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Upgrading nodes in tree-shaped hub location
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Abstract. In this paper, we introduce the Tree of Hubs Location Problem with
Upgrading, a mixture of the Tree of Hubs Location Problem, presented in [15],
and the Minimum Cost Spanning Tree Problem with Upgraded nodes, studied
for the first time in [19]. In addition to locate the hubs, to determine the tree
that connects the hubs and to allocate non-hub nodes to hubs, a decision has to
be made about which of the hubs will be upgraded, taking into account that the
total number of upgraded nodes is given. We present two different Mixed Integer
Linear Programming formulations for the problem, tighten the formulations and
generate several families of valid inequalities for them. A computational study
is presented showing the improvements attained with the strengthening of the
formulations and comparing them.

1. Introduction

The main goal of Discrete Facility Location is to decide which set of facilities,
among a finite set of potential sites, must be opened in order to optimize a given ob-
jective function which represents traveling costs of a set of given customers and/or
set-up costs. Reaching such a goal is closely related with Mixed Integer Linear
Programming (MILP) models. According to [20], the first MILP formulation for
a discrete location problem, the Uncapacitated Facility Location Problem, was pro-
posed by Balinski [5]. In the following few years, also MILP formulations appeared
for the discrete p-Median Problem [28] and for a covering-location problem [32].
Since then, Discrete Facility Location has gained importance over the years as a
fundamental part of both, Integer Programming and Location Science.

Among the wide family of Discrete Facility Location problems, hub location prob-
lems have taken on significance in the last decades. Hub Location Problems (HLP)
emerge as an important design tool in transportation systems, where several sites
must send and receive some goods through some transshipment points, the hubs.
In the hubs, the product is collected and distributed, so reducing transportation
costs. In this sense, a common characteristic of HLP is that the transportation cost
is reduced if the product is routed between two hubs. The interest of hub location

Date: October 8, 2018.
2010 Mathematics Subject Classification. 90B80, 90C11, 05C05.
Key words and phrases. Hub Location, Spanning Tree, Upgrading.

1

http://arxiv.org/abs/1802.05252v1
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is still increasing, and one can read a number of surveys on the matter published
over the last years (see [1, 9, 12, 13, 18], among many others).

Hub location problems are usually classified according to the way of allocating
non-hub customers (also called spokes) to hub nodes. On the one hand, when the
product is allowed to be routed using all the available hubs, which can be different
for one origin depending on the destination to be reached, the problem is said of
multiple–allocation. The first formulation for this family of problems was presented
in [7]. On the other hand, in single–allocation models, the customers are only allowed
to send and receive the service from a unique hub, i.e., each origin/destination is
allocated to exactly one hub. Our study fits within this category, to which the
pioneering works [4], [17], [23], [24] and [31] belong to.

A few papers also incorporate to the HLP the design of an inter-hub network in
which not all hubs are necessarily neighbors (see [10, 11]). In this paper, we analyze
the situation that occurs when the infrastructure costs (those costs associated with
the direct links between hubs) are high compared to the rest of the costs in the
model (e.g., transportation costs). In this case, a minimally nested and connected
structure is desirable: (i) a tree of hubs (small tree), composed by the hubs and
their links; and (ii) a tree of spokes and hubs (large tree) where the non-hub nodes
and their single connections to the corresponding hub are linked to the small tree.
This model, introduced by Contreras, Fernández and Maŕın [14, 15], was named the
Tree of Hubs Location Problem (THLP). Since then, the THLP has received growing
attention (see, e.g., [2], [6], [8], [21], [22] and [30]). Due to the high applicability
and difficulty of solving the problem, both heuristic and exact efficient approaches
have been developed for the problem. In particular, in [27], the authors developed
a genetic algorithm for the THLP, and in [29], a Benders-based branch-and-cut
strategy is designed to solve the THLP.

On the other hand, one can find in the literature extensions of classical combina-
torial optimization problems in which some of the nodes are allowed to be upgraded.
Upgrading implies a reduction of the cost of traversing edges connecting those spe-
cial nodes (see for instance, [3, 16, 26]). Thus, the cost structure in these problems
depends on the upgrading type of the extreme nodes of the edges (no upgraded
extremes, only one upgraded extreme or two upgraded extremes), and then, it is

part of the decision. In particular, in the recent publication by Álvarez-Miranda
and Sinnl [3], the authors introduce the Minimum Spanning Tree (MST) problem
with Upgrading (MSTU). In that problem, a minimum cost spanning tree has to
be built on a graph, but the cost associated to the edges of the graph is reduced
by upgrading nodes in two ways: (1) when one (but not both) of the extremes is
upgraded; or (2) when both of the extremes are upgraded. In this way, if a node is
upgraded, all edges of the small tree containing it benefit from the decision. This
extension transforms the polynomial-time solvable MST problem into an NP-hard
problem [3]. This problem is of interest in the telecommunications field, where the
installation of better infrastructures in a given node improves the quality of the
transmissions to and from all the neighbours of the node.
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We are interested in studying the effect of upgrading nodes in the THLP. Thus
we introduce in this work the THLP with upgrading (THLPU), a mixture of the
MSTPU and the THLP where, in addition to locate the hubs, determine a tree
structure for them, and allocate every non-hub node to a hub, one has to decide
which hubs are upgraded, assuming that the number of nodes that can be upgraded
is given. We propose and analyze two different formulations for the problem. These
formulations are compared in terms of the lower bound they produce and the com-
putational effort required by a standard optimization solver to provide an optimal
solution. The formulations share a kernel based on the THLP structure and differ
in the way they account for the reduced costs that the upgrading of nodes produce
on the edges of the small tree.

The paper is organized as follows. In Section 2 we introduce the problem and fix
the notation for the rest of the paper. In Section 3 we present a first Mixed Integer
Linear Programming formulation for the THLPU based on the ideas presented in
[15] but introducing a new family of variables to represent the new cost structure.
We also provide sets of valid inequalities that allow us to tighten the model, and
report the results of a preliminary battery of computational experiments to draw
some conclusions on the weakness of this model. Section 4 is devoted to present
an alternative MILP formulation for the problem by disaggregating the variables
representing the flow circulating through the hubs and also we extend the family of
valid inequalities to the disaggregated model as well as the separation strategy. In
Section 5 we present the results of our computational experiments for the disaggre-
gated formulation, and we compare it with the first (non-disaggregated) formulation.
Finally, in Section 6 we draw some conclusions and further research on the topic.

2. Tree of hubs with upgraded nodes location

In this section we introduce the Tree of Hubs Location Problem with Upgrading
(THLPU) and fix the notation for the rest of the sections.

Given a set of customers and a matrix of flows between each pair of customers,
the goal of THLPU is three-fold:

(1) Locate a given number of hubs among the customers and allocate each of
the remainder customers to a single hub (Hub Location),

(2) adequately connect the hubs with a tree structure (Tree of Hubs), and
(3) upgrade a pre-specified number of hubs, provided that a reduction on the

cost is performed with the upgrading (Upgrading Hubs),

by minimizing the overall sum of the transportation costs.
In order to formulate the problem, we will use the following list of parameters,

which are widely used in single-allocation hub location models:

• N = {1, . . . , n}: the set of origins and destinations of the flow, which acts,
without loss of generality, as the set of potential hubs.

• G = (N,E): the undirected, connected graph with set of edges E through
which the flow must be sent. In this paper, we use the notation {k,m} to
identify an edge and (k,m) to identify an arc (directed edge).
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• wij ≥ 0: the amount of flow sent from origin i to destination j, for all
i, j ∈ N .

• p ∈ {2, . . . , n− 1}: the number of hubs to be located.
• q ∈ {1, . . . , p − 1}: the number of hubs to be upgraded.

In what follows, we describe a cost structure inspired in the literature on network
upgrading problems, that has as a particular case the cost structure of the classical
discrete hub location problems. For each {i, j} ∈ E, we introduce the following unit
cost associated to the flow between i and j:

• dij ≥ 0 if one of the extremes is a hub and the other is a spoke or i = j (in
which case, we assume that dii = 0).

• cij ∈ [0, dij ] if both i and j are hubs and none of them has been upgraded.
• c′ij ∈ [0, cij ] if both i and j are hubs and exactly one (i or j) has been
upgraded.

• c′′ij ∈ [0, c′ij ] if both i and j are upgraded hubs.

With the above notation, the cost of x units of flow traversing an edge {i, j} ∈ E

will be:














x · dij if only one of the extremes of {i, j} is a hub,
x · cij if both i and j are hubs, but none of them are upgraded,
x · c′ij if both i and j are hubs, and only one of them is upgraded,

x · c′′ij if both i and j are upgraded hubs.

Observe also that the above settings for the problem under study can be easily
adapted to deal with the case of many variants considered in the literature, as: (i)
separated sets of origins and potential hubs; (ii) fixed costs associated to the opening
of hubs and/or the link of these hubs; or (iii) different discount factors associated
with the costs of the first and last edges in each route and the costs between all
kinds of hubs.

Costs dij , cij , c
′
ij and c′′ij are considered non negative, but no other condition is

required, e.g., satisfaction of the triangle inequality or symmetry. In most cases,
the simplest unit costs, dij , are assumed to be the Euclidean distances between the
pairs of nodes. In [26], the authors consider a particular structure of the above costs,
based on the use of reduction factors over the d-costs, and that can be adapted to the
general settings. Given α, ρ, γ ∈ [0, 1], with α ≥ ρ ≥ γ, one may define cij = αdij ,
c′ij = ρdij and c′′ij = γdij , for all {i, j} ∈ E. With this cost structure, the available
instances for p-hub location can be easily adapted for the THLPU. Also, observe that
if cij = c′ij = c′′ij the problem becomes the THLP, being the THLPU a generalization
of such a problem.

Additional parameters used to simplify the forthcoming formulations are:

• Oi =
∑

j:{i,j}∈E

wij: the total amount of flow sent from origin i ∈ N .

• Di =
∑

j:{i,j}∈E

wji: the total amount of flow sent to destination i ∈ N .
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• Oikm =

{

Oi − wii −min{wik, wim} if i 6= k

Oi − wii if i = k
: an upper bound on the

amount of flow with origin i that can traverse edge {k,m} (in any direction),
for all i ∈ N , k < m ∈ N .

In Figure 1 we illustrate how Oikm is calculated. An origin i with Oi = 100 is
assumed, and two hubs, k and m are selected. In the figure, wii = 5, wik = 4 and
wim = 7. The flow with origin i that traverses the link between k and m will not
include the wii units going from i to itself, since they will remain at i (in case i is a
hub) or it will go to only one hub and back (in case i is a spoke). On the other hand,
either the path in the large tree from i to k will traverse m or the path from i to m

will traverse k. This means that the flow associated with edge {k,m} will not include
either wik or wim units. In the figure, the worst case is min{wik, wim} = wik = 4,
thus the upper bound can be fixed in 100 − 5 − 4 = 91 units. When k = i the last
argument does not apply, but still wii can be subtracted from Oi. With the above

m

ik

Oi = 100

wii = 5
w
im

=
7

wik = 4

Flow
≤
91

Figure 1. Upper bound on the flow with origin in i traversing edge
{k,m}.

notation, the goals of THLPU are drawn in Figure 2. The first decision to be made
is to choose a subset of p nodes, among those in N , to be used as hubs (filled nodes)
and link the hubs in tree shape (we will call this the small tree –see Figure 2a).
Second, one has to allocate every non-hub node to a hub, giving rise to the so-called
large tree (see Figure 2b). And finally, one has to decide which q nodes to upgrade
out of the p hubs (see Figure 2c) in such a way that the total cost be minimized
(upgraded nodes are represented by ring nodes in the picture). The three decisions
are to be made simultaneously.

The above mentioned overall cost is obtained adding up the costs associated with
all the elements (i, j) in N ×N . Given i, j ∈ N , its associated cost is the minimum
of the costs of the walks from i to j in the large tree which traverse at least one
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(2a) (2b) (2c)

Figure 2. Decisions in THLPU: Construction of the small tree
(left); allocate spokes to hubs (center); and upgrade nodes (right).

hub, times the amount of flow wij . We consider several possible cases in Figure 3.
In Subfigure 3a, origin i and destination j are different non-hub nodes. The travel
cost of sending wij from i to j is given by the unique path between i and j in the
large tree. The same occurs when i or j (or both) are hub nodes (see Subfigure
3b). In case i = j, two different situations may happen: i is a hub or i is a non-hub
node. In the first case, the wii units of product do not carry any cost (recall that
dii = 0). In the second, the wii units of product are assigned to the hub to which i

has been allocated and back, repeating the edge; for this reason the optimal route
is not always a path but sometimes a walk in the graph G (see Subfigure 3c).

The cost of a given path is the overall sum of the costs of its edges, taking into
account that these depend on the category of the two extremes of the edge: non-hub,
non-upgraded hub or upgraded hub.

Finally, we would like to illustrate that THLPU is not equivalent to solve first
the THLP and then decide the upgraded hubs, since in many simple situations, the
new cost structure may change the combinatorial shape of the solution.

Example 1. Let us consider the following 10 random points on the plane {(8.43, 0.36) ,
(7.57, 9.70), (9.12, 3.69), (5.13, 9.97), (3.67, 5.45), (8.71, 8.26), (5.65, 2.47), (9.68, 5.85),
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i

j

(3a)

j

i

(3b)

i

(3c)

Figure 3. Computation of costs in THLPU.

(4.00, 8.24), (4.20, 2.75)}, with O-D flow matrix given by

w =

































634 731 794 783 482 84 914 575 17 123
510 593 31 163 659 535 902 533 817 382
821 287 109 775 958 262 478 326 996 572
702 763 802 396 760 171 912 28 198 840
184 218 2 34 676 299 102 555 763 3
673 897 748 260 519 121 577 174 0 459
861 645 11 236 5 236 503 750 681 246
982 54 468 912 705 919 175 548 698 497
832 249 947 282 183 485 552 956 147 713
292 826 616 95 720 485 382 19 393 940

































.

We consider as basic cost structure the Euclidean distance between the demand
points, with discount factors α ≥ ρ ≥ γ, such that: α is the discount factor over
the basic cost for flow traversing non-upgraded hubs, ρ for sending flow through an
upgraded and a non upgraded hub, and γ when links connecting two upgraded nodes
are used. Recall that the THLPU when α = ρ = γ coincides with the THLP. In
Figure 4 one can see that the tree structure of the THLP for p = 5 and α = 0.8
(Subfigure 4a) does not necessarily coincide with that of the THLP. In Subfigures 4b
and 4c we draw the solutions of THLPU for p = 5, q = 2 (two nodes are upgraded)
and two different discount factors (α, ρ, γ) = (0.8, 0.6, 0.6) (where no extra discount
is assumed when both extremes are upgraded with respect to the case in which only
one of them is) and (α, ρ, γ) = (0.8, 0.4, 0.2).

3. A Mixed Integer Linear Programming formulation for THLPU

In this section we develop a first Mixed Integer Linear Programming (MILP)
formulation for the THLPU. It uses the variables formerly introduced in [15] for the
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(4a) (α, ρ, γ) =
(0.8, 0.8, 0.8)

(4b) (α, ρ, γ) =
(0.8, 0.6, 0.6)

(4c) (α, ρ, γ) =
(0.8, 0.4, 0.2)

Figure 4. Solutions for THLP and THLPU in Example 1

THLP plus two sets of specific variables tk and θij, to account for upgraded nodes
and the reduced costs when the flow traverses upgraded nodes.

We first define several families of binary variables:

(1) zik =







1 if non-hub i is allocated to hub k, for i 6= k

1 if k is a hub node and i = k

0 otherwise
∀i, k ∈ N,

(2) tk =

{

1 if node k is an upgraded hub,
0 otherwise

∀k ∈ N,

(3)

skm =

{

1 if k and m are linked hubs in the small tree,
0 otherwise

∀k < m : {k,m} ∈ E.

Observe that, as usual in discrete location problems, zkk taking value 1 can be
interpreted as a self-allocation of hub k. Hence, all nodes will be allocated to some
hub. In Subfigure 5a, the z-values equal to 1 are shown on the optimal solution for
the THPLU of Example 1 (for (α, ρ, γ) = (0.8, 0.4, 0.2)). On the other hand, tk will
take value 1 if k is one of the nodes chosen as hubs and also upgraded, thus implying
zkk = 1. In Subfigure 5b, we illustrate for the same solution the nodes for which the
t-values take value 1. Finally, in Subfigure 5c we show the values for the s-variables
taking value 1 according with the depicted small tree and chosen hubs.
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1

1

1

1

1

1

1

(5a)

0

0

0

1

1

(5b)

1

1

1

1

1

1

1

1

1

(5c)

Figure 5. Illustration on feasible unitary values for the z (left), t
(center) and s (right) variables.

Since the objective value associated to a solution of THLPU includes the cost of
the flow with origin in each node i ∈ N , we also consider a set of continuous variables
to represent the amount of flow sent from a origin that traverses the directed link
between two hubs. Hence, we split the edge {k,m} ∈ E into two arcs (k,m) and
(m,k), and we define:

• rikm: amount of flow with origin in node i that traverses arc (k,m) if k and
m are both hubs and k and m are linked in the small tree.

We illustrate the values for this set of variables for the same example as above
in Figure 6, for the flow with a fixed origin node i (the amount inside the nodes
represent each of the flows wij for j ∈ N). Finally, we also consider a family of

673

897

748

260

519

121

577

174

0

459

i3410

673

922

2631

Figure 6. r-values associated with a given origin i
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continuous variables, θ, to account for the costs of the flows between hubs. This will
depend on the type of the extremes (hubs) of the arcs, i.e., if they are upgraded or
not:

• θikm: total cost of the flow with origin in node i which traverses edge {k,m},
k < m ∈ N , if k and m are both hubs.

Observe that the θ-variables are directly related with the r-variables, in the sense
that θikm is proportional to rikm + rimk. In particular, with the notation above, we
get that

θikm =















ckm(rikm + rimk) if k and m are hubs and none of them is upgraded,
c′km(rikm + rimk) if k and m are hubs and only one of them is upgraded,
c′′km(rikm + rimk) if k and m are upgraded hubs,

0 otherwise,

for i ∈ N , {k,m} ∈ E with k < m.
We are now in a position to state the first MILP formulation for THLPU.

min
∑

i∈N

n
∑

k=1:

k 6=i

(Oidik +Didki)zik +
∑

i∈N

n−1
∑

k=1

n
∑

m=k+1:

{k,m}∈E

θikm(THLPU)

s.t.
∑

k∈N

zkk = p,(4)

n−1
∑

k=1

n
∑

m=k+1:

{k,m}∈E

skm = p− 1,(5)

∑

k∈N

zik = 1, ∀i ∈ N,(6)

skm + zmk ≤ zkk, ∀k < m ∈ N : {k,m} ∈ E,(7)

skm + zkm ≤ zmm, ∀k < m ∈ N : {k,m} ∈ E,(8)
∑

k∈N

tk = q,(9)

tk ≤ zkk, ∀k ∈ N,(10)

rikm + rimk ≤ Oikmskm,∀i 6= k < m ∈ N : {k,m} ∈ E,(11)

riim ≤ Oiimsmin{i,m},max{i,m}, ∀{i,m} ∈ E,(12)

Oizik +
n
∑

m=1:

m6=k

rimk =
n
∑

m=1:

m6=k

rikm +
∑

j∈N

wijzjk,∀i, k ∈ N,(13)

θikm ≥ c′′km(rikm + rimk),∀i ∈ N, k < m ∈ N,(14)
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θikm +∆′
kmOikmtk ≥ c′km(rikm + rimk),∀i ∈ N, k < m ∈ N : {k,m} ∈ E,(15)

θikm +∆′
kmOikmtm ≥ c′km(rikm + rimk),∀i ∈ N, k < m ∈ N : {k,m} ∈ E,(16)

θikm +∆kmOikm(tk + tm) ≥ ckm(rikm + rimk),∀i, k < m ∈ N : {k,m} ∈ E,(17)

zik, tk ∈ {0, 1}, ∀i, k ∈ N,

skm ∈ {0, 1}, ∀k < m ∈ N : {k,m} ∈ E,

rikm ≥ 0, ∀i ∈ N, k 6= m ∈ N.

where ∆km = ckm − c′′km and ∆′
km = c′km − c′′km, ∀k < m ∈ N with {k,m} ∈ E.

In the objective function of (THLPU), the total cost of the flow with origin and
destination in each non-hub node i is added with cost d, and the overall sum of the
θ-variables represent the costs due to flow-links between hubs.

Constraints (4) and (5) state the number of hubs and edges in the small tree.
These two sets of constraints, plus the connection, forced by the flows between
nodes, ensure that the resulting structure will be a tree. The sets of constraints (6)
guarantee that each non-hub node is allocated exactly to a single hub. Constraints
(7) and (8) also fix to zero s-variables when one or two of their extremes are not
hubs.

Regarding the t-variables, constraints (9) establish in q the number of upgraded
nodes, whereas (10) ensure that the upgraded nodes will be hubs. Constraints (11)
and (12) fix to zero the r-variables when appropriate, in this case using an upper
bound Oikm since they are continuous variables. Note also that the values Oi could
have been used as natural upper bounds on the values of these sums of variables,
but Oikm is a better choice that tighten the constraints. The flow conservation

mi

j

m′

k
rikm

rikm′

wij

Oi

(7a)

mi

j

m′

k
rimk

rikm′

wij

wim

(7b)

Figure 7. Graphical representation of flow conservation constraints (13)
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constraints (13) are graphically represented in Figure 7. Observe that for fixed
nodes i, k ∈ N , the terms of the equation are non-null only when i is any node but
k is a hub node. In such a case, when modeling the inflow in k, coming from i,
two situations may occur: 1) i is directly allocated to k, and 2) i is not allocated
to k. In the first case, the amount of flow with origin i and which is routed via the
hub node k comes directly from i, and the amount is the total flow with origin i, Oi

(see dashed arrow in Subfigure 7a). On the other hand, if i is not allocated to k,
the flow from i which traverses k may come from other hub m (see dashed arrow in
Subfigure 7b), amount represented with the value of the variables rimk. Concerning
the outflow from k, observe that it can be directly served to final non-hub nodes
(as j in Figure 7b) or routed via another hub nodes (as m′ in Figure 7b), being the
amount modeled via the sum of the variables rikm.

Constraints (14)–(17) allow to model the values of the θ-variables. For nodes
i, k,m ∈ N (for k and m hub nodes), whenever an rikm takes a positive value (recall
that by the tree structure of the large tree rimk will take value 0), constraints (14)
bound from below the cost of sending the rikm+rimk units of flow through {k,m} to
the default minimum possible cost, i.e., c′′km. If k or m (but not both) are upgraded,
(15)-(16) change this bound to c′km. Finally, if none of the nodes are upgraded,
constraints (17) increase the bound to ckm. These constraints together with the
minimization criteria, ensure that the costs of traversing hub nodes are well defined.

Observe that (THLPU) inherits some of the valid inequalities for the THLP de-
scribed in [15] and which only concerns running flows (r-variables) and allocation
decisions (z-variables):

rikm + rimk ≤max{Oikm, Oimk}zkk, ∀{k,m} ∈ E, k < m, and

rikm + rimk ≤max{Oikm, Oimk}zmm, ∀{k,m} ∈ E, k < m.

In what follows we derive a larger family of tightening inequalities for (THLPU)
based on those obtained in [25] and later extended and applied to solving THLP in
[15].

To explain them, consider the graph depicted in Figure 8. Let i ∈ N be a fixed
origin (diamond-shaped in the figure) and m be a hub to which i has not been
allocated (i.e., i can be a hub itself or i can be a non-hub node allocated to a hub
different from m). Let then F be a subset of nodes not containing m (nodes inside
the ellipse in the north-west corner in the figure). Moreover, let J be a subset of
non-hub nodes allocated to m (nodes inside the ellipse in the south-east corner in
the figure). Note that J and F do not relate each other. The amount of flow which
departing from i is distributed through m to all nodes in J , represented in the figure
by

∑

j∈J∪{m}wij , is a lower bound on the amount of incoming flow from m. The set

F is used to split this incoming flow among two kind of variables, those defining the
adjacency between hubs and those defining the flow circulating through hub nodes.

In (THLPU), the connections of hubs nodes, as well as the flow through hub
nodes, are modeled by different sets of variables. The set F ∪ {m} is associated to
connection of hub nodes, by means of the s-variables. These variables are multiplied
by the amount of outgoing flow from m. On the other hand, nodes in N \ (J ∪{m})
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i

k′

ℓ′

m

ℓ

k

∑

j∈J∪{m}

wij

∑

j∈J∪{m}

wij

flowiℓm

flowiℓ′m

J

∑

j∈J∪{m}

wij

F

Figure 8. Explanation of valid inequalities (18).

are associated with the flow circulating through hub nodes, i.e., the r-variables,
which are represented in the figure with the label “flow”. Thus, provided that i is
not allocated to m, the flow with origin in i will arrive to m from exactly one hub
k (because of the tree structure of the hubs). If k ∈ F , skm will take value 1 in the
inequality; otherwise, rikm will take the value of the outgoing flow. Therefore, the
family of valid inequalities is given by

(18)
(

∑

j∈J∪{m}

wij

)

(

m−1
∑

k=1:

{k,m}∈E,k∈F

skm+
n
∑

k=m+1:

{k,m}∈E,k∈F

smk

)

+
∑

k/∈F
{k,m}∈E

rikm ≥
∑

j∈J∪{m}

wij(zjm− zim)

for all i,m ∈ N, F ⊆ N \ {m}, J ⊆ N \ {i,m}. Observe that the above family of
valid inequalities, (18), is of exponential size. The interested is referred to [15] in
which the authors describe a separation procedure to generate violated constraints
of the family (18).

We have observed that in some cases the separation procedure is computationally
costly with respect to the gain in terms of the overall consumed time and gap.
Also, in many cases the optimal sets of nodes J and F are singletons. Hence, we
implemented a simple strategy, based on the above, that allows us to find sets in
the form J = {j} and F = {k} with maximal violation of (18) given i,m ∈ N .

Let i,m ∈ N and j ∈ N\{i,m}. Hence, the goal is to find k 6= m such that the
following inequalities are maximally violated:

(19)
(

wij+wim

)

smin{k,m}max{k,m}+
∑

ℓ∈N\{m,k}

riℓm ≥ wij(zjm−zim)+wim(zmm−zim).
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Let us denote Gijm = wij(zjm − zim) + wim(zmm − zim), αijm = wim + wij, R
+
im =

∑n
ℓ=m+1 riℓm (with R+

in = 0) and R−
im =

∑m−1
ℓ=1 riℓm (with R−

i1 = 0). The amount

Γijm = Gijm − R+
im − R−

im does not depend of k. Hence, the minimum of the
n − 1 amounts in the sets {αikmsℓm − riℓm : ℓ < m} and {αikmsmℓ − riℓm : ℓ >

m}, if negative, allows us to construct the maximum violated inequality. That
is, if ℓ = k is the index reaching the minimum amount of the above, if Γijm −
αikmsmin{k,m}max{k,m} − rikm < 0, the above constraints are violated and the new
constraint can be added. Otherwise, all the constraints of the form (19) for those
given i, j and m are verified.

3.1. Preliminary Experiments. We have performed a series of preliminary ex-
periments to test the MILP formulation (THLPU) as well as the effect of the valid in-
equalities (18). We have tested the model in a set of instances commonly used in the
hub location literature, namely AP (Australian Post) and CAB (Civil Aeronautics
Board), which are available at people.brunel.ac.uk/~mastjjb/jeb/orlib/phubinfo.html.
These instances consist of a distance matrix between cities in Australia (AP) and
the United States (CAB), as well as a O-D flow matrix. The models were coded
in Python 3.6, and solved using Gurobi 7.51 in a Mac OSX El Capitan with an
Intel Core i7 processor at 3.3 GHz and 16GB of RAM.

We construct the test instances following a similar structure that in [15]. The
number of nodes, n, ranges in {10, 20, 25} for the AP dataset and in {10, 15, 20, 25}
for the CAP dataset. The number of nodes p ranges in {3, 5, 8} (with p < n)
and q, the number of upgraded hubs, in {1, 3, 5, 8} (with q < p). In order to use
the information provided in the instances, the basic costs, i.e., the d-parameters
(Euclidean distances between pairs of nodes) are reduced by an adequate factor.
We denote by α the discount factor for connection between non-upgraded nodes, ρ
the discount factor between an upgraded node and a non-upgraded node and γ the
discount factor between two upgraded nodes. α, ρ and γ range in {0.2, 0.5, 0.8} and
such that α ≥ ρ ≥ γ with any of the inequalities strict to avoid running the standard
THLP. With these settings, we have solved 168 instances of the CAB dataset and
126 for the AP dataset.

In tables 1 and 2, we report the results of running in Gurobi both (THLPU)
and (THLPU) with the separation procedure to add valid inequalities of the family
(18) ((THLPU)+VI) for the CAB and the AP dataset, respectively. For the two
procedures, we report the average duality gaps (GAP and GAPV I), the number
of nodes of the branching tree (Nodes and NodesV I), the CPU times, in seconds,
needed to solve the instances (Time and TimeV I), the number of valid inequalities
added in the separation procedure (CUTS) and the percentage of unsolved instances
(UnS and UnSV I). In the implementation, the default Gurobi cuts were disabled
and a time limit of 2 hours was considered to solve the problems. In case of reaching
the time limit without optimally solving the problem, the GAP is the one with
respect the best solution found.

Concerning the generation of valid inequalities of the family (19) and its separa-
tion procedure, we run the LP relaxed model a maximum of 10 times. Then, for

people.brunel.ac.uk/~mastjjb/jeb/orlib/phubinfo.html
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each i, j and k we perform the detection of violated inequalities and add the maxi-
mum violated one. We limited to 100 the number of new cuts added to the model
(we have observed that a larger number of cuts highly increases the consumed CPU
time while the decreasing of the LP gap is small). A gap between consecutive lower
bounds smaller that 1% stops the separation procedure.

n p q GAP GAPV I Nodes NodesV I Time TimeV I Cuts UnS UnSV I

10

3 1 14.59% 0.91% 55 98 0.67 0.86 44.14 0% 0%

5
1 30.17% 2.35% 901 2456 2.66 5.85 63.29 0% 0%
3 18.08% 1.8% 434 824 0.91 2.18 78.86 0% 0%

8
1 41.06% 7.66% 38897 14418 62.19 31.28 92.29 0% 0%
3 31.94% 4.45% 9807 1324 10.26 3.47 93.14 0% 0%
5 22.26% 7.51% 50421 3978 39.89 10.25 100 0% 0%

15

3 1 12.86% 0.57% 66 42 7.23 8.38 65.57 0% 0%

5
1 26.1% 2.3% 2210 1082 54.32 34.98 77.86 0% 0%
3 14.19% 1.75% 730 1765 11.7 66.74 87.14 0% 0%

8
1 37.95% 6.1% 106815 60480 2475.53 1581.08 100 28.57% 0%
3 29.22% 4.06% 18728 2184 186.98 62.72 100 0% 0%
5 21.75% 6.71% 164716 16187 1352.03 438.23 100 0% 0%

20

3 1 14.21% 1.07% 69 219 55.34 93.33 45 0% 0%

5
1 27.22% 4% 8121 6517 1637.18 1770.63 95.43 0% 0%
3 16.6% 3.38% 2018 3559 361.92 1105.03 100 0% 0%

8
1 36.95% 6.19% 13080 12297 3213.18 3361.7 100 42.86% 42.86%
3 27.96% 6.85% 24414 18452 3077.46 3701.57 100 28.57% 28.57%
5 19.44% 7.67% 70308 24390 4387.13 5171.51 100 57.14% 57.14%

25

3 1 12.69% 0.79% 78 318 269.22 546.01 45.14 0% 0%

5
1 25.47% 4.47% 2727 2852 3561.09 5337.84 98.57 42.86% 71.43%
3 14.38% 3.51% 4048 2914 2846.83 4385.51 100 14.29% 42.86%

8
1 37.13% 8.4% 4383 4679 5193.18 6958.07 100 71.43% 85.71%
3 26.14% 6.12% 8086 6714 5528.64 6763.24 100 57.14% 71.43%
5 19.11% 7.07% 16258 6165 >7200 5874.18 100 100% 71.43%

Table 1. Average Results for the CAB dataset using (THLPU).

The first observation that comes after running the experiments is that solving
the THLPU is not an easy task. Even for a small number of nodes, the problems
were very time consuming. Actually, for the CAB dataset 18.5% (for (THLPU))
and 19.6% (for (THLPU)+VI) of the instances were not optimally solved within
the time limit, while for the AP dataset the percentages of unsolved instances are
31.7% and 37.3% respectively. Note that, although according to [15], the set of
valid inequalities (18) has a good performance when applied to the THLP, the
gain obtained applying them to the THLPU is only partial: while the LP gaps
are significatively smaller when a subset of (18) is incorporated to the model (an
average difference of 19.66% in the CAB dataset and 14.20% for the AP dataset when
comparing the two strategies), it does not always reduce the CPU times needed by
Gurobi to solve the MILP problem. Actually, in some cases the LP gap is smaller
than 1%, but still the solver takes a long time to check optimality of the solution.
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n p q GAP GAPV I Nodes NodesV I Time TimeV I Cuts UnS UnSV I

10

3 1 13.58% 1.94% 107 105 2.47 2.35 72.43 0% 0%

5
1 25.15% 4.68% 2558 3061 23.5 25.67 82.57 0% 0%
3 15.94% 3.78% 1038 1122 6.69 13.39 94.43 0% 0%

8
1 39.91% 8.86% 94849 22573 551.74 170.9 90.71 0% 0%
3 31.72% 8.72% 43448 6952 211.66 50.85 100 0% 0%
5 24.73% 9.76% 121932 6378 415.57 46.95 100 0% 0%

20

3 1 11.3% 1.97% 247 434 229.23 328.59 83.71 0% 0%

5
1 19.46% 4.51% 3437 5599 3347.99 3924.91 100 42.86% 28.57%
3 9.8% 2.54% 3438 2434 1765.75 2136.17 100 0% 0%

8
1 27.41% 6.64% 6950 6553 4889.96 5267.49 100 57.14% 42.86%
3 18.86% 5.15% 15215 8451 5422.1 6950.07 100 42.86% 85.71%
5 14.04% 5.57% 26174 9799 6952.1 6321.67 100 85.71% 71.43%

25

3 1 10.22% 1.89% 355 738 1435.73 2513.64 85 0% 14.29%

5
1 18.83% 4.39% 1018 1359 4711.68 6070.7 98 57.14% 71.43%
3 9.97% 2.74% 2267 1614 3960.22 4638.89 100 14.29% 57.14%

8
1 27.32% 8.24% 886 1543 5259.53 >7200 100 71.43% 100%
3 18.26% 6.22% 3074 1971 >7200 >7200 100 100% 100%
5 12.7% 6.05% 4108 2450 >7200 >7200 100 100% 100%

Table 2. Average Results for the AP dataset using (THLPU).

In fact, only 6 of instances of CAB and 4 of AP dataset were optimally solved
adding the valid inequalites but not without them. Indeed, 3 instances of CAB and
7 of AP were not solved adding the valid inequalities, but they were solved without
including them. Concerning the CPU times, in only 55% of the CAB instances and
60% of the AP instances, the CPU times needed to solve the problems with the
valid inequalities are smaller than not using them.

Thus, based on the results, the set of inequalities (18) (in its simplest form (19))
highly strengthen the MILP formulation (THLPU) for the Tree of Hub Location
problem with Upgrading, but such a strengthen is not reflected in the CPU times
needed for solving the problems. In the next section we provide a different MILP
formulation for the problem, in order to check whether better results can be ob-
tained.

4. A disaggregated model for THLPU

In this section a different idea is exploited to model the THLPU, by using some
of the variables previously used in (THLPU), but disaggregating the flow variables
into some others that allow us to represent the different types of costs of traversing
hub nodes. In particular, we will use the z and t variables in this model, in the same
manner they were defined for (THLPU) (see (1) and (2)).

Additional binary variables associated to edges between two hubs are used, instead
of r and s as for (THLPU), to define the small tree and also to keep track of the type
of discount to be applied to the flow. We define three different families of binary
variables which are closely related to the s-variables in (THLPU), but in which we
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distinguish between the type of hub nodes that the extremes of the edges in the
small tree are. For {k,m} ∈ E with k 6= m, we denote:

ykm =

{

1 if k and m are adjacent but non-upgraded hubs,
0 otherwise,

y′km =

{

1 if k or m are adjacent hubs, but only one is upgraded,
0 otherwise,

y′′km =

{

1 if k or m are upgraded hubs, and they are adjacent,
0 otherwise.

Figure 9 shows those variables in these three families taking value 1 according
with the depicted small tree and chosen upgraded or not hubs.

1

1

1

1

Figure 9. Values for the y (left), y′ (center) and y′′ (right) variables
when defining the small tree
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Figure 10. Values for the x (left), x′ (center) and x′′ (right) vari-
ables associated with a given origin i. The amount inside any node
j is the value of wij
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We also consider, instead of the flow r-variables in (THLPU), three new sets
of variables which are constructed by splitting the flow traversing hub edges, by
differentiating again between the three types of connections between hub nodes.
For {k,m} ∈ E with k 6= m, we define:

• xikm: amount of flow with origin in node i which traverses arc (k,m) if k
and m are both hubs, but neither k nor m have been upgraded,

• x′ikm: amount of flow with origin in node i which traverses arc (k,m) if k
and m are both hubs and k or m (only one of them) has been upgraded,

• x′′ikm: amount of flow with origin in node i which traverses arc (k,m) if k
and m are both hubs and both k and m have been upgraded.

Figure 10 shows the values of these three families of variables (if they are not 0) for
a fixed value of i.

With the above notation, we present now the disaggregated formulation for
THLPU:

min
∑

i∈N

n
∑

k=1:

k 6=i

(Oidik +Didki)zik(DTHLPU)

+
∑

i∈N

∑

k∈N

∑

m∈N:

m6=k

(ckmxikm + c′kmx′ikm + c′′kmx′′ikm)

s.t.
∑

k∈N

zkk = p,(20)

n−1
∑

k=1

n
∑

m=k+1:

{k,m}∈E

(ykm + y′km + y′′km) = p− 1,(21)

∑

k∈N

zik = 1, ∀i ∈ N,(22)

ykm + y′km + y′′km + zmk ≤ zkk, ∀k < m ∈ N : {k,m} ∈ E,(23)

ykm + y′km + y′′km + zkm ≤ zmm, ∀k < m ∈ N : {k,m} ∈ E,(24)
∑

k∈N

tk = q,(25)

tk ≤ zkk, ∀k ∈ N,(26)

y′′km ≤ tk, ∀{k,m} ∈ E, k < m,(27)

y′′km ≤ tm, ∀{k,m} ∈ E, k < m,(28)

y′km + y′′km ≤ tk + tm, ∀{k,m} ∈ E, k < m,(29)

xikm + ximk ≤ Oikmykm, ∀i ∈ N,∀{k,m} ∈ E, i 6= k < m ∈ N,(30)

xiim ≤ Oikmymin{i,m},max{i,m}, ∀{i,m} ∈ E,(31)

x′ikm + x′imk ≤ Oikmy′km, ∀i ∈ N,∀{k,m} ∈ E, i 6= k < m ∈ N,(32)
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x′iim ≤ Oikmy′min{i,m},max{i,m}, ∀{i,m} ∈ E,(33)

x′′ikm + x′′imk ≤ Oikmy′′km, ∀i 6= k < m ∈ N : {k,m} ∈ E,(34)

x′′iim ≤ Oikmy′′min{i,m},max{i,m} ,∀{i,m} ∈ E,(35)

Oizik +
n
∑

m=1:

m6=k

(ximk + x′imk + x′′imk) =

n
∑

m=1:

m6=k

(xikm + x′ikm + x′′ikm) +
∑

j∈N

wijzjk,∀i, k ∈ N,(36)

zik, tk ∈ {0, 1}, ∀i, k ∈ N,

ykm, y′km, y′′km ∈ {0, 1}, ∀k < m ∈ N : {k,m} ∈ E,

xkm, x′km, x′′km ≥ 0, ∀k 6= m ∈ N.

In the objective function of (DTHLPU) the discounts are applied to the flow
between hubs given by the x-, x′- and x′′-variables, and the total cost of the flow
with origin and destination in each non-hub node i is added up without any discount.

Constraints (20) and (21) fix the number of hubs and edges in the small tree.
These two constraints, plus the connection, forced by the flows between nodes,
ensure that the resulting structure will be a tree.

Constraints (22), (23) and (24) guarantee that each non-hub node is allocated to
a hub. Constraints (23) and (24) also fix to zero y-, y′- and y′′-variables when one
or two of their extremes are not hubs.

Regarding the t-variables, constraints (25) establish in q the number of upgraded
nodes, whereas (26) ensure that the upgraded nodes will be hubs. Once the upgrad-
ing is known, (27)-(29) fix to zero y-, y′- and y′′-variables when the extremes of the
edge have not the adequate upgrading. Similarly, constraints (30)-(35) fix to zero
the x-, x′- and x′′-variables when appropriate, in this case using an upper bound
Oikm since they are continuous variables.

Observe that given a feasible solution of (THLPU) one can easily construct a
feasible solution of (DTHLPU), and vice versa. In particular, given feasible values
of (DTHLPU), for ykm, y′km, y′′km, xikm, x′ikm and x′′ikm, for i, k,m ∈ N , one can
define

s̄min{k,m}max{k,m} = ymin{k,m}max{k,m} + y′min{k,m}max{k,m} + y′′min{k,m}max{k,m},

r̄ikm = xikm + x′ikm + x′′ikm,

θ̄imin{k,m}max{k,m} = ckm(xikm + ximk) + c′km(x′ikm + x′imk) + c′′km(x′′ikm + x′′imk),

such that (s̄, r̄, θ̄), together with the z and t values, is a feasible solution to (THLPU).
In particular, one can see that (36) is nothing but the same flow conservation of flow
constraint (13) of (THLPU).

Several families of valid inequalities can be added to formulation (DTHLPU) in
order to reduce the size of the polyhedron associated to the linear relaxation, so
improving the lower bounds it produces and reducing the computational times.
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Lemma 1. The following inequalities are valid for (DTHLPU):

1) xikm + ximk + x′ikm + x′imk + x′′ikm + x′′imk ≤ Oikmzkk, ∀i 6= k < m ∈ N :
{k,m} ∈ E,

2) xikm + ximk + x′ikm + x′imk + x′′ikm + x′′imk ≤ Oikmzmm, ∀i 6= k < m ∈ N :
{k,m} ∈ E,

3) xiim + x′iim + x′′iim ≤ Oikmzii, ∀m 6= i ∈ N ,
4) xiim + x′iim + x′′iim ≤ Oikmzmm, ∀m 6= i ∈ N ,
5) ykm + y′km + y′′km + zkm + zmk ≤ 1, ∀k < m ∈ N : {k,m} ∈ E.

Proof. Observe that the inequalities in 1) and 2) assert that when zkk = 0 or zmm =
0, no reduction can be applied to the flow traversing edge {k,m} and then the
corresponding x-, x′- and x′′-variables will take value 0. Otherwise, the total amount
of flow with origin in i 6= k traversing {k,m} in any direction will be bounded above
by Oikm.

The particular case of 1) and 2) when i = k results in 3) and 4) .
Finally, 5) follows from the same construction as (23) and (24). Given two nodes k

andm inN , if {k,m} is part of the large tree, only one of the following situations may
occur: i) {k,m} is also part of the small tree (in whose case, ykm+ y′km+ y′′km = 1);
or ii) one of k and m is a non-hub and the other is a hub and they are adjacent (in
whose case zkm + zmk = 1). The inequality comes for the case in which {k,m} is
not an edge in the large tree (k and m are not adjacent).

�

4.1. A family of valid inequalities for (DTHLPU). By the equivalence between
the s variables in (THLPU) and the (y, y′, y′′)-variables in (DTHLPU), and also
between the r-variables and the (x, x′, x′′)-variables, the set of valid inequalities
(18) can be adapted to (DTHLPU). In particular, they read:

(

∑

j∈J∪{m}

wij

)(

m−1
∑

k=1:

{k,m}∈E

(

ykm + y′km + y′′km
)

+
n
∑

k=m+1:

{k,m}∈E

(

ymk + y′mk + y′′mk

)

)

+

∑

k/∈F
{k,m}∈E

(

xikm + x′ikm + x′′ikm
)

≥
∑

j∈J∪{m}

wij(zjm − zim)(37)

for all i,m ∈ N, F ⊆ N \ {m}, J ⊆ N \ {i,m}.
Since the set of variables of (DTHLPU) and the valid inequalities (37) differ from

those in [15], in what follows, we explicitly describe a separation procedure for (37).
Let i,m ∈ N , Q ≥ 0 and (x̄, ȳ, z̄, x̄′, ȳ′, x̄′′, ȳ′′) be a feasible fractional solution of

(DTHLPU). Then, an optimal solution, F , that solves the following optimization
problem
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L(Q) = min
F⊆N\{m}

∑

k/∈F :

{k,m}∈E

(x̄ikm + x̄′ikm + x̄′′ikm) +

Q
(

m−1
∑

k=1:

{k,m}∈E

(ȳkm + ȳ′km + ȳ′′km) +

n
∑

k=m+1:

{k,m}∈E

(ȳmk + ȳ′mk + ȳ′′mk

)

is given by

F = {k < m : {k,m} ∈ E,
x̄ikm + x̄′ikm + x̄′′ikm
ȳkm + ȳ′km + ȳ′′km

≥ Q}∪

{k > m : {k,m} ∈ E,
x̄ikm + x̄′ikm + x̄′′ikm
ȳmk + ȳ′mk + ȳ′′mk

≥ Q}.

Observe that the function L is a piecewise linear function on the values of Q ≥ 0,
hence L has the following shape:

L(Q) =











a1 +Qb1 if Q ∈ [A1, A2],
...

...
aR +QbR if Q ∈ [AR, AR+1].

∀Q ≥ 0.

Now, the possible values of interest of Q for fixed values of i and m are given by
the different choices of the set J ⊂ N \ {i,m}. Let e = (e1, e2, . . . , en) ∈ {0, 1}n

be the incidence vector of set J , producing a value of Qe :=
∑

j∈N ejwij. The best
option for e can be obtained by solving the auxiliary problem

min L(Qe)−
∑

j∈N

wij(z̄jm − z̄im)ej

s.t. em = 1

ej ∈ {0, 1} ∀j ∈ N.

The maximally violated inequality will be generated when the optimum of this prob-
lem is negative. For the computational experiments, as for formulation (THLPU), a
simpler subfamily of valid inequalities of (37) was considered. The inequalities and
the separation procedure read exactly as those for (19), by using the identification
between the r and the x, x′, and x′′′ variables and between s and the y, y′, and y′′

variables.
As detailed for the valid inequalities and the separation procedure for (THLPU)

(see Section 3), in our computational experiments we search and incorporate only
those in which the sets J and F are singletons, because its simplicity and its relative
gain in terms of strength and consumed CPU time.

5. Computational Experiments

In this section we report the results of a series of computational experiments per-
formed for solving the THLPU when using the disagregated formulation (DTHLPU)
and adding the family of valid inequalities (37) by using our separation strategy. We
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Figure 11. Solutions of one of the instances of CAB (left) and
AP (right) datasets with (n, p, q) = (25, 8, 3) and (α, ρ, γ) =
(0.8, 0.5, 0.2).

Figure 12. 2) Solutions of one of the instances of CAB (left)
and AP (right) datasets with (n, p, q) = (25, 5, 1) and (α, ρ, γ) =
(0.8, 0.5, 0.2).

use the same datasets used in Subsection 3.1, and the same notation for the results.
In tables 3 and 4 we report the average results when using (DTHLPU) to solve the
THLP for the CAP and AP datasets, respectively. In figures 11, 12 and 13 we show
some solutions obtained during our experiments for one of the instances of CAB and
AP datasets.

We observe that the disaggregated formulations has some strengths with respect
to (THLPU). In this case, only 10% (for (DTHLPU)) and 5% (for (DTHLPU)+VI)
of the CAB instances and 17% (for (DTHLPU)) and 15% (for (DTHLPU)+VI) of
the AP instances, were not optimally solved within the time limit. The average
GAP differences between adding or not valid inequalities to (DTHLPU) were 11%
and 9%, fo CAB and AP, respectively. 7 out of the CAB instances and 4 of the AP
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n p q GAP GAPV I Nodes NodesV I Time TimeV I Cuts UnS UnSV I

10

3 1 1.97% 0.89% 43 10 0.23 0.18 32.86 0% 0%

5
1 7.57% 2.63% 502 142 0.57 0.4 52.43 0% 0%
3 18.08% 1.77% 628 1103 0.48 0.6 65.14 0% 0%

8
1 15.6% 7.96% 13900 17452 6.25 5.66 76.71 0% 0%
3 31.94% 4.72% 12722 34866 7.29 7.24 78.57 0% 0%
5 22.26% 7.91% 113634 43225 56.76 8.84 91.14 0% 0%

15

3 1 0.66% 0.57% 46 8 0.8 0.43 48.71 0% 0%

5
1 6.11% 2.46% 1342 678 6.34 1.57 59.43 0% 0%
3 14.19% 1.81% 762 4849 2.64 2.18 77.29 0% 0%

8
1 14.37% 6.37% 56108 39439 189.47 84.33 95.86 0% 0%
3 29.22% 4.6% 26091 6380 79.02 21.98 103 0% 0%
5 21.75% 7.06% 285057 20780 1193.56 59.01 103.14 14.29% 0%

20

3 1 2.54% 1.09% 54 16 3.73 2.86 53.71 0% 0%

5
1 10.56% 4.18% 3024 1388 58 51.06 86 0% 0%
3 16.6% 3.47% 1990 3064 34.72 26.21 103 0% 0%

8
1 15.75% 6.66% 89633 18512 2409.97 2326.28 95.29 28.57% 28.57%
3 27.96% 7.16% 53712 15891 1479.62 917.33 100 14.29% 0%
5 19.44% 8% 159421 23355 2573.71 1422.24 100 28.57% 14.29%

25

3 1 1.67% 1.09% 32 20 8.85 6.35 58.29 0% 0%

5
1 10.08% 4.86% 14558 4854 819.24 409.37 90.29 0% 0%
3 14.38% 3.57% 4538 7011 224.49 209.53 100 0% 0%

8
1 17.2% 10.06% 52995 27438 5149.66 3511.41 100 71.43% 28.57%
3 26.08% 6.88% 37933 22130 2558.66 2463.34 100 28.57% 28.57%
5 18.98% 7.79% 123705 40437 5035.68 3302.36 100 57.14% 42.86%

Table 3. Average Results for the CAB dataset using (DTHLPU).

Figure 13. 3) Solutions of one of the instances of CAB (left)
and AP (right) datasets with (n, p, q) = (25, 5, 2) and (α, ρ, γ) =
(0.8, 0.2, 0.1).
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n p q GAP GAPV I Nodes NodesV I Time TimeV I Cuts UnS UnSV I

10

3 1 5.97% 1.93% 86 45 0.5 0.43 64.14 0% 0%

5
1 12.56% 4.68% 2143 299 3.6 1.27 84.29 0% 0%
3 15.94% 3.75% 1349 920 2.15 3.54 94.43 0% 0%

8
1 21.43% 8.83% 18709 4109 21.35 8.15 88.86 0% 0%
3 31.72% 8.81% 58509 10055 83.86 25.32 100 0% 0%
5 24.73% 9.76% 341521 11137 488.53 34.56 100 0% 0%

20

3 1 3.6% 1.99% 310 164 13.45 10.71 75 0% 0%

5
1 8.09% 4.55% 16683 4869 692.13 307.85 96.71 0% 0%
3 9.8% 2.62% 4063 5606 188.01 514.45 100 0% 0%

8
1 12.67% 7.15% 52147 49098 3309.44 3430.02 100 42.86% 28.57%
3 18.87% 5.47% 51402 28278 2356.79 2522.03 100 28.57% 28.57%
5 14.04% 5.75% 165883 48332 5211.14 3554.61 100 57.14% 42.86%

25

3 1 2.91% 1.91% 555 224 51.03 36.75 75.57 0% 0%

5
1 7.83% 4.52% 11320 4678 2220.5 902.69 92.57 28.57% 0%
3 9.97% 2.79% 3146 7428 325.84 1375.07 100 0% 0%

8
1 12.48% 8.26% 15721 13071 4076.31 5470.24 98.71 42.86% 71.43%
3 17.48% 5.25% 22312 18922 3746.89 6636.55 100 28.57% 57.14%
5 12.47% 6.32% 47079 13777 6422.61 4752.05 100 85.71% 42.86%

Table 4. Average Results for the AP dataset using (DTHLPU).
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Figure 14. LP Gaps and CPU Times for the CAB dataset.

instances were optimally solved adding the valid inequalities but not with (THLPU)
and only 3 of the AP instances were not solved adding the valid inequalities, but
they did without them. Concerning the CPU times, in 85% of the CAB instances
and 60% of the AP instances, the time for solving THLPU using (DTHLPU)+VI
was smaller than using (DTHLPU) without valid inequalities.

One can observe that the THLPU is still very time consuming with the disag-
gregated formulation, but some improvements were detected when comparing with
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Figure 15. LP Gaps and CPU Times for the AP dataset.

(THLPU). First, the LP gaps obtained with (DTHLPU) are an average of 0.1
smaller than those obtained with (DTHLPU) (see left picture in Figure 14). How-
ever, such a significative difference, does not always positively affects a decreasing
on the CPU times needed to solve THLPU instances. The consuming CPU times
for solving the problems using (THLPU) and (DTHLPU) are quite similar, in av-
erage. Nevertheless, when our family of valid inequalities are incorporated, the
best CPU times obtained (when comparing the four approaches) are obtained with
(DTHLPU)+VI (see right picture in Figure 14). Actually, using such a strengthen-
ing we were able to solve up to optimality the greatest number of instances (all except
10 for the CAB dataset), even being the average number of nodes explored in the
branch-and-bound tree, greater, in average for (DTHLPU)+VI than for (DTHLPU)
without incorporating the new family of inequalities. Note that when valid inequali-
ties are considered in our model, the exploration of the search tree in the branch-and-
bound procedure, may differ and although the LP relaxation of (DTHLPU)+VI, the
optimality has still to be checked, which may consume a huge amount of time.

Concerning the number of valid inequalities added with the separation strategy,
one can see in Figure 18 that less number of cuts are, in general needed, with the
disaggregated formulation. Note that, apart from the upper bound for the number
of cuts added in the procedure, we only stop adding cuts when the gap between two
consecutive LP solutions is less than 1%.

6. Conclusions

The Tree-of-Hubs Location Problem with Upgrading has not been, to the best of
our knowledge, previously studied. In this paper we introduce and analyze it, devel-
oping and tightening two Mixed Integer Programming formulations. Several families
of valid inequalities, some of them of reduced size and some others of exponential
size, have been derived. The former can be fully incorporated to the formulation,
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Figure 16. Nodes and UnSolved Instances for the CAB dataset.
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Figure 17. Nodes and UnSolved Instances for the AP dataset.

and for the latter we devise separation procedures that allows one to identify the
most violated inequalities in the family. We have computationally checked the im-
provements produced by the addition of this inequalities and present the first results
for medium sized instances.

Several different exact and heuristic procedures have been studied in the litera-
ture for the Tree-of-Hubs Location Problem, a simplified version of the problem we
consider here. As a matter of future research, these approaches could also be tested
on the THLPU. Also several extensions in different directions have been carried out
that could be extended themselves by considering upgrading of nodes. In general,
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Figure 18. Number of Cuts for the CAB (left) and the AP (right)
datasets.

we consider single or multiple hub location problems with upgrading an interesting
line of further study for authors in the hub location field. Also, different upgrading
degrees may be consider for the nodes, each of them implying different reductions to
the edge costs. The analysis of similar extended formulation for this problem would
be the topic of future research.
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