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Abstract 

Innovation performance of regional innovation systems can serve as an important tool for 

policymaking to identify best practices and provide aid to regions in need. Accurate 

forecasting of regional innovation performance plays a critical role in the implementation of 

policies intended to support innovation because it can be used to simulate the effects of 

actions and strategies. However, innovation is a complex and dynamic socio-economic 

phenomenon. Moreover, patterns in regional innovation structures are becoming increasingly 

diverse and non-linear. Therefore, to develop an accurate forecasting tool for this problem 

represents a challenge for optimization methods. The main aim of the paper is to develop a 

model based on a variant of genetic programming to address the regional innovation 

performance forecasting problem. Using the historical data related to regional knowledge base 

and competitiveness, the model should accurately and effectively predict a variety of 

innovation outputs, including patent counts, technological and non-technological innovation 

activity and economic effects of innovations. We show that the proposed model outperforms 

state-of-the-art machine learning methods. 

 

1. Introduction 

Innovation is considered as a complex and dynamic, socio-technical, socio-economic, socio-

political phenomenon that has been recognised as a central issue in economic development [1] 

The concept of regional innovation systems has recently received increased attention [2,3] 

mainly due to the growing importance of regions (and other sub-national entities) in a 

globalised economy [4]. In regional innovation systems, private and public actors intensively 

interact and thus promote the generation, use, and dissemination of knowledge [5]. In 

addition, regions are critical entities for innovation policymaking because regions provide 

favourable conditions for knowledge creation and transfer [3]. In this context, measuring the 

innovation performance of regions has become a priority in order to develop integrated 

benchmarking systems in the knowledge-based economies [1]. This enables policymakers not 

only to comparatively evaluate the performance of regional innovation systems but also to 

identify best practices (innovation leaders) and target the regions in need (lagging behind 

regions). This is also why regional innovation performance is annually measured in many 

countries, for example using the innovation scoreboard for EU regions [6]. 

The advantages of using the indicators of innovation performance at regional level can be 

summarized as follows [7]: (1) analysts and statisticians have strong experience with the 
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collection and use of such indicators; (2) these indicators comprehensively cover all countries, 

industries and technological fields; (3) long time-series data are available to study the 

dynamics in the innovation performance of firms and industries across regions. In addition, 

the input-output innovation relationship is considered to be more robust at the regional level 

compared with the firm level [8]. This is attributed to both the important role of the regional 

context and the existence of externalities. Indeed, the results of firm-level models may 

provide incorrect inference in the presence of a strong effect of the regional context on the 

generation of innovations [9]. However, note that the results obtained at the regional level 

cannot be interpreted at the level of individual firms as these results might significantly differ 

from those obtained from firm-level data due to biased estimates [9]. 

The main concern in measuring regional innovation performance is the complexity and 

dynamic changes in regional innovation systems [2]. As a result, the data for the evaluation 

quickly become obsolete. Therefore, an accurate and reliable forecasting tool to support 

decision making presents a challenging task for optimization methods. Non-linear machine 

learning methods such as fuzzy rule-based systems and neural networks have been used for 

innovation forecasting at the firm level [10,11]. These methods outperformed traditional 

statistical forecasting models in terms of accuracy, indicating non-linear patterns in firm 

innovation activities. In addition, recent empirical evidence provides support for this 

assumption also at both the regional [12] and national level [13]. Moreover, chaos theory was 

used to detect non-linearity and strange attractors in the evolutionary path of patent counts 

[14]. Regarding innovation systems, Samara et. al. [15] developed an integrated system 

dynamics approach to analyse the impact of innovation policies on the performance of 

national innovation systems. However, no previous research known to us has forecasted the 

performance of regional innovation systems using artificial intelligence methods. The main 

advantage of these methods, compared with traditional statistical forecasting methods, is that 

no complex mathematical formulation of the input-output relationships is necessary. 

Moreover, traditional methods are not suitable for modelling phenomena characterised by a 

high variance [16]. In the case of regional innovation systems, the high variance is mainly due 

to the highly dynamic socio-economic environment. To address these issues, we develop a 

forecasting model based on genetic programming in this study. Specifically, we use a recently 

proposed and very promising variant of standard genetic programming that integrates the 

concept of semantic awareness and local search optimizers to generate forecasting models. 

We argue that this model is more appropriate to model intrinsic non-linear character of 

innovation performance than traditional statistical and machine learning forecasting models 
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because genetic programming: (1) has an excellent evolvability on training data [17] and (2) 

is able to generalize the solution also on testing data [18]. Our approach combines two recent 

advancements in genetic programming, this is (1) geometric semantic operator (GSO) that 

eliminates local optima by inducing a unimodal error surface on any forecasting algorithm 

and (2) local search optimizer (LSO) to make the convergence faster. The main idea of 

combining these approaches is to achieve a balance between exploration (GSO) and 

exploitation (LSO). As a result, the forecasting model can be optimized faster and overfitting 

can be avoided. 

To verify the appropriateness of the proposed model for forecasting performance of regional 

innovation systems, the data on European regions for the period 2004-2012 were used. The 

inputs of the forecasting model are represented by indicators related to the regional 

knowledge base (regional knowledge generation, absorption, and transfer capacity) and 

regional competitiveness indexes approximating regional socio-technical, socio-economic and 

socio-political environment. The outputs include four indicators of the performance of 

regional innovation systems, namely patent counts, technological and non-technological 

innovation activity and economic effects of innovations. The models are first trained to 

forecast innovation performance for 2010, and then the models are tested on 2012 data. We 

demonstrate that the proposed model outperforms other statistical and artificial intelligence 

methods in terms of accuracy on testing data. 

The remainder of this paper is structured as follows. In the next section, we present the inputs 

and outputs of the model and describe the data used. The variant of genetic programming 

proposed in this study to the forecasting problem is introduced in the following section. 

Section 4 describes the setting of the forecasting model and provides the experimental results 

comparing the proposed approach to other variants of genetic programming algorithm and 

other state-of-the-art forecasting methods. Finally, we conclude the paper, highlighting the 

main contributions of this study. 

 

2. Data  

Four interacting categories of determinants have been introduced into the models of regional 

innovation systems, namely regional competitiveness, knowledge generation, knowledge 

absorption and knowledge transfer [2,3,5,15]. Table 1 presents the determinants of regional 

innovation performance used in this study.  
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Different socio-economic conditions and regional competitiveness have been reported as an 

important determinant of regional innovation performance [19]. In fact, the specific 

combination of these conditions affects the ability of the region to transform R&D into 

innovation [20]. Business activity (measured as the share of self-employed persons) has been 

identified as a critical factor of innovation-based regional growth [21]. The index of labour 

market efficiency includes, among others, job mobility and labour productivity [22]. 

Technology readiness is of key importance for the overall competitiveness of a region. It can 

be characterised by ICT penetration rates and a regulatory framework which is friendly to 

ICT. Infrastructure index represents various dimensions of infrastructure, such as density, 

connectivity, and availability of roads, railways and flights.  

Market size includes both the size of the regional market and the size of the potential market 

in neighbouring regions [22]. The institutional quality index measures the quality of political 

and regulatory framework. 

R&D expenditure has been recognised as an important determinant of innovation performance 

in prior studies, indicating the level of knowledge generation within firms, research institutes 

and universities [23]. Different types of research are carried out by these organisations. The 

diffusion of technology is promoted by non-R&D innovation expenditures. The generation of 

scientific (analytical) and engineering (synthetic) knowledge is approximated by human 

resources in science and high-tech sectors [24,25]. 

Indicators of education estimate regional capacity to absorb knowledge and technology. The 

level of advanced academic skills can be measured by the share of the population with a 

tertiary education, while the participation of people in life-long learning represents readiness 

to continue technological development and innovation [26]. 

In regional innovation systems, intensive economic and knowledge interactions take place, 

both within firms as well as between firms and universities or research centres. In other 

words, the borders of the system are given by the intensity of these interactions. Inter-regional 

knowledge transfer was estimated by spatial centrality and employment in neighbouring 

regions. Spatial centrality index measures the remoteness (time accessibility) of the regions 

[27]. More frequent interactions promote knowledge transfer between regions. Reportedly, the 

performance of a regional innovation system strongly depends on the performance in 

neighbouring regions [28]. Joint publications between firms and universities approximate the 

knowledge transfer between researchers from the private and public sectors. A wide range of 

collaborating actors and knowledge sources helps firms achieve and sustain innovation [29]. 
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This cooperation leads to the transfer of knowledge between firms. Therefore, the share of 

collaborating firms was used as the indicator of knowledge transfer in this study. 

 

Table 1 - Input and output attributes for forecasting performance of regional innovation systems 

 Input attributes – regional competitiveness  Source of data 

x1 Business activity Eurostat 

x2 Labour market efficiency RCI 

x3 Technology readiness RCI 

x4 Infrastructure index RCI 

x5 Market size RCI 

x6 Institutional quality RCI 

 Input attributes – knowledge generation  

x7 R&D expenditure – private  Eurostat 

x8 R&D expenditure – government Eurostat 

x9 R&D expenditure – higher education  Eurostat 

x10 Non-R&D innovation expenditure Eurostat 

x11 Human resources in science Eurostat 

x12 Employment in high-tech sectors Eurostat 

 Input attributes – knowledge absorption  

x13 Tertiary education Eurostat 

x14 Lifelong education Eurostat 

 Input attributes – knowledge transfer  

x15 Spatial centrality [27] 

x16 Inter-regional employment Eurostat 

x17 Joint scientific publications (firms and universities) Eurostat 

x18 SME collaboration Eurostat 

 Output attributes – innovation performance  

y1 Patent counts (applications to the EPO) Eurostat  

y2 Technological innovation Eurostat 

y3 Nontechnological innovation Eurostat 

y4 Sales of new products Eurostat 

 

Patent counts not only measure the level of technological development but they also represent 

a proxy of the regional innovation capacity and evaluate the productivity of investments in 

R&D [2]. However, the number of patented inventions is not a perfect measure of innovative 

activity because it over-emphasizes the effects of localised interactions [30]. Therefore, it is 
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necessary to introduce alternative output indicators of regional innovation activity, such as 

those included in the Frascati Manual of the OECD [31]. Adopting this approach, we 

estimated the performance of regional innovation systems by the proportion of technological 

(product/process) and nontechnological (marketing/organisational) innovators. Thus, the 

diversity of innovation processes was considered [32]. Finally, the economic success of 

innovation activity was measured by the sales of new products (new-to-market and new-to-

firm products).  

European regional innovation systems at the level of NUTS 2 (Nomenclature of Territorial 

Units for Statistics) regions was examined due to its increasing importance regarding 

innovation and R&D policies. Compared to national innovation systems, these regions are 

considered more homogenous [33]. Data were collected for 259 European regions for the 

period of 2004-2012 (the list of the regions is presented as Supplementary Material). Since the 

effects of the inputs are expected to be delayed, a two-year forecasting horizon was applied in 

agreement with previous studies [23]. Most data from Eurostat were collected from the 

Community Innovation Surveys which has two-year reference periods. Therefore, a two-year 

collection period was available.  

 

3. An Introduction to Genetic Programming 

Genetic Programming (GP) [34] is a computational method that belongs to the computational 

intelligence research area called evolutionary computation [35]. GP consists of the automated 

learning of computer programs by means of a process inspired by the theory of biological 

evolution of Darwin. In the context of GP, the word program can be interpreted in general 

terms, and thus GP can be applied to the particular cases of learning expressions, functions 

and, as in this work, data driven predictive models. In GP, programs are typically encoded by 

defining a set F of primitive functional operators and a set T of terminal symbols. Typical 

examples of primitive functional operators may include arithmetic operations (+, -, *, etc.), 

other mathematical functions (such as sin, cos, log, exp), or, according to the context and type 

of problem, also boolean operations (such as AND, OR, NOT), or more complex constructs 

such as conditional operations (such as If-Then-Else), iterative operations (such as While-Do) 

and other domain-specific functions that may be defined. Each terminal is typically either a 

variable or a constant, defined on the problem domain. The objective of GP is to navigate the 

space of all possible programs that can be constructed by composing symbols in F and T , 

looking for the most appropriate ones for solving the problem at hand. Generation by 
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generation, GP stochastically transforms populations of programs into new, hopefully 

improved, populations of programs. The appropriateness of a solution in solving the problem 

(i.e. its quality) is expressed by using an objective function (the fitness function). In synthesis, 

the GP paradigm breeds computer programs to solve problems by executing the following 

steps: 

 

1. Generate an initial population of computer programs (or individuals).  

2. Iteratively perform the following steps until the termination criterion has been 

satisfied:  

(a) Execute each program in the population and assign it a fitness value according 

to how well it solves the problem.  

(b) Create a new population by applying the following operations:  

i. Probabilistically select a set of computer programs to be reproduced, on 

the basis of their fitness (selection).  

ii. Copy some of the selected individuals, without modifying them, into 

the new population (reproduction).  

iii. Create new computer programs by genetically recombining randomly 

chosen parts of two selected individuals (crossover).  

iv. Create new computer programs by substituting randomly chosen parts 

of some selected individuals with new randomly generated ones 

(mutation).  

3. The best computer program to appear in a generation is designated as the result of the 

GP process at that generation. This result may be a solution (or an approximate 

solution) to the problem.  

 

The standard genetic operators [34] act on the structure of the programs that represent the 

candidate solutions. In other terms, standard genetic operators act at a syntactic level. More 

specifically, standard crossover is traditionally used to combine the genetic material of two 

parents by swapping a part of one parent with a part of the other. 

Considering the standard tree-based representation of programs often used by GP [34], after 

selecting two individuals based on their tness, standard crossover chooses a random subtree in 

each parent and swaps the chosen subtrees between the two parents, thus generating new 

programs, the offspring. On the other hand, standard mutation introduces random changes in 

the structures of the programs in the population. For instance, the traditional and mostly used 
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mutation operator, called sub-tree mutation, works by randomly selecting a point in a tree, 

removing whatever is currently at the selected point and whatever is below the selected point 

and inserting a randomly generated tree at that point. As we clarify in Section 3, Geometric 

Semantic GP (GSGP) [17,36] uses genetic operators that are different from the standard ones, 

since they are able to act at the semantic level. The reader who is interested in a deeper 

discussion of GP is referred to [37] . 

 

3.1. Symbolic Regression with Genetic Programming. 

The problem tackled in this paper can typically be modelled as a symbolic regression 

problem. So, it is appropriate to introduce here the general idea of symbolic regression and the 

way in which this kind of problem is typically approached with GP. In symbolic regression, 

the goal is to search for the symbolic expression T
O
 : R

p
 → R that best fits a particular training 

set TR = {(x1, t1), (x2, t2), ..., (xn, tn)} of n input/outout pairs, with xi ϵ R
p
 and ti ϵ R. The 

general symbolic regression problem can then be defined as: 

 

T
O
  ←  argmin(TR ϵ G)  f (T(xi), ti)   with   i = 1, 2, ..., n    (1) 

  

Where G is the solution space defined by the primitive set (functions and terminals) and f is 

the fitness function, based on a distance (or error) between a program's output T(xi) and the 

expected output, or target, ti. In other words, the objective of symbolic regression is to find a 

function T
O
 (called data model) that perfectly matches the given input data into the known 

targets. In symbolic regression, the primitive set is generally composed of a set of functional 

symbols F containing mathematical functions (such as, for instance, arithmetic functions, 

trigonometric functions, exponentials, logarithms, etc.) and by a set of terminal symbols T 

containing p variables (one variable for each feature in the dataset), plus, optionally, a set of 

numeric constants. 

 

4. Geometric Semantic Genetic Programming 

Even though the term semantics can have several different interpretations, it is a common 

trend 

in the GP community (and this is what we do also here) to define the semantics of a solution 

as the vector  s(T) = [T(x1), T(x2), ..., T(xn)] of its output values. From this perspective, a GP 

individual can be identified by a point (its semantics s(T)) in a multidimensional space that we 
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call semantic space (where the number of dimensions is equal to the number of observations 

in the training set (or training cases). The term Geometric Semantic Genetic Programming 

(GSGP)[17] indicates a recently introduced variant of GP in which traditional crossover and 

mutation are replaced by so-called Geometric Semantic Operators (GSOs), which exploit 

semantic awareness and induce precise geometric properties on the semantic space. GSOs, 

introduced by Moraglio et al. [36], are becoming more and more popular in the GP 

community [38] because of their property of inducing a unimodal error surface (i.e. an error 

surface characterized by the absence of locally optimal solutions on training data) on any 

problem consisting of matching sets of input data into known targets (like for instance 

supervised learning problems such as symbolic regression and classification). The interested 

reader is referred to [17] for an introduction to GSGP, where the property of unimodality of 

the error surface is carefully explained. Here, we report the definition of the GSOs as given by 

Moraglio et al. for real functions, since these are the operators we will use in this work. For 

applications that consider other types of data, the reader is referred to [36]. 

 

Geometric Semantic Crossover (GSXO).  Given two parent functions T1, T2: R
n
 → R, the 

geometric semantic crossover returns the real function TXO = (T1 · TR) + ((1 − TR) · T2), where 

TR is a random function such that TR: R
n
 → [0; 1]. 

 

To constrain TR in producing values in [0; 1] we use the sigmoid function 𝑇𝑅 =
1

1+𝑒−𝑇𝑟𝑎𝑛𝑑
 

where Trand is a random tree with no constraints on the output values. 

 

Geometric Semantic Mutation (GSM).  Given a parent function T: R
n
 → R, the geometric 

semantic mutation with mutation step ms returns the real function TM = T + ms · (TR1 − TR2), 

where TR1 and TR2 are random real functions. 

 

Moraglio and co-authors show that GSXO corresponds to geometric crossover in the semantic 

space (i.e. the point representing the offspring lies on the segment joining the points 

representing the parents) and GSM corresponds to box mutation on the semantic space (i.e. 

the point representing the offspring lies within a box of radius ms, centered in the point 

representing the parent). As Moraglio and co-authors point out, GSGP has an important 

drawback: GSOs create much larger offspring than their parents and the fast growth of the 

individuals in the population rapidly makes fitness evaluation unbearably slow, making the 
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system unusable. In [39], a possible workaround to this problem was proposed, consisting in 

an implementation of Moraglio's operators that makes them not only usable in practice, but 

also very efficient. With this implementation, the size of the evolved individuals is still very 

large, but they are represented in a particularly clever way (using memory pointers and 

avoiding repetitions) that allows us to store them in memory efficiently. So, using this 

implementation, we are able to generate very accurate predictive models, but these models are 

very large.  

 

5. Local Search in GP and GSGP 

In Section 5.1, we discuss previous approaches for integrating Local Search (LS) with 

standard GP. Afterwards, in Section 5.2, we present the first integration of a local searcher 

within GSGP. 

 

5.1. Local Search in Standard GP 

Many works have appeared so far on how to combine an evolutionary algorithm with a local 

optimizer. In general, such approaches are considered to be a simple type of memetic search 

[40]. The basic idea is straightforward: include within the optimization process an additional 

search operator that takes an individual (or several) as an initial point and searches for the 

local optima around it. Such a strategy can help ensure that the local region around each 

individual is fully exploited. However, there can be some negative consequences to such an 

approach. The most evident is the computational overhead: while the cost of a single LS 

might be negligible, performing it on every individual might become inefficient. Second, LS 

can produce overfitted solutions, stagnating the search on local optima. These issues aside, 

these techniques have produced impressive results in a variety of scenarios, some of which are 

reviewed by Chen et al. [41]. A noteworthy aspect of this survey is an almost complete lack of 

papers that deal with GP. Of the more than two hundred papers covered by Chen et al., in fact, 

only a couple deal with memetic GP. This indicates that the GP community may have not 

addressed the topic adequately. 

In [42], gradient descent is used to optimize numerical constants within a GP tree, achieving 

good results on five symbolic regression problems. Similarly, in [43] and [44] a LS algorithm 

is used to optimize the value of constant terminal elements. In [43] gradient descent is used 

and tested on classification problems, while [44] uses resilient backpropagation and evaluates 

the proposal on a real-world problem, in both cases leading towards improved results. In [45], 
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the authors include weight parameters for each function node, which the authors call inclusion 

factors; these weights modulate the importance that each node has within the tree. The authors 

also propose a series of new search operators that explicitly consider the parametrization of 

each GP tree. In a recent work [46,47], this problem was addressed by implementing a very 

simple parametrization of the tree, by constraining the number of internal parameters of each 

tree regardless of its size. Several different strategies were compared to determine when a 

local optimizer should be applied, showing that it is often best to apply it on either all the 

population or a subset of the best individuals. The LS used is called trust region optimization 

[48], and results showed substantial improvements in performance compared with standard 

GP search on several benchmark and real-world problems. A similar approach was developed 

by [46], with two noteworthy differences. First, parameters replace all constants present on a 

given tree, and each GP tree is enhanced by adding an artificial root tree that effectively adds 

a weight coefficient and a bias to the entire tree, then the Levenberg-Marquardt optimizer is 

used to find the optimal values for these parameters. Second, the authors apply constant 

optimization to the population using different probabilities, as well as a strict offspring 

selection variant for comparison.  

 

5.2. Local Search in Geometric Semantic Genetic Programming 

One of the systems studied in this work integrates a LS strategy within GSGP. In particular, a 

local searcher is included within the GSM operator, since previous works have shown that 

GSGP achieves its best performance using only mutation during the search [49]. In particular, 

the GSM with LS (GSM-LS) of a tree T generates an individual: 

 

TM = α0 + α1 · T + α2 · (TR1 − TR2) 

 

where αi ∈ R and α2 replaces the mutation step parameter ms used in GSM. This in fact 

defines a basic multi-variate linear regression problem, which could be solved, for example, 

by Ordinary Least Square regression (OLS). However, in this case we have n linear equations, 

where n is the number of fitness cases, and only three unknowns (the αis). This gives an over-

determined multivariate linear fitting problem, which can be solved through Singular-Value 

Decomposition (SVD) (in this work, the GNU Scientific Library available at 

http://www.gnu.org/software/gsl/ is used). We argue that this should be seen as a LS operator, 

that attempts to determine the best linear combination of the parent tree and the random trees 

used to perturb it, which is local in the sense of the linear problem posed by the GSM 
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operator. It should not be seen as a LS in the entire semantic space, since in that case the LS 

would necessarily converge to the optimum in this unimodal landscape.  

This approach is similar to two previously proposed approaches. First, the linear fitting 

problem is reminiscent of the linear scaling procedure proposed in [50], which allows GP to 

fit the form of the desired output without necessarily optimizing the scale or bias. However, in 

that case, the scaling process is only used to adjust the fitness value of each individual, while 

the search operators used are standard ones. Second, and more closely related to this work, the 

non-isotropic Gaussian mutation proposed in [51], is used to perform a run-time analysis of 

GSGP. However, the mutation proposed in that work considers a fixed set of basis functions 

instead of randomly generated GP trees, and perturbs the linear combination with Gaussian-

noise instead of providing the best fit coefficients. Finally, the work presented by [52] also 

uses a multivariate linear regression approach to optimize evolved solutions, with several key 

differences. Particularly, the search is conducted by standard GP, not GSGP, and each tree is 

decomposed into a set of subtrees which are then linearly combined. The method is much 

more explorative then the one presented here. 

Moreover, the approach we propose contrasts with previous work [47], that relied on a non-

linear local optimizer, since the linear assumption is mostly not satisfied by the expression 

evolved with standard GP and the corresponding parametrization. Instead, in this new 

approach, it is simple to apply an optimizer based on a linear regression, given that the GSM 

operator defines a linear expression in parameter space. 

The idea of including a LS method is based on a very simple observation related to the 

properties of the geometric semantic operators: while these operators are effective in 

achieving good performance with respect to standard syntax-based operators, they require 

many generations to converge to optimal solutions. By including a local search method, we 

expect to improve the convergence speed of the search algorithm and to obtain better 

performance with respect to the algorithm that only uses GSOs. Moreover, by speeding up the 

search process, it will be possible to limit the construction of over-specialized solutions that, 

in the end, would overfit the data. 

 

6. Experiments 

This section describes the data pre-processing, experimental settings and the obtained results. 

6.1. Data pre-processing 
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To pre-process the data, we first used ε-SVR (support vector regression with radial basis 

kernel function and penalty parameter C=8) to impute the missing values. For each attribute, 

all attributes except the missing one were used to estimate the missing value. A normalisation 

step into the range [0, 1] was applied to the input/output data using the mapminmax function. 

Basic descriptive statistics on the data are presented in Appendix 1.  

 

6.2. Experimental settings 

Input variables from the years 2004-2008 and output variables from 2010 were used as 

training data, while inputs from 2006-2010 and outputs from 2012 served as testing data, 

respectively. In addition to the determinants of innovation performance (x1, x2, …, x18), the 

time-series component of the outputs was considered using the historical values of four 

performance indicators (y1, y2, y3, y4), this is from 2004-2008 to predict 2010 values in 

training data and from 2006-2010 to predict 2012 values in testing data, respectively (as 

presented in Figure 1). In other words, each of the 259 regions represented one sample in both 

the training and testing data and sliding window technique was used to perform time-series 

prediction. The number of input attributes in the data sets was 66 ((18 determinants of 

innovation performance + 4 performance indicators) × 3 time periods), see Figure 1 for 

details.  

 

Figure 1 - Experimental settings. Time-series component of the outputs was considered using four 

performance indicators (outputs - EPO patents, Technological innovation, Nontechnological 
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innovation, and Sales of new products), from 2004-2008 to predict 2010 values (in training) from 

2006-2010 to predict 2012 values (in testing). 

 

As most real-world time series are nonlinear and/or stochastic, differencing data first is 

considered the best approach to developing an accurate artificial intelligence forecasting 

model [53]. Moreover, stationarity may improve forecasting performance on testing data 

regardless of the underlying data generating process. As we found clear evidence of non-

stationarity for all four outputs (using Hadri Lagrange multiplier panel unit root test), we 

applied first differences to the data to reduce the effect of non-stationarity.  

 

In order to validate our results, two different experiments were built to forecast the regional 

innovation performance. The first experiment (from now on, experiment 1) considers the 

original input and output values while in the second experiment (from now on, experiment 2) 

data differences to reduce the effect of non-stationarity were considered. The two different 

configurations are presented in Table 2 and Table 3. 

 

Table 2 -  Input and output variables used in Experiment 1. Inp stands for input variable and Out 

stands for output variable. 

  x1 x2 x3 x4 x5 … x18 y1 y2 y3 y4 

Training 

Dataset 

2004 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 

2006 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 

2008 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 

2010        Out Out Out Out 

2012            

Testing 

Dataset 

2004            

2006 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 

2008 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 

2010 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 

2012        Out Out Out Out 

 

Table 3 - Input and output variables used in Experiment 2. Inp stands for input variable and Out stands 

for output variable. 

  x1 x2 x3 x4 x5 … x18 y1 y2 y3 y4 

Training 

dataset 

2004_2006 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 

2006_2008 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 



16 

 

2008_2010        Out Out Out Out 

2010_2012            

Testing 

dataset 

2004_2006            

2006_2008 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 

2008_2010 Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp 

2010_2012        Out Out Out Out 

 

As fitness, we used the Mean Absolute Value (MAE) between the output of the several 

algorithms and the corresponding target (i.e. expected output).  

With respect to the GP systems, the following parameters were used: 50 runs were executed 

for each GP system. In all the experiments, the population size consists of 200 individuals and 

each run was left to evolve for 500 generations. The crossover probability was equal to 0.8, 

while the probability of mutation was 0.2, with a random mutation step as suggested in [49]. 

The individuals are initialized using the ramped half-and-half method [34], with the maximal 

initial depth equal to 6 and tournament selection [34] of size 6 was used. The functional 

operators were +, ×, −, and the protected division [34]. The set of terminals nodes consists of 

the input variables. For each run and for each generation, we recorded the fitness of the best 

individual in the population in the training set and the fitness of the same individual in the test 

set. The GSM-LS operator was used only in the first 20 generations to avoid overfitting, while 

in the remaining generation the standard geometric semantic mutation was considered. 

 

6.3. Results 

This section discusses the experimental results. The presentation is organised as follows: 

initially, a comparison between three different genetic programming systems is considered. In 

a second step, the best performer of the previous phase is compared against various machine 

learning techniques that are commonly used to address the problem at hand. In particular, the 

three systems taken into account in the first part are a standard syntax-based GP (ST-GP), a 

system that uses the geometric semantic genetic operators defined in Section 3 (GSGP) and a 

system that uses the proposed GSM-LS operator outlined in Section 3 (GSGP-LS). Results 

produced by the three systems are summarised, for all the problem configurations, in Figure 2 

and Figure 3.  As it is possible to note, including semantic awareness in the search process is 

usually beneficial, resulting in better performance (i.e., lower error) with respect to ST-GP. 

Among GSGP and GSGP-LS the results are comparable, but it is important to remark that 

GSGP-LS is able to obtain the same good performance of GSGP in a reduced number of 
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generations. This fastest convergence is an important advantage, especially when a vast 

amount of data must be processed and analysed. 

  

  

Figure 2 - Boxplots of mean absolute error (test fitness) for the 50 runs of the considered GP systems 

on Experiment 1. On each box, the central mark is the median, the edges of the box are the 25th and 

75th percentiles, and the whiskers extend to the most extreme data points not considered outliers.  
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Figure 3 - Boxplots of mean absolute error (test fitness) for the 50 runs of the considered GP 

systems on Experiment 2. On each box, the central mark is the median, the edges of the box are the 25 th 

and 75th percentiles, and the whiskers extend to the most extreme data points not considered outliers.  

 

6.4. Comparison with Other Techniques 

Besides comparing GSGP-LS against GSGP and ST-GP, it is also important to compare the 

performance of GSGP-LS against other well-known methods. In particular, we take into 

account linear regression (LR) [54], Multi-layer perceptron (MLP) [55] , Fast decision tree 

learner (REPTree) [56], support vector regression (SMOreg) [57], Stacking [58] and Bagging 

[59].  

This comparison allows us to draw some considerations about the competitiveness of the 

results returned by GSGP-LS. To perform this experimental part, the implementations 

provided by the Weka public domain software [60] was considered. The values of the 

parameters characterizing the different techniques were chosen by performing a preliminary 

tuning phase. We used the functions provided by WEKA for finding the best parameter 

settings for the methods taken into account. In particular, the tuning phase has been performed 

by using the WEKA meta-classifier (CVParameterSelection). The meta-classifier provides a 

way of automating the tuning process. 

Table 4 reports the median values of the training and test errors (MAE) of the solutions 

obtained by all the studied techniques. As it is possible to note, the GP-based methods are 

generally the best performers. Interestingly, MLP produces good results with respect to the 

other techniques on the training set, but it is not able to produce the same performance on the 

test set that is, ultimately, what matters most. 

Results achieved by the different techniques on the test set, for the problem configurations 

considered, are reported in Figure 4 and Figure 5. From these box plots it is possible to draw 

similar conclusions with respect to the ones related to the first part of the experimental phase: 
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also when compared against state-of-the-art machine learning techniques, GSGP-LS is able to 

produce the best results.   

 

Table 3 - Experimental comparison between different non-evolutionary techniques and GSGP-LS. 

Median of the training error and test error (MAE) calculated over 50 independent runs. 

  
Experiment 1 Experiment 2 

Model Output Train Test Train Test 

Bagging 

y1 0.013 0.102 0.018 0.148 

y2 0.038 0.097 0.047 0.124 

y3 0.030 0.091 0.034 0.102 

y4 0.041 0.198 0.053 0.223 

Linear Regression 

y1 0.019 0.092 0.023 0.100 

y2 0.054 0.158 0.074 0.140 

y3 0.043 0.130 0.059 0.131 

y4 0.052 0.251 0.074 0.183 

REPTree 

y1 0.018 0.093 0.025 0.118 

y2 0.043 0.127 0.053 0.135 

y3 0.037 0.106 0.039 0.109 

y4 0.055 0.199 0.066 0.233 

SMOreg 

y1 0.017 0.099 0.021 0.115 

y2 0.052 0.138 0.067 0.201 

y3 0.040 0.123 0.054 0.134 

y4 0.046 0.232 0.065 0.215 

Stacking 

y1 0.025 0.097 0.025 0.173 

y2 0.056 0.136 0.055 0.191 

y3 0.035 0.113 0.042 0.125 

y4 0.048 0.193 0.065 0.202 

MLP 

y1 0.014 0.098 0.009 0.124 

y2 0.028 0.164 0.025 0.265 

y3 0.017 0.114 0.015 0.189 

y4 0.018 0.212 0.025 0.339 

GSGP-LS 

y1 0.001 0.014 0.001 0.019 

y2 0.005 0.023 0.006 0.031 

y3 0.003 0.019 0.003 0.038 

y4 0.005 0.045 0.009 0.049 
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Figure 4 - Boxplots of mean absolute error (test fitness) for the 50 runs of the considered machine 

learning techniques on Experiment 1. On each box, the central mark is the median, the edges of the 

box are the 25th and 75th percentiles, and the whiskers extend to the most extreme data points not 

considered outliers. 
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Figure 5 - Boxplots of mean absolute error (test fitness) for the 50 runs of the considered machine 

learning techniques on Experiment 2. On each box, the central mark is the median, the edges of the 

box are the 25th and 75th percentiles, and the whiskers extend to the most extreme data points not 

considered outliers. 

 

To assess the statistical significance of the results obtained and to further corroborate the 

previous qualitative analysis, a set of tests was performed. 

As a first step, the Lilliefors test was applied to test if the data comes from a normal 

distribution. The result of the test, performed with a significance level of 5%, suggested that 

the alternative hypothesis (data does not come from a normal distribution) cannot be rejected. 

Thus, a rank-based statistic was used. More in detail, the Mann-Whitney U-test was 

performed with the null hypothesis that the samples have equal medians.  

As for the previous test, a significance level of 5% with a Bonferroni correction was used. 

The p-values returned by the Mann-Whitney test (not reported in the manuscript) show that 

the differences in terms of median error between GSGP-LS and all the other machine learning 

techniques considered are statistically significant. 

 

7. Conclusion and Future Directions 

This study argued that the proposed GP-based model is more appropriate to model intrinsic 

complex and non-linear character of regional innovation performance than traditional 

statistical and machine learning forecasting models. The results of this study indicate that the 

GP-based model significantly outperforms other forecasting models in terms of test error. 

These results also suggest that the proposed forecasting model not only provides a good 

solution on training data but it also avoids overfitting due to the effective exploration-

exploitation trade-off. In addition, this dominant performance was present for a variety of 
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innovation output forecasts, indicating its possible use in forecasting related innovation 

performance measures. This suggests that the proposed model addressed the problems related 

to the complexity and dynamic changes in regional innovation systems. Thus, it represents an 

accurate and reliable forecasting tool to support decision making in R&D and innovation 

policy. Specifically, the forecasting model could be further used to the simulation and 

development of targeted interventions aimed at improving the performance of regional 

innovation systems. 

Our findings in this study were limited in several ways. The most important limitation was the 

availability of regional-level data as the results from the Community Innovation Survey are 

released with several years of delay. Further research might also explore the forecasting 

capacity of the model in different socio-economic and socio-political conditions and particular 

economic sectors, such as manufacturing or services. This is particularly important with 

regard to the current implementation of smart specialization policies. We also believe that the 

proposed forecasting model can be generalised and provide guidelines to the development of 

GP-based forecasts in a wide range of related socio-economic applications. 
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Appendix 1: Descriptive statistics (Mean±St.Dev.) on input and output attributes  

 
2004 2006 2008 2010 2012 

x1 0.268±0.173 0.297±0.184 0.300±0.179 0.273±0.178 - 

x2 0.568±0.202 0.568±0.202 0.608±0.196 0.665±0.191 - 

x3 0.557±0.222 0.557±0.222 0.607±0.237 0.610±0.241 - 

x4 0.762±0.177 0.762±0.177 0.623±0.204 0.346±0.269 - 

x5 0.509±0.176 0.509±0.176 0.426±0.193 0.362±0.213 - 

x6 0.486±0.222 0.486±0.222 0.554±0.230 0.621±0.241 - 

x7 0.440±0.219 0.451±0.219 0.463±0.205 0.377±0.205 - 

x8 0.397±0.178 0.406±0.166 0.407±0.163 0.364±0.165 - 

x9 0.217±0.162 0.153±0.118 0.226±0.160 0.221±0.155 - 

x10 0.499±0.105 0.462±0.108 0.516±0.121 0.359±0.120 - 

x11 0.404±0.197 0.417±0.199 0.436±0.193 0.406±0.203 - 

x12 0.475±0.204 0.496±0.203 0.492±0.206 0.508±0.177 - 

x13 0.499±0.157 0.522±0.158 0.556±0.167 0.493±0.177 - 

x14 0.275±0.205 0.274±0.194 0.271±0.196 0.269±0.195 - 

x15 0.534±0.243 0.534±0.243 0.534±0.243 0.534±0.243 - 

x16 0.055±0.082 0.055±0.081 0.052±0.079 0.055±0.081 - 

x17 0.373±0.191 0.373±0.191 0.373±0.191 0.373±0.191 - 

x18 0.343±0.159 0.360±0.159 0.384±0.192 0.417±0.239 - 

y1 0.449±0.202 0.448±0.192 0.449±0.184 0.291±0.178 0.345±0.196 

y2 0.447±0.182 0.444±0.197 0.474±0.219 0.475±0.268 0.449±0.181 

y3 0.446±0.145 0.493±0.197 0.439±0.218 0.411±0.209 0.350±0.158 

y4 0.449±0.161 0.421±0.178 0.471±0.159 0.461±0.140 0.320±0.159 

 

 


