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Abstract 

Access to smart meter data will enable electricity distribution companies to have a far 

clearer picture of the operation of their low voltage networks.  This in turn will assist in 

the more active management of these networks.  An important current knowledge gap is 

knowing for certain which phase each customer is connected to.  Matching the loads 

from the smart meter with the loads measured on different phases at the substation has 

the capability to fill this gap.  However, in the United Kingdom at the half hourly level 

only the loads from groups of meters will be available to the network operators.  

Therefore, a method is described for using this grouped data to assist with determining 

each customer’s phase when the phase of most meters is correctly known.  The method 

is analysed using the load readings from a data set of 96 smart meters.  It successfully 

ranks the mixed phase groups very highly compared with the single phase groups.   
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Highlights 

 Describes a novel method for phase identification using grouped smart meters 

 Analyses its performance using 96 smart meters each with 8,448 readings 

 Ranks the correct group phasing in the top 1% of phasings, usually much higher 

 Reliably labels mixed phase groups, including when there are unmetered loads 

 Practical way to find phasing when very few time periods for individual meters 



  Page 2 of 27 

1 Introduction 

The very large size of low voltage networks means that increasing the amount of their 

active management has the potential to deliver significant benefits.  For example, in the 

United Kingdom the low voltage network comprises 48% of the combined length of the 

country’s electricity distribution and transmission networks [1].  Of all the energy 

supplied by the UK’s electricity distribution networks (that is 132kV and below), 4% is 

lost on the low voltage network, while only 3% is lost on the rest of the network put 

together [2].  Unfortunately, the size of the low voltage network also means that the 

costs of the collection of detailed information about, for example, the average hourly 

current in each cable, has been prohibitive.  This means that the knowledge of the 

power flows on the low voltage network is very poor when compared to the higher 

voltage networks.  This has been a barrier to the more active management of low 

voltage networks.  However, it is hoped that the completion of the roll out of the UK’s 

smart meter programme to domestic customers in 2025 will address this.  This will 

come from providing the Distribution Network Operators (DNOs) such as Northern 

Powergrid, with the half hourly customer loads in real time.  While the cost of collecting 

phase information in the past has been prohibitive, smart meters potentially offer a 

minimal cost solution.  However, in the UK only the load values from groups of smart 

meters will be available at the half hourly level for network analysis [3].  This paper 

investigates how the DNOs can use this grouped smart meter data to assist in 

determining which phase each customer is connected to.   

The paper’s structure is: The background on phasing and methods for phase detection 

are reviewed in Section 2.  Following this, the data used in the research is described.  

Section 4 discusses the availability of readings from individual smart meters in the UK 

before Section 5 introduces a novel approach for using load readings from groups of 

smart meters.  It then goes on to analyse the performance of this approach using data 

from 96 smart meters.  The final sections discuss the implications of the research and 

summarise the findings.   

2 Background on phasing 

Any low voltage network that supplies more than a few customers is composed of three 

live phases (labelled red, yellow and blue) and a neutral phase.  A normal domestic 

customer is connected between one of the live phases and the neutral phase (see 

Figure 1).  It is beneficial to have approximately equal loads on each phase, not just at 
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the substation but throughout the network as this reduces voltage problems and losses 

through reducing the sizes of the neutral and largest phase currents – the consequence 

on the losses of different levels of imbalance are discussed in [4, 5].  Combining the 

knowledge of what phase a customer is connected to together with smart meter load 

readings will enable the performance of the low voltage networks to be modelled in 

much better detail.  Hence where problems are occurring or are likely to occur can be 

highlighted, thus allowing remedial actions to be taken, e.g. determining which phase to 

connect new loads or generation to.  

For cable networks, once the joint connecting the customer to the mains cable has been 

made and sealed, it is then not possible to visibly determine the phase the customer is 

connected to.  In the UK, although the phase has normally been recorded at the time 

the joint was made, there is a universal belief that these records are not totally accurate, 

and that a percentage of the phases are incorrectly recorded (see Figures 1 and 2).  

However, although knowing the correct phase provides benefits, these benefits are 

usually not sufficient to justify the expenditure needed to directly measure all the 

customer phases on a network by visiting their connection point.  Consequently, there is 

interest in lower cost ways of determining the phase each meter is on.  In some 

countries communications to the smart meter use the power line, and this can allow the 

smart meter’s phase to be determined [6], but this is not the case in many countries, 

e.g. the United Kingdom communicates the readings via the mobile phone network.   

Several approaches have been suggested for how the voltages and loads measured by 

the smart meters can be used to infer the phase of each meter.  The methods fall into 3 

classes depending on whether they are based around the reactive powers, the voltages 

or the currents at the smart meters.  The first class is based on linking the phase angle 

at each customer and the reactive power element of their load [7] but it needs a detailed 

network model and grouping smart meters together would thus seem to be a problem.  

The second class involves comparing voltage time series at a smart meter with those at 

other smart meters and with the voltage time series of the substation phases [6, 8, 9, 

10].  Differences between the approaches in this class are whether step changes in the 

substation voltages are the feature to be matched to or whether the smart meter time 

series are clustered together first and then matched to a substation phase.  This 

clustering of smart meters first can also allow connectivity problems to be identified, i.e. 

highlighting meters that are not connected to the substations they are modelled as 
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being connected to [6].  Although using voltage time series has been the preferred 

direction recently, it is more dependent on the network model in that the voltages will 

vary down a circuit in line with the loads along it.  When smart meters are grouped 

together this complicates this changing pattern.  Also it is not clear how the approach 

would perform on the reasonably balanced UK urban cable networks, e.g. the examples 

illustrating its performance in [10] are for single phase-taps.  Therefore, we chose to 

work with the third class which uses the fact that customer power measurements should 

approximately sum to the total of the corresponding phase power measurements at the 

substation [11].   

2.1 Summing smart meter power measurements 

The main criticisms of the summation based approach are that: 

 It is reliant on knowing which 11kV to 400V substation each meter is connected 

to.  

 It needs all the loads to be recorded, i.e. unmetered loads and cable losses are a 

problem [8, 10]. 

 The need for very costly high voltage monitoring at the hundreds of thousands of 

11kV to 400V transformers in the UK [7].  For example, Northern Powergrid has 

approximately 25,000 of these transformers.   

We do not believe that the first of these is any longer a significant problem in the United 

Kingdom.  The second point will be considered in Sections 5.2.2 and 6, while the third 

point is ameliorated as the monitoring can be on the low voltage side of the transformer, 

greatly reducing the cost.   

The idea behind the approach is that the power measurements from the smart meters 

on a phase, e.g. red, should sum to the power measurement at the substation on that 

phase (when cable losses are ignored).  Let  

Xi be 1 if the ith smart meter is connected to red, and be 0 if it is not 

Mit be the ith smart meter’s value at time t 

As the smart meter readings on red should sum to the red value at the substation at 

time t, we have: 

M1t × X1 + … + MNt × XN = Rt 
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i.e. a subset sum problem. 

So for time 1 to T we have: 

M11 × X1 + … + MN1 × XN = R1 

  … 

M1t × X1 + … + MNt × XN = Rt 

  … 

M1T × X1 + … + MNT × XN = RT 

If there are N independent equations, then the Xi can be found using regression. 

Usually T = N gives N independent equations.  However, regression needs more time 

intervals than is necessary for a unique solution because it does not use the information 

that Xi  {0, 1} for all the Xi.  An improvement on regression is to use linear 

programming and besides the equality constraints  

M1t × X1 + … + MNt × XN = Rt , 

to add the inequality constraints 0  Xi  1.   

Mangasarian & Recht [12] derived a remarkable result by transforming the variables so 

that the Xi  [-1, 1] and introducing an extra variable Z with the constraints that  

Z  abs(Xi) for all i.  Choosing Z to be the objective function to minimise, they showed 

that  N / 2 is the boundary for the linear programming approach to give a solution with 

all Xi  {-1, 1}.  In other words, for 100 meters on a two phase network, about 50 time 

periods are needed to solve the phase identification problem using the linear 

programming formulation.  [11] added extra columns to the equality constraint matrix so 

as to incorporate the constraints on the yellow and blue phases in a single linear 

programming problem.  Again the boundary for obtaining a purely integer solution for 

the Xi variables was around N / 2.  [11] goes on to suggest that for cases where the 

number of time instances is too low for linear programming to be applied successfully, 

then binary integer programming should be tried.  However, although binary integer 

programming can solve the problem using less time periods than linear programming, 

as the number of time periods decreases the solution time may become prohibitively 

long.  For both the linear programming and the binary integer programming approaches, 

specifying an objective function based on any approximate beliefs about which phase 

each meter is on, can greatly reduce the number of time periods needed for a solution. 
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Unfortunately, in the United Kingdom the primary data from smart meters that the 

Distribution Network Operators will be allowed to use will be half hourly values 

aggregated over groups of smart meters.  The aggregation will be specified by the 

Distribution Network Operators, and so it is likely to be based around the geographical 

location and the believed phases of the meters.  The reason for this aggregation is to 

preserve the privacy of individual customers [13].  This means that none of the three 

classes of phase identification methods listed at the start of this section can be directly 

used with the data.  Therefore, a method for extracting phasing information from 

grouped smart meter data is developed in Section 5.  This approach can be used to 

greatly reduce the possible phasing arrangements so that the approaches of the current 

section can be used with monthly individual smart meter data (see Section 4), so as to 

determine the correct phasing of each meter.  

3 Data used in the study 

The analysis will assume the availability of half hourly customer kWh readings from the 

smart meters (albeit usually aggregated over several meters) and the half hourly kWh 

readings on each low voltage phase at the 11kV to 400V substation.  The substation 

values could be provided by the equivalent of a smart meter attached to each phase at 

the substation.  In the longer term more advanced substation monitoring systems such 

as the trial described in [14] may become more common place. 

For any half hour, summing all the smart meter loads on a phase is unlikely to give the 

exact load on this phase at the substation because of unmetered loads, cable losses, 

reactive loads, etc. [11].  These discrepancies will be considered in Sections 5.2.2 and 

6.  

3.1 Smart meter data 

The smart meter data used was the loads from 96 domestic (residential) customers with 

time of use tariffs for a period of 8,448 half hours in 2013/2014 from data collected by 

the CLNR project [15].  The CLNR smart meter data can be downloaded from:  

 http://www.networkrevolution.co.uk/resources/project-data/ 

Any single time period gaps in the sequence of half hourly loads were filled in using 

interpolation.  Meters with longer gaps of missing data were not included in the 96 

meters that were selected.  6 other meters from this data set were used to test the 

robustness of the analysis to noise (Section 5.2.2).   
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Although the demands were from domestic customers, there was a wide diversity in the 

demands in terms of their time of day behaviour and their overall levels.  For example, 

Figure 3 shows the demands from the first four meters in the data set for a Friday in the 

middle of the period.  Apart from the values being lower in the early hours of the 

morning and being relatively high around 18:00, there is little similarity between the 

profiles.  Figure 4 is the average demand from all the meters for this Friday and the 

following Saturday.  In contrast to the individual behaviour in Figure 3, the 96 meters 

taken as a whole seem to have a distinct pattern of low night time, medium day time 

and high evening demand.  Figure 5 considers how the overall consumption over the 

8,448 half hours differs for the customers.  This histogram shows that if two customers 

are chosen at random, then it is not uncommon for one to have two or more times the 

consumption of the other.  

In practice, the half hourly data will only be available from groups of meters.  Figure 6 

shows the average demands from meters 1 to 4, 5 to 8, 9 to 12 and 13 to 16 for the 

Friday used in Figure 3.    

3.2 Substation data 

The smart meter data in Section 3.1 did not have any corresponding substation load 

measurements available.  Therefore, the meters were randomly assigned to phases and 

the substation phase loads were based on the sums of the meters on each phase.   

The background noise stemming from factors such as the cable losses was modelled as 

4% of the total load supplied (in line with the low voltage losses estimated in [2]).  This 

was split in line with the ratio of the smart meter loads on each phase and added to the 

substation phase loads.  Finally, uncertainty in the allocation of this extra load to the 

phases was modelled in Section 5.2.2 by altering the splitting ratio by 10%.  For 

example, for a 2 phase system, if the smart meter load split was 46:54 between red and 

yellow, then the split of 56:44 was used for the allocation of the 4% cable losses term.  

4 Readings available from individual smart meters 

Access to the individual smart meter readings is sensitive as it can allow a profile of the 

customer’s behaviour to be constructed, especially if it is combined with other data 

sources such as social media accounts.  For example, the top left demand profile in 

Figure 3 suggests that the property might have been unoccupied between 12:00 and 

16:00 while the property corresponding to the top right profile might have been 
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unoccupied for the whole period.  Consequently, the policy in the UK is that the data 

from individual smart meters will only be available for network analysis for half hour time 

periods if they are aggregated together with the values from other meters.  However, 

individual smart meter data averaged over longer periods such as a month are regarded 

as being much less sensitive as it is more comparable with the energy usage readings 

of “old” meters.  Hence the policy as stated in [3] is that “4.19 … network operators 

could access monthly consumption data from individual households for regulated 

purposes”.  However, this individual data is likely to be at a premium, and so it is 

desirable to get as much information as possible from the grouped meter data to 

augment the individual data. 

5 Grouped smart meters 

In contrast to the individual smart meter data, the number of time periods with grouped 

smart meter data available to the UK’s DNOs will potentially be very large, e.g. there are 

approximately 17,500 half hours in a year.  The DNOs will be able to specify which 

meters they want to be grouped together.  A sensible way to group the meters is on the 

basis of being close together and being believed to be on the same phase (as in Figure 

1).  However, as some of the believed phases may be wrong, some of the groups might 

have a mix of phases (as in Figure 2).  This section proposes and analyses an 

approach for using the grouped data to identify the groups whose meters are believed 

to be on a single phase but where there is actually a mix of phases.  If the mixed and 

single phase groups can be successfully identified, then this would allow the possibility 

of analysing all possible phase combinations for the single meter data by just looking at 

the possible phase permutations amongst the mixed groups.  Hence the most 

appropriate of the single meter phase identification techniques discussed in Section 2 

could then be employed to determine the phasing breakdown in the mixed groups.  

The approach’s steps are presented in Figure 7.  In step 1, groups of meters are formed 

that are close to each other and which are believed to be on the same phase, e.g. from 

the records from the time the customers were connected.  The approach investigates 

whether a better fit between the substation data and the customers’ smart meter data 

can be achieved if some of the groups are designated as containing a mixture of phases 

(with the mixture being specified, e.g. 3 red and 1 yellow).  Therefore, step 2 modifies 

the designation of the phases assigned to the groups to see whether this new 

designation fits better.   
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For each labelling combination, the groups of smart meters are used to predict the 

current on each phase at the substation for each half hour (step 3), and this is then 

compared with the recorded substation currents (step 4) to produce a prediction error.  

How well each labelling of phases to groups does, is assessed by calculating the 

variance of these errors (step 5).  The labellings are then ranked on the size of these 

variances, with the smaller the variance, the better the labelling (step 6).  This ranking of 

the different designations of phase labels to the groups of meters, can then be used to 

either  

select the best designations (step 7.a) that can then be analysed (step 7.b) using 

the monthly individual smart meter data (see Section 4) along with one of the 

approaches from Section 2, e.g. using the designation as the objective function for 

the subset sum approach of Section 2.1,  

or  

identify the groups most likely to contain a mix of phases (step 8.a).  Again the 

approaches from Section 2 can then be used to identify the individual customer 

phases for these groups using the monthly individual data (step 8.b) in a similar 

way to step 7.b.   

In more detail, step 3 estimates the substation load using the loads from the groups 

allocated to this phase and a contribution from the loads from the mixed groups with at 

least one meter on this phase.  This mixed contribution is the value of the group load 

times the fraction of this group on this phase times a (constant) scaling value.  For 

example, if a group is modelled as 3 meters on red and 1 on yellow, then its contribution 

to the substation red phase total is 0.75the group totalthe scaling value. 

In step 5, a single value for each allocation of groups to phases is produced by adding 

together the variances from the different phases.  When these values for all possible 

group phasing permutations are ranked, the correct permutation is conjectured to have 

one of the lowest values – the basis for this is detailed in Section 5.1. 

The ranking value was analysed using the data sets of 96 smart meters with 8,448 time 

periods introduced in Section 3.  96 was chosen as the number of meters for the 

analysis as 

 The desire for a large number of time periods restricted the number of smart 

meters that were available in the data set of Section 3 to close to 100.   
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 It is close to 100 but is divisible by 3 and 4.  This allowed group sizes of 2, 3 and 

4 to be analysed on the same data set.   

For ease of the implementation and of describing the approach, only two phases were 

used in the modelling, i.e. red and yellow.  The approach can easily be extended to 

three phases but it becomes messier as it means there are more combinations for the 

mixed groups, e.g. {2 red, 1 yellow, 1 blue}, {1 red, 3 yellow, 0 blue}, etc.  The extension 

to three phases is considered in Section 6.  The 96 meters were allocated to groups in 

terms of their numerical order, i.e. for a group size of 4, meters {1, 2, 3, 4} formed group 

one, meters {5, 6, 7, 8} formed group two, etc.  The meters were allocated to phases by  

 Assigning meters 1 to 48 to the red phase and meters 49 to 96 to the yellow 

phase (step 1).  This corresponds to the prior beliefs, i.e. the recorded phases, 

being that the first 48 meters were attached to the red phase and the second 48 

meters were attached to the yellow phase. 

 Changing up to 4 of the 1 to 48 red meters to the yellow phase and up to 4 of the 

49 to 96 yellow meters to the red phase, with the indices of the changed meters 

being sufficiently well separated that they were in separate groups for groups of 

sizes 2, 3 and 4 (step 2). 

5.1 Variances of the correct and incorrect labellings 

Considering the case of the prior beliefs about one of the first 48 meters and one of 

meters 49 to 96 being incorrect, e.g. meter 48 is actually on the yellow phase and meter 

96 is on the red phase, then if the groups containing meters 48 and 96 have been 

correctly identified as being mixed, then the red component of the ranking measure for 

group size 2 comes from the formula: 

M47,t + M96,t –  (M47,t + M48,t) –  (M95,t + M96,t)    Equation (1) 

where Mi,t is the reading of meter i at time t.  

Equation (1) stems from meters 1 to 46 being correctly identified as red, just leaving the 

mixed groups containing meters 47, 48, 95 and 96 to affect the measure.   

If we assume that the meter values are independently identically distributed and, without 

losing any loss of generality, that the variance is 1, then the variance of equation 1 is 

2 ( – 1)2 + 2 2 = 4 2 – 4  +2      Equation (2) 
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If the red mixed group is wrongly identified as meters 1 and 2 rather than meters 47 and 

48, then the formula is now 

M1,t + M2,t + M47,t + M96,t –  (M1,t + M2,t) –  (M47,t + M48,t) –  (M95,t + M96,t) 

The corresponding variance is  

3 (1 – )2 + 1 + 2 = 4 2 – 6  +4      Equation (3) 

If in addition the yellow mixed group is wrongly identified as meters 49 and 50, then the 

corresponding formula is  

(1 – ) (M1,t + M2,t) – M48,t + M96,t –  (M49,t + M50,t)  

and the corresponding variance is  

2 (1 – )2 + 2 + 2 2 = 4 2 – 4  +4      Equation (4) 

Comparing equation (2) with equations (3) and (4), we can see that equation (4) is 

always 2 greater than equation (2), and equation (3) minus equation (2) is 2 – 2 , and 

so this is positive for  less than one.  Hence if  is less than 1, then the variance of the 

case where the mixed groups are correctly identified, i.e. equation (2), is less than the 

cases where they are incorrectly identified, i.e. equations (3) and (4).  In practice the 

assumption that the meter values are independently identically distributed will not hold, 

but the conjecture is that the ranking value corresponding to the correct labelling of the 

mixed groups will be one of the lowest ranking values when the number of time periods 

is large.  Section 5.2 analyses this conjecture. 

For group sizes of 3 and 4, the ranking formulae for the correctly identified mixed 

groups are respectively 

M46,t +M47,t +M96,t – 2  (M46,t +M47,t +M48,t) –  (M94,t +M95,t +M96,t) 

and  

M45,t +M46,t +M47,t +M96,t – 3  (M45,t +M46,t +M47,t +M48,t) –  (M93,t +M94,t +M95,t +M96,t) 

The multipliers 2 and 3 stem from these mixed groups being designated as having 2 

and 3 reds in them.   and  are used instead of  so as to emphasise that the value of 

the scaling factor depends on the group size.  Expressions for the variances can be 

derived in the same way as when the group size was 2.  The intervals for  and  that 

give the variance of the correct labelling of the mixed groups as being lower than the 
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other variances, are smaller than the interval for group size 2 where the constraint was 

<1, but they both contain the reciprocal of the group size. 

5.2 Analysis of the ranking measure using the smart meter data 

The approach of Figure 7 and Section 5.1 was applied to the data set of 96 smart 

meters with values for 8,448 half hourly time periods (see Section 3.1).  The substation 

data was modelled as described in Section 3.2.  Any discrepancy between the sum of 

the meter readings for a half hour and the substation values, i.e. from the modelling of 

the unmetered loads and losses, was split in the ratio of the totals from the believed 

phasing of the meters, i.e. the 1 to 48 red total and the 49 to 96 yellow total.  These 

calculated discrepancies were then deleted from their respective substation phase 

totals.  Hence the sum of the grouped meter values equalled the sum of the substation 

phase values.   

The set of labelling schemes that were ranked (i.e. those considered in step 2) were 

when all the mixed groups were correctly identified, when all but one of the mixed 

groups were correctly identified, and when just one mixed group on each phase were 

incorrectly identified, i.e. all but two of the mixed groups were correctly identified.  For 

example, for a group size of 4 and one incorrectly recorded meter for each phase, e.g. 

meter 48 is on yellow and meter 96 is on red, then there is one correct labelling, 11 

labellings with just the red mixed group wrong, 11 labellings with just the yellow mixed 

group wrong, and 121 labellings with one red group and one yellow group wrong, giving 

144 labellings in total (hence the 144 at the top of the second column in Table 1).  

Therefore, all the labellings that are closest to the labelling initially believed to be correct 

(step 1), have their ranking measure calculated (steps 2 to 6).   

5.2.1 Zero unmetered loads 

The adjustment to the unmetered load splitting ratio in Section 3.2 was set to zero 

rather than 10%.  One of the first 48 meters was assigned to yellow and one of the 

second 48 meters was assigned to red, i.e. the number of mixed groups was 2.  The 

group size was set at 4.  All 144 labellings for no mixed groups, 1 mixed group and 2 

mixed groups were analysed.  The labelling that corresponded to the correct 

identification of the two mixed groups gave the lowest value, i.e. was ranked as 1 (in 

step 7.a).  This is denoted by the 1 in the first entry in column 3 row 2 of Table 1.  This 

process was repeated 11 times by randomly generating the index of the yellow meter in 
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meters 1 to 48 and the index of the red meter in meters 49 to 96.  This gave the other 

11 entries in the column 3 row 2 cell.  These 12 ranking entries were converted to a 

percentage ranking by dividing by 144 and multiplying by 100.  The median, mean and 

highest of these percentages are given in columns 4, 5 and 6.  The analysis was 

repeated with 4, 6 and 8 mixed groups to give rows 3, 4 and 5.  Tables 2 and 3 give the 

corresponding results when the group sizes were 2 and 3.  Tables 1, 2 and 3 show that 

the correct labelling is generally in the top fraction of a percent in the rankings when the 

number of mixed groups is 4, 6 or 8.   

In Table 4, the top 75 rankings from the bottom row of Table 1 are analysed, i.e. the 

case of group size 4 and 8 mixed groups.  For each of the 24 size 4 groups, the number 

of times this group is labelled as a mixed group in these top 75 ranked labellings is 

determined (step 8.a).  For example, the group containing meters 1 to 4 might be 

labelled as a mixed group in labellings with rankings of, say, 7, 32 and 66, giving an 

overall score for this group of 3.  Table 4 identifies whether the groups with scores of at 

least 70, 60, 50 and 40 are actually mixed or not.  The statistics in this table, e.g. the 

mean, stem from analysing the 12 random assignments of meters considered in the 

bottom row of Table 1.  Table 4 shows that if the threshold is set at 80%, i.e. 60 out of 

75, then approximately half of the 8 mixed groups can be identified with the chance of 

an incorrect identification of a single phase group as mixed being extremely low.  

However, the raw data (not presented here) showed that often the bottom one or two 

mixed groups had counts well below many single phase groups. 

Table 5 repeats the analysis of Table 4 but for groups of size 3 and 6 mixed groups, i.e.  

the case of the bottom row of Table 2.  As the choice of 75 for the number of rankings in 

Table 4 was arbitrary, 50 rankings were used in Table 5 so as to investigate the effects 

of a lower number.  The results were similar to Table 4.  Several of the mixed groups 

could be very reliably identified when the threshold was set at 80% i.e. a count of 40 or 

more, but some of the mixed groups had very low counts, and so were not identifiable.   

Consequently, using the ranking measure with step 8.a seems to be able to very reliably 

identify some but not all of the mixed groups.  It is likely that this identification could be 

improved by investigating what is the best number of rankings to use rather than the 

arbitrary selection of 75 and 50 in Tables 4 and 5.   
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5.2.2 Modelling the presence of unmetered loads 

The 4% discrepancy between the substation loads and the sum of the smart meter 

loads (see Section 3.2) was not split across the phases in line with the believed split of 

smart meters across the phases, but the red percentage of this split was increased by 

10% and the yellow percentage was decreased by 10%.  For example, if the sum of the 

smart meter loads believed to be on the red phase was 47% of the total of the smart 

meter loads, then 57% of the discrepancy term was added to the substation’s red phase 

and 43% to the substation’s yellow phase. 

Table 6 gives the results from performing the same analyses as in Table 4.  Comparing 

Table 6 with Table 4 shows that the ranking approach performs similarly in both cases, 

with Table 4 possibly performing slightly better when the threshold was 70.   

In addition to cable losses, a proportion of the discrepancy between the substation and 

the smart meter loads can arise from customer loads that are not metered.  The effects 

of some of these, e.g. street lights, could be ameliorated by considering the nature of 

the load, e.g. it may only happen at night, but some of the loads will be more random.  

Therefore, the ranking approach’s robustness to these loads was investigated by 

allocating extra customer loads to the substation phases.  Six extra profiles from the 

same data set behind the 96 profiles in Section 3.1 were used, i.e. the analysis involved 

102 different profiles.  The test involved adding extra customer loads to the case 

analysed in Table 6, i.e. the case of a 10% imbalance in the cable losses being added 

to the red phase.  Most of the majority of these extra customers were added to the red 

phase so as to worsen the effect of the cable loss imbalance.  The cases considered 

were 2 meters on red and 1 on yellow, 4 meters on red and 2 on yellow, 4 metres on 

red and 1 on yellow, 5 metres on red and none on yellow, and 6 metres on red and 

none on yellow.  For each of these, the 12 cases considered in each row of Table 6 

were analysed.  The results are given in Table 7.  The deterioration in the performance 

as the number of extra unmetered loads on the red phase compared with the yellow 

phase increases from one to six is very low.  

Tables 6 and 7 show that the performance of the ranking approach in reliably identifying 

some of the mixed groups is robust to the presence of unmetered loads with no meters 

being wrongly identified in 10 out of the 12 cases making up each row, and only 1 

wrong identification in the other 2 cases. 
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6 Discussion 

Several simplifications were made in the modelling: 

 2 phases – The analyses in Section 5 were carried out on two phases rather than 

three.  For the three phase case it seems simpler and more straightforward to 

perform three “2 phase” analyses, i.e. red, and non-red, etc., than to perform one 

combined analysis. 

 Meter inaccuracy – The high degree of accuracy required from the meters for 

billing purposes means that this is unlikely to lead to serious mismatches 

between the substation and the smart meter totals in practice.  Meter inaccuracy 

was modelled in [11] with no problems being found.  Where concerns have been 

raised over the accuracy of smart meters, it has been when the waveforms are 

distorted rather than for more normal conditions (see for example [16]).   

 The number of meters aggregated together – This research has considered 

group sizes of 2, 3 and 4.  As the group size increases, phase identification 

becomes more difficult.  However, group sizes much above 4 are probably not 

that helpful for network analysis anyway as the meters being aggregated 

together become more spread out through the network. 

7 Conclusions  

The proposed method for analysing grouped smart meter data can reliably detect some 

of the mixed phase groups when the existing knowledge about the phase connections is 

good but not perfect.  The identification of the mixed groups is robust to the presence of 

unmetered loads such as cable losses and unmetered customers.   

This capability is important as the access to non-grouped smart meter data in the UK 

will be very severely restricted, and so extracting information from the grouped smart 

meter data will be paramount.  

Notation  

Mit is the ith smart meter’s value at time t 

Rt is the red phase value at the substation at time t  

Xi is 1 if the ith smart meter is connected to the red phase and 0 otherwise 

 is the scaling value applied to mixed groups of size 2 (see Section 5)  

 is the scaling value applied to mixed groups of size 3 (see Section 5 
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 is the scaling value applied to mixed groups of size 4 (see Section 5 
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Table 1: The ranking of the correct designation of which groups are mixed out of all the permutations of assigning the correct 
number or less of mixed groups to the 24 groups when the group size was 4 (i.e. the results of step 7.a).  

Number of 

mixed 

groups 

Number of 

phasing 

labellings 

Ranking of the correct designation for 12 different 

allocations of meters to phases different from their 

believed phase 

Median % Mean % Worst % 

2 144 1, 28, 4, 1, 7, 1, 1, 1, 1, 1, 1, 7 0.69% 3.13% 19.44% 

4 4,356 1, 3, 2, 1, 161, 6, 1, 1, 1, 1, 6, 4 0.03% 0.36% 3.70% 

6 48,400 427, 128, 7, 7, 274, 175, 1, 53, 8, 71, 44, 30 0.10% 0.21% 0.88% 

8 245,025 39, 14, 4, 4, 607, 677, 1, 273, 146, 453, 31, 1 0.01% 0.08% 0.28% 

 



  Page 20 of 27 

 

Table 2: The ranking of the correct designation of which groups are mixed out of all the permutations of assigning the correct 
number or less of mixed groups to the 32 groups when the group size was 3 (i.e. the results of step 7.a).   

Number of 

mixed 

groups 

Number of 

phasing 

labellings 

Ranking of the correct designation for 12 different 

allocations of meters to phases different from their 

believed phase 

Median % Mean % Worst % 

2 256 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5 0.39% 0.62% 1.95% 

4 14,400 2, 67, 1, 1, 10, 9, 1, 1, 2, 1, 10, 1 0.01% 0.06% 0.47% 

6 48,400 901, 188, 1, 1, 1, 1148, 8, 1, 1, 1, 3, 27, 35, 2 0.13% 4.43% 26.35% 

 

Table 3: The ranking of the correct designation of which groups are mixed out of all the permutations of assigning the correct 
number or less of mixed groups to the 48 groups when the group size was 2 (i.e. the results of step 7.a).   

Number of 

mixed 

groups 

Number of 

phasing 

labellings 

Ranking of the correct designation for 12 different 

allocations of meters to phases different from their 

believed phase 

Median % Mean % Worst % 

2 576 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 2 0.17% 0.32% 1.74% 

4 76,176 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0.00% 0.00% 0.00% 
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Table 4: The split between whether the most commonly occurring mixed groups in the 
top 75 rankings were actually mixed or not when the group size was 4 and the number 
of mixed groups was 8 (i.e. the results of step 8.a).  

 Correctly identified Incorrectly identified 

Threshold Mean Median Maximum Mean Maximum 

70 1.5 1 5 0.0 0 

60 3.7 4 6 0.0 0 

50 5.4 5 7 0.0 0 

40 6.4 6 8 0.4 1 

 

 

Table 5: The split between whether the most commonly occurring mixed groups in the 
top 50 rankings were actually mixed or not when the group size was 3 and the number 
of mixed groups was 6 (i.e. the results of step 8.a). 

 Correctly identified Incorrectly identified 

Threshold Mean Median Maximum Mean Maximum 

50 1.8 2 3 0.0 0 

45 2.4 2 3 0.0 0 

40 3.0 3 4 0.0 0 

35 3.4 3 5 0.1 1 

30 3.9 4 6 0.1 1 
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Table 6: Repeating the analysis of Table 4 but using 10% rather than 0% to adjust the 
split of the cable loss discrepancy between the substation load and the sum of the smart 
meter loads (i.e. the results of step 8.a).   

 Correctly identified Incorrectly identified 

Threshold Mean Median Maximum Mean Maximum 

70 1.3 1 3 0.0 0 

60 3.7 4 5 0.0 0 

50 5.4 5 7 0.1 1 

40 6.2 6 8 0.3 1 

 

 

Table 7: Identifying the mixed phase groups after adding unmeasured meters to the 
substation for the 10% imbalanced losses case of Table 6. The threshold for identifying 
the mixed groups was 80% (i.e. the results of step 8.a). 

Unmetered  Correctly identified Incorrectly identified 

red and 

yellow 

Mean Median Maximum Mean Maximum 

0 and 0 3.7 4 5 0.0 0 

2 and 1 4.0 4 5 0.2 1 

4 and 2 4.2 4 6 0.2 1 

4 and 1 4.3 4 6 0.2 1 

5 and 0 3.6 4 5 0.2 1 

6 and 0 3.8 4 5 0.2 1 
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Figure 1: Believed phasing according to the network records.  Smart meters are 
allocated to groups based on proximity and their believed phase. 

 

Figure 2: Actual phasing.  Meters 4 and 5 are on different phases to those they are 
believed to be on in Figure 1, and so groups B and C now contain a mixture of meters 
connected to the yellow and blue phases. 
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Figure 3: The first four profiles in the smart meter data set for Friday the 7th of February 
2014.   
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Figure 4: The average demand from the 96 meters for each half hour on Friday the 7th 
and Saturday the 8th of February 2014.   

 

 

Figure 5: The average demand over the 8,448 half hours for each meter. 
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Figure 6: The average meter demand from each of the first four groups of size 4.  
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Figure 7: The steps in using grouped smart meter data to improve the identification of 
customer phases 
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