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1 LGI, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
2 Thales Research & Technology, 91767 Palaiseau Cedex, France

3 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 75005 Paris

Abstract. The literature on Multiple Criteria Decision Analysis (MCDA) pro-
poses several methods in order to sort alternatives evaluated on several attributes
into ordered classes. Non Compensatory Sorting models (NCS) assign alterna-
tives to classes based on the way they compare to multicriteria profiles separating
the consecutive classes. Previous works have proposed approaches to learn the
parameters of a NCS model based on a learning set. Exact approaches based on
mixed integer linear programming ensures that the learning set is best restored,
but can only handle datasets of limited size. Heuristic approaches can handle large
learning sets, but do not provide any guarantee about the inferred model. In this
paper, we propose an alternative formulation to learn a NCS model. This formu-
lation, based on a SAT problem, guarantees to find a model fully consistent with
the learning set (whenever it exists), and is computationally much more efficient
than existing exact MIP approaches.
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1 Introduction

Multiple Criteria Decision Analysis (MCDA) aims at supporting a decision maker (DM)
in making decisions among options described according various points of view, for-
mally represented by monotone functions called criteria. In this paper, decisions are
modeled as an ordinal sorting problem, where alternatives are to be assigned to a class
in the set of predefined ordered classes.

The literature contains several multiple criteria sorting methods which can be dis-
tinguished into (i) value based sorting methods (see e.g. [10,6,7,16])), (ii) outranking
based sorting methods (see e.g. [2,3,9,13,17,11]) and, (iii) rule based sorting methods
(see e.g. [18,19]).

We address the problem of ordinal sorting with an outranking based sorting model:
the non compensatory model (NCS, cf.[2,3]), in which an object need not be at least
as good as the profiles value on all criteria. NCS assigns an alternative to a category
above a profile if it is at least as good as the profile on a sufficient coalition of criteria;
the family of sufficient coalitions can be any upset of the set of all subsets of criteria.
A particular case of NCS occurs when the family of sufficient coalitions of criteria can
be defined using additive criteria weights and threshold. The literature refers to this
additive case as the MR-Sort model (see e.g. [9,13]). Both MR-Sort and NCS models
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are particular cases of the Electre Tri model, a method for sorting alternatives in ordered
categories based on an outranking relation (see [12], pp. 389-401 or [4], pp. 381-385).

Our aim is to learn a NCS model from preference information given in the form of a
reference assignment. Such approach makes it possible to integrate the decision maker
preferences in the model without asking her for the preference parameter values. Such
indirect elicitation has been developped for Electre Tri [20], MR-sort [9], UTADIS [21].

Algorithm 1: LEARNING A MODEL-BASED CLASSIFIER

Input: a tuple of criteria, a tuple of ordered categories, a multicriteria sorting model, an
assignment of alternatives to categories

Result: a representation of the assignment in the model, or None if the assignment is not
representable in the model

1 encode the assignment into a formulation Φ
2 try to solve the formulation Φ
3 decode the solution into a model
4 return the model
5 except NoSolution
6 return None

Algorithm 1 describes a general framework that has been widely used (see e.g.
[23,9]) in order to leverage the power of generic mathematical programming solvers to
learn the parameters of a multicriteria sorting procedure from examples. The work flow
is divided into three phases: the problem is encoded into a formulation, this formulation
is passed to an external solver, and a solution, if found, is then decoded into a model.
The faithfulness of this approach is guaranteed if, and only if:

1. the encoded formulation must have a solution as soon as the assignment can be
represented in the model;

2. the solver is complete, in the sense that it yields a solution if and only if there is at
least one;

3. the decoded model actually represents the assignment.

To the authors’ knowledge, until now, general NCS models have been deemed too
computationally difficult to address with this approach. Restrictions to MR-Sort have
been considered, either in [9] with a mixed integer programming (MIP) formulation, but
this approach turned out to be inadequate to handle large datasets, or by [13,14] using
a metaheuristic solving procedure that handles large datasets but offers no guarantee
of its completeness (cf. point 2 above). The aim of this paper is to investigate an al-
ternative venue: considering U-NCS, a broad subset of NCS models, that encompasses
MR-Sort (for precise definitions of these models, see Section 2.2), and formulating the
problem of representing an assignment by a model in U-NCS as a boolean satisfiability
problem (SAT). We prove that both the encoding and the decoding satisfy the faithful-
ness requirements 1 and 3 above. We are thus able to leverage the advances made in the



field of generic SAT solvers, to reach unprecedented computational performance in the
learning of non compensatory sorting models.

The paper is organized as follows. In Section 2, we present the notions and concepts
related to the formulation of the problem of learning parameters of a non compensatory
sorting model. In Section 3, we develop our binary satisfaction (SAT) problem formu-
lation for inferring a U-NCS model from a learning set, and show it has the desired
properties of necessity and sufficiency regarding the representation of an assignment in
the U-NCS model. In Section 4, we recall the bases of using a mixed integer formula-
tion to learn the parameters of a MR-Sort model. After that, we propose experiments
to assess the pertinence and interest of this formulation in Section 5. In Section 6, we
discuss the obtained results. Finally, in Section 7, we conclude by pointing some future
interesting perspectives .

2 Position of the problem

In this section, we detail the notions permitting to formulate the problem of learning the
parameters of a non compensatory sorting models. We define the vocabulary of ordinal
sorting and we formalize the notion of ordinal sorting procedure. We are then able to
precisely describe the problem of representing a given assignment in a given ordinal
sorting model. We proceed by describing the broad class of non compensatory sorting
models, and two narrower subclasses of particular interest, namely U-NCS and MR-
Sort. In Section 2.1, we formulate the NCS model and define its parameters. In Section
2.3, we specify the expected inputs and outputs of the learning problem.

2.1 Vocabulary of multicriteria ordinal sorting

An ordinal sorting problem consists in assigning a category, taken among a given, finite
set of categories C1 ≺ · · · ≺ Cp ordered by desirability, to alternatives described by
several attributes.

We assumeN is a finite set of criteria, where each criterion i ∈ N maps alternatives
to values among an ordered set (Xi,≤i), the order relation ≤i meaning “weakly worse
that”4. Alternatives are thus described by a |N |-tuple of multiple criteria values called
profiles. We denote X =

∏
i∈N Xi the set of all possible profiles– either describing

actual alternatives or virtual ones.
As an analogy with a voting system where criteria would act as voters, subsets of

N are called coalitions of criteria. The following function maps a pair of profiles to the
coalition of criteria weakly favorable to the former.

ON : X× X −→ P(N )
(x, y) 7→ {i ∈ N : xi ≥i yi}

4 This setting differs from the one described by [2,3], in the sense that we suppose the attributes
describing the alternatives are already sorted by the criteria according to their desirability: here,
the order relation on each set Xi needs not be constructed from holistic preference statements,
but is assumed to be established beforehand, e.g. in a previous phase of a decision aiding
process structured according to [4] (this is often the case in applications).



When ON (x, y) = N , the alternative x is at least as good as the alternative y with
respect to all criteria, and we say x weakly dominates y in the sense of Pareto. Weak
dominance defines a partial order ∆ on the set of profiles X.

In the remainder of this article, we assume the sets of criteriaN , of profiles X and of
categoriesC are given, and we endeavor to define a sorting procedure, a non-decreasing
mapping X, ordered by dominance to C1 ≺ · · · ≺ Cp.

2.2 Non-compensatory sorting models

In [2,3], Bouyssou and Marchant define a set of sorting procedures deemed as non-
compensatory. We briefly recall the definition of the non compenastory sorting (NCS)
model, as well as two specific subsets of this model, U-NCS and MR-Sort.

All these classes of non-compensatory sorting models, rely on the notions of sat-
isfactory values of the criteria and sufficient coalitions of criteria that combines into
defining the fitness of an alternative: an alternative is deemed fit if it has satisfactory
values on a sufficient coalition of criteria.

This notion is straightforward to implement when there are only two categories: the
sufficient coalitions T form an upset5 of the power set of N and, for each criterion
i ∈ N , the satisfactory values Ai ⊂ Xi form an upset that can be described by its
lower bound bi ∈ Xi – meaning a value is satisfactory if, and only if, it is greater or
equal to the threshold bi, thus defining a limiting profile b ∈ X. With more than two
categories, the notions of sufficient coalitions and satisfactory values are declined per
category – denoted respectively 〈Aki 〉i∈N ,k∈[1..p−1] and 〈T k〉k∈[1..p−1]. The ordering
of the categories C1 ≺ · · · ≺ Cp translates into a nesting of the sufficient coalitions:

∀k ∈ [1..p− 1], T k is an upset of (2N ,⊆) and T 1 ⊇ · · · ⊇ T p−1 (1a)

and also a nesting of the satisfactory values:

∀i ∈ N , ∀k ∈ [1..p− 1], Aki is an upset of (Xi,≤i) and A1
i ⊆ · · · ⊆ A

p−1
i (1b)

Condition (1b) translates into an ordering of the values 〈bki 〉k∈[1..p−1] for a given crite-
rion i ∈ N , or an ordering of the limiting profiles:

b1, . . . , bp−1 is a non-decreasing sequence of (X, ∆) (1c)

For convenience, these sequences are augmented with trivial elements on both ends:
T 0 := P(N ), T p := ∅, ∀i ∈ NA0

i = Xi, Api = ∅, b0 := ⊥, bp := >.

Definition 1 (Non-compensatory sorting NCS, [3]). Given a set of criteriaN and an
ordered set of categories C1 ≺ · · · ≺ Cp, for all pairs of tuples (〈b〉, 〈T 〉) where 〈b〉
satisfies (1c) and 〈T 〉 satisfies (1a), the sorting function NCS(〈b〉,〈T 〉) maps a profile
x ∈ X to the category Ck such that ON (x, bk) ∈ T k and ON (x, bk+1) /∈ T k+1.

5 An upset is an upward closed subset of an ordered set, i.e. if b is greater than a and a belongs
to an upset, then so does b.



The set of preference parameters – all the pairs (〈b〉, 〈T 〉) satisfying (1a) and (1c)
– can be considered too wide and too unwieldy for practical use in the context of a
decision aiding process. Therefore, following [3], one may consider to restrict either
the sequence of limiting profiles, or the sequence of sufficient coalitions. In order to
remain compatible with Electre Tri, we elect the latter.

Definition 2 (Non-compensatory sorting with a unique set of sufficient coalitions
U-NCS). Given a set of criteria N and an ordered set of categories C1 ≺ · · · ≺ Cp,
for all pairs (〈b〉, T ) where the tuple 〈b〉 satisfies (1c) and T is an upset of coalitions,
the sorting function U-NCS(〈b〉,T ) maps a profile x ∈ X to the category Ck such that
ON (x, b

k) ∈ T and ON (x, bk+1) /∈ T .

A further restriction of U-NCS is of particular interest: in the MR-Sort model, in-
troduced in [9], the sufficient coalitions are represented in a compact form which is
more amenable to linear programming. As an analogy to a voting setting, each criterion
i ∈ N may be assigned a voting power wi ≥ 0 so that a given coalition of criteria
B ⊆ N is deemed sufficient if, and only if, its combined voting power

∑
i∈B wi is

greater than a given qualification threshold λ.

Definition 3 (majority rule sorting MR-Sort). Given a set of criteriaN , the majority
rule MR maps a pair (〈w〉, λ), where 〈w〉 is a |N |-tuple of nonnegative real numbers
and λ a nonnegative real number, to an upset MR(〈w〉, λ) of the power set ofN defined
by the relation:

∀B ⊆ N , B ∈ MR(〈w〉, λ) ⇐⇒
∑
i∈B

wi ≥ λ (MR)

Given, in addition, a set of categoriesC1 ≺ · · · ≺ Cp, for all triples (〈b〉, 〈w〉, λ) where
the tuple 〈b〉 satisfies (1c), 〈w〉 is a |N |-tuple of nonnegative real numbers and λ a non-
negative real number, MR-Sort(〈b〉,〈w〉,λ) is the sorting function U-NCS(〈b〉,MR(〈w〉,λ)).

Example 1. Terry is a journalist and prepares a car review for a special issue. He con-
siders a number of popular car models, and wants to sort them in order to present a
sample of cars “selected for you by the redaction” to the readers.

This selection is based on 4 criteria : cost (e), acceleration (measured by the time,
in seconds, to reach 100 km.h−1 from full stop – lower is better), braking power and
road holding, both measured on a qualitative scale ranging from 1 (lowest performance)
to 4 (best performance). The performances of six models are described in Table 1:

In order to assign these models to a class among C1? (average) ≺ C2? (good)
≺ C3? (excellent), Terry considers a NCS model:

– where the values on each criterion are sorted between 1? (average) and 2? (good)
by the following profiles: b1

?

cost = 17 250, b1
?

acceleration = 30, b1
?

braking = 2.2,
b1

?

road holding = 1.9. The boundary between 2? and 3? (excellent) is fixed by the
profiles: b2

?

cost = 15 500, b2
?

acceleration = 28.8, b2
?

braking = 2.5, b2
?

road holding = 2.6.

Figure 1 and Table 2 depict the performance of the six alternatives.



model cost acceleration braking road holding
m1 16 973 29 2.66 2.5
m2 18 342 30.7 2.33 3
m3 15 335 30.2 2 2.5
m4 18 971 28 2.33 2
m5 17 537 28.3 2.33 2.75
m6 15 131 29.7 1.66 1.75

Table 1. Performance table

model cost acceleration braking road holding
m1 ?? ?? ? ? ? ??
m2 ? ? ?? ? ? ?
m3 ? ? ? ? ? ??
m4 ? ? ? ? ?? ??
m5 ? ? ? ? ?? ? ? ?
m6 ? ? ? ?? ? ?

Table 2. Categorization of performances

? ?? ? ? ?

m1m2 m3m4 m5 m6

b1
?

b2
?

cost

? ?? ? ? ?

m1m2 m3 m4m5m6

b1
?

b2
?

acceleration

? ?? ? ? ?

m1m3 m4,
m5, m2

m6

b1
?

b2
?

braking

? ?? ? ? ?

m1

m3

m2m4 m5m6

b1
?

b2
?

road holding

Fig. 1. Representation of performances w.r.t. catergory limits

– These appreciations are then aggregated by the following rule: an alternative is
categorized good or excellent if it is good or excellent on cost or acceleration, and
good or excellent on braking or road holding. It is categorized excellent if it is



excellent on cost or acceleration, and excellent on braking or road holding. Being
excellent on some criterion does not really help to be considered good overall, as
expected from a non compensatory model. Sufficient coalitions are represented on
Figure 2.

cost and
acceleration

cost and
braking

cost and
road

holding

acceleration
and braking

acceleration
and road
holding

braking
and road
holding

all but road
holding

all but
braking

all but
acceleration

all but cost

all

cost acceleration braking
road

holding

none

Fig. 2. Sufficient (grey) and insufficient (white) coalitions of criteria. Arrows denote strength -
pointing towards the weaker

Finally, the model yields the following assignments (Table 3):

model assignment
m1 ??
m2 ?
m3 ??
m4 ??
m5 ? ? ?
m6 ?

Table 3. Model Assignments



2.3 The disaggregation paradigm: learning preference parameters from
assignment examples

For a given decision situation, assuming the NCS model is relevant to structure the
DM’s preferences, what parameters should be selected to fully specify the NCS model
that corresponds to the DM viewpoint? An option would be to simply ask the deci-
sion maker to describe, to her best knowledge, the limit profiles between class and to
enumerate the minimal sufficient coalitions. In order to get this information as quickly
and reliably as possible, an analyst could make good use of the model-based elicita-
tion strategy described in [1], as it permits to obtain these parameters by asking the
decision maker to only provide holistic preference judgment – should some (fictitious)
alternative be assigned to some category – and builds the shortest questionnaire.

We opt for a more indirect setup, close to a machine learning paradigm, where
a set of reference assignment is given and assumed to describe the decision maker’s
point of view, and the aim is to extend these assignments with a NCS model. In this
context, we usually refer to an assignment as a function mapping a subset of reference
alternatives X? ⊂ X to the ordered set of classes C1 ≺ · · · ≺ Cp. These reference
alternatives highlight values of interest on each criterion i ∈ N , X?i :=

⋃
x∈X? xi. We

are looking for suitable preference parameters specifying a non compensatory sorting
model, i.e. a tuple of profiles 〈b〉 satisfying (1c) and an upset of coalitions T ⊂ 2N

(respectively, non-negative voting parameters (〈w〉, λ) of a majority rule) so that U-
NCS(〈b〉,T ) (respectively, MR-Sort(〈b〉,〈w〉,λ)) maps all reference alternatives x ∈ X? to
its assigned class A(x).

Throughout this paper, we assume this expression of preference is free of noise. We
are only interested in determining if the given assignment can be represented in the non
compensatory sorting model.

3 SAT formulation for learning NCS

In this section, we begin by giving a brief reminder of some key concepts regarding
boolean satisfiability problems (SAT). Then, we proceed by describing the pivotal con-
tribution of this work: the encoding of the problem of representing a given assignment
in the U-NCS model as a SAT problem. We conclude this section by providing the de-
coding procedure that prove this SAT formulation is equivalent to the original problem,
and can be used in the context of Algorithm 1 together with a SAT solver.

3.1 Boolean satisfiability (SAT)

A boolean satisfaction problem consists in a set of boolean variables V and a logical
proposition about these variables f : {0, 1}V → {0, 1}. A solution v? is an assign-
ment of the variables mapped to 1 by the proposition: f(v?) = 1. A binary satisfaction
problem for which there exists at least one solution is satisfiable, else it is unsatisfiable.
Without loss of generality, the proposition f can be assumed to be written in conjunc-
tive normal form: f =

∧
c∈C c, where each clause c ∈ C is itself a disjunction in the

variables or their negation ∀c ∈ C,∃c+, c− ∈ P(V ) : c =
∨
v∈c+ v∨

∨
v∈c− ¬v, so that

a solution satisfies at least one condition (either positive or negative) of every clause.



The models presented hereafter make extensive use of clauses where there is only
one non-negated variable (a subset of Horn clauses): a∨¬b1∨· · ·∨¬bn, which represent
the logical implication (b1 ∧ · · · ∧ bn)⇒ a.

It is known since Cook’s theorem [34] that the Boolean satisfiability problem is NP-
complete. Consequently, unless P = NP , we should not expect to solve generic SAT
instances quicker than exponential time in the worst case. Nevertheless, efficient and
scalable algorithms for SAT have been – and still are – developed, and are sometimes
able to handle problem instances involving tens of thousands of variables and millions
of clauses in a few seconds (see e.g. [24,22]).

3.2 A SAT encoding of a given assignment in U-NCS

Definition 4 (SAT encoding for U-NCS). Let A : X? → C1 ≺ · · · ≺ Cp an assign-
ment. We define the boolean function φSAT

A with variables:

– xi,h,k, indexed by a criterion i ∈ N , a frontier between classes 1 ≤ h ≤ p−1, and
a value k ∈ X?i taken on criterion i by a reference alternative,

– yB indexed by a coalition of criteria B ⊆ N

as the conjunction of clauses:

(3a): For all criteria i ∈ N , for all frontiers between adjacent classes 1 ≤ h ≤ p − 1,
for all ordered pairs of values k < k′ ∈ X?i :

xi,h,k′ ∨ ¬xi,h,k (2a)

(3b): For all criteria i ∈ N , for all ordered pairs of frontiers 1 ≤ h < h′ ≤ p − 1, for
all values k ∈ X?i :

xi,h,k ∨ ¬xi,h′,k (2b)

(3c): For all ordered pairs of coalitions B ⊂ B′ ⊆ N :

yB′ ∨ ¬yB (2c)

(3d): For all coalitions B ⊆ N , for all frontiers 1 ≤ h ≤ p− 1, for all u ∈ X? : A(u) =
Ch−1 (i.e. reference alternatives just below the frontier) :

(
∨
i∈B
¬xi,h,ui

) ∨ ¬yB (2d)

(3e): For all coalitions B ⊆ N , for all frontiers 1 ≤ h ≤ p− 1, for all a ∈ X? : A(a) =
Ch (i.e. reference alternatives just above the frontier) :

(
∨
i∈B

xi,h,ai) ∨ yN\B (2e)

Clauses of types (2a), (2b) and (2c) are easily interpreted as enforcers of some mono-
tonicity conditions inherent to ordinal sorting and to the parameters of the U-NCS
model:



(3a): Ascending scales – if k < k′ ∈ X?i and k is above some threshold bhi , then so is k′.
It is necessary and sufficient to consider the clauses where k and k′ are consecutive
values of X?i .

(3b): Hierarchy of profiles – if 1 ≤ h < h′ ≤ p − 1 and k ∈ X?i is above the threshold
bh
′

i , then it is also above bhi . It is necessary and sufficient to consider the clauses
where h′ = h+ 1.

(3c): Coalitions strength – if a coalition B ⊆ N is sufficient, then any coalition B′ ⊇ B
containing B is also sufficient. It is necessary and sufficient to consider the clauses
where the coalition B′ contains exactly one more criterion than B, corresponding
to the edges represented on Fig. 1.

Clauses of types (2d) and (2e) ensure the correct representation of all reference alter-
natives contained by the assignmentA in the U-NCS model. They rely on the following
lemmas.

Lemma 1. Let A : X? → C1 ≺ · · · ≺ Cp an assignment extended by a U-NCS model
with profiles 〈b〉 and sufficient coalitions T . If B ⊆ N is a coalition of criteria such
that, there is an alternative x ∈ X? stronger than the upper frontier of its class bA(x)+1

on every criterion in B, then this coalition is not sufficient.

∀B ⊆ N , [∃x ∈ X? : ∀i ∈ B, xi ≥ bA(x)+1
i ]⇒ B /∈ T

Proof. Let A an assignment, (〈b〉, T ) correct U-NCS parameters , B a coalition of
criteria and x an alternative that satisfy the premises, and suppose B is sufficient. The
alternative x would be better than the boundary bA(x)+1 and so would be assigned to a
class strictly better than A(x), and the NCS model with parameters b and T would not
extend the assignment.

Clauses of type (2d) leverage Lemma 1 to ensure alternatives are outranked by the
boundary above them, relating insufficient coalitions to the strong points of an alterna-
tive.

Lemma 2. Let A : X? → C1 ≺ · · · ≺ Cp an assignment extended by a U-NCS model
with profiles 〈b〉 and sufficient coalitions T . If B ⊆ N is a coalition of criteria such
that, there is an alternative x ∈ X? weaker than the lower frontier of its class bA(x) on
every criterion in B, then the complementary coalition is sufficient.

∀B ⊆ N , [∃x ∈ X? : ∀i ∈ B, xi < b
A(x)
i ]⇒ (N \B) ∈ T

Proof. Let A an assignment, (〈b〉, T ) correct U-NCS parameters, B a coalition of cri-
teria and x an alternative that satisfy the premises, and suppose N \ B is insufficient.
The set of criteria on which the alternative x would be better than the boundary bA(x)

is a subset of N \ B, and would thus be considered insufficient. Hence, x would be
assigned to a class strictly worse than A(x), and the NCS model with parameters b and
T would not extend the assignment.



Clauses of type (2e) leverage Lemma 2 to ensure alternatives outrank the boundary
below them, relating the weak points of an alternative to a complementary insufficient
coalition.

We are now able to describe the decoding function required by Algorithm 1 and
prove the faithfulness of both the encoding and the decoding.

3.3 Faithfulness of the SAT representation

Theorem 1 (from a U-NCS model representing an assignment to a solution of the
SAT formulation). Given an assignment A : X? → C1 ≺ · · · ≺ Cp, if the tuple of
profiles 〈b〉 satisfies (1c), the set T is an upset of coalitions of criteria, and the sorting
function U-NCS〈b〉,T extends A, then the binary tuple:

– xi,h,k, indexed by a criterion i ∈ N , a frontier between classes 1 ≤ h ≤ p − 1,
and a value k ∈ X?i taken on criterion i by some reference alternative, and defined

by xi,h,k =

{
1, if k ≥ bhi
0, else

– yB indexed by a coalition of criteriaB ⊆ N and defined by yB =

{
1, if B ∈ T
0, else

is mapped to 1 by the Boolean function φSAT
A .

Proof. The clauses (2a) are satisfied because if k < k′ and k is above some thresh-
old bh, then so is k′. The clauses (2b) are satisfied because the frontier profiles 〈b〉 are
assumed to satisfy (1c) (hence, if a given value is above some threshold bh

′

i , then it is
also above inferior thresholds bhi for h < h′). The clauses (2c) are satisfied because T
is assumed to be an upset (hence, if a coalition is deemed sufficient, then so are wider
coalitions). If the NCS model with profiles bh and sufficient coalitions T extends the
given assignments, then clauses (2d) are satisfied – else, by Lemma 1, one of the alter-
native u ∈ X? assigned to the class Ch−1 would outrank the profile bh on a sufficient
coalition of criteria - and so are clauses (2e) - else, by Lemma 2, one alternative a ∈ X?
assigned to class Ch would not outrank the profile bh, as the set of criteria on which a
is better than bh would be smaller than some insufficient coalition.

Corollary 1 (Faithful encoding). Let A be an assignment A : X? → C1 ≺ · · · ≺ Cp.
If φSAT

A is unsatisfiable, then A cannot be represented in the model U-NCS.

Theorem 2 (Decoding a solution of the SAT formulation into a U-NCS model).
Given an assignment A : X? → C1 ≺ · · · ≺ Cp, if the binary tuple:

– xi,h,k, indexed by a criterion i ∈ N , a frontier between classes 1 ≤ h ≤ p−1, and
a value k ∈ X?i taken on criterion i by a reference alternative,

– yB indexed by a coalition of criteria B ⊆ N

satisfies φSAT
A (x, y) = 1, then the profiles 〈b〉 defined by bhi := min{k ∈ X?i : xi,h,k =

1} satisfy (1c), the set of coalitions T := {B ⊆ N : yB = 1} is an upset, and the
sorting function U-NCS(〈b〉,T ), extends the assignment A.



Proof. Clauses (2a) ensure that k′ ≥ k ⇒ xi,h,k′ ≥ xi,h,k, so that xi,h,k = 1 ⇐⇒
k ≥ bhi . Clauses (2b) ensure the tuple of profiles 〈b〉 satisfies (1c). Clauses (2c) ensure
the set T is an upset of coalitions. The sorting function U-NCS(〈b〉,T ) extends the given
assignment because, for each reference alternative s ∈ X? , there is a clause (2e) that
ensures s outranks the lower frontier of its class (if A(s) � C1), and a clause (2d) that
ensures s does not outrank the upper frontier of its class (if A(s) ≺ Cp).

Corollary 2 (Faithfullness of the SAT representation). The assignment A can be
represented in the model U-NCS if, and only if, φSAT

A is satisfiable.

4 Learning MR-Sort using Mixed Integer Programming

Learning the parameters of an MR-Sort model using mixed integer programming has
been studied in [9]. We recall here the method used in [9] in order to obtain the mixed
inter program (MIP) formulation that infers an MR-Sort model on the basis of examples
of assignments.

With MR-Sort, the condition for an alternative a ∈ X? to be assigned to a category
Ch (Equation (MR)) reads:

a ∈ Ch ⇐⇒

{∑n
i=1 c

h−1
a,i ≥ λ∑n

i=1 c
h
a,i < λ

with cka,i =

{
wi if ai ≥ bki ,
0 otherwise.

The linearization of these constraints induces the use of binary variables. For each vari-
able cka,i, with k = {h − 1, h}, we introduce a binary variable δka,i that is equal to 1
when the performance of a ∈ X? is at least as good as or better than the performance
of bk on the criterion i and 0 otherwise. For an alternative a assigned to a category Ch

with 2 ≤ h ≤ p− 1, it introduces 2n binary variables. For alternatives assigned to one
of the extreme categories, the number of binary variables is divided by two. The value
of each variable δka,i is obtained thanks to the following constraints:

M(δka,i − 1) ≤ ai − bki < M · δka,i (3a)

in which M is an arbitrary large positive constant. The value of cka,i are finally obtained
thanks to the following constraints:{

0 ≤ cka,i ≤ wi,
δka,i − 1 + wi ≤ cka,i ≤ δka,i.

(3b)

The dominance structure on the set of profiles is ensured by the following constraints:

∀i ∈ N , h = {2, . . . , p− 1}, bhi ≥ bh−1i (3c)

As the equation (MR) defining the majority rule is homogenous, the coefficients 〈w〉 and
λ can be multiplied by any positive constant without modifying the upset of coalitions
they represent. Thus, the following normalization constraint can be added without loss
of generality:

n∑
i=1

wi = 1. (3d)



To obtain a MIP formulation, the next step consists to define an objective function.
In [9], two objective functions are considered, one of which consists in maximizing the
robustness of the assignments. It is done by adding continuous variables xa, ya ∈ R for
each alternative a ∈ X? such that:{∑n

i=1 c
h−1
a,i = λ+ xa,∑n

i=1 c
h
a,i = λ− ya.

(3e)

The objective function consists in optimizing a slack variable α that is constrained by
the values of the variables xa and ya as follows:

∀a ∈ X?,

{
α ≤ xa,
α ≤ ya.

(3f)

The combination of the objective function and all the constraints listed above leads to
MIPs that can be found in [9].

Definition 5 (MIP-O formulation for MR Sort). Given an assignment A, we denote
φMIP−O
A the mixed linear program with decision variables α, λ, 〈bki 〉i∈N ,k∈[1..p−1],
〈wi〉i∈N , 〈cha,i〉i∈N ,a∈X?,h∈{A(a)−1,A(a)}, 〈xa〉a∈X? , 〈ya〉a∈X? ∈ R+ and
〈δha,i〉i∈N ,a∈X?,h∈{A(a)−1,A(a)} ∈ {0, 1}, consisting in minimizing the objective α, sub-
ject to the constraints (3a), (3b), (3c), (3d), (3e) and (3f).

Theorem 3 (Faithfulness of the MIP-O formulation [9]). An assignment A can be
represented in the model MR-Sort if, and only if, φMIP-O

A is feasible. If the tuple 〈α, λ,
b, w, c, x, y, δ〉 is a feasible solution of φMIP-O

A , then the tuple of profiles b, the tuple
of voting powers w and the majority threshold λ are suitable parameters of a MR-Sort
model that extends the assignment A.

We are looking to compare this state-of-the-art formulation to the boolean satisfia-
bility formulation we propose in the next section in terms of computational efficiency,
and in terms of quality of the result. Yet, we suspect the two approaches differ in too
many aspects to be meaningfully compared. The MIP-O formulation is based on a nu-
merical representation of the problem, considers the set of every MR-Sort model ex-
tending the assignment, and selects the best according to the objective function – here,
returning the model that gives the sharpest difference in voting weights between suffi-
cient and insufficient coalitions of criteria. Meanwhile, the SAT formulation is based on
a logical representation of the problem, considers the wider set of every U-NCS model
extending the assignment, and randomly yields a suitable model. In order to be able
to credit the effects we would observe to the correct causes, we introduce a third for-
mulation, called MIP-D, that helps bridging the gap between MIP-O and SAT. MIP-D
is formally a mixed integer program with a null objective function. This trick enables
us to use the optimization shell of the MIP formulations to express a decision problem
assessing the satisfiability of the constraints, and yielding a random solution (which, in
our context, represents a particular MR-Sort model), rather than looking for the best one
in the sense of the objective function. Another instance of this configuration, where an
optimization problem is compared to its feasibility version, can be found in [35]. Here,



it should be noted that the MIP-D formulation is not exactly the feasibility version of
MIP-O, as insufficient coalitions of criteria are characterized by a strict comparison.
The optimization version circumvents this obstacle by maximizing the contrast in nor-
malized voting power between sufficient and insufficient coalitions, while the feasibility
version addresses it by leaving the total weight unconstrained, but requiring the min-
imal difference between sufficient and insufficient coalitions is at least one vote. This
slight difference might account for some divergence of behavior we observe during our
experiment (see Section 5, and particularly 5.3).

Definition 6 (MIP-D formulation for MR Sort). We denote MIP-D the mixed linear
program with decision variables 〈bki 〉i∈N ,k∈[1..p−1], 〈wi〉i∈N , λ, 〈xa〉a∈X? , 〈ya〉a∈X? ,
〈cha,i〉i∈N ,a∈X?,h∈{A(a)−1,A(a)} ∈ R+ and 〈δha,i〉i∈N ,a∈X?,h∈{A(a)−1,A(a)} ∈ {0, 1},
consisting in minimizing the objective 0, subject to the constraints (3a), (3b), (3c), (3e)
and (3g), where:

∀a ∈ X?,

{
1 ≤ xi,
1 ≤ yi.

(3g)

Theorem 4 (Faithfulness of the MIP-D formulation). An assignment A can be rep-
resented in the model MR-Sort if, and only if, φMIP-D

A is feasible. If the tuple 〈λ, b, w, c,
x, y, δ〉 is a feasible solution of φMIP-D

A , then the tuple of profiles b, the tuple of voting
powers w and the majority threshold λ are suitable parameters of a MR-Sort model
that extends the assignment A.

Proof. This theorem results from Theorem 3, with only minor changes to the con-
straints. As noted previously, the normalization constraint (3d) has no effect on the
feasibility of the problem. Instead, constraints (3g) ensure we are looking for voting
parameters large enough to have at least a difference of one unit between the votes
gathered by any sufficient coalition on the one hand and any insufficient coalition on
the other hand.

5 Implementation

In this section, we study the performance of the formulation proposed in section 3, both
intrinsic and comparative with respect to state-of-the-art techniques. We implement Al-
gorithm 1, using a state-of-the-art SAT solver, in order to solve instances of the problem
of learning a U-NCS model, given the assignment of a set of reference alternatives. We
also implement two formulations relying on Mixed Integer Programming, presented in
Section 4, using an adequate solver. We begin by describing our experimental protocol,
with some implementation details. Then, we provide the results of the experimental
study concerning computation time of our program, and particularly the influence of
learning set size, the number of criteria, and the number of classes, as well as elements
of comparison between the three approaches.



5.1 Experimental protocol and implementation details

The algorithm we test takes as an input the assignment of a set of alternatives X?, each
described by a performance tuple on a set of criteria N , to a set of classes C1 ≺ · · · ≺
Cp.

The performance of the solvers needs to be measured in practice, by solving actual
instances of the problem and reporting the computation time required. This experimen-
tal study is run on an ordinary laptop with Windows 7 (64 bit) equipped with an Intel
Core i7-4600 CPU at 2.1 GHz and 8 GB of RAM.

Dataset generation. In the scope of this paper, we only consider to use a carefully
crafted, random dataset as an input. On the one hand, the algorithm we describe is
not yet equipped with the capability to deal with noisy inputs, so we do not consider
feeding it with actual preference data, such as the one found in preference learning
benchmarks [33]. On the other hand, using totally random, unstructured, inputs makes
no sense in the context of algorithmic decision. In order to ensure the preference data
we are using makes sense, we use a decision model to generate it, and, in particular, a
model compatible with the non compensatory stance we are postulating. Precisely, we
use a MR-Sort model for generating the learning set, a model that particularize NCS and
U-NCS by postulating the set of sufficient coalitions possess an additive structure (see
Section 2.2). This choice ensures the three formulations we are using should succeed in
finding the parameters of a model extending the reference assignment.

When generating a dataset, we consider the number of criteria |N |, the number of
classes p, and the number of reference alternatives |X?| as parameters. We consider
all criteria take continuous value in the interval [0, 1], which is computationally more
demanding for our algorithm than the case where one criterion has a finite set of values.
We generate a set of ascending profiles 〈b〉 by uniformly sampling p− 1 numbers in the
interval [0, 1] and sorting them in ascending order, for all criteria. We generate voting
weights 〈w〉 by sampling |N | − 1 numbers in the interval [0, 1], sorting them, and
using them as the cumulative sum of weights. λ is then randomly chosen with uniform
probability in the interval ]0.5, 1[. Finally, we sample uniformly |X?| tuples in [0, 1]N ,
defining the performance table of the reference alternative, and assign them to classes
in C1 ≺ · · · ≺ Cp according to the modelM0 :=MR-Sort〈b〉,〈w〉,λ with the generated
profiles, voting weights, and qualified majority threshold.

Solving the SAT problem. We then proceed accordingly to Algorithm 1, translating
the assignment into a binary satisfaction problem, described by sets of variables and
clauses, as described by Definition 4. This binary satisfaction problem is written in
a file, in DIMACS format6, and passed to a command line SAT solver - CryptoMin-
iSat 5.0.1 [25], winner of the incremental track at SAT Competition 2016 7, released
under the MIT license. If the solver finds a solution, then it is converted into param-
eters (〈bSAT〉, T SAT) for a U-NCS model, as described by Theorem 2. The model

6 http://www.satcompetition.org/2009/format-benchmarks2009.html
7 http://baldur.iti.kit.edu/sat-competition-2016/

http://www.satcompetition.org/2009/format-benchmarks2009.html
http://baldur.iti.kit.edu/sat-competition-2016/


MSAT :=U-NCS〈bSAT〉,T SAT yielded by the program is then validated against the in-
put. As the ground truthM0 used to seed the assignment is, by construction, a MR-Sort
model and therefore a U-NCS model, Theorem 1 applies and we expect the solver to
always find a solution. Moreover, as Theorem 2 applies to the solution yielded, we ex-
pect the U-NCS model returned by the program should always succeed at extending the
assignment provided.

Solving the MIP problems. We transcribe the problem consisting of finding a MR-Sort
model extending the assignment with parameters providing a good contrast into a mixed
integer linear optimization problem described extensively in Section 4 that we refer to
as MIP-O, where O stands for optimization. In order to bridge the gap between this op-
timization stance and the boolean satisfiability approach that is only preoccupied with
returning any model that extends the given assignment, we also transcribe the problem
consisting of finding some MR-Sort model extending the assignment into a MIP feasi-
bility problem (optimizing the null function over an adequate set of constraints), also
described in Section 4 that we refer to as MIP-D, where D stands for decision. These
MIP problems are solved with Gurobi 7.02, with factory parameters except for the cap
placed on the number of CPU cores devoted to the computation (two), in order to match
a similar limitation with the chosen version of the SAT solver. When the solver suc-
ceeds in finding a solution before the time limit – set to one hour – the sorting functions
returned are calledMMIP−O andMMIP−D, respectively.

Evaluating the ability of the inferred models to restore the original one. In order to
appreciate how “close” a computed modelMc ∈ {MSAT,MMIP−D,MMIP−O} is to
the ground truth from which the assignment example were generatedM0, we proceed
as follows: we sample a large set of n profiles in X = [0, 1]N and compute the assign-
ment of these profiles according to the original and computed MR Sort models (M0

andMc). On this basis, we compute err − rate the proportion of “errors”, i.e. tuples
which are not assigned to the same category by both models. To obtain a reasonable
sample for X, we vary size of the sample of X = [0, 1]N according to the number of
criteria |N |: n =Max(Min(4|N |, 3.105), 104))

5.2 Intrinsic performance of the SAT formulation

We run the experimental protocol described above by varying the various values of the
parameters governing the input. In order to assess the intrinsic performance of Algo-
rithm 1 we consider all the combinations where

– the number of criteria |N | is chosen among {5, 7, 9, 11, 13};
– the number of reference alternatives |X?| is chosen among {16, 32, 64, 128, 256,

512}.
– the number of categories p is chosen among {2, 3}

For each value of the triplet of parameters, we sample 100 MR-Sort modelsM0, and
record the computation time (t) needed to provide a modelMNCS
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Fig. 3. Computation time by size of the learning set

Figure 3 displays the time needed by Algorithm 1 to computeMNCS , versus the
number of reference alternatives |X?|, both represented in logarithmic scale, in vari-
ous configurations of the number of criteria. The fact that each configuration is seem-
ingly represented by a straight line hints at a linear dependency between log tSAT and
log |X?|. The fact that the various straight lines, corresponding to various number of
criteria, seem parallel, with a slope close to 1, is compatible to a law where tSAT is
proportional to |X?|. The same observations in the plane (number of criteria × compu-
tation time) (not represented) leads to infer a law

tSAT ∝ |X?| × 2|N |,

where the computing time is proportional to the number of reference alternatives and to
the number of coalitions (corresponding to the number of |N |-ary clauses of the SAT
formulation). Finally, as a rule of thumb: the average computation time is about 10 s for
11 criteria, 3 categories and 100 reference alternatives; it doubles for each additional
criterion, or when the number of reference alternatives doubles.

5.3 Comparison between the formulations

In order to compare between models, we focus on a situation with three categories, nine
criteria, and 64 reference alternatives, serving as a baseline. We then consider situations
deviating from the baseline on a single parameter – either the number of categories p,
from 2 to 5, or the number of criteria, among {5, 7, 9, 11, 13}, or the number of refer-
ence alternative among {16, 32, 64, 128, 256}. For each considered value of the triple
of parameters, we sample 50 MR Sort models representing the ground truthM0, and



we record the computation time t needed to provide each of the three modelsMNCS,
MMIP−D and MMIP−O, as well as the generalization indexes for the three models.
The MIP are solved with a timeout of one hour.
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Fig. 4. Distribution of the computation time and the proportion of assignment similar to the
ground truth for the three models in the baseline configuration: 9 criteria, 3 categories, 64 refer-
ence alternatives. Represented: median; box: 25− 75%; whiskers: 10− 90%.

Results on the computation time. For the three formulations under scrutiny and the set
of considered parameters governing the input, the computation time ranges from below
the tenth of a second to an hour (when the timeout is reached), thus covering about five
orders of magnitude. The left side of Figure 4 depicts the distribution of the computation
time for the baseline situation (9 criteria, 3 categories, 64 reference assignments). While
the computing time for the SAT and the MIP-D formulations seem to be centered around
similar values (with Med(tSAT ) ≈ 2.4s and Med(tMIP−D) ≈ 3.1s for the baseline),
the distribution of the computing time for the SAT algorithm around this center is very
tight, while the spread of this distribution for the MIP-D formulation is comparatively
huge: the slowest tenth of instances run about a thousand time slower than the quickest
tenth. The computation time of the MIP-O formulation appears about 50 times slower
than the SAT, with a central value of Med(tMIP−O) ≈ 130s, and covers about two
orders of magnitude.



Fig. 5. Distribution of the computation time for the three models by number of reference assign-
ments

In order to assess the influence of the parameters governing the size and complexity
of the input, we explore situations differing from the baseline on a single parameter.

– The number of reference assignments |X?|. Figure 5 indicates that the distribution
of the computing time for SAT-based algorithm remains tightly grouped around
its central value, and that this value steadily increases with the number of reference
assignments. Meanwhile, the two MIP formulations display a similar behavior, with
an increase of the central tendency steeper than the one displayed by the SAT, and
a spread that widens when taking into account additional reference assignments.

– the number of criteria |N |. Figure 6 indicates that the distribution of the computing
time for SAT-based algorithm remains tightly grouped around its central value, and
that this value steadily increases with the number of criteria. This increase is steeper
in the case of the SAT and MIP-O formulations than for the MIP-D formulation.

– the number of categories p. Figure 7 displays an interesting phenomenon. The num-
ber of categories seems to have a mild influence on the computation time, without
any restriction for the SAT-based algorithm, and as soon as there are three cate-
gories or more for the MIP-based algorithm, with a clear exception in the case of
two categories, which yields instances of the problem solved ten times faster than
with three or more categories.



Fig. 6. Distribution of the computation time for the three models by number of criteria

Results on the ability of the inferred model to restore the original one. The right
side of Figure 4 depicts the distribution of the proportion of correct assignments (as
compared to the ground truth) for the baseline situation (9 criteria, 3 categories, 64
reference assignments). The situation depicted is conveniently described by using the
distribution of outcomes yielded by the MIP-D formulation as a pivotal point to which
we compare those yielded by the SAT and MIP-O formulations: the central 80% of
the distribution (between the whiskers) of outcomes for the MIP-O corresponds to the
central half (the box) for the MIP-D, while the best half of the distribution of outcomes
for the SAT corresponds to the central 80% for the MIP-D. In other terms, compared
to the MIP-D, the MIP-O offers consistently good results, while the SAT has a 50%
chance to yield a model that does not align very well with the ground truth.

Figures 8, 9 and 10 depict the variations of the alignment of the models yielded
by the three algorithms with the ground truth with respect to the number of reference
assignments, of criteria, or of categories, respectively. The experimental results display
a tendency towards a degradation of this alignment as the number of criteria or the
number of categories increase. Conversely, as expected, increasing the number of refer-
ence assignments noticeably enhances the restoration rate. The three algorithms seem
to behave in a similar manner with respect to the modification of these parameters.

Reliability. The three formulations expressing the problem we solve – finding a non
compensatory sorting model extending a given assignment of reference alternatives –



Fig. 7. Distribution of the computation time for the three models by number of categories

into technical terms are theoretically faithful. Moreover, as we generate the input as-
signment with a hidden ground truth which itself obeys a non-compensatory sorting
model, the search we set out to perform should provably succeed. Unfortunately, a
computer program is but a pale reflection of an algorithm, as it is restricted in using
finite resource. While we take great care in designing the experimental protocol in or-
der to avoid memory problems, we have purposefully used off-the-shelf software with
default setting to solve the formulations. While this attitude has given excellent result
for the implementation of the SAT-based algorithm, which has never failed to retrieve a
model that succeeds in extending the given assignment, the two MIP-based implemen-
tations have suffered from a variety of failures, either not terminating before the timeout
set at one hour or wrongly concluding on the infeasibility of the MIP. We report these
abnormal behaviors in Table 4.

6 Discussion and perspectives

In this section, we strive at interpreting the results presented in Section 5. In Section 6.1,
we address the influence of the parameters governing the size and structure of the input
- the reference assignment we set out to extend with a non-compensatory sorting model
- on the computing time of the programs implementing the three formulations modeling
the problem. In Section 6.2, we discuss the differing approaches to knowledge repre-
sentation underlying these different formulations, and their practical consequences.



Fig. 8. Distribution of the generalization index for the three models by size of the learning set

6.1 Influence of the parameters

The influence of the various parameters (|X?|, the number of reference assignments;
|N |, the number of criteria; p, the number of categories) governing the input on the
ability of the output model to predict the ground truth seeding the input is best under-
stood from a machine learning perspective. The input assignments form the learning
set of the algorithm, while the number of criteria and the number of categories govern
the number of parameters describing the non-compensatory sorting model. Hence, an
increase in |X?| adds constraints upon the system, while increases in |N | or p relieve
some constraints, but demand more resources for their management.

– The comparison between MIP-O and MIP-D informs the influence of the loss func-
tion. This influence is threefold: optimizing this function demands a lot more time
than simply returning the first admissible solution found; formalizing the problem
of extending the input assignment with a model as an optimization problem incor-
porates a kind of robustness into the algorithm, which translates to a decrease in
the number of failures; paradoxically, the strategy consisting in finding the most
representative model (in the sense of the chosen loss function) does not yield mod-
els with a better alignment to the ground truth than the one consisting to return a
random suitable model.

– The MIP-D and SAT formulations implement the same binary attitude concern-
ing the suitability of a non-compensatory model to extend a given assignment, and
both arbitrarily yield the first-encountered suitable model. Nevertheless, algorithms



Fig. 9. Distribution of the generalization index for the three models by number of criteria

based on these formulations display marked differences in behavior: while the run-
ning time of the SAT-based algorithm is very homogeneous between instances and
follows very regular patterns when the input parameters change, the MIP-D algo-
rithm behaves a lot more erratically, with some failures (displayed in table 4) and a
tremendous spread. We credit this difference in behavior to a difference of approach
to knowledge representation, as discussed in section 6.2. Also, with the same input
parameters, the model returned by the MIP-D algorithm seems on average to be
more faithful to the ground truth than the model returned by the SAT algorithm. As
both models return random suitable models in different categories (MR Sort for the
MIP, and the superset NCS for the SAT, while the ground truth is chosen in the MR
Sort category), we interpret the difference in the proportion of correct assignment
to the respective volumes of the two categories of model, and discuss the pros and
cons of assuming one or the other in section 6.2.

– Reference assignments are a necessary evil. On the one hand, they provide the
information needed to entrench the model, and refine the precision up to which its
parameters can be known. On the other hand, they erect a computational barrier
which adds up more quickly for the MIP formulations we are considering than for
the SAT one, as shown in Figure 5 . Overcoming this barrier demands time and
threatens the integrity of the somewhat brittle numerical representation underlying
the MIP-D formulation.

– From the perspective of the model-fitting algorithm, the number of criteria and
the number of categories are usually exogenous parameters, fixed according to the



Fig. 10. Distribution of the generalization index for the three models by number of categories

needs of the decision situation. The specific numbers of criteria we considered dur-
ing the experiment, from 5 to 13, cover most of the typical decision situations con-
sidered in MCDA. Introducing more criteria demands to assess more parameters,
which has a compound effect on complexity, as it requires at the same time to build
a higher dimension representation of the models, and to provide more reference
examples in order to be determined with a precision suitable to decision making.
Apart from a noticeable exception (see below), the number of categories does not
seem to have much influence (as shown on figures 7 and 10).

– Underconstrained models are not very good at providing recommendations. When
fed with scarce information, the task of finding a suitable extension is easy, but
there are very little guarantees this extension matches the unexpressed knowledge
and preferences of the decision maker concerning alternatives outside the learning
set. We interpret the decrease in the ability to align with the ground truth as the
number of criteria increases displayed on Figure 9 as an expression of an overfitting
phenomenon, where too many parameters are chosen to faithfully represent a too
little slice of the set of alternatives, but poorly represent cases never seen before.

– Mixed integer programs can represent decision problems, in theory. Practically
though, some complex inputs have proven overwhelming for the MIP-D formu-
lation, whereas the MIP-O has shown more robustness, as evidenced by Table 4. It
seems fair to assume this lack of stability is related to the absence of a normaliza-
tion constraint such as (3d) in the MIP-D formulation .



number of criteria 5 7 9 11 13 7 9 9
number of categories 3 3 3 3 3 3 5 7
number of reference assignments 64 64 64 64 64 128 64 64
MIP-D 4%† 8%† 4% 0 0 42% 10% 12%
MIP-O 0 0 0 10% 48% 4% 0 0
SAT 0 0 0 0 0 0 0 0

Table 4. Proportion of instances failing to retrieve a model. The default case is due to reaching the
time limit, except for configurations marked with a dagger where the failure is due to an alleged
infeasibility of the formulation.

– MR Sort with two categories is structurally different than models with more than
two categories. While we have defined it as a procedure where alternatives are
compared holistically to a profile, it can also be described as an additive value sort-
ing model with stepwise, non-decreasing, 2-valued marginals. The experimental
results, both for the computing time and the alignment with the ground truth (see
figures 7 and 10, where the points corresponding to two categories are outliers with
respect to the rest of the series) highlight this peculiarity, and tend to show that the
value-based representation of the MR-Sort model with two categories is computa-
tionally efficient. Determining a good lower bound on the difference of normalized
voting power between sufficient and insufficient coalitions would therefore likely
help alleviating this issue.

6.2 Numeric or symbolic representation of coalitions

Our proposal to infer non compensatory sorting models from assignment examples us-
ing a SAT formulation relies on a symbolic representation of sufficient coalitions of
criteria. It departs fundamentally from the state-of-the-art approach of representing the
upset of sufficient coalitions with a numeric majority rule (MR).

Obviously, U-NCS is more general than MR-Sort as additive weights/majority level
induce a set of minimal criteria coalitions, while a set of minimal coalitions might not
be additive. [5] studies the proportion of additive representations: all NCS models are
additive up to 3 criteria, but the proportion of additive NCS models tends to be quickly
marginal when the number of criteria increases. It is also possible possible to extend
the MR-Sort model up to U-NCS by considering a capacity instead of a weight vector
(see e.g. [14]). This leads to MIP formulations more and more awkward as the arity of
the capacity increases, increasing the number of decision variables and the computation
time. Also, [14] shows that a MR-Sort model learned from NCS generated examples
provides a good approximation of this NCS model.

A distinctive feature of MR-Sort is its parsimony with respect to interaction between
criteria, a notion that the SAT formulation of U-NCS fails to capture. However, there
are many ways to additively represent a set of minimal coalitions, and the intuitive inter-
pretation of the weights can therefore be misleading: there is no one to one correspon-
dence between the tuples of voting powers and majority level, and the sets of additive
coalitions of criteria. For instance, consider a three criteria problem in which minimal



coalitions are all combination of two criteria out of three. This set of minimal coali-
tions can be represented by w = ( 13 ,

1
3 ,

1
3 ) and λ = 1

2 , or w = (0.49, 0.49, 0.02) and
λ = 1

2 . It is obvious that these two numerical representations yield erroneously to two
very distinct interpretations about the relative importance of criteria. In this sense, the
symbolic representation avoiding weights used in the SAT formulation is more faithful
than a numerical representation. As a consequence, this non-uniqueness of the additive
representation penalizes the effectiveness of loss functions involved in MIPs.

Also, as mentioned in Section 5.3, the feasibility version of the MIP suffers from
numerical instability, perhaps because of the lack of a normalization constraint. The
symbolic representation of sufficient coalitions circumvents the difficult mathematical
question of providing a good lower bound on the worst case difference of normalized
voting power between sufficient and insufficient coalitions.

7 Conclusion

In this paper, we consider the multiple criteria non-compensatory sorting model [2,3]
and propose a new SAT formulation for inferring this sorting model from a learning set
provided by a DM. Learning this model has already been addressed by the literature,
and solved by the resolution of a MIP [9] or via a specific heuristic [13,14]. Due to
high computation time, the MIP formulation can only apply to learning sets of limited
size. Heuristic methods can handle large datasets, but can not ensure to find a compat-
ible model with the learning set whenever it exists. Our new algorithm provides such
guaranty. We implemented and tested our SAT formulation, and it outperforms MIP ap-
proaches in terms of computation time (reduction of the computation time by a factor
of about 50).

Moreover, it could have been the case that this good performance in terms of com-
puting time would be counterbalanced by a limited ability of the inferred model in
terms of generalization. Indeed, a MIP approach focuses the effort in finding a relevant
representative model among the compatible models (through the use of an objective
function), while our SAT approach does return the first compatible model found.

Our experiments show that MIP and SAT approaches have similar performances in
terms of generalization. Therefore, we believe this algorithm to be a strong advance in
terms of learning NCS models based on learning sets, in particular when learning sets
become relatively large.

Thanks to its efficiency – finding a model compatible to some preference informa-
tion takes seconds instead of minutes – this algorithm is well suited to be embedded
in an interactive process, where the decision maker is invited to interactively elicit a
non compensatory sorting model by incrementally building a learning set (and possi-
bly additional preference information). In order to address real-world decision aiding
situations, the algorithm we propose needs to be equipped with techniques permitting
to account for noisy or inconsistent data. While the numeric formulations may rely on
Lagrangian techniques to handle the requirement of correctly representing the data as
a set of soft constraints rather than hard ones, the logic formulation we propose could
usefully investigate the notions of maximally consistent or minimally inconsistent set of
clauses (see e.g. [27] for solving techniques, or e.g. [28] for an application in a MCDA



context). The increased speed, as compared to the previous MIP-based approach, opens
the door to the exploration of the set of all U-NCS models extending a given assign-
ment, in the vein of the version space theory [31] and robust decision aiding [32]. The
knowledge representation underlying our approach may also permit to support a rec-
ommendation with an explanation [26,29,30].
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