic algorithm to be parallelized.
Computational results on both ad-hoc and general-purpose MILP solvers have
been reported, showing that a nontrivial speedup can sometimes be obtained
with these simple changes, though more sophisticated approaches could lead to860

even better results.
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Our experiments with a branch-and-bound ATSP code confirm the findings
of [8], and show that simple ad-hoc enumerative codes can e↵ectively be par-
allelized by no-communication paradigms like SelfSplit. In our view, this is
mainly due to their low performance variability—a property that makes them865

rather appealing in a distributed setting.
Reasonable speedups were also obtained for a more sophisticated branch-

and-cut ATSP code, though the e↵ectiveness of its cutting planes tends to pro-
duce smaller trees with heavy nodes, which is not the most appropriate setting
for our method due to sampling-phase overhead.870

We have also addressed the parallelization of a specific branch-and-cut algo-
rithm working on top of a generic MILP solver through callbacks that prevent
the use of the standard distribution schemes. To be specific, we have con-
sidered the state-of-the-art code of [30] for the Uncapacitated Facility Location
(UFL) problem with linear costs, and parallelized it through a simple SelfSplit875

scheme producing a very satisfactory speedup of 5 to 8 when using 16 computers
in a cluster.

Finally we have shown that SelfSplit can achieve a significant speedup
even for a very sophisticated general-purpose MILP solver such as IBM ILOG

CPLEX 12.6.1.880

Future research can be devoted to verify the e↵ectiveness of SelfSplit for
parallelizing di↵erent types of enumerative codes.
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