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An Adaptive Large Neighbourhood search for Asset Protection During
Escaped Wildfires

Iman Roozbeh∗, Melih Ozlen, John W. Hearne

School of Science, RMIT University, Melbourne, Australia

Abstract

The Asset Protection problem is encountered where an uncontrollable fire is sweeping across a landscape
comprising important infrastructure assets. Protective activities by teams of firefighters can reduce the risk of
losing a particular asset. These activities must be performed during a time-window for each asset determined
by the progression of the fire. The nature of some assets is such that they require the simultaneous presence
of more than one fire vehicle and its capabilities must meet the requirements of each asset visited. The
objective is then to maximise the value of the assets protected subject to constraints on the number and
type of fire trucks available. The solution times to this problem using commercial solvers preclude their
use for operational purposes. In this work we develop an adaptive large neighbourhood search algorithm
(ALNS) based on problem-specific attributes. Several removal and insertion heuristics, including some new
algorithms, are applied. A new benchmark set is generated by considering the problem attributes. In tests
with small instances the ALNS is shown to achieve optimal, or near optimal, results in a fraction of the
time required by CPLEX. In a second set of experiments comprising larger instances the ALNS was able to
produce solutions in times suitable for operational purposes. These solutions mean that significantly more
assets can be protected than would be the case otherwise.

Keywords: Asset Protection Problem, Wildfire, Adaptive Large Neighbourhood Search, Vehicle Routing
Problem, Synchronisation Constraint

1. Introduction

Wildfires are a world-wide natural phenomenon
but increasingly pose a threat to life and prop-
erty. For example, in recent years devastating wild-
fires have occurred in Alaska and Indonesia (2015),
Canada, California and Spain (2016), and Chile,
Portugal and again in California (2017). During
wildfires Incident Management Teams (IMT’s) face
complex operational problems. Although there are
many studies concerned with the dispatch of re-
sources for direct fire suppression (Duff and Tol-
hurst (2015)), relatively few studies address the op-
erational challenges of asset protection and defen-
sive tasks (see Donovan and Rideout (2003), Pap-
pis and Rachaniotis (2010), Van Der Merwe et al.
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(2015), Arrubla et al. (2014) and van der Merwe
et al. (2017)).

We consider the problem where an uncontrol-
lable fire is sweeping across a landscape comprising
strategically important assets such as bridges, elec-
tric substations, and schools. The risk of losing a
particular asset can be reduced through protection
activities by teams of firefighters operating shortly
before the fire reaches that particular asset. This
involves activities such as hosing down a structure
or removing debris in close proximity to an asset.
The number and type of fire-truck teams that need
to visit each asset depends on their size and nature.
Each asset has a strict time window during which
these teams must visit. These time-windows are
determined using fire-spread models and the most
recent meteorological data. Obviously the teams
need to be clear of an asset before the runaway fire
reaches it. Conversely, protection effects can be nul-
lified if undertaken too early. For example, debris
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can accumulate again.
The asset protection problem has similarities to

the Vehicle Routing Problem (VRP). Vehicles need
to be deployed to visit as many assets as possible
during their respective time-windows. The prob-
lem differs in that there is some order to the time-
windows of the assets imposed by the advancing fire
fronts and that it is often not possible to visit every
asset. Moreover, some assets have a need for the
synchronous visit of more than one truck. Different
assets have different requirements. Some are only
accessible with a 4x4 vehicle, for example. Trucks
visiting a particular asset must have the right ca-
pability to meet the requirements of the asset. Also
significant is that, unlike most VRP’s, deployment
decisions need to be made by IMT’s under severe
time-pressure.

The asset protection problem for wildfires was
first introduced by Van Der Merwe et al. (2015). A
Mixed Integer Programming model was formulated
and solved using CPLEX. Although optimal solu-
tions were achieved in most cases the solution times
precluded the method being used for operational
purposes. It is the aim of this paper to address
this NP-hard problem and find a method of achiev-
ing good solutions in times that make it suitable
for operational purposes. We propose an Adaptive
Large Neighbourhood Search (ALNS) metaheuris-
tic which provides a robust framework for solving
large size instances that IMTs may encounter in
cases of extensive wildfires.

The remainder of this paper is organised as fol-
lows. In the next section we present the problem
as a 0-1 mixed-integer linear programming model
and describe the problem. In section 3, we present
our ALNS algorithm for solving the asset protection
problem. In section 4, the results of extensive tests
are presented. Finally, the conclusion and potential
future research directions are stated in section 5.

2. Problem Description

2.1. Mathematical Model

The asset protection problem considers a set of
N − 2 assets, each of which should be served by
a combination of vehicle types q ∈ Q, while only
Pq vehicles of type q are available. Let V =
{v1, . . . , vN} denote the set of nodes. Nodes 1 and
N may denote the same depot if every route starts
and ends at the same location. The other N − 2
vertices represent assets. The node i is marked as a

visited asset if Ri =< ri1, ri2, . . . , riq > vehicles of
each type arrive at the vertex i within the associ-
ated time window [oi, ci] to perform a synchronised
visit. The service at node i starts at time si for
a duration of ai time units to protect an asset of
value ψi. To travel from nodes i to j by a vehicle of
type q, tijq units of time are required. The binary
decision variable yi, takes the value 1 if the vehicles
assigned to the asset collectively meet the protec-
tion requirements Ri, 0 otherwise. The decision
variable zijq takes the value 1 if arc ij is traversed
by vehicle type q, otherwise 0. Moreover, xijq rep-
resents the number of vehicles of type q travelling
on arc ij. Finally, Aq+i defines a set of arcs {i, j}
for each node j such that a vehicle of type q de-
parting from node i at time oi+ai can reach vertex
j by time cj . Similarly, the set Aq−i represents the
set of feasible arcs to traverse to node i. With the
notation above, the problem is formulated as the
following mixed integer programming model.

Maximise

N−1∑
i=2

ψiyi (1)

s.t. :
∑

(1,j)∈Aq+
1

x1jq =
∑

(i,N)∈Aq−
N

xiNq, q ∈ Q, (2)

∑
(i,k)∈Aq−

k

xikq =
∑

(k,j)∈Aq+
k

xkjq, k = 2, . . . , N−1, q ∈ Q,

(3)

rkqyk =
∑

(i,k)∈Aq+
k

xikq, k = 2, . . . , N − 1, q ∈ Q,

(4)

xijq ≤ Pqzijq, (i, j) ∈ Aq+i , q ∈ Q, (5)

si+tijq+ai−sj ≤M(1−zijq), (i, j) ∈ Aq+i , q ∈ Q,
(6)

oi ≤ si, i = 1, . . . , N, (7)

si ≤ ci, i = 1, . . . , N, (8)

xijq ∈ {0, 1, . . . , Pq}, (i, j) ∈ Aq+i , (9)

yi, zijq ∈ {0, 1}, (i, j) ∈ Aq+i . (10)
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The objective function maximises the total value
of the protected assets. Constraints (2) ensure all
vehicles of each type start and end their route at the
depot. Constraint (3) guarantees flow conservation
for each vehicle type by enforcing the equality of
incoming and outgoing traffic on the arcs to each
node. Constraint (4) guarantees an asset is pro-
tected only if its protection requirements are sat-
isfied by incoming vehicles. Constraint (5) makes
sure that the number of trucks of type q never ex-
ceed the number available Pq. Constraint (6) en-
sures that an asset can be visited when the pro-
tection requirements of the previous location has
been satisfied and there is enough time to reach the
next asset. Constant M is a large number. Set-
ting M = max(oi) +max(tij) +max(ai)−min(ci)
is sufficiently large for our purpose. Terms (7) and
(8) ensure that the time window constraints are not
violated. Integer and binary conditions are defined
in constraints (9) and (10).

2.2. An Illustrative Example

To illustrate the asset protection problem on
a small example consider the problem settings in
Fig.1. The depot is denoted as ”D” and associated
protection values are defined in each vertex. Note
that, while vehicles depart from the central depot,
due to the fire advancement they need to return
to another depot, not threatened by fire. There
are three types of vehicles, namely tanker, pumper
and aerial vehicle each of which are defined by a
unique array. Vehicle types are characterised based
on the operational fleet of vehicles available. A bi-
nary vector is used to represent the capabilities of
each vehicle type. The protection requirements of
assets are uniformly selected from the set of vec-
tors Ri = {< 2, 0, 0 >,< 0, 2, 0 >,< 0, 0, 2 >,<
1, 1, 0 >,< 0, 1, 1 >,< 1, 0, 1 >,< 1, 1, 1 >} where
each member of a vector represents the required
number of each vehicle type to protect an asset.

To represent a realistic scenario time windows
translate the anticipated remaining time to the fire
impact while the fire front spreads in a circular
manner as defined in Fig. 2. Therefore, the open-

ing time of each asset is oi =

√
x2+y2

firevelocity and the
latest service time ci = oi +E, where E is the time
duration in which the protection activities have to
be carried out. Time windows are correlated with
the coordinates in the Euclidean space. Taking that
into consideration, the planning horizon (Tmax) is
equal to ci for the furthest asset from the origin of

Figure 1: An illustrative example. Assets and depots are
defined in circular and triangular shapes, respectively.

the fire. Moreover, traversing each arc is a function
of distance and vehicle velocity tij =

dij
vehiclespeed .

To present a real-life situation we set E = 2 hours,
firevelocity = 10 km/h, vehiclesspeed = 40 km/h
and a = 1 hour.

Figure 2: Direction of fire spread

In the graphical representation of the problem
(Fig. 1), some assets are not protected. This is be-
cause of the time windows imposed by the advanc-
ing fire front (see Fig 2). It means that sufficient
number of vehicles cannot arrive at those locations
by their latest service time. Therefore, a selection
of assets must be made that maximises the total
value protected. To protect an asset all resource
requirements must be present at the asset before
the protection operation can commence simultane-
ously and cooperatively.
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Through the asset protection activities, some dis-
ruptions or changes to conditions may occur which
necessitate rerouting of vehicles. To deal with
various disruptions and changing conditions the
problem needs to be studied with a dynamic ap-
proach. Some of the numerous disruptions that
may occur during wildfires are changes in wind
speed, wind direction, relative humidity, temper-
ature. Although meteorologist can feed the IMTs
with highly reliable data by using advance equip-
ment, changes in weather conditions should never
be under-estimated, as they severely impact the
speed, intensity and direction of wildfire spread.
Other disruptions, such as vehicles breakdowns,
change in road conditions and travel times might
also take place in wildfire scenarios. Given the time-
critical nature of wildfire response, it is important
that asset protection plans are updated and imple-
mented as quickly as possible following a disruption.
To illustrate a dynamic scenario in an asset protec-
tion problem, the following problem is considered
and solved by CPLEX. Figures 3 and 4 show the
affect of change in the direction of fire spread on
assets being impacted and the need for rerouting.
When a change in wind direction occurs, rerouting
of vehicles take place from the assets last visited
before the disruption. The rerouting attempts to
cover assets within their updated time windows ac-
cording to the change in wind direction.

Figure 3: An illustrative example. Assets and depots are de-
fined in circular and triangular shapes, respectively. Assets
that are not under threat are shaded as grey, and the bold
line shows the direction of fire spread.

In Figure 3, fire spreads at a rate of 10 km.h−1

Figure 4: An illustrative example. Assets and depots are de-
fined in circular and triangular shapes, respectively. Assets
that are not under threat are shaded as grey, and the bold
line shows the direction of fire spread.

in a linear fashion from left to right. As a result of
that five out of eleven assets are evaluated at risk.
While the primary routes are planned as can be seen
in Fig. 3, a disruption occurs when vehicles are at
node E and a rerouting is required. In Figure 4,
the wind direction and consequently the direction
of the fire front changes before asset protection op-
erations being completed, as planned under the pri-
mary information. The change in the wind direc-
tion necessitates updating assets that need to be
protected. In Figure 4, the fire front sweeps over
assets in a vertical manner, unlike Figure 3. By
comparison of Figure 3 and 4, it can be observed
that a new set of assets demand protection while
asset F is no longer at risk. Once the status of as-
sets along with their time windows were updated,
rerouting was performed and resources were sent to
the assets at risk under the new scenario.

The approach developed in this paper can be used
to solve the asset protection problem in a dynamic
manner in a similar way to that presented in the
illustrative example above. Our solution approach
can handle changes in conditions that might arise
during operation and require rerouting. Although
unusual, in some cases rerouting might be required
more than once through the course of a protec-
tion operation. Considering the computational re-
sources required to solve each problem by commer-
cial solvers, the efficiency of our algorithm is an
important and practical tool for IMTs operating
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under such circumstances with tight time limits.

3. Proposed Methodology

To solve real size instances within suitable opera-
tional times, we propose an Adaptive Large Neigh-
bourhood Search (ALNS) which provides a power-
ful algorithmic framework. In this section, we de-
scribe the general framework of the algorithm fol-
lowed by details on the problem-specific heuristics.

3.1. Overview of the ALNS metaheuristic

The ALNS paradigm, introduced by Ropke and
Pisinger (2006) which extends the large neighbour-
hood search previously put forward by Shaw (1998).
Compared to many local search heuristics by which
only minor changes can be applied on the solution,
the ALNS brings a larger search space into consid-
eration. Within one iteration, ALNS can rearrange
up to 40% of a solution. This attribute is particu-
larly useful with tightly constrained routing prob-
lems. Suppose, for example, we have a VRP with
100 nodes where the degree of destruction is 40%.
There are C(100, 40) = 100 !/(40 !, 60 !) = 1.4×1028

alternative ways to remove the customers. This
very specification leads to moving between promis-
ing areas in the feasible region and avoiding getting
stuck in local optima during the search. The out-
standing performance of ALNS in solving various
scheduling and routing problems has been demon-
strated. In a subsequent study, Pisinger and Ropke
(2007) showed that the improved ALNS algorithm
gives promising results for different VRP variants.
Since then, ALNS has been used to solve vari-
ants of routing problems, e.g. the periodic inven-
tory routing problem (Aksen et al. (2014)), VRP
with multiple routes (Azi et al. (2014)), distri-
bution problem of perishable products (Belo-Filho
et al. (2015)), e-grocery delivery routing problem
(Emeç et al. (2016)), share-a-ride problem (Li et al.
(2016)), railway line planning problem (Canca et al.
(2017)), and cross-dock selection (Maknoon and La-
porte (2017)). Our developed algorithm brings in
a set of destroy (hd) and repair (hr) heuristics.
These heuristics are either introduced by authors
for efficiently handling the problem side constraints
or are adapted versions of the existing heuristics,
mostly proposed by Demir et al. (2012); Ropke and
Pisinger (2006); Emeç et al. (2016). The problem
specific heuristics are indicated with an asterisk (*)
when they are introduced. Please note that even

the heuristics used by applying modifications to
the existing algorithms in the literature incorporate
new terms and ideas. We now describe the general
framework of our proposed ALNS approach below.

3.1.1. Initial solution construction

Roozbeh et al. (2016) proposed a heuristic to
solve the cooperative orienteering problem with
time windows named as the Modified Clarke and
Wright heuristic (MCW). The MCW is adapted to
construct the initial solution in an efficient man-
ner. MCW combines the strengths of classical CW
heuristic with a sweep algorithm while trying to
maximise the total award by an additional term in
the saving function. The pseudo-code of the con-
struction of the initial solution is described in Al-
gorithm 1.

In Algorithm 1, at first, a saving pair list is ini-
tialised. As far as the parameters in the saving
function are concerned, constant values for (λ, µ, ϑ)
triplets are defined, based on Roozbeh et al. (2016)
study. The first term of the savings function en-
hances the reshaping ability of the classical Clarke
and Wright heuristic and its circumference charac-
teristic. The second term aims to protect assets
with higher values earlier than the rest. Motiva-
tion of the last term is to give early placement to
pairs in vicinity of the depot by including cos θij ,
which is the value of constructed angles between
pairs. After that, transitive closures are computed
by considering the time windows and asset protec-
tion requirements of assets. So that there is an arc
connecting any two vertices that have resource re-
quirements in common and can be reached within
their time windows. Algorithm 1 returns αbest and
β which are the total value of the protected assets
and the best set of routes. Note that, velocity and
Tmax refer to the vehicle speed and the planning
horizon.

Synchronisation constraints in vehicle routing
problems have been investigated by Afifi et al.
(2016) and Drexl (2012) developed heuristic solu-
tions. The asset protection problem is an interde-
pendence problem due to the service synchronisa-
tion. It means that routes are highly dependent in
the sense that any minor change in orientation of
the nodes in any tour necessitates a check of every
single constraint for all routes. This is because in-
sertion and removal of any node within the routes
may impact on the arrival and service start time
in all the tours. Therefore, to evaluate the feasibil-
ity of insertion at any point in a constant time, a
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calculation needs to be performed initially and then
updated after each insertion of visits. For each node
i, we define maxshifti to memorise the allowed de-
lay in arrival to node i where an unvisited node get
inserted before i. To find maxshifti the follow-
ing variables are defined and should be calculated
beforehand.

arrivei = departurei−1 + traveltimei−1,i (11)

Due to the synchronised visit, each node may need
to be visited within multiple routes and i ∈ T rep-

resent the routes that node i belongs to. oi in the
following equation refers to the opening of the time
window.

startsynci = max{max
i∈T

arrivei, oi} (12)

By having the synchronised start at node i the de-
parture time is as below.

departurei = startsynci + ai (13)

Subsequently the waiting time at node i can be cal-
culated as follow.

waiti = startsynci − arrivei (14)

For a given route τ , a visit at node i is defined by
τ(i). The value of maxshiftτ(i) in the equation 15
is equal to the time that the arrival at point i can
be delayed while the feasibility conditions are met.
This amount of delay is equal to the summation
of waitτ(i+1) and maxshiftτ(p+1) unless it violates
the time window bound.

maxshiftτ(i) = min{cτ(i) − startτ(i),

waitτ(i+1) +maxshiftτ(i+1)}
(15)

The value of the maxshiftτ(i) in the equation 15
must be calculated in a backward manner. It means
that we start our calculation from the last visit
in each route where maxshift for the subsequent
visit (depot) can be calculated independent of other
nodes. On the other hand, as visits need to be syn-
chronised, the minimum value of maxshift for each
node in existing routes has to be taken. Therefore,
for the maxshiftτ(i) if there exist i + 1 ∈ V such
that {τ(i), τ(i+ 1)} ∈ T we have:

maxshiftsyncτ(i) = min{maxshiftτ(i),

min
i∈T

maxshiftτ(i+1)}
(16)

To define whether an insertion of a node z between
i and i+1 in route r is feasible, we need to calculate
the generated shift (shiftτ,iz ).

shiftτ,iz = traveltimei,z + waitz+

servicetimez + traveltimez,i+1 − traveltimei,i+1

(17)

If the value of shiftτ,iz is less than or equal to the
waiti+1+maxshiftsyncτ(i+1), the insertion will be con-

sidered valid.
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Since the visits have to be synchronised, an up-
date is required through all routes after each in-
sertion. Transitive closures (Aho et al. (1972)) are
used in order to filter infeasible arcs to avoid in-
finite loops. Arcs that connect nodes with no re-
source requirements in common are infeasible to
traverse. For example, travelling from i to j should
be marked as infeasible where i only needs two visits
by vehicle type1 and j two visits by vehicle type2 for
protection. Moreover, cross synchronisation needs
to be filtered out, e.g. when node j is visited after
i by the first vehicle, the visit of i after j should be
prohibited in other routes. Also, we filter out the
arcij when oi + ai + tij > cj , at the preprocessing
step of the algorithm.

3.1.2. General flow

Initially, a feasible solution S0 ← β is formed by
using the MCW heuristic. At iteration i, a removal
heuristic d ∈ hd is selected dynamically and adap-
tively to destroy the the current feasible solution
partially. Then the resulting solution S−i under-
goes for reconstruction with the hope of improving
the objective function by choosing a repair heuristic
r ∈ hr based on a calculated probability. The new
solution S+

i is a temporary feasible solution which
can be discarded or replaced with the best current
solution according to the change in the objective
function. The performance of the heuristics will be
recorded to use in the next iterations for dynamic
and adaptive updates of the selection probabilities.

3.1.3. Adaptive weight adjustment procedure

There is no heuristic that can perform efficiently
for all types of problems. Since the asset protection
problem is new in nature, it may be difficult to an-
ticipate the performance of a heuristics according
to the problem and instance class. The ALNS en-
ables us to pick as many destroy and repair heuris-
tics as we want. Assuming that the past success
of the chosen heuristics indicates their future per-
formance, the algorithm assigns a weight to each
heuristic based on how they impact the objective
function.

The algorithm runs for N number of iterations,
divided into k segments. Therefore, the algorithm
iterates over each segment for n = N

k . Each heuris-
tic s ∈ hd∪hr is associated with a weight W (s) and
a score πs. Initially, equal weights and score of zero
are assigned to all heuristics. We reset the value
of πs to zero before starting each segment. After a

solution goes through the destroy and repair pro-
cess the result will drop into one of the following
cases. (1) If the new solution is the best one found
so far, the corresponding scores of the repair and
destroy heuristics are increased by σ1. (2) If the
new solution improves the current best one but not
the best known so far then the scores are increased
by σ2. (3) If the new solution is accepted, even
though it is worse than current best one, the scores
are incremented by σ3.

The probability to select a heuristic at each iter-
ation is as below.

p(rs) =
W (rs)∑R
j=1W (rj)

, p(ds) =
W (ds)∑D
j=1W (rj)

(18)

In equation 18, weights dynamically and adaptively
are adjusted after n iterations according to their
performance. At the end of each segment weights
are updated as

W (h)

{
(1− ρ)W (h) + ρπ(h)u(h) , if u(h) > 0

(1− ρ)W (h), if u(h) = 0
(19)

,where ρ is a parameter called reaction factor. This
parameter can regulate about after how many itera-
tions most ineffective heuristic should not play any
substantial role. Thus, for example, if we want to
have a 0.01% of the Winitial for ineffective heuristics
after 1000 iterations, when N = 10000 and n = 100,
the minimum value for ρ can be calculated by equa-
tion 20 as, 1

1000 > (1− ρ)
1000
100 → ρ ≥ 0.602.

W (h) ≈Winitial(1− ρ)[
N
n ] (20)

In equation 19, π(h) and u(h) record the number
of times a heuristic is selected by a roulette-wheel
mechanism and associate weight of the heuristic.

3.1.4. Acceptance and stopping criteria

At the master level of the ALNS algorithm,
we use an acceptance criterion based on a Simu-
lated Annealing (SA) local search framework (see
Van Laarhoven and Aarts (1987)). Let z(S) and
z(S∗) denote the objective value of the current so-
lution and the best known solution, respectively.
The initial temperature Tinitial should be set in a
way to accept solutions with δ% worse objective
value compare to z(Sinitial) with the probability of
Paccept.

Tinitial =
(Sinitial ∗ δ)

log(1/Paccept)
(21)
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The achieved initial temperature by equation 21
cools down with a fixed cooling rate 0 < ε < 1,
(T = ε∗T ). Following the SA framework, solutions
with worse objective values would be accepted with

probability of exp( (z(S)−z(S∗)
T ) and those improving

the objective value will always be accepted.

3.1.5. Applying noise

Some heuristics may insert each node at its best
place iteratively, but locally best moves can increase
the chance of getting stuck in local optimum (Ropke
and Pisinger (2006)). To apply diversification to
the search, we use a noise-imposed insertion heuris-
tic beside the clean insertion which uses the origi-
nal saving list. Additionally, there is a random re-
moval heuristic among the destroy heuristics which
derives a significant amount of randomisation. It is
worthwhile to mention that the implementation of
noise and randomisation may not always result in
a better solution; however it increases the chance
of exploring new parts of the search space with the
hope of improving the objective function.

3.2. Removal Algorithms

Before a removal heuristic can be used to destroy
a solution partially, the algorithm needs to deter-
mine the degree of destruction, D. Large values
for D can assist the algorithm towards overcoming
the tightly constrained search space of the problem
and give more freedom to the repair function. The
number of nodes D to be removed is a random num-
ber from [0.1K, 0.4K], where K is the number of
nodes covered by all constructed routes while their
resource requirements are satisfied.

3.2.1. Random Removal

The random removal randomly selects D nodes
and removes them from all existing routes. This
heuristic is important as it performs randomly re-
gardless of any cost function or criteria which cre-
ates diversification.

3.2.2. Worst-Distance Removal (WDR)

We employ two classes of WDR, the classic WDR
that considers the cumulative distance, and the rel-
ative distance to the protection value which looks
at the cost/benefit ratio. A binary random vari-
able is used to pick either the classical or new
WDR each time we iterate over the algorithm. For
each node i, the distance-cost can be calculated
as DCi = dli + dij , where l and j are preceding

and succeeding nodes on different routes for the
vertex i. The algorithm sorts nodes in descend-
ing order based on the distance-cost, sorted list O,
and removes the node in position bΥκ|O|c from the
list. Parameters 0 < Υ < 1 and κ ≥ 1 introduce
randomness to avoid repeated removal of the same
nodes. Alternatively, the DCi

ψ ratio can be used be-
fore sorting the list. We name the process of node
selection for removal and using the cost/benefit
logic as the selection mechanism.

3.2.3. Worst-Time Removal (WTR)

The WTR is similar to WDR when we look at
the general flow; however it considers the TCi =
|startsynci − oi|, where startsynci is the synchro-
nised service starting time and oi is the earliest
service time. Note that we use the same mecha-
nism as in WDR to choose between classical WTR
or cost/benefit WTR.

3.2.4. Shaw Removal (SR)

Many heuristics have been developed in attempt
to measure the relatedness between nodes, but SR
(Shaw (1998)) has got more attention since it inte-
grates several criteria. The SR algorithm is modi-
fied for asset protection problem as below:

Γij = θ1dij + θ2|oi − oj |+ θ3Ωij (22)

where θ1−θ3 are the Shaw parameters and Ωij can
get any value from the set β = {−3,−2,−1, 1} de-
pending on number of same routes that node i and
j belong to. The Ωij gets value of 1 when i and j
are not assigned to any mutual route at all. This
value decreases as the number of mutual routes for i
and j increases (e.g., -3 for three mutual tours). Γij
decreases as the relatedness of two nodes increases.
The algorithm starts with a random node and cal-
culates the relatedness value of other nodes with
the selected one by using equation 22. The node
in position bΥη|O|c will be removed from the relat-
edness list |O|, where η ≥ 1 is the Shaw removal
determinism factor and 1 ≥ Υ ≥ 0 is a random
number.

3.2.5. Proximity-Based Removal (PR)

A special case of SR algorithm where θ1 takes
value 1 and θ2 and θ3 are 0.

3.2.6. Time-Based Removal (TR)

A special case of SR algorithm we set θ2 = 1 and
θ2 = θ3 = 0.
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3.2.7. Requirement-Based Removal (RR∗)

A special case of SR algorithm where θ3 takes
value 1 and θ1 = θ2 = 0.

3.2.8. Waiting Time-Oriented Removal (WTOR∗)

This heuristic considers removing nodes with
highest waiting time WTi = startsynci − arrivei,
caused by the synchronised start time. Same pro-
cedure as WDR is used for picking a node for
removal and choosing between classic WTOR or
cost/benefit WTOR.

3.2.9. Worst-Requirements Removal (WRR∗)

In the asset protection problem, multiple re-
sources are required to satisfy the protection re-
quirements of an asset. The WRR removes nodes
with highest cumulative resource requirements.
The selection mechanism is used to take advantage
of the cost/benefit approach.

3.2.10. Relative-Requirement Removal (RRR∗)

Let riq and Zq ∈ {−1, 0, 1} denote the number
of vehicle type q required to satisfy the require-
ments of node i and the score of vehicle type q,
respectively. Vehicles that are low in number have
lower scores, e.g. when number of vehicle types are
V 1 < V 2 < V 3 we have Z1 = −1, Z2 = 0 and
Z3 = 1. Therefore, for each node, we can compute
ω such that ω = riq ∗ Zi. After all, values can be
sorted in ascending order and we remove nodes with
applying the same logic as WDR selection mecha-
nism.

3.2.11. Cluster Removal (CR∗)

This algorithm categorises nodes based on their
resource requirements. Then, the CR heuristic re-
moves nodes that are in the same cluster with the
hope of possible exchanges and finding better solu-
tions.

3.2.12. Historical-Node Removal (HR∗)

The HR heuristic takes advantage of the histor-
ical records when removing nodes. To achieve this
purpose we developed a cost function for the asset
protection problem as below.

fi = WTi + DCi − ψi (23)

The first two terms can be calculated by nor-
malisation, x = (x − xmin)/(xmax − xmin), of

the achieved values in WTOR and WDR heuris-
tics, and the last term is the normalised protec-
tion value of the associated asset. Let f∗j =
minm=1,...,i−1{fjm} be the best position cost of
node j before iteration i. The HR heuristic re-
moves, D = degreeofdestruction, nodes which
have the worst j∗ = argmaxj∈V {fji − f∗j }.

3.2.13. Time Windows-Oriented Removal (TWR∗)

The TWR heuristic is another problem-specific
algorithm trying to make room for nodes with lim-
ited insertion possibilities. In the asset protection
problem, time windows are defined based on the
cartesian coordinates. The TWR heuristic divides
the whole area to four different zones (see Figure
5).

Figure 5: An illustrative example for TWR

The number of nodes that should be removed
Λi from zones ZI,...,i−1, when D, tu, zui denote the
degree of destruction, total unvisited nodes and
number of the unvisited nodes in the zone i, is
Λi = D∗zui

tu . For instance, when ΛIII = 10 it means
that total number of 10 nodes must be removed
from zone I, zone II and zone III. While Λi defines
the number of nodes that has to be removed, the
removal at each iteration will follow the same pro-
cedure as HR.

3.3. Insertion Algorithms

In the final repair phase of the algorithm, par-
tially destroyed solutions will evolve into complete
feasible solutions.

3.3.1. Classical MCW Heuristic∗

This heuristic attempts to insert unvisited nodes
with highest value in vicinity of vertices with maxi-
mum possible value of Sij . Although the algorithm

9



seeks to find the best possible position for inser-
tion with highest saving value, it may increase the
chance of getting trapped at local optimum.

3.3.2. Noise-Imposed MCW Heuristic (NMCW∗)

To apply further diversification to the search, we
use the NMCW algorithm beside the clean inser-
tion. let 0 < αnoise < 1 denote a noise param-
eter, then ∆ = αnoise ∗ max{Sij} is the allowed
amount of noise. In the NMCW heuristic we con-
sider Sij = Sij + ξ where ξ ∈ [−∆,∆].

The master-level overview of the presented ALNS
algorithm is provided in the following pseudocode,
Algorithm. 2.

The general framework of our algorithm when
certain parameters, such as predefined vehicle
speed, fire velocity and time windows are involved
have been explained. When dynamic routing is con-

cerned as explained in section 2.2, the algorithm can
also be implemented to solve the problem at mul-
tiple stages. Therefore, once a condition changes
(like, time windows, wind speed, road accessibil-
ity and so forth) the algorithm can start rerouting.
One way of doing so is to start a new routing prob-
lem with the updated time-windows. Other than
this the main difference is that instead of starting
at the depot, the vehicles are re-routed from their
current first-phase location.

4. Computational Study

We carried out a set of computational experi-
ments to validate the performance of the proposed
ALNS approach. We perform further tests on the
large set of generated benchmark instances1. As
the focus is on large-scale problems, the problem-
specific attributes are added to extended VRPTW
benchmarks of Gehring and Homberger (1999).
The problem attributes are added to the benchmark
sets as described in section 2.2. The sixty problems
of each size are divided into R1, C1, RC1, R2, C2
and RC2 classes based on their spatial distribution
over a 140 × 140 grid and solved with two sets of
vehicle numbers. In other words, there are ten in-
stances under each class and a total of six classes
exist (6∗10 = 60), which are solved with two differ-
ent sets of vehicle numbers (60 ∗ 2 = 120) at three
various sizes (120 ∗ 3 = 360).

In the first study, truncated benchmark sets are
designed to solve sufficiently small-size instances
by means of both the CPLEX commercial solver
and the ALNS algorithm. We further show the ef-
ficacy of the ALNS on large-size instances, where
they are compared to the CPLEX best bound. All
the above computational work is performed on a
node of the Australian National Computational In-
frastructure using a single thread. Each node is
equipped with dual 8-core Intel Xeon (Sandy Bridge
2.6 GHz) processors and 32GB of RAM. The algo-
rithm was coded in C++, using a GCC 6.2.0 com-
piler. Where applicable, MILP models were solved
by the CPLEX 12.7 commercial solver in determin-
istic mode. All tables show the execution times as
CPU time in seconds.

1All the benchmark instances are available for future
studies via www.sites.google.com/site/imanrzbh/datasets
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4.1. Parameter Tuning

Our tuning methodology has been carried out
by following the literature ( Ropke and Pisinger
(2006); Demir et al. (2012); Emeç et al. (2016)). To
get the most information about the parameters con-
tributions we omitted C1 and C2 problem classes as
they mostly converge to optimal solutions. Subse-
quently, R104, R206, RC104, RC108 and RC206
were selected to determine the value for following
parameters.

Table 1: Parameters used in the proposed algorithm

Description Parameter Value

Parameters for MCW heuristic (λ, µ, ϑ) (2,1,3)
Improving solution score σ2 12
Number of iterations N 3000
Number of iterations over each segment n 100
Roulette wheel reaction factor ρ 0.1
Global solution score σ1 35
Worse solution score σ3 5
Shaw parameters θ1, θ2, θ3 (3,13,7)
SA parameter δ 0.05
Cooling rate ε 0.9999
Noise parameter αnoise 0.6
WDR determinism factor κ 8
Shaw determinism factor η 12

The initial value of parameters are set in line
with those by Ropke and Pisinger (2006) and
Emeç et al. (2016). We perform five runs on
tuning instances considering ten different values
for each parameter. Thereafter we set each pa-
rameter on the value that yield the least average
deviation from the best achieved solution. The
results of the parameter tuning are available at
”www.sites.google.com/site/imanrzbh/datasets”.

4.2. Experiments on Asset Protection Problem

In this section, we generate instances with 35, 100
and 200 nodes to solve them by using the proposed
methodology. For validation and performance eval-
uation of the ALNS, we solve truncated benchmark
sets by means of both the CPLEX and the ALNS
algorithm. For larger instances, we present our re-
sults as benchmarks for future research.

4.2.1. Numerical Results for Small-Size Instances

We solve small instances (35 nodes) with two
different set of vehicle numbers((V 1 = 4, V 2 =
3, V 3 = 2) and (V 1 = 5, V 2 = 4, V 3 = 3)). This is
to verify the reliability of ALNS in different scenar-
ios. We demonstrate the results of the performed
tests in Table 2. The average and best results

achieved in 10 runs of ALNS algorithm are com-
pared to those by CPLEX. The proposed algorithm
performs similarly in all examined cases which as-
sures its reliability for further runs on larger prob-
lems. Note that instances with more than 35 nodes
cannot be solved to optimality within the time limit
of 48 hours for each class of instances.

In Table 2 computation times are reported in sec-
onds and the optimality gap is defined by ”OPT
Gap %” and reported for the both average and
best run of the ALNS. Furthermore, initial solu-
tions that feed the algorithm are reported under
the tag of ”MCW %”. This value shows how much
the ALNS improves over the initial solution found
by MCW. Our algorithm improves the initial solu-
tion (MCW%) by 20% of the total value of assets
to be protected. Also, the average gap of 1.9% and
0.12% in the last two columns of the table from op-
timal solution prove the efficacy of the ALNS algo-
rithm. Comparing the achieved results by MCW
and ALNS to the optimal solutions reveals that
the ALNS improves the high quality initial solu-
tion significantly and often converges to the opti-
mal solution. The average run time of ALNS is
only 9.67 seconds whereas CPLEX spent 6,083.97
seconds on average. Among 120 instances solved
by both CPLEX and ALNS, the proposed algo-
rithm achieves optimal solution for about 95% of
the problem instances. The ALNS achieves opti-
mal solution for all instances in which nodes are
displaced in cluster manner (C) and most of the
random clustered class (RC). The deviation from
optimal solution mostly occurs when vertices are
randomly distributed.

4.2.2. Numerical Results for Large-Size Instances

To test the utility of our algorithm for opera-
tional purposes we solve large instances with 100
and 200 nodes in our experimental study. Since
there is no benchmark to compare our results with,
we run CPLEX for nine hours and report the best
upper bound and best integer solution. Note that
for the sake of better comparison, results are pre-
sented as a percentage of the total value of assets
that required protection.

The results for 100-node instances are illustrated
in Table 3. The number of vehicles are considered
proportional to the problem size in order to cover a
substantial portion of available assets. The second
column defines the set of vehicle numbers which are
either set1=(V1=6, V2=5, V3=4) or set2=(V1=7,
V2=6, V3=5). In Table 3 CPLEX covers about
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Table 2: A summary of results for 35-node. Vehicle numbers are defined in two categories: Set1=(V1=4,V2=3,V3=2) and
Set2=(V1=5,V2=4,V3=3).

Instances #Vehicles
CPLEX

MCW
(%)

ALNS OPT
Gap (%)

Asset Value
Protected(%)

Time
(sec)

Asset Value
Protected(%)

Time
(sec)

Avg Best Avg Best

C100
Set1 77.56 2,632.71 55.47 76.41 77.56 9.37 -1.49 0.00
Set2 89.82 6,747.80 67.59 87.98 89.82 10.08 -2.03 0.00

C200
Set1 71.23 2,065.90 51.67 70.17 71.23 9.29 -1.49 0.00
Set2 83.64 10,641.48 61.08 81.63 83.64 9.42 -2.38 0.00

R100
Set1 76.20 24.01 57.87 74.79 75.91 9.08 -1.85 -0.38
Set2 89.19 128.90 71.33 87.12 89.04 9.48 -2.31 -0.17

R200
Set1 84.58 3,076.49 65.62 82.73 84.38 9.44 -2.20 -0.23
Set2 95.28 5,057.62 76.75 93.52 95.00 9.90 -1.85 -0.29

RC100
Set1 86.11 4,511.13 64.03 84.95 86.11 9.84 -1.34 0.00
Set2 96.58 10,774.72 75.53 95.02 96.58 10.37 -1.62 0.00

RC200
Set1 83.07 18,181.56 62.56 81.33 82.74 9.59 -2.10 -0.39
Set2 95.71 9,164.91 73.25 93.58 95.71 10.23 -2.22 0.00

Table 3: A summary of results for 100 nodes. Vehicle numbers are defined in two categories: Set1=(V1=6,V2=5,V3=4) and
Set2=(V1=7,V2=6,V3=5).

#Vehicles
100

Time
(sec)

CPLEX MCW
(%)

ALNS(%)

LB(%) UB(%) Avg Best

C100
Set1 138.47 47.21 95.78 40.87 60.17 61.84
Set2 150.39 65.73 99.52 45.42 66.66 68.35

C200
Set1 133.48 48.51 94.64 38.82 59.04 60.72
Set2 143.92 61.24 99.29 43.15 64.87 66.58

R100
Set1 134.47 53.96 96.20 46.19 61.19 62.50
Set2 138.97 56.68 99.74 52.19 68.45 69.86

R200
Set1 135.75 59.36 99.71 46.78 63.64 65.30
Set2 144.65 64.94 99.68 51.86 69.76 71.38

RC100
Set1 143.41 60.59 98.52 49.43 66.77 68.59
Set2 149.53 67.72 99.89 53.06 73.21 75.17

RC200
Set1 142.97 63.87 98.92 47.35 67.17 69.13
Set2 146.91 55.48 99.90 52.88 73.12 74.71

57% of the total value of assets, while the ALNS
covers 67.84%, on average. It can be seen that

CPLEX is unable to handle the complexity of the
asset protection problem when it comes to large
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Table 4: A summary of results for 200-node. Vehicle numbers are defined in two categories: Set1=(V1=9, V2=8, V3=7) and
Set2=(V1=12, V2=11, V3=10).

Instances #Vehicles
200

Time
(sec)

CPLEX(%) MCW
(%)

ALNS(%)

LB UB Avg Best

C100
Set1 589.60 21.37 100 32.21 56.13 57.68
Set2 619.33 31.73 100 38.90 65.11 66.57

C200
Set1 542.64 15.33 100 29.23 51.06 52.60
Set2 566.36 19.96 100 35.99 60.34 61.56

R100
Set1 539.19 19.64 100 39.53 58.23 59.60
Set2 585.49 27.62 100 46.57 69.04 70.29

R200
Set1 542.78 17.59 100 36.82 57.75 59.27
Set2 589.17 21.94 100 43.13 68.74 73.58

RC100
Set1 561.80 18.87 100 37.16 60.90 62.18
Set2 607.04 32.62 100 43.92 71.21 72.46

RC200
Set1 570.06 21.84 100 36.86 61.45 62.66
Set2 633.17 23.63 100 44.29 72.14 73.58

scale instances, while the ALNS achieves better so-
lutions than CPLEX in a shorter computation time.
This is more evident when we increase the problem
size by 100 nodes in Table 4. However, a better
solution by ALNS does not guarantee its quality as
the gap between the best integer and the CPLEX
bound is still large. It is important to note that run-
ning CPLEX for a longer time to achieve a better
upper bound would not be helpful. To investigate
this claim, we performed a few experiments by run-
ning CPLEX for 48 hours to find a better upper
bound. The results showed a slight improvement of
about 0.5% in the upper bound. Therefore, as the
results need to be achieved in operational time and
no benchmark exists for the same type of problem,
the quality of the results are validated by compar-
ing to the optimal solution for small instances and
the Lower Bound (LB) for larger instances.

In Table 4 two sets of vehicle numbers are
defined, namely set1=(V1=9, V2=8, V3=7) and
set2=(V1=12, V2=11, V3=10). Based on the re-
sults presented, in all instances the ALNS performs
much better than CPLEX in terms of computa-

tional time or solution quality. The ALNS covers on
average 40% more value of assets among the large
instances with 200 nodes compared to the best so-
lution by CPLEX, while improving the initial solu-
tion by 23.96%. The computation time for 100 and
200 node instances are 2.3 and 9.6 minutes, respec-
tively. This is considered to be within the times
suitable for operational purposes.

5. Conclusion

The loss of an infrastructure asset can cause ma-
jor disruption to daily life and for an extended pe-
riod. When these assets are threatened by runaway
wildfires the deployment of resources to reduce their
vulnerability is very important. It is therefore desir-
able to optimally deploy resources to try to save as
many assets as possible. The optimal deployment
problem for asset protection, however, is NP-hard
and beyond human ability to solve especially under
severe pressure ot time. Moreover, we found that
using one of the most advanced commercial solvers
available, in general, did not produce the results
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required quickly enough for operational purposes.
In this study, we developed a solution scheme for

solving the asset protection problem within times
that make it suitable for operational purposes. The
efficacy of the solution procedure was validated
through extensive computational experiments. To
evaluate the solution approach, new benchmark in-
stances were generated based on problem-specific
attributes. Our solution approach is inspired by
methods in the literature (see Ropke and Pisinger
(2006), Emeç et al. (2016)). We have, however,
designed new removal and insertion heuristics and
modified existing ones to assist us toward finding
high quality solutions. We believe these heuristics
can be implemented for solving other routing prob-
lems particularly those with synchronisation con-
straints.

Our computational experiments reveal the effi-
cacy of the solution procedure under tight time
limits. The results show that for problems up to
35 nodes the ALNS heuristic can generate near-
optimal solutions in computational times of a few
seconds. For larger problems in several minutes the
ALNS can generate solutions that in most cases en-
able a three-fold increase in the number of assets
treated compared with the best solutions CPLEX
can achieve in nine hours. Thus, in the context
of the asset protection problem the ALNS offers
incident-management controllers a tool that may
lead to significant reduction in losses during ex-
treme fire events.
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adaptive large neighborhood search algorithm for a se-
lective and periodic inventory routing problem. European
Journal of Operational Research 239 (2), 413–426.

Arrubla, J. A. G., Ntaimo, L., Stripling, C., 2014. Wild-
fire initial response planning using probabilistically con-
strained stochastic integer programming. International
Journal of Wildland Fire 23 (6), 825–838.

Azi, N., Gendreau, M., Potvin, J.-Y., 2014. An adaptive
large neighborhood search for a vehicle routing problem
with multiple routes. Computers & Operations Research
41, 167–173.

Belo-Filho, M., Amorim, P., Almada-Lobo, B., 2015. An
adaptive large neighbourhood search for the operational
integrated production and distribution problem of perish-
able products. International Journal of Production Re-
search 53 (20), 6040–6058.

Canca, D., De-Los-Santos, A., Laporte, G., Mesa, J. A.,
2017. An adaptive neighborhood search metaheuristic for
the integrated railway rapid transit network design and
line planning problem. Computers & Operations Research
78, 1–14.
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