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ABSTRACT 
 

The recent cost reduction and technological advances in medium- to large-scale 

Battery Energy Storage Systems (BESS) makes these devices a true alternative for 

wind producers operating in electricity markets. Associating a wind power farm 

with a BESS (the so-called Virtual Power Plant (VPP)) provides utilities with a 

tool that converts uncertain wind power production into a dispatchable technology 

that can operate not only in spot and adjustment markets (day-ahead and intraday 

markets) but also in ancillary services markets that, up to now, were forbidden to 

non-dispatchable technologies. What is more, recent studies have shown capital 

cost investment in BESS can be recovered only by means of such a VPP 

participating in the ancillary services markets. We present in this study a multi-

stage stochastic programming model to find the optimal operation of a VPP in the 

day-ahead, intraday and secondary reserve markets while taking into account 

uncertainty in wind power generation and clearing prices (day-ahead, secondary 

reserve, intraday markets and system imbalances). A case study with real data from 

the Iberian Electricity Market is presented. 

 

Keywords: Battery Energy Storage Systems; electricity markets; ancillary services market; 

wind power generation; virtual power plants; stochastic programming 

 

1. Introduction. 

The technology behind medium-size Battery Energy Storage Systems (BESS) is 

especially appropriate for small producers with non-dispatchable (wind power plants and 
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photovoltaic systems) or nearly non-dispatchable generation (co-generation). Lithium-ion 

(Li-ion) batteries provide high power and a large depth of discharge, fast charge and 

discharge capability and high round-trip efficiency [1]. Moreover, Li-ion is expected to 

experience the greatest five-year battery capital cost decline (~50%) [2]. There is a general 

consensus that profits from energy arbitrage are insufficient for achieving capital cost 

recovery [3]. However, participation in the ancillary services market has recently been 

proven to be a means for achieving economic viability for a Wind Power +Li-ion BESS 

facility [4]. This study proposes a new methodology based on stochastic programming to 

obtain the optimal bid of a programming unit participating in an electricity market 

consisting of a Wind Power Plant (WPP) with a BESS. We analyze the effect of the BESS 

in the optimal operation of the WPP and also how participation in the secondary reserve 

market (only possible with the BESS) affects the optimal operation of the Virtual Power 

Plant (VPP). 

1.1. Electricity markets 

The aim of the wholesale national energy production system is the safe and stable 

generation, transportation and distribution of the electrical energy needed to satisfy the 

nationwide electricity demand at every moment. Achieving such a complex objective 

nowadays is accomplished by setting up a series of Electricity Markets (EM), a regulated 

system that allows producers and consumers to sell/buy energy at a given clearing price 

that is fixed through an auction mechanism. There are two different entities involved in the 

EM: market agents and operators: 

 Agents: Market agents are companies authorized to participate in the electricity 

production market as electricity buyers and sellers. They can be electric power 

producers (also known as Generation Companies, i.e., GenCos), resellers and direct 

wholesale consumers. 

 Operators: Operators are public companies committed to the organization and 

management of the market. Usually there are two kinds of operators: the Independent 

Market Operators (IMO), which are in charge of the economic management of the 

system; and the Independent System Operator (ISO) in charge of the technical 

management of the system. 

The EM includes several markets that can be considered either spot markets (day-ahead 

and intraday, those markets where the commodity traded is energy) and ancillary services 

markets (those where the commodity negotiated is either power reserves or energy to be 

used to assure the stability and safety of the energy delivering). Furthermore, as in other 

financial and goods markets, there is also a futures and derivatives market to hedge the risk 

of fluctuations in the spot market prices, which are not considered in this work. Please see 

Figure 1 for a graphic description of this structure. In this figure, and in the rest of the paper, 

day D-1 represents the day when the bids are submitted and the markets cleared, day D is 

the day when the matched energy must be delivered, and day D+1 the day when imbalances 

are settled. 
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Figure 1: Electricity market structure. 

This work considers the operation of a VPP in three different electricity markets: the 

day-ahead market (DM), the intraday market (IM) and the secondary reserve market (RM), 

all together with the imbalance settlement: 

 Day-ahead market (DM): handles electricity transactions for the following day 

through the presentation of 24-h electricity sale and purchase bids by market 

participants. The result of the DM clearing can be modified subsequently by the ISO 

to guarantee the safety and reliability of the supply. 

 Secondary reserve market (RM): ancillary service whose purpose is to maintain the 

generation-demand balance by correcting deviations to fill the gap between forecasted 

and actual energy consumption. Market agents can submit their upward and downward 

reserve availability (reserve band) to this 24-h auction market. 

 Intraday market (IM): The purpose of the intraday market is to respond (a) to  the 

adjustments that the ISO makes to either the results of the DM or (b) to its own 

deviations from the expected generation availability. This is done through the 

presentation of electricity power sale and purchase bids by market agents (again, 

organized through 24-h auctions). 

 Imbalance settlement (IB): After day D, the actual deviations between the true real-

time generation of the VPP and the energy cleared in the DM and IM are calculated. 

Should the real generation exceed the cleared energy, some collection rights will be 

paid to the VPP owner. Otherwise, if the real generation is less than the cleared energy, 

the VPP owner must face some payment obligations. 

1.2. Bibliography 

Optimal participation in the electricity market of standalone WPPs has been analyzed 

from very different points of view. The simplest models consider only the participation of 

a wind power producer in the day-ahead market (DM), usually accounting for the economic 

impact of imbalances (IB), which is the deviation of the actual wind production from the 

scheduled production set in the DM clearing. The work in [5] proposes such a model for 

the Dutch electricity pool. The same was done in [6], where the expected profit is 

maximized while including risk aversion (CVaR). These models can be improved by 

including in the formulation the possibility of decreasing imbalances by means of 

selling/buying the excess/shortage of wind production to intraday (or adjustment) markets 

(IM). This is the approach taken in [7], where DM, IM and IB are considered.  
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In order to mitigate the non-dispatchability of wind production, several authors have 

proposed combining a WPP with some energy storage device into a single-acting unit in 

the electricity market (usually referred to as a Virtual Power Plant (VPP)). The most usual 

association consists of a VPP with a pumped hydro storage plant [8] [9] [10] [11]. In [12], 

the WPP operates in combination with a pumped hydro storage plant and a quick response 

conventional power plant. All these works consider only the DM plus the IB and neglect 

the possibility of participating in intraday markets or ancillary services markets. 

One fruitful field of study has been on the benefits of battery-based energy storage 

systems for the operation of countrywide power systems with high wind power penetration. 

The profitability of private investment in storage units has been analyzed and demonstrated 

in [13]. The work in [4] establishes that the economic feasibility of investing in BESS can 

only be guaranteed if the VPP participates in some ancillary services (secondary reserve 

market). [14] studies the optimal allocation of BESS in distribution networks with high 

wind power penetration. [15] and [16] show the technical feasibility of combining in a VPP  

a WPP plus a BESS to support regulation services, therefore committing to the day-ahead 

ancillary service market. 

There are few papers analyzing strategies for optimal operation in electricity markets 

that are the same as that of the VPP considered in this paper, that is, a VPP consisting of a 

WPP plus a BESS. The work in [5] presents integrated day-ahead bidding and real-time 

operation strategies for wind-storage systems, specifically those in which the WPP and 

BESS cooperate as an integrated producer bidding to the DM. They do so while considering 

penalties for imbalances, but they neglect intraday and reserve markets. The model is 

validated with a small-scale example using just three time periods. In [17], a VPP 

comprising a WPP plus two BESS is proposed to compensate for the power mismatch 

between the WPP production matched in the DM and the actual production; but it 

disregards the VPP’s capabilities for operating in the ancillary services market. In a similar 

way, the work in [18] considers a dual BESS system for maintaining the scheduled dispatch 

level of the forecasted wind generation output power as a means for enhancing the lifetime 

of a BESS by avoiding frequent charging and discharging operations. 

Multi-stage stochastic programming has been used by several authors to cope with the 

optimal bid to multi-markets (DM, RM and IM) with classical dispatchable thermal units ( 

[19], [20], [21] and [22]). These works usually consider models with three stages, each one 

corresponding to one market. When it comes to analyzing the optimal multi-market bid of 

a wind power plant – whether it is standalone or operates together with a BESS – the most 

common approach is to consider two-stage stochastic programming formulations while 

assuming that all the involved random variables (market prices and WPP production) are 

disclosed simultaneously, which is a rough approximation of the real situation ( [6], [8], 

[12], [18]). The works in [7] and [23] are some of the few that develop a truly multi-stage 

stochastic programming model. In [7], the authors solve the WPP standalone problem with 

stages associated with the day-ahead market, intraday market and balancing mechanism. In 

[23], a mid-term VPP (WPP with pumped hydro storage) is considered with three stages 

that correspond to WPP output, photovoltaic output and prices. The complexity introduced 

in the decision-making process by the presence of a BESS makes formulating multi-stage 

stochastic programs for the VPP operations considerably more difficult than for its WPP 

standalone counterpart, and we have not been able to find any precedent that follows this 

approach in the literature. 
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1.3. Contribution. 

We present a new multi-stage stochastic programming model (𝑊𝐵𝑉𝑃𝑃) for the optimal 

bid of a wind producer in both spot and ancillary services electricity markets. This 

stochastic programming model considers: 

 A Virtual Power Plant (VPP) comprising a Wind Power Plant (WPP) and Battery 

Energy Storage System (BESS). 

 The VPP’s bids to the spot electricity markets: day-ahead and intraday. 

 The VPP’s bids to the secondary reserve band market. 

 The management of the imbalances in the electricity market. 

 The use of a new multi-stage stochastic programming model to cope with the 

uncertainty of both WPP generation and electricity market prices. 

From the methodological point of view, this model represents an extension of the 

previous formulations of the decision-making process that – in addition to the stages 

associated with the three electricity markets considered by other authors – takes into 

account the hourly operation of the BESS, resulting in a much more elaborated multi-stage 

scenario tree representation. We rely on real data from the Iberian Electricity Market while 

using model (𝑊𝐵𝑉𝑃𝑃) to analyze the economic effect that the BESS and reserve market 

have on the optimal bidding strategies of the VPP. Contrary to the aforementioned studies, 

where the joint operation of the VPP was justified by the enhancement of the balancing 

between scheduled and actual WP production, our work does not neglect the balancing 

issues but additionally places emphasis on the participation of the VPP in multiple 

sequential markets: DM, RM and IM. Although our results agree with the previous works 

which find that the overall profit of the VPP increases  in day-ahead markets when 

compared with the WPP, it is also true that that increase is not enough to recover the capital 

costs of the BESS system. This corroborates the relevance of the secondary reserve market, 

as has been established by several studies ( [3], [4]). We also show that, contrary to the 

generalized claim in the literature, the role of imbalances is quite secondary from an 

economic point of view, representing less than 2.5% of the total incomes when the RM is 

considered, although they are necessary for the model to get feasibility. Imbalances can 

even increase with respect to the WPP standalone operation  (see Sections 4.6 and 4.7). 

2. Virtual Power Plant definition and stochasticity. 

2.1. Definition of random parameters and decision variables. 

Our study considers the daily operation across the 24 h time periods 𝒯 ≝ {1,… ,24} of 

a Virtual Power Plant (VPP) operating in the DM, RM and IM. Figure 2 depicts the 

representation of this VPP together with the decision variables and random parameters 

involved in the operation of this VPP. 
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Our aim is to find the optimal operation of the VPP with respect to any possible 

outcome of the random variable 𝜉(𝜔) ∈ Ξ associated with the random event 𝜔 (grey values 

in Figure 2):  

𝜉(𝜔)𝑇 = [𝜆𝐷(𝜔)𝑇, 𝜆𝑅(𝜔)𝑇, 𝜆𝐼(𝜔)𝑇 , 𝑝1
𝑊(𝜔)𝑇, … , 𝑝24

𝑊(𝜔)𝑇, 𝜆𝐼𝐵+(𝜔)𝑇 , 𝜆𝐼𝐵−(𝜔)𝑇]. 

The meanings of the different random parameters are given in Table 1.  

𝜆𝐷(ω) ∈ ℝ24: Clearing prices of the 24 auctions of the day-ahead market 
[€ 𝑀𝑊ℎ⁄ ]. 

𝜆𝑅(𝜔) ∈ ℝ24: Clearing prices of the 24 auctions of the reserve market 

[€ 𝑀𝑊⁄ ]. 

𝜆𝐼(𝜔) ∈ ℝ24: Clearing prices of the 24 auctions of the intraday market 

[€ 𝑀𝑊ℎ⁄ ]. 

𝑝𝑡
𝑊(𝜔) ∈ ℝ: Wind power production [𝑀𝑊ℎ] at time period 𝑡 ∈ 𝒯 

𝜆𝐼𝐵+(𝜔), 𝜆𝐼𝐵−(𝜔) ∈ ℝ24: Prices for positive and negative imbalances at every hour 

[€ 𝑀𝑊ℎ⁄ ]. 

Table 1: Random parameters 

The decision variables associated with the operation of the VPP correspond to the 

quantity bids to the three markets (DM, RM and IM) and the hourly operation of the BESS 

(charges and discharges), together with the imbalances at every hour (Table 2). 

𝑝𝐷 ∈ ℝ24: Energy of the price accepting bid for the 24 

auctions of the day-ahead market [𝑀𝑊ℎ]. 
First stage 

 

Figure 2: Random parameters (grey) and decision variables of the VPP. 
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𝑟𝑈(𝜔), 𝑟𝐷(𝜔) ∈ ℝ24: Reserve of the price accepting bid for the 24 

auctions of the reserve market [𝑀𝑊]. 

Recourse 

𝑝𝐼(𝜔) ∈ ℝ24: Energy of the price accepting bid for the 24 

auctions of the intraday market [𝑀𝑊ℎ]. 

𝑐𝑡(𝜔), 𝑑𝑡(𝜔) ∈ ℝ:  Charges/discharges of the BESS at time period ∈
𝒯 [𝑀𝑊]. 

𝑝𝑡
𝐼𝐵+(𝜔), 𝑝𝑡

𝐼𝐵−(𝜔) ∈ ℝ24: Imbalances (positive and negative) of the VPP at 

time period ∈ 𝒯 [𝑀𝑊ℎ]. 

Table 2: Operational decision variables, first stage and recourse. 

To simplify the notation, sometimes we will use 𝜆𝐼𝐵 = [𝜆
𝐼𝐵+

𝜆𝐼𝐵−
] and 𝑝𝐼𝐵 = [

𝑝𝐼𝐵+

𝑝𝐼𝐵−
] to 

refer to the complete set of positive and negative imbalance prices and energies, 

respectively. 

2.2. Multi-stage decision process and scenario tree. 

The optimal operation of a VPP in electricity markets is a multi-stage decision-making 

process in which the different operational recourse decisions are taken once random 

variables (prices and wind production) are known, since the first stage decision is taken 

before that. The stages of this decision-making process are depicted in Table 3. 

  Day D-1 Day D 
Day 

D+1 

Stages: ⋯ 12 13 14 15 16 17 18 19 20 ⋯ 24 1 ⋯ 24 1 

1 DM 𝑝𝐷 𝜆𝐷          𝑝𝐷 delivering  

2 RM   𝑟𝑈 , 𝑟𝐷 𝜆𝑅        𝑟𝑈,𝐷 delivering  

3 IM        𝑝𝐼 𝜆𝐼    𝑝𝐼 delivering  

4 
WPP gen. 

1 
            

𝑐1
𝑑1

 𝑝1
𝑊 𝑝1

𝐼𝐵    

 ⋮              ⋱   

27 
WPP gen. 

24 
              

𝑐24
𝑑24

 𝑝24
𝑊  𝑝24

𝐼𝐵  

28 Imbalances                𝜆𝐼𝐵 

 

 : decision variables   : random parameters. 
 

Table 3: Sequence of random disclosures and decision stages. 

The sequence of events involved in the VPP decision-making process is the following: 

 Day D-1: During day D-1, the bid to the three electricity markets (DM, RM and IM) 

is submitted and the markets are cleared: 

1. The price accepting selling bid to the DM for day D, the first stage variables 𝑝𝐷, 

are submitted no later than 12:00. 

2. At 12:00 the DM closes and the 24 DM’s clearing prices 𝜆𝐷(𝜔) are made public 

simultaneously before 13:00 (stage 1). 
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3. The bidding period in the RM for day D opens at 12:00 and the price accepting bid 

to the RM, 𝑟𝑈(𝜔) and 𝑟𝐷(𝜔), can be submitted until 14:00. 

4. The 24 RM’s prices 𝜆𝑅(𝜔) are disclosed simultaneously before 15:00 (stage 2). 

5. The bidding period in the IM of day D opens at 17:00 and the VPP’s price 

accepting bid (either selling or purchase) to the IM  𝑝𝐼( 𝜔) can be submitted until 

18:45. 

6. The 24 IM’s prices 𝜆𝐼(𝜔) are published simultaneously before 19:30 (stage 3). 

 Day D: During day D, the BESS must operate hourly in accordance with the real WPP 

generation in order to deliver the amounts (energies and reserve) matched in the 

auctions of day D-1: 

7. At every hour 𝑡 ∈ {1,… ,24} of day D, the charges 𝑐𝑡(𝜔) and discharges 𝑑𝑡(𝜔) are 

decided before observing the value of the actual WPP generation, according to the 

state of the BESS at the end of hour 𝑡 − 1 and the energy and reserve commitment 

of the VPP for hour 𝑡. Then, the actual WPP generation  𝑝𝑡
𝑊(𝜔) is disclosed, and 

the value of the imbalances 𝑝𝑡
𝐼𝐵(𝜔) are set (stages 4 to 27). 

 Day D+1: 

8. Finally, after day D, the prices to be applied to imbalances, 𝜆𝐼𝐵(𝜔), are published 

(stage 28). 

The multi-stage decision-making process described in Table 3 is represented through 

the scenario tree shown in Figure 3. In this representation the support Ξ of the random 

variable 𝜉(𝜔) is discretized in a finite set of scenarios 𝒮 with probability vector 𝑃 ∈ ℝ|𝒮|, 

being 𝑃𝑠 the probability of scenario 𝑠 ∈ 𝒮. For the sake of clarity, the tree in Figure 3 is 

binary, although it of course does not necessarily have to be so. Each scenario 𝜉𝑠 is 

associated with a specific possible realization of 𝜉(𝜔), that is, the complete set of the 28 

random parameters 𝜉𝑠
𝑇 = [𝜆𝑠

𝐷𝑇, 𝜆𝑠
𝑅𝑇, 𝜆𝑠

𝐼 𝑇 , 𝑝𝑠,1
𝑊 𝑇
, … , 𝑝𝑠,24

𝑊 𝑇
, 𝜆𝑠
𝐼𝐵𝑇]. The branches correspond to 

the disclosure of some random variable while the nodes are associated with different sets 

of recourse decision variables. In order to be able to formulate the VPP’s multi-stage 

stochastic programming problem, we need to introduce the concept of scenario clusters at 

each stage of the tree. At every stage of our problem we define as many clusters as there 

are different possible values for the associated random variable. For instance, in the tree of 

Figure 3, there are 2 clusters associated with the first stage (DM) and each one has a 

different value for the DM clearing price. The first cluster is compounded by all the 

scenarios 𝑠 ∈ 𝒮 sharing the same value of 𝜆𝑠
𝐷. Consequently, the set of clusters for the DM 

stage in Figure 3 is: 

𝒞𝐷 = {1,2}, 𝑐𝐷 = |𝒞𝐷| = 2, 

with the following two clusters: 

𝒟1 = {1,2,… , |𝒟1|}, 𝒟2 = {|𝒟1| + 1,… , |𝒮|} 
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Figure 3: Multi-stage scenario tree and clusters. 

The DM clearing price for every scenario belonging to these two clusters are 𝜆𝐷,1 and 

𝜆𝐷,2, respectively; that is, 𝜆𝑠
𝐷 = 𝜆𝐷,1 for every 𝑠 ∈ 𝒟1 and 𝜆𝑠

𝐷 = 𝜆𝐷,2 for every 𝑠 ∈ 𝒟2. 

Generalizing, we can say that 𝜆𝑠
𝐷 = 𝜆𝐷,𝑘 for every 𝑠 ∈ 𝒟𝑘, 𝑘 ∈ 𝒞𝐷 . As for the recourse 

variables, the nonanticipativity principle establishes that the value of the decision variables 

of the stage following the DM clearing (upward and downward reserve 𝑟𝑈 and 𝑟𝐷) must 

coincide in those scenarios belonging to the same cluster 𝒟𝑘, that is: 

𝑟𝑠
𝑈 = 𝑟𝑈,𝑘 and 𝑟𝑠

𝐷 = 𝑟𝐷,𝑘 𝑠 ∈ 𝒟𝑘 , 𝑘 ∈ 𝒞𝐷 

The same definitions and relationships stated for the first stage (DM) apply to the 

subsequent stages RM to IB. For instance, at the second stage (RM), we have four clusters 

𝒞𝑅 = {1,2,3,4}, 𝑐𝑅 = |𝒞𝑅| = 4, which are associated with the reserve clearing prices 

𝜆𝑅,1…4. The scenarios belonging to the first two clusters, ℛ1 and ℛ2, are depicted in Figure 

3 with the symbols  and , respectively, and their expression are ℛ1 = {1,2,… , |ℛ1|} and 

ℛ2 = {|ℛ1| + 1,… , |𝒟1|}. Stage 3 corresponds to the IM, with  𝜆𝑠
𝐼 = 𝜆𝐼,𝑘 for every 𝑠 ∈

ℐ𝑘 , 𝑘 ∈ 𝒞ℐ. Stages 4 to 27 are associated to the wind production at every time period 𝑡, with 

𝑝𝑡,𝑠
𝑊 = 𝑝𝑡

𝑊,𝑘
 for every 𝑠 ∈ 𝒲𝑡

𝑘, 𝑘 ∈ 𝒞𝑡
𝑊. For instance, the set of clusters in the first time 

period is 𝒞1
𝑊 = {1,2,… , 𝑐1

𝑊 = 16}, and the clusters are 𝒲1
𝑘, 𝑘 ∈ 𝒞1

𝑊. Stage 27 has 𝑐24
𝑊 =
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|𝒞24
𝑊| clusters, with the last one being 𝒲24

𝑐24
𝑊

= {|𝒮| − 1, |𝒮|}. Finally, at the last stage, the 

one associated with the imbalance prices, there are as many prices 𝜆𝑠
𝐼𝐵 as scenarios, and 

therefore there is no need for defining any cluster. 

3. The (𝑾𝑩𝑽𝑷𝑷) model. 

Figure 4 shows, for any time period 𝑡 ∈ 𝒯, the different elements involved in the 

mathematical formulation of the WPP+BESS Virtual Power Plant model (𝑊𝐵𝑉𝑃𝑃) (WPP, 

BESS, DM, IM, RM) and the energy/power interchanges between all of them. In the next 

sections, we are going to develop the mathematical formulation of all these elements and 

interactions. 

3.1. Spot markets, DM and IM.  

The variables associated with the bid to the spot energy markets DM and IM are: 

𝑝𝑡
𝐷: energy of the price accepting bid to the DM, time period 𝑡 ∈ 𝒯, [𝑀𝑊ℎ] 

𝑖𝑝𝑡
𝐷: binary = 1 if the VPP is bidding to the DM at time period 𝑡 ∈ 𝒯 (𝑝𝑡

𝐷 > 0) and 

= 0 otherwise 

𝑝𝑡,𝑠
𝐼 : energy of the price accepting bid to the IM, time period 𝑡 ∈ 𝒯, and scenario 

𝑠 ∈ 𝒮, [𝑀𝑊ℎ] 

The following constraints define the relationship between variables 𝑝𝑡
𝐷 and their 

associated binary variables 𝑖𝑝𝑡
𝐷: 

𝑝𝑡
𝐷 · 𝑖𝑝𝑡

𝐷 ≤ 𝑝𝑡
𝐷 ≤ �̅�𝑡

𝐷 · 𝑖𝑝𝑡
𝐷 𝑡 ∈ 𝒯 (1)  

𝑖𝑝𝑡
𝐷 ∈ {0,1} 𝑡 ∈ 𝒯 (2). 

Although the DM rules does not impose any minimum value to 𝑝𝑡
𝐷, our formulation 

needs 𝑝𝑡
𝐷 to formulate constraint (1). In this study, 𝑝𝑡

𝐷 is set at 10% of the expected wind 

production, 𝑝𝑡
𝐷 = 0.1 · 𝐸[𝑝𝑊], and the maximum bid �̅�𝑡

𝐷 is set at the maximum possible 

discharge plus the maximum forecasted wind production, �̅�𝑡
𝐷 = 𝑑𝑚𝑎𝑥 +max

𝑠∈𝒮
{𝑝𝑠,𝑡
𝑊 }. 

 

Figure 4: Parameters and variables of the VPP at time period 𝑡. 
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The electricity market rules establish that the VPP can only participate in the IM 

markets (𝑝𝑡,𝑠
𝐼 ≠ 0) if its production has been matched in the DM market, that is: 

𝑝𝑡,𝑠
𝐼 · 𝑖𝑝𝑡

𝐷 ≤ 𝑝𝑡,𝑠
𝐼 ≤ �̅�𝑡,𝑠

𝐼 · 𝑖𝑝𝑡
𝐷 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮 (3) 

It must be pointed out that – contrary to the bid to the DM, which is always a selling 

bid (𝑝𝑡
𝐷 ≥ 0) – the VPP can either sell (𝑝𝑠,𝑡

𝐼 > 0) or buy (𝑝𝑠,𝑡
𝐼 < 0 ) energy within the 

system. 

The bid to the IM is intended to be a tool that compensates for the deviations between 

the expected wind production 𝐸[𝑝𝑡
𝑊] and the actual wind production 𝑝𝑡,𝑠

𝑊 , although it could 

be used as a speculative tool for taking advantage of the price difference between the DM 

and IM, a behavior that would be sanctioned by the IMO if detected. To avoid this to some 

extent, the bid to the IM 𝑝𝑠,𝑡
𝐼  is limited in equation (3) to remain in the range [𝑝𝑡,𝑘

𝐼 , �̅�𝑡,𝑘
𝐼  ]. 

The lower bound  𝑝𝑡,𝑠
𝐼  is defined as: 

𝑝𝑡,𝑠
𝐼 = 𝐸𝑟∈ℛ𝑐(𝑠) [𝑝𝑡,𝑟

𝑊 − 𝐸[𝑝𝑡
𝑊]|𝑝𝑡,𝑟

𝑊 < 𝐸[𝑝𝑡
𝑊]] 

where 𝑐(𝑠) is the cluster 𝒞𝑅 to which scenario 𝑠 belongs, that is, 𝑠 ∈ ℛ𝑐(𝑠). Therefore,  𝑝𝑡,𝑠
𝐼  

represents the expected WPP production shortage for all the scenarios in cluster ℛ𝑐(𝑠), 

which is the cluster that scenario 𝑠 belongs to. Analogously, the upper bound �̅�𝑡,𝑠
𝐼  is defined 

as the expected WPP production surplus for the same cluster of scenarios: 

�̅�𝑡,𝑠
𝐼 = 𝐸𝑟∈ℛ𝑐(𝑠) [𝑝𝑡,𝑟

𝑊 − 𝐸[𝑝𝑡
𝑊]|𝑝𝑡,𝑟

𝑊 ≥ 𝐸[𝑝𝑡
𝑊]] 

3.2. BESS operation. 

The parameters that define the physical characteristics and operational limits of the 

BESS are the following: 

𝑑𝑚𝑎𝑥: maximum charging/discharging rate [M𝑊]. 

𝑒𝑚𝑎𝑥: battery capacity [𝑀𝑊ℎ]. 

𝑐𝑦𝑐𝑚𝑎𝑥:  maximum number of charge/discharge cycles before end of life. 

𝐸𝑂𝐿: end of life (years). 

𝛾𝑅𝑇𝐸: round-trip efficiency. 

𝑠𝑜𝑐𝑚𝑖𝑛,  𝑠𝑜𝑐𝑚𝑎𝑥: minimum/maximum State of Charge (SOC). 

𝑠𝑜𝑐0,  𝑠𝑜𝑐𝑇: initial and final  SOC. 

The state of charge (SOC) is defined as the current energy stored in the BESS divided by 

the battery capacity 𝑒𝑚𝑎𝑥. The variables that determine the operation of the BESS at time 

period 𝑡 and scenario 𝑠 are: 

𝑐𝑡,𝑠: charging rate, time period 𝑡 ∈ 𝒯 and scenario 𝑠 ∈ 𝒮 [𝑀𝑊]. 

𝑑𝑡,𝑠: discharging rate, time period 𝑡 ∈ 𝒯 and scenario 𝑠 ∈ 𝒮 [𝑀𝑊]. 

 𝑖𝑑𝑡,𝑠: binary = 1 if discharging, = 0 otherwise, time period 𝑡 ∈ 𝒯 and scenario 𝑠 ∈ 𝒮. 

𝑠𝑜𝑐𝑡,s: SOC at the end of period t ∈ {0} ∪ 𝒯 and scenario 𝑠 ∈ 𝒮. 
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Equations (4)-(6) describe the charging/discharging state and limits: 

0 ≤ 𝑑𝑡,s ≤ 𝑑
𝑚𝑎𝑥 · 𝑖𝑑𝑡 𝑡 ∈ 𝑇,  𝑠 ∈ 𝑆 (4) 

0 ≤ 𝑐𝑡,s ≤ 𝑑
𝑚𝑎𝑥 · (1 − 𝑖𝑑𝑡) 𝑡 ∈ 𝒯,  𝑠 ∈ 𝑆 (5) 

𝑖𝑑𝑡 ∈ {0,1} 𝑡 ∈ 𝒯 (6) 

The next set of constraints defines the SOC at each time period and its technical 

limitations.  Equations (7) express the value of the SOC at the end of time period 𝑡 in terms 

of the charge/discharge, taking into account the round-trip efficiency 𝛾𝑅𝑇𝐸. Equations (8) 

impose the safety technical limits 𝑠𝑜𝑐𝑚𝑖𝑛 and 𝑠𝑜𝑐𝑚𝑎𝑥 on the SOC and, finally, equation 

(9). sets the value of the SOC at the beginning (𝑠𝑜𝑐0) and at the end (𝑠𝑜𝑐𝑇) of the 

optimization horizon: 

𝑠𝑜𝑐𝑡,s = 𝑠𝑜𝑐𝑡−1,𝑠 + Δ𝑡 · (𝑐𝑡,𝑠 − 𝑑𝑡,𝑠 𝛾
𝑅𝑇𝐸⁄ ) 𝑒𝑚𝑎𝑥⁄  𝑡 ∈ 𝒯,  𝑠 ∈ 𝒮 (7) 

𝑠𝑜𝑐𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝑡,𝑠 ≤ 𝑠𝑜𝑐
𝑚𝑎𝑥 𝑡 ∈ 𝒯,  𝑠 ∈ 𝒮 (8) 

𝑠𝑜𝑐0,𝑠 = 𝑠𝑜𝑐
0, 𝑠𝑜𝑐24,𝑠 = 𝑠𝑜𝑐

𝑇  (9). 

The lifetime of the BESS is measured by parameter 𝑐𝑦𝑐𝑚𝑎𝑥, the total number of 

charge/discharge cycles before the total maximum capacity drops below a prefixed 

threshold (usually 80%, [24]). A charge/discharge cycle corresponds to an accumulated 

charge+discharge that is twice the total BESS capacity 𝑒𝑚𝑎𝑥. Therefore, equation (10) 

establishes that the expectation of the total number of cycles at the end of life cannot surpass 

𝑐𝑦𝑐𝑚𝑎𝑥, with 𝑃𝑠 being the probability of scenario 𝑠 ∈ 𝒮: 

(365 · 𝐸𝑂𝐿) · ( ∑ 𝑃𝑠 ·

𝑡∈𝒯, 𝑠∈𝒮

(𝑑𝑡,𝑠 + 𝑐𝑡,𝑠 ) 2 · 𝑒
𝑚𝑎𝑥⁄ ) ≤ 𝑐𝑦𝑐𝑚𝑎𝑥 (10) 

3.3. Secondary reserve market. 

The presence of the BESS allows the VPP to submit to the RM a price accepting bid 

for the total available upward reserve and downward reserve of the battery at every time 

period 𝑡. The variables representing the reserve bid to the RM are: 

𝑟𝑡,𝑠
𝑈 , 𝑟𝑡,𝑠

𝐷 : upward/downward secondary reserve bid of the VPP at time period 𝑡 ∈ 𝒯 and 

scenario 𝑠 ∈ 𝒮  [𝑀𝑊]. 

There are two parameters involved in the modeling of the RM: the time response (the 

maximum delay between reserve requirement and delivery) and the ratio between upward 

and downward reserve bids. These two parameters are set by the independent system 

operator (ISO). 

Δ𝑡𝑆𝑅: time response of the secondary reserve [ℎ]. 

𝛼𝑆𝑅: ratio between the  upward/downward reserve declared by the system operator. 

The VPP is allowed to bid to the RM only in those periods 𝑡 where the bid to the DM 

has been accepted (𝑖𝑝𝑡
𝐷 = 1): 
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𝑟𝑡,𝑠
𝑈 + 𝑟𝑡,𝑠

𝐷 ≤ 2 · 𝑑max · 𝑖𝑝𝑡
𝐷 𝑡 ∈ 𝒯,  s ∈ 𝒮 (11) 

with the quantity 2 · 𝑑𝑚𝑎𝑥 being an upper bound of the total reserve band of the VPP. The 

BESS’s reserve availability is limited by the difference between the maximum discharge 

𝑑𝑚𝑎𝑥 and the current discharging rate (A) and current charging rate (B): 

0 ≤ 𝑟𝑡,𝑠
𝑈 ≤ 𝑑𝑚𝑎𝑥 − (𝑑𝑡,s − 𝑐𝑡,s)

⏞      
(A)

 
𝑡 ∈ 𝒯,  s ∈ 𝒮 (12) 

0 ≤ 𝑟𝑡,𝑠
𝐷 ≤ 𝑑𝑚𝑎𝑥 − (𝑐𝑡,s − 𝑑𝑡,s )

⏞        
(B)

 
𝑡 ∈ 𝒯,  s ∈ 𝒮 (13). 

In case the ISO were to ask the VPP to deliver the matched reserve, the SOC of the 

BESS will be increased or decreased accordingly. Should the VPP be asked to serve the 

upward reserve 𝑟𝑡,𝑠
𝑈 , then the energy that the VPP delivers to the system will be increased 

by Δ𝑡𝑆𝑅 · 𝑟𝑡,𝑠
𝑈  [𝑀𝑊ℎ]. That additional energy delivery would cause a SOC drop of 

Δ𝑡𝑆𝑅 · 𝑟𝑡,𝑠
𝑈 (𝛾𝑅𝑇𝐸 · 𝑒𝑚𝑎𝑥)⁄ . Conversely, should the VPP be committed to serve the 

downward reserve 𝑟𝑡,𝑠
𝐷 , the energy that the VPP feeds to the system will be reduced by 

Δ𝑡𝑆𝑅 · 𝑟𝑡,𝑠
𝐷  [𝑀𝑊ℎ], with the associated increase in SOC of Δ𝑡𝑆𝑅 · 𝑟𝑡,𝑠

𝐷 𝑒𝑚𝑎𝑥⁄ . The 

inequalities in (14) modify the operational range for the SOC by taking into account the 

modification to the maximum and minimum SOC due to the reserve bid: 

𝑠𝑜𝑐𝑚𝑖𝑛 +
Δ𝑡𝑆𝑅 · 𝑟𝑡,𝑠

𝑈 𝛾𝑅𝑇𝐸⁄

𝑒𝑚𝑎𝑥
≤ 𝑠𝑜𝑐𝑡,𝑠 ≤ 𝑠𝑜𝑐

𝑚𝑎𝑥 −
Δ𝑡𝑆𝑅 · 𝑟𝑡,𝑠

𝐷

𝑒𝑚𝑎𝑥
 𝑡 ∈ 𝒯,  s ∈ 𝒮 (14). 

Finally, the ratio 𝛼𝑆𝑅 between the upward and downward reserve must be respected: 

𝑟𝑡,𝑠
𝑈 = 𝛼𝑆𝑅 · 𝑟𝑡,𝑠

𝐷  𝑡 ∈ 𝒯,  s ∈ 𝒮 (15). 

3.4. Imbalances. 

The variables associated with the positive and negative imbalance of the VPP at time 

period 𝑡 and scenario 𝑠 are: 

𝑝𝑡,𝑠
𝐼𝐵+, 𝑝𝑡,𝑠

𝐼𝐵−: positive/negative imbalance, time period 𝑡 ∈ 𝒯and scenario 𝑠 ∈ 𝒮 [𝑀𝑊ℎ]. 

The net imbalance  𝑝𝑡,𝑠
𝐼𝐵+ − 𝑝𝑡,𝑠

𝐼𝐵− is the difference between the VPP’s generated energy 

(actual wind production plus discharge) and the VPP’s committed energy (energy sold to 

the DM and IM markets plus the battery charge): 

𝑝𝑡,𝑠
𝐼𝐵+ − 𝑝𝑡,𝑠

𝐼𝐵− = (𝑝𝑡,𝑠
𝑊 + Δ𝑡 · 𝑑𝑡,𝑠)⏟          

VPP's generated energy

− (𝑝𝑡,𝑠
𝐷 + 𝑝𝑡,𝑠

𝐼 + Δ𝑡 · 𝑐𝑡,𝑠)⏟              
VPP's committed energy

 
𝑡 ∈ 𝑇,  𝑠 ∈ 𝑆 (16) 

with Δt = 1h. Although the bid to the IM market 𝑝𝑡,𝑠
𝐼  is included in the committed energy 

term of equation (16), this amount of energy can be either positive (sell) or negative  

(purchase). Any non-zero imbalance, either positive or negative, denotes a mismatch 

between the scheduled generation of the VPP and its real-time generation. Positive 

imbalances (more generation than scheduled) always carry some collection rights for the 

VPP (𝜆𝑡,𝑠
𝐼𝐵+[

€

𝑀𝑊ℎ
]), and negative imbalances (less generation than scheduled) always carry 
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some payment obligations for the VPP (𝜆𝑡,𝑠
𝐼𝐵−[

€

𝑀𝑊ℎ
]). Depending on the comparison 

between the value of the imbalance prices and the IM clearing price 𝜆𝑡,𝑠
𝐼 , it may be 

advantageous for the GenCo to incur some imbalances instead of buying/selling this same 

energy in the IM (which cannot happen with the DM prices, because the market rules 

establish that 𝜆𝑡,𝑠
𝐼𝐵− ≥ 𝜆𝑡,𝑠

𝐷 ≥ 𝜆𝑡,𝑠
𝐼𝐵+ in order to prevent speculation). The use of imbalances 

as a speculation tool can be avoided to some extent by somehow limiting the positive and 

negative imbalances at every scenario 𝑠 and time period 𝑡. One possibility is to restrict the 

value of imbalances to the deviation of the wind production 𝑝𝑡,𝑠
𝑊  with respect to the expected 

wind production at this same time period 𝐸[𝑝𝑡
𝑊]: 

0 ≤ 𝑝𝑡,𝑠
𝐼𝐵+ ≤ �̅�𝑡,𝑠

𝐼𝐵+, 0 ≤ 𝑝𝑡,𝑠
𝐼𝐵− ≤ �̅�𝑡,𝑠

𝐼𝐵− 𝑡 ∈ 𝒯,  𝑠 ∈ 𝑆 (17) 

with 

�̅�𝑡,𝑠
𝐼𝐵+ = max{0, 𝑝𝑡,𝑠

𝑊 − 𝐸[𝑝𝑡
𝑊]} , �̅�𝑡,𝑠

𝐼𝐵− = max{0, 𝐸[𝑝𝑡
𝑊] − 𝑝𝑡,𝑠

𝑊 }  . 

3.5. Nonanticipativity 

In order to avoid making a decision at some stage with complete knowledge of the still 

undisclosed random variables, nonanticipativity constraints must be incorporated into the 

model. These constraints establish that at every stage of the scenario tree, the recourse 

variables associated with scenarios belonging to the same scenario cluster must have the 

same value: 

𝑟𝑡,𝑠
𝑈 = 𝑟𝑡,𝑙

𝑈  𝑠, 𝑙 ∈ 𝐷𝑘 , 𝑠 ≠ 𝑙, 𝑘 ∈ 𝒞𝐷 , 𝑡 ∈ 𝒯 (18) 

𝑟𝑡,𝑠
𝐷 = 𝑟𝑡,𝑙

𝐷  𝑠, 𝑙 ∈ 𝐷𝑘 , 𝑠 ≠ 𝑙, 𝑘 ∈ 𝒞𝐷 , 𝑡 ∈ 𝒯 (19) 

𝑝𝑡,𝑠
𝐼 = 𝑝𝑡,𝑙

𝐼  𝑠, 𝑙 ∈ ℛ𝑘 , 𝑠 ≠ 𝑙, 𝑘 ∈ 𝒞𝑅 , 𝑡 ∈ 𝒯 (20) 

𝑐1,𝑠 = 𝑐1,𝑙 𝑠, 𝑙 ∈ ℐ𝑘 , 𝑠 ≠ 𝑙, 𝑘 ∈ 𝒞ℐ ,  (21) 

𝑑1,𝑠 = 𝑑1,𝑙 𝑠, 𝑙 ∈ ℐ𝑘 , 𝑠 ≠ 𝑙, 𝑘 ∈ 𝒞ℐ ,  (22) 

𝑐𝑡,𝑠 = 𝑐𝑡,𝑙 𝑠, 𝑙 ∈ 𝒲𝑡−1
𝑘 , 𝑠 ≠ 𝑙, 𝑘 ∈ 𝒞𝑡−1

𝑊 , 𝑡 ∈ 𝒯\{1}  (23) 

𝑑𝑡,𝑠 = 𝑑𝑡,𝑙 𝑠, 𝑙 ∈ 𝒲𝑡−1
𝑘 , 𝑠 ≠ 𝑙, 𝑘 ∈ 𝒞𝑡−1

𝑊 , 𝑡 ∈ 𝒯\{1}  (24) 

𝑝𝑡,𝑠
𝐼𝐵+ = 𝑝𝑡,𝑙

𝐼𝐵+ 𝑠, 𝑙 ∈ 𝒲𝑡
𝑘 , 𝑠 ≠ 𝑙, 𝑘 ∈ 𝒞𝑡

𝑊, 𝑡 ∈ 𝒯 (25) 

𝑝𝑡,𝑠
𝐼𝐵− = 𝑝𝑡,𝑙

𝐼𝐵− 𝑠, 𝑙 ∈ 𝒲𝑡
𝑘 , 𝑠 ≠ 𝑙, 𝑘 ∈ 𝒞𝑡

𝑊, 𝑡 ∈ 𝒯 (26) 

3.6. Objective function. 

The objective function considered is the maximization of the expected value of the total 

profit of the VPP, that  is: 

𝐸𝑃𝑉𝑃𝑃(𝑝𝐷, 𝑟𝑈 , 𝑟𝐷 , 𝑝𝐼, 𝑝𝐼𝐵+, 𝑝𝐼𝐵−)
= 𝐷𝑀(𝑝𝐷) + 𝑅𝑀(𝑟𝑈, 𝑟𝐷) + 𝐼𝑀(𝑝𝐼) + 𝐼𝐵+(𝑝𝐼𝐵+) − 𝐼𝐵−(𝑝𝐼𝐵−) 

(27) 

with 
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DM incomes: 𝐷𝑀(𝑝𝐷) =∑�̅�𝑡
𝐷 · 𝑝𝑡

𝐷

𝑡∈𝒯

 (28) 

RM incomes: 𝑅𝑀(𝑟𝑈 , 𝑟𝐷) = ∑ 𝑃𝑠 · 𝜆𝑡,𝑠
𝑅 · (𝑟𝑡,𝑠

𝑈 + 𝑟𝑡,𝑠
𝐷 )

𝑡∈𝒯, 𝑠∈𝒮

 (29) 

IM incomes/debts: 𝐼𝑀(𝑝𝐼) = ∑ 𝑃𝑠 · 𝜆𝑡,𝑠
𝐼 · 𝑝𝑡,𝑠

𝐼

𝑡∈𝒯, 𝑠∈𝒮

 (30) 

+ imbalances collection rights: 𝐼𝐵+(𝑝𝐼𝐵+) = ∑ 𝑃𝑠 · 𝜆𝑠,𝑡
𝐼𝐵+ · 𝑝𝑡,𝑠

𝐼𝐵+

𝑡∈𝒯, 𝑠∈𝒮

 (31) 

- imbalances payment obligations: 𝐼𝐵−(𝑝𝐼𝐵−) = ∑ 𝑃𝑠 · 𝜆𝑠,𝑡
𝐼𝐵− · 𝑝𝑡,𝑠

𝐼𝐵−

𝑡∈𝒯, 𝑠∈𝒮

 (32) 

The parameter �̅�𝑡
𝐷 is the expected value of the day-ahead market price at time period 𝑡, 

�̅�𝑡
𝐷 = ∑ 𝑃𝑠 · 𝜆𝑡,𝑠

𝐷
𝑠∈𝒮 . 𝜆𝑡,𝑠

𝑅  and 𝜆𝑡,𝑠
𝐼  are the clearing prices for the secondary reserve market 

and the intraday market 𝑡 at scenario 𝑠, respectively. Remember that 𝜆𝑡,𝑠
𝐼𝐵+ is  the price at 

which the surplus production of the positive imbalances are going to be paid to the GenCo 

and that 𝜆𝑡,𝑠
𝐼𝐵−  is the price the GenCo is going to pay for the shortage in production due to 

the negative imbalances. More information on the formation of imbalance prices can be 

found in [6] and [7]. 

3.7. The (𝑊𝐵𝑉𝑃𝑃) model. 

The extensive formulation of the wind power – BESS Virtual Power Plant model 

(𝑊𝐵𝑉𝑃𝑃) developed can so far be expressed as: 

(𝑊𝐵𝑉𝑃𝑃)

{
 
 
 

 
 
 

max 𝐸𝑃𝑉𝑃𝑃(𝑝𝐷, 𝑟𝑈 , 𝑟𝐷, 𝑝𝐼 , 𝑝𝐼𝐵+, 𝑝𝐼𝐵−)

s.t.:

 DM-IM: (1) − (3)

     BESS: (4) − (10)

         RM: (11) − (15)

           IB: (16) − (17)

          NA: (18) − (26)

 

This is a MILP problem that has been implemented in AMPL [25] and solved with 

CPLEX [26] using the default options – except for the parameters threads=8 and 

mipgap=0.0 – on a desktop PC (i7@2.93GHz, 8GB RAM, Windows 7 Professional). 

4. Numerical results and analysis. 

Model (𝑊𝐵𝑉𝑃𝑃) has been used to analyze the optimal operations of a VPP in the 

Iberian Electricity Market (IEM) comprising: 

 An on-shore wind plant located in the north of Spain with 9 wind turbines and a total 

nominal output of 18MW. 

 A Li-ion based BESS with the characteristics shown in Table 4. These characteristics 

are based on the systems described in [1] and [24] and correspond to real commercial 

Li-ion devices. 

 



F.-Javier Heredia et al. 

 

16 

𝑑𝑚𝑎𝑥 = 10 𝑀𝑊 𝐸𝑂𝐿 =  20 years 𝑠𝑜𝑐0 = 𝑠𝑜𝑐T =  0.6 𝑠𝑜𝑐𝑚𝑖𝑛 =  0.3 

𝑒𝑚𝑎𝑥 = 30 𝑀𝑊ℎ 𝑐𝑦𝑐𝑚𝑎𝑥 = 6000 𝑠𝑜𝑐𝑚𝑎𝑥 =  0.9 𝛾𝑅𝑇𝐸 =  0.8 

Table 4: BESS parameters. 

4.1. Scenario generation. 

In order to elaborate the optimal bid for July 1st 2014, the historical data for the random 

variables 𝜆𝐷 ,  𝜆𝑅 ,  𝜆𝐼, 𝑝𝑊, 𝜆𝐼𝐵+ and 𝜆𝐼𝐵− of the working days from January 1st 2014 to June 

30th 2014 were collected. All the clearing prices are publicly available at the MIBEL’s ISO 

webpage [27] and the data for the wind production was made available by the owner of the 

wind farm. The forward tree construction algorithm in [28] has been applied to the complete 

set of 129 observations in order to obtain a scenario tree with 83 scenarios. Figure 5 depicts 

the value of all the random variables for the complete set of 83 scenarios. In each graph, 

the mean value is represented by the thick dashed line while the thin dashed lines are the 

maximum and minimum value at every time period 𝑡. With that number of scenarios, the 

MILP problem (𝑊𝐵𝑉𝑃𝑃) is solved in 1m24s and has 17,511 continuous variables, 2,040 

binary variables and 19,551 linear constraints. 

 

 Figure 5:Scenarios for the case studies  

4.2. Case studies. 

Three different case studies have been solved in order to analyze the impact of the 

BESS and the participation in the secondary reserve market: 
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 Case study 1 (WPP): a standalone wind power plant (WPP). 

 Case study 2 (VPP): a virtual power plant (that is, a WPP plus a BESS) that is not 

allowed to participate in the secondary reserve market.  

 Case study 3 (VPP+RM): a VPP participating in the secondary reserve. 

The optimal solution of the three case studies will be analyzed with the help of several 

graphical representations: 

(a) The WPP generation scenarios: 𝑝𝑡,𝑠
𝑊 . 

(b) The optimal value of the DM, IM and RM quantity bids: 𝑝𝑡
𝐷∗, 𝑝𝑡,𝑠

𝐼∗ , 𝑟𝑡,𝑠
𝑈 ∗, 𝑟𝑡,𝑠

𝐷 ∗. 

(c) The optimal value of the battery charge and discharge: 𝑐𝑡,𝑠
∗ , 𝑑𝑡,𝑠

∗ .  

(d) The optimal value of the state of charge (SOC): 𝑠𝑜𝑐𝑡,𝑠
∗ . 

(e) The optimal value of imbalances: 𝑝𝑡,𝑠
𝐼𝐵+∗, 𝑝𝑡,𝑠

𝐼𝐵−∗. 

(f) The mean value of the WPP generation and variables at the optimal solution, 

including: 

 The mean WPP generation:  �̅�𝑡
𝑊∗ = 𝐸𝒮[𝑝𝑡

𝑊] = ∑ 𝑃𝑠 · 𝑝𝑡,𝑠
𝑊

𝑠∈𝒮 . 

 The mean DM bid:  
𝑝𝑡
𝐷∗. 

 The mean IM bid: 
�̅�𝑡
𝐼∗ = 𝐸𝒮[𝑝𝑡

𝐼∗] = ∑ 𝑃𝑠 · 𝑝𝑡,𝑠
𝐼∗

𝑠∈𝒮 . 

 The mean discharge: 
�̅�𝑡
∗ = 𝐸𝒮[𝑑𝑡

∗] = ∑ 𝑃𝑠 · 𝑑𝑡,𝑠
∗

𝑠∈𝒮 . 

 The mean charge:  
𝑐�̅�
∗ = 𝐸𝒮[𝑐𝑡

∗] = ∑ 𝑃𝑠 · 𝑐𝑡,𝑠
∗

𝑠∈𝒮 . 

 The mean imbalances:  �̅�𝑡
𝐼𝐵+∗ = 𝐸𝒮[𝑝𝑡

𝐼𝐵+∗] = ∑ 𝑃𝑠 · 𝑝𝑡,𝑠
𝐼𝐵+∗

𝑠∈𝒮  , 

�̅�𝑡
𝐼𝐵−∗ = 𝐸𝒮[𝑝𝑡

𝐼𝐵−∗] = ∑ 𝑃𝑠 · 𝑝𝑡,𝑠
𝐼𝐵−∗

𝑠∈𝒮 . 

Graph (f) is intended to help visualize the behavior of the first stage variables 𝑝𝐷
∗
 and 

the central tendency of the recourse variables while the purpose of graphs (a) to (e) is to 

depict the dispersion of the recourse variables. 

4.3. Case study 1: Wind Power Plant (WPP). 

In this first test case, the WPP is operated alone without BESS backup. The optimal 

solution is represented in Figure 6. Of course, graphs (c) and (d) of Figure 6 are void due 

to the absence of the BESS. 
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Figure 6: Results for case study 1, WPP. 

Graphs (b) to (e) in Figure 6 show the value of the recourse variables corresponding to 

each of the 83 scenarios (thin continuous lines), their mean value (thick colored dashed 

lines) and the maximum and minimum at each time period (thin dashed lines). 

Figure 6-(b) shows the optimal bid to the DM and IM. The thin continuous lines 

correspond to the total energy matched in the DM and IM for every scenario, 𝑝𝑡
𝐷∗ + 𝑝𝑡,𝑠

𝐼∗ . In 

this same graph, the continuous thick line is the bid to the DM alone (𝑝𝑡
𝐷∗, first stage 

variable) while the thick dashed line is the bid to the DM plus the average bid to the IM 

(that is, 𝑝𝑡
𝐷∗ + �̅�𝑡

𝐼∗). We can observe that 𝑝𝑡
𝐷∗ + �̅�𝑡

𝐼∗ ≈ 𝑝𝑡
𝐷∗, meaning that the bid to the IM 

is, on average, quite irrelevant in comparison to the bid to the DM, although this market 

can be central for some scenarios to meet the energy balance of the WPP. That fact can be 

understood observing Figure 7, where the results for scenario 59 are depicted, the one with 

the highest participation in the IM. Due to the low wind production in this scenario, it is 

necessary to purchase in the IM the difference between the actual production and the energy 

submitted to the DM (or to incur negative imbalances). That fact explains also that, 

although the results in Figure 6 show that the WPP is essentially submitting the forecasted 

generation �̅�𝑊to the DM (𝑝𝐷
∗
≈ �̅�𝑊), there are some small (on average) imbalances and 

purchases in the IM. 

Mean WPP 
generation 

DM bid 

Mean IM bid 
Mean charge/disc. Mean SOC Mean imbalances 
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Figure 7: Results for case study 1, WPP, scenario 59. 

4.4. Case study 2: Virtual Power Plant without secondary reserve (VPP) 

In this second test case the BESS is allowed to operate in coordination with the WPP, 

but the resulting VPP can only submit bids to the DM and IM; that is, bids to the secondary 

reserve market are forbidden. Figure 8 shows the optimal solution for this test case. 

 

 

Figure 8: Results for case study 2, VPP without secondary reserve. 

The most important difference with respect to the previous case study is, of course, the 

BESS activity and how it affects the bid to the DM and IM. The optimal bid to the DM 𝑝𝑡
𝐷∗ 

is still similar to the average WPP generation, as in the previous case study; but there are 

some periods where it changes drastically, due to the behavior of the BESS. The bid to the 

DM is reduced to (or nearly to) its minimum value 𝑝𝑡,𝑠
𝐼  in time periods 3 to 6 and in 24. In 

these periods, the WPP generation is stored in the BESS instead of being submitted to the 

Mean WPP 

generation 

DM bid 

Mean IM bid 
Mean charge/disc. Mean SOC Mean imbalances 
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DM. Moreover, 𝑝𝑡
𝐷∗ is significantly greater than the mean WPP generation �̅�𝑡

𝑊 in time 

periods 1, 10, 20, 21 and 22 because the VPP is selling to the DM the energy stored in the 

BESS. The difference between the optimal bid to the DM for the WPP and VPP case studies 

can also be observed by comparing the thick blue line in graphs (b) of Figure 6 and Figure 

8. Regarding the energy submitted to the IM, it is just a small fraction of the energy 

submitted to the DM, as it was in the WPP test case. 

If we observe the mean values of the charge/discharge at the different time periods in 

Figure 8-(f) (light violet for the mean charge 𝑐�̅�
∗ and dark violet for the mean discharge �̅�𝑡

∗), 

we can see a clear charge/discharge pattern throughout the whole day, with the most 

intensive charges concentrated from 0:00 to 5:00 and 23:00 to 24:00 together with some 

small charges between 13:00 and 19:00. Discharges are concentrated in the first hour and 

hours 10, 20, 21 and 22, with some minor discharges in time periods 9, 16 and 11 to 13. 

Figure 8-(c) displays the dispersion of the variables 𝑐𝑡,𝑠
∗  and 𝑑𝑡,𝑠

∗  around the mean values 𝑐�̅�
∗ 

and �̅�𝑡
∗, revealing a general sequence of charge/discharge/charge/discharge throughout the 

whole day. Figure 8-(d) reflects the evolution of the SOC (which, of course, mimics the 

charge/discharge behavior). This graph shows great dispersion of the energy stored in the 

BESS across the different scenarios, especially for some time periods. For instance, 

between 10:00 and 16:00 there are some scenarios with the BESS at its minimum storage 

capacity 𝑠𝑜𝑐𝑚𝑖𝑛 = 0.3 together with some others at its maximum capacity 𝑠𝑜𝑐𝑚𝑎𝑥 = 0.9. 

Finally, neither the dispersion nor the mean values of imbalances (Figure 8-(e) and red 

bars in Figure 8-(f)) seems to be too much affected by the presence of the BESS. 

In conclusion, we observe that introducing the BESS allows taking advantage of the 

difference in the DM prices by storing the WPP generation during price valley hours (from 

1:00 to 6:00 and, to a lesser extent, from 13:00 to 19:00) so that it can be released later 

during price peak hours (9:00 to 10:00 and 19:00 to 22:00). We observe also that on average 

participation in the IM is quite marginal, although it can be relevant for the scenarios with 

high WPP production (see Figure 8-(b)). 

4.5. Case study 3: VPP with secondary reserve (VPP-RM) 

In this last case study, we analyze the results when the VPP is allowed to participate in 

the secondary reserve market (Figure 9). The comparison of the charge/discharge pattern 

in Figure 9-(f) with the one in Figure 8-(f) reveals a change in the optimal operation of the 

BESS. First, there is a 12% increase in the total amount of [𝑀𝑊ℎ] that is stored in the 

BESS throughout the whole day in the VPP-RM case when compared with the VPP: 

 Total mean charge ( ∑ �̅�𝒕
∗

𝒕 ) Total mean discharge ( ∑ �̅�𝒕
∗

𝒕 ) 

VPP:  20.60 𝑀𝑊 16.48 𝑀𝑊 

VPP-RM: 23.12 𝑀𝑊 18.50 𝑀𝑊 

Table 5: Results for case study 3, VPP and secondary reserve bid (VPP-RM). 

The discrepancy between the total mean charge and discharge is due to the loss of 

energy associated with the round-trip efficiency 𝛾𝑅𝑇𝐸 = 0.8. Moreover, the operation of 

the BESS in the VPP-RM case is smoother than the operation in the VPP case. Indeed, we 

can see that in Figure 9-(f) the amount of energy charged hourly from 1:00 to 7:00 (off-

peak time period) is less than those in the same period of Figure 8-(f). The same observation 

applies for the rest of the off-peak periods 13:00 to 19:00 and 20:00 to 24:00. The situation 

is the opposite if we analyze the discharges: in the VPP-RM case, discharges are deeper 

than in the VPP case (a maximum discharge of 4.08 𝑀𝑊 between 21:00 and 22:00 in the 
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VPP case against a maximum discharge of 5.05 𝑀𝑊 for the same time period in the VPP-

RM case). 

 

 

Figure 9: Results for case study 3, VPP and secondary reserve bid (VPP-RM). 

Not only the mean values of the charge and discharges are affected by the introduction 

of the RM but also the dispersion of the random variables 𝑐𝑡,𝑠
∗  and 𝑑𝑡,𝑠

∗ . More importantly, 

this also affects the evolution of the SOC: The variations in the charge, discharge and state-

of-charge around the mean values are kept smaller in comparison to the previous VPP case. 

This can easily be seen by comparing the evolution of the SOC in  Figure 8-(d) (VPP) and 

Figure 9-(d) (VPP-RM): Contrary to the VPP case, where the SOC achieves the maximum 

and minimum allowable SOC (𝑠𝑜𝑐𝑚𝑖𝑛 = 0.3, 𝑠𝑜𝑐𝑚𝑎𝑥 = 0.9), in the VPP-RM it remains 

always within the range of [0.36, 0.83]. It is also quite noteworthy that the depth of charges 

has been reduced in the VPP-RM case, as we can see by observing Figure 9-(d). The 

explanation of this change in the BESS operation is quite simple: Keeping the SOC away 

from their limits and avoiding large charges/discharges increases the amount of the BESS 

reserve (see equations (12)-(13).) and allows the VPP to take the maximum profit from 

the RM. 

The rationale of the bid to the DM, IM and RM can be analyzed by observing Figure 

9-(b) and (f). The bid to the RM is represented in Figure 9-(b) by the two dark blue dashed 

lines: the upper one being 𝑝𝐷
∗
+ �̅�𝑡

𝐼∗ + �̅�𝑡
𝑈∗ and the lower one 𝑝𝐷

∗
+ �̅�𝑡

𝐼∗ − �̅�𝑡
𝐷∗. Therefore, 

the width between the two lines is �̅�𝑡
𝑈∗ + �̅�𝑡

𝐷∗, which is the expected value of the total 

secondary reserve of the VPP. The profile of the dark blue bars in (f) represents the DM 

bid and shows that this bid separates definitively from the mean value of the WPP 

generation, contrary to the situation in the two previous cases. This is because now the 

optimal solution is a compromise between the maximization of the profits in the DM and 

the RM. Consequently, at the optimal solution, the WPP generation is distributed steadily 

Mean WPP 
generation 

DM bid 

Mean IM bid Mean charge/disc. 
Mean SOC Mean imbalances 

Mean up/down reserve 
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between the BESS and the DM in a way that the total secondary reserve 𝑟𝑡,𝑠
𝑈 ∗ + 𝑟𝑡,𝑠

𝐷 ∗ is kept 

high enough at each time period to take the maximum profit from the RM, probably at the 

expense of some losses in the DM, while some periods with a strong bid to the DM take 

advantage of the peak spot prices (especially from 11:00 to 13:00 and from 21:00 to 22:00). 

The combination of a WPP with a BESS does not seem to cause a significant reduction 

in the average imbalances. The comparison between graphs (e) in Figure 6, Figure 8 and 

Figure 9 shows that the mean value of the imbalances is very similar in the three cases, the 

aggregated mean imbalances ∑ (�̅�𝑡
𝐼𝐵+∗ + �̅�𝑡

𝐼𝐵−∗)𝑡  being 6.18[𝑀𝑊ℎ], 6.93[𝑀𝑊ℎ] and 

6.85[𝑀𝑊ℎ], respectively. 

4.6. Analysis of the IM and imbalances. 

In order to analyze the actual role of the IM and imbalances, which may seem to be 

quite irrelevant based solely on the representation of its mean values in Figure 9-(f), we 

need to investigate how the IM bid and imbalances are used under different scenarios using 

Figure 10. In Figure 10-(c) and (d) the bid to the IM is used to match the bid to the DM, 

which is a first-stage decision and therefore the same for all the scenarios and their specific 

WPP production. In scenario #10, this balancing is possible only to a certain extent, as it 

incurs some negative imbalances from 0:00 to 13:00. Finally, Figure 10-(b) shows high 

imbalances in #30, and they are both positive and negative, depending on the time period. 

  

  

Figure 10: Results for individual scenarios of the VPP-RM case study. 

4.7. Economic analysis. 

The economic impact of participating in the RM can be analyzed with the help of Table 

6. 
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 Day-ahead 

incomes 

Expected value of 

Intraday incomes 

Expected value of 

secondary  

reserve incomes 

Expected value of 

Imbalances 

Expected value 

of total profit 

WPP     𝐷𝑀∗ = 2,931.99€  𝐼𝑀∗ = −125.24€  𝑅𝑀∗ = 0.00€  𝐼𝐵∗ = −251.40€  𝐸𝑃∗ =   2,555.34€  

VPP 𝐷𝑀∗ = 3,331.78€  𝐼𝑀∗ =  −209.16€  𝑅𝑀∗ = 0.00€  𝐼𝐵∗ = −308.61€  𝐸𝑃∗ =   2,814.01€  

VPP-RM 𝐷𝑀∗ = 3,059.98€  𝐼𝑀∗ = −155.38€  𝑅𝑀∗ = 8,177.95€  𝐼𝐵∗ = −272.85€  𝐸𝑃∗ = 10,809.73€  

Table 6: Profit for the test cases. 

Table 6 shows that neither the IM nor the Imbalances have a major economic impact 

in the total profit, especially when the RM is considered (less than 2.5%). The comparison 

of the first two test cases also reveals that, although the solution of the WPP and VPP cases 

are quite different in terms of the optimal operation of the system, the final increase in the 

expected value of the total profits is just 10.4%, which is not negligible but insufficient to 

compensate for the capital cost of the BESS deployment [4].   

Things are completely different when the VPP is allowed to participate in the RM. 

There is a paramount increase in the total profit due to the incomes from the RM that, of 

course, depends on the total capacity of the BESS, 𝑒𝑚𝑎𝑥 and on the maximum discharge 

𝑑𝑚𝑎𝑥. To illustrate this dependency, Figure 11 shows the growth of the total incomes for 

the VPP-RM case, in which the capacity of the BESS (𝑒𝑚𝑎𝑥 and 𝑑𝑚𝑎𝑥) increases from  

𝑒𝑚𝑎𝑥 = 3 𝑀𝑊ℎ and 𝑑𝑚𝑎𝑥 = 1.5 𝑀𝑊 to  𝑒𝑚𝑎𝑥 = 48 𝑀𝑊ℎ and 𝑑𝑚𝑎𝑥 = 24 𝑀𝑊.  

 

Figure 11: Impact of the BESS capacity in the total incomes. 

To understand the reason for the huge difference between the incomes from the DM 

and RM shown in Table 6, we need to understand the mechanism through which these two 

terms are built. Equations (12)-(14) can be used to find an upper bound to the upward and 

downward secondary reserve at the optimal solution: 

𝑟𝑡,𝑠
𝑈∗ ≤ �̃�𝑡,𝑠

𝑈∗ ≝ min{𝑑𝑚𝑎𝑥 − (𝑑𝑡,𝑠
∗ − 𝑐𝑡,𝑠

∗ ),
𝛾𝑅𝑇𝐸 · (𝑠𝑜𝑐𝑡,𝑠

∗ − 𝑠𝑜𝑐𝑚𝑖𝑛)

Δ𝑡𝑆𝑅
· 𝑒𝑚𝑎𝑥} 

𝑡 ∈ 𝒯, 

𝑠 ∈ 𝒮 
(33) 

𝑟𝑡,𝑠
𝐷∗ ≤ �̃�𝑡,𝑠

𝐷∗ ≝ min{𝑑𝑚𝑎𝑥 − (𝑐𝑡,𝑠
∗ − 𝑑𝑡,𝑠

∗ ),
𝛾𝑅𝑇𝐸 · (𝑠𝑜𝑐𝑚𝑎𝑥 − 𝑠𝑜𝑐𝑡,𝑠

∗ )

Δ𝑡𝑆𝑅
· 𝑒𝑚𝑎𝑥} 

𝑡 ∈ 𝒯, 

𝑠 ∈ 𝒮 
(34) 
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These expressions show that the greater the 𝑑𝑚𝑎𝑥 and 𝑒𝑚𝑎𝑥, the larger will be the total 

reserve band of the system. Actually, the reserve band 𝑟𝑡,𝑠
𝑈∗ + 𝑟𝑡,𝑠

𝐷∗ is a measure of the non-

used storage and charge/discharge capacity of the BESS at the optimal solution. Equations 

(33)-(34) allow computing the expectation of the upper bound to the value of the total 

secondary reserve band at time period 𝑡 for the VPP-RM test case in Table 6: 

�̃�𝑈𝐷
∗
=∑∑𝑃𝑠 · (�̃�𝑡,𝑠

𝑈∗ + �̃�𝑡,𝑠
𝐷∗)

𝑠∈𝒮𝑡∈𝒯

= 467.26 𝑀𝑊. 

The actual value at the optimal solution of the expected total reserve band is close to this 

upper bound (87.2%),  

𝑟𝑈𝐷
∗
=∑∑𝑃𝑠 · (𝑟𝑡,𝑠

𝑈∗ + 𝑟𝑡,𝑠
𝐷∗)

𝑠∈𝒮𝑡∈𝒯

= 407.67 𝑀𝑊 

meaning that the optimal solution is efficiently managing this resource. We can find the 

expected upper bound to the incomes from the RM through: 

∑∑𝑃𝑠 · 𝜆𝑡,𝑠
𝑅

𝑠∈𝒮

· (�̃�𝑡,𝑠
𝑈∗ + �̃�𝑡,𝑠

𝐷∗)

𝑡∈𝒯

= 9,101.61 € 

The actual value at the optimal solution of this expected income is 𝑅𝑀∗ = 8,177.95 €, 

89.8% of the maximum possible value. Contrary to the RM, the DM pays for the actual 

WPP generation, and not for the maximum possible generation, the nominal capacity of the 

WPP. The total mean WPP production is ∑ �̅�𝑡
𝑊

𝑡∈𝒯 = 81.35 𝑀𝑊ℎ and the expected income 

associated with the actual WPP production at every scenario are: 

∑∑𝑃𝑠 · 𝜆𝑡,𝑠
𝐷 · 𝑝𝑡,𝑠

𝑊

𝑠∈𝒮𝑡∈𝒯

= 2,684.85 € 

This income is increased to 𝐷𝑀∗ = 3,060.0 € at the optimal solution thanks to the 

flexibility of the BESS. In summary, the key point to understanding the difference between 

the incomes from the DM and RM is that while the DM remunerates the VPP essentially 

through real-time WPP generation, 81.35 𝑀𝑊ℎ on average, the RM pays proportionally to 

the VPP’s reserve band 407.66 𝑀𝑊 on average, which is an amount that is fivefold the 

average WPP generation. Despite the fact that the mean prices of the DM almost double 

the mean RM price, the final result is that the incomes from the RM are much higher than 

those from the DM. This result actually agrees with some other studies suggesting that the 

most important benefit of operating this kind of BESS is expected to come from the RM. 

5. Conclusions. 

A new multi-stage stochastic programming model has been developed to find the 

optimal bid to spot and reserve markets of a WPP+BESS. The model has been used to find 

the optimal bid to a DM in a test case with real data from the Iberian Electricity Market. 

The results of our study show that: 

 With respect to the optimal biding strategies, participating in the RM strongly reshapes 

both the charge/discharge profile and the optimal bid to the DM because of the high 

impact of this market on the total profits. 

 The variability in the operation of the BESS (charge/discharge and SOC) decreases 

when participation in the RM is allowed due to the fact that every scenario is trying to 

operate the BESS at close to its maximum available reserve band. 
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 Contrary to what is usually claimed in the literature, the reduction in imbalances does 

not seems to be the most relevant justification for a WPP+BESS combination. When 

the goal of the operation is to maximize the total expected profit of the VPP, 

introducing the BESS can even slightly increase imbalances. Nevertheless, imbalances 

play an important role in facilitating the feasibility of some outlier scenarios. 

 In a similar way, although the IM does not have a major economic impact, this 

balancing market is necessary for obtaining feasible operations in extreme WPP 

generation scenarios.  

 The increase in the total profit of the VPP with respect to the WPP is a 10.4% when 

the VPP is bidding only to the DM and IM spot markets .That amount reflects the 

increase in profits that can be obtained by postponing the release of the WPP generation 

to the spot markets, due to the hourly price difference in the DM and IM prices. 

 However, participating in the RM induces a strong increase in profits (almost fourfold 

in our test case). That increase is nearly proportional to the increase in the capacity of 

the BESS, due to the huge amount of available reserve band at the BESS, a result that 

agrees with previous studies. 
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