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Abstract

The capacitated p-center problem requires to select p facilities from a set of candidates to

service a number of customers, subject to facility capacity constraints, with the aim of minimizing

the maximum distance between a customer and its associated facility. The problem is well known in

the field of facility location, because of the many applications that it can model. In this paper, we

solve it by means of search algorithms that iteratively seek the optimal distance by solving tailored

subproblems. We present different mathematical formulations for the subproblems and improve

them by means of several valid inequalities, including an effective one based on a 0-1 disjunction

and the solution of subset sum problems. We also develop an alternative search strategy that finds

a balance between the traditional sequential search and binary search. This strategy limits the

number of feasible subproblems to be solved and, at the same time, avoids large overestimates of

the solution value, which are detrimental for the search. We evaluate the proposed techniques by

means of extensive computational experiments on benchmark instances from the literature and new

larger test sets. All instances from the literature with up to 402 vertices and integer distances are

solved to proven optimality, including 13 open cases, and feasible solutions are found in 10 minutes

for instances with up to 3038 vertices.
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1 Introduction

Facility location problems play an important role in the operations research and combi-

natorial optimization literature. Since the early years of these disciplines, considerable

research effort has been dedicated to their solution, due to their importance in supply

chain management, healthcare, telecommunications, humanitarian relief, and machine

learning applications, among many others (see, e.g., Drezner and Hamacher 2002 and

Laporte et al. 2015).

The p-center problem (PCP) is a particular facility location problem that requires to

select p facilities, from a set of candidates, to serve a set of customers in such a way

that the maximum distance between a customer and its closest facility is minimized (see,

e.g., Hakimi 1964 and Minieka 1970). Two problem variants are usually distinguished:

the absolute PCP, where the facilities can be located on the vertices or on the edges

of a graph, and the vertex PCP, considered here, in which the facilities can be located

only on the vertices (see, e.g., Kariv and Hakimi 1979). The main applications of the

PCP arise in the location of emergency facilities, such as fire stations, police stations,

and ambulance waiting locations, in a context where the worst-case service level, e.g.,

service time or distance, must be bounded or minimized (see, e.g., Daskin 1995 and

Marianov and ReVelle 1995). The PCP is known to be NP-hard (Kariv and Hakimi,

1979; Masuyama et al., 1981), and thus several heuristics have been proposed for its

solution, making use of paradigms such as tabu search (Mladenović et al., 2003), bee

colony optimization (Davidović et al., 2011), variable neighborhood search (Irawan et al.,

2015), and other techniques (Hochbaum and Shmoys 1985, Plesńık 1987, Mihelič and

Robič 2003, and Davoodi et al. 2011). From the perspective of exact PCP methods, the

most successful type of approach, to the best of our knowledge, consists in solving a

series of covering subproblems with the help of preprocessing and reduction techniques

(Daskin 2000, Ilhan et al. 2002, Elloumi et al. 2004, Chen and Chen 2009, and Calik and

Tansel 2013).

In this paper, we focus on the capacitated version of the vertex PCP, in which each

customer is characterized by a demand and each candidate facility by a capacity. Each

demand must be serviced integrally by one of the p chosen facilities, without exceeding

their capacities. This feature renders the problem more challenging: a customer may

no longer be assigned to its closest facility, and thus the complete characterization of a

solution requires both facility opening and customer-facility allocation decisions.

To solve the problem, we propose a decomposition algorithm that searches for the op-

timal distance by iteratively solving a capacitated set covering formulation. The decom-

position is enhanced by devising tailored search algorithms as well as valid inequalities

and symmetry breaking rules for the set covering subproblems. We also introduce an al-
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ternative arc-flow formulation, which is shown to provide good linear-relaxation bounds.

Computational experiments conducted on a large set of benchmark instances show that

our techniques help to find and prove optimal solutions. In particular, we provide the

optimal solutions for all the benchmark instances with up to 402 vertices considered in

the literature, including 13 open cases. Finally, to better evaluate the performance of

the proposed algorithms, we introduce and solve new instances containing between 50

and 3000 vertices.

The remainder of this paper is organized as follows. Section 2 formally describes the

problem and reviews the related literature. Section 3 presents the mathematical formu-

lations and the decomposition-based approach. Section 4 introduces improvement meth-

ods, whereas Section 5 presents classical and alternative decomposition-based search

algorithms. Section 6 reports our computational experiments and Section 7 concludes.

2 Problem Description and Literature Review

The capacitated p-center problem (CPCP) is defined as follows. Let G = (F,C,E) be

a bipartite graph, where F = {1, . . . , m} and C = {1, . . . , n} are the sets of candidate

locations and customer nodes, respectively, and E = {(i, j) : i ∈ F, j ∈ C} is the set of

edges. Each edge (i, j) ∈ E represents a possible assignment of a customer j to a facility

i and has a non-negative distance dij. Each facility i ∈ F has a capacity Qi, which can be

used to supply the demands qj of customers j ∈ C. Unless stated otherwise, we assume

in the following that the input parameters are integer. The CPCP aims at opening at

most p facilities and assigning each customer to exactly one facility, seeking to minimize

the maximum distance between a customer and its facility, and ensuring that the total

demand of the customers assigned to each facility does not exceed its capacity.

The CPCP is closely related to the capacitated p-median problem (CPMP), the latter

differing only in the objective function, which minimizes the sum of all the customer-

facility assignments. The literature on the CPMP is abundant, especially for heuristic

methods (see, e.g., Reese, 2006). In terms of exact algorithms, we highlight the column

generation approach of Lorena and Senne (2004) and the branch-and-price algorithm of

Ceselli and Righini (2005). In the former article, the authors formulate the restricted

master problem as a set covering model, solve m binary knapsack subproblems to gener-

ate the columns, and use a Lagrangian/surrogate relaxation to speed up the convergence.

In the latter article, the authors use a similar column generation approach to obtain the

linear relaxation for the nodes of a branch-and-bound algorithm. Branching is performed

first on location variables, and then on assignment variables. Their best algorithm has

good performance on small instances and on instances with a large n/p ratio. The

benchmark sets introduced in these articles are now commonly used to evaluate solution
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procedures for the CPCP. In addition to these works, Boccia et al. (2008) proposed a

cutting plane algorithm based on Fenchel cuts (see Boyd 1993, 1994), which improved

the gaps provided by the previously cited works and led to new proven optimal solutions.

For what concerns exact approaches for the uncapacitated version of the p-median prob-

lem, we point out the column-and-row generation method by Garćıa et al. (2011), and

the branch decomposition algorithm by Fast and Hicks (2017).

In contrast with the CPMP, the literature on the CPCP is limited. Concerning exact

methods, Jaeger and Goldberg (1994) presented a polynomial algorithm for the special

case in which assignments among customers and facilities are organized on a tree network

and capacities are identical. Özsoy and Pınar (2006) proposed binary search algorithms

that iteratively solve either a capacitated concentrator location problem or a variant

of the bin packing problem. Their computational experiments demonstrate that these

search algorithms provide better results than the solution of a compact formulation of the

problem. The idea of decomposing the original problem into smaller subproblems was

also adopted by Albareda-Sambola et al. (2010). They considered two subproblems: a

capacitated concentrator location problem, and a capacitated maximal covering problem.

Moreover, instead of directly solving the subproblem formulations via available mixed

integer linear programming (MILP) solvers, they performed a Lagrangian relaxation of

the assignment constraints to improve the lower bounds, and they applied heuristic

procedures in the inner iterations of a subgradient optimization to generate feasible

solutions. The resulting algorithm had good convergence and improved the results of

Özsoy and Pınar (2006) in most cases.

Concerning heuristic approaches, Scaparra et al. (2004) proposed a very large neigh-

borhood search, relying on flow-based algorithms to efficiently detect improving neigh-

bors, while Quevedo-Orozco and Rı́os-Mercado (2015) addressed the problem with an

iterated greedy local search with variable neighborhood descent. We also mention the

work of Espejo et al. (2015), who proposed a CPCP variant in which the maximum

distance to the second-closest center is minimized. The problem is relevant in situations

where the facilities can become unavailable because of unforeseen events such as natu-

ral disaster or a labor strike. Mathematical formulations, heuristics, and preprocessing

procedures were proposed and experimentally evaluated.

3 Mathematical Formulations and Decomposition Approach

In this section, we provide two formulations for the CPCP and then describe the re-

lationship between the CPCP and the capacitated set covering problem, which is the

foundation of our search algorithms. We need some additional notation. Let D = [dij]

define the cost matrix and r ∈ D denote a coverage radius. In our search algorithms, r
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represents the maximum distance allowed for a customer-facility assignment. Moreover,

the circular area having radius r and center in facility i is called the coverage area of i.

Let Cr
i = {j ∈ C : dij ≤ r and qj ≤ Qi} be the set of customers lying in the coverage

area of facility i induced by r, and F r
j = {i ∈ F : dij ≤ r and qj ≤ Qi} be the set of

facilities that can cover customer j within distance r.

3.1 Descriptive formulation

Let yi be a binary variable taking value 1 if facility i ∈ F is open and 0 otherwise,

and xij a binary variable stating whether or not customer j ∈ C is assigned to facility

i ∈ F . Let z be a non-negative variable that keeps track of the maximum distance

over all customer-facility assignments. The CPCP can be modeled with the following

descriptive formulation:

(CPCP-D) min z (1)

s.t.
∑

i∈F

xij = 1 j ∈ C, (2)

∑

i∈F

yi ≤ p (3)

z ≥
∑

i∈F

dijxij j ∈ C, (4)

∑

j∈C

qjxij ≤ Qiyi i ∈ F, (5)

xij ∈ {0, 1} i ∈ F, j ∈ C, (6)

yi ∈ {0, 1} i ∈ F. (7)

Objective function (1) minimizes the maximum distance. Constraints (2) ensure

that each customer is assigned to one facility. The total number of open facilities is

limited to p by constraint (3). Constraints (4) force z to be greater than or equal to the

distance from any customer to its assigned facility. Constraints (5) ensure that the sum

of demands assigned to an open facility does not exceed its capacity, and constraints (6)

and (7) provide the binary conditions.

3.2 Extended arc-flow formulation

Arc-flow formulations model a problem by using a capacitated network of pseudo-poly-

nomial size. Successful formulations of this type have been presented for a number of

combinatorial optimization problems (see, e.g., the works on bin packing and cutting

stock by Valério de Carvalho 2002 and Delorme et al. 2016), but, to the best of our

knowledge, this is the first time they have been applied to the CPCP. To construct a
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CPCP arc-flow formulation, first of all we associate with each i ∈ F an acyclic directed

multigraph Gi = (Vi, Ai), with Vi = {0, 1, . . . , Qi} and Ai = {(e, f, j) : e, f ∈ Vi and j ∈
C ∪ {0}}. The vertices represent partial fillings of the facility capacity, whereas the

arcs have a double meaning: customer arcs represent the assignment of a customer to a

facility, whereas loss arcs represent the unused residual capacity of the facility. Formally,

for any i ∈ F we partition Ai = ∪j∈C∪{0}Aij , where Ai0 = {(d,Qi, 0) : d ∈ Vi \Qi} is the
set of loss arcs, and Aij = {(d, d + qj, j) : d, d + qj ∈ Vi} are the sets of customer arcs

for all j ∈ C.

A valid assignment of customers to a facility corresponds to a path P ⊆ Gi containing

one or more customer arcs and at most one loss arc. If arc (d, e, j) ∈ P, then either

customer j ∈ C (with demand qj = e− d) is served by i, or a residual capacity of e− d

(= Qi − d) units is unused. The aim of the arc-flow formulation is to open facilities and

assign a path to each open facility by minimizing the maximum assignment distance and

ensuring that all customers are served. Let A = ∪i∈FAi be the set of all arcs, a be the

index of a generic arc in A, δ+ij(e) be the subset of arcs a ∈ Aij exiting from node e, and

δ−ij(e) be the subset of arcs a ∈ Aij entering node e. Let faij be a binary variable that

takes value 1 if arc a ∈ Aij is selected and 0 otherwise. The CPCP can be modeled as

(CPCP-AF) min z

s.t. (2)–(4), (6), (7), and

∑

j∈C

∑

a∈δ−ij (e)

faij −
∑

j∈C

∑

a∈δ+ij (e)

faij =



















−yi if e = 0

yi if e = Qi

0 otherwise

i ∈ F, e ∈ Vi, (8)

∑

e∈Vi

∑

a∈δ+ij(e)

faij = xij i ∈ F, j ∈ C, (9)

faij ∈ {0, 1} i ∈ F, j ∈ C, a ∈ Aij. (10)

Constraints (8) impose the flow conservation at the nodes Vi for all the facilities.

Constraints (9) ensure that the number of arcs associated with customer j in facility i is

equal to xij (thus being either 1 or 0). Note that CPCP-AF is an extended formulation

of CPCP-D, and practical CPCP-AF solutions may be obtained by replacing xij with
∑

e∈Vi

∑

a∈δ+ij(e)
faij in constraints (2) and (4) and removing constraints (6) and (9).

This formulation provides good lower bounds. However, due to its pseudo-polynomial

number of variables (O(Qi|C|) for each i), it becomes impracticable for large instances.

Hence, we introduce reduction techniques. First, one can use an upper bound r, i.e.,

a valid CPCP coverage radius, and remove the assignment variables associated with

distances greater than r. Secondly, it is important to know which customers are served
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by a facility, but not their sequence. Thus, one can sort the customers according to an

arbitrary criterion and so reduce the number of arcs. Similarly to Valério de Carvalho

(2002), for each facility i, we sort the customers in Cr
i by non-increasing qj value. Then,

we build the arcs by considering this order (arcs associated with the first customer can

only start at 0, arcs associated with the second customer can start either at 0 or right

after the arcs of the first customer, and so on). This was done by a standard dynamic

programming algorithm.

3.3 Decomposition Approach

The objective function of the CPCP minimizes the maximum distance among the se-

lected customer-facility assignments. The optimal solution value is therefore contained

in the distance matrix D, and one can test with a search algorithm whether a solution

value r is optimal. More precisely, testing whether the CPCP admits a solution with

optimal value z ≤ r is equivalent to solving a feasibility test where all the capacity

constraints are satisfied and only customer-facility assignments of distance dij ≤ r are

used. On the basis of preliminary experimental analyses, we decided to transform this

feasibility test into the problem of minimizing the number of selected facilities that cover

all the customers while satisfying the capacity constraints. Formally, this corresponds

to the following capacitated set covering problem (CSCP-r):

(CSCP-r) min
∑

i∈F

yi (11)

s.t.
∑

i∈F r
j

xij ≥ 1 j ∈ C, (12)

∑

j∈Cr
i

qjxij ≤ Qiyi i ∈ F, (13)

xij ∈ {0, 1} i ∈ F, j ∈ Cr
i , (14)

yi ∈ {0, 1} i ∈ F. (15)

Objective function (11) minimizes the number of selected facilities. Constraints (12)

ensure that each customer j ∈ C is assigned to at least one facility, whereas con-

straints (13) impose capacity restrictions on all the facilities. Note that in constraints

(12), we opted to replace the “=” (originally used in constraints (2)) with a “≥”. This

can be done without loss of optimality and allows us to develop improvement methods

(given in Section 4 below). Clearly, a solution in which a customer is entirely assigned

to more than one facility can be mapped to a solution with the same cost, in which such

the customer is assigned to a single facility. Note that an extended arc-flow formulation

for CSCP-r, denoted CSCP-AF-r, can also be obtained by replacing constraints (13)
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with (8)–(10) and removing the assignment variables associated with distances dij > r.

Based on this decomposition, the success of the approach now depends on two factors:

1) an efficient solution of each CSCP-r, and 2) an efficient search for the optimal value r ∈
D, with the smallest total computational effort. Note that the smallest computational

effort is not necessarily proportional to the number of calls to the CSCP-r subproblems,

since some subproblems are simpler to solve (e.g., when r is small) than others. In

fact, there can be large differences in the computational effort required to either find a

feasible solution or prove that no feasible solution exists for a given radius. To address

these two challenges, the next two sections present techniques that improve the solution

of the subproblems (Section 4) and search strategies to find the optimal coverage radius

(Section 5).

4 Improvement Methods for the CSCP-r

To ease the description, let ∆i(r) =
∑

j∈Cr
i
qj be the sum of the demands of the customers

located inside the coverage area defined by facility i and coverage radius r, and let

Ki(r) = min{∆i(r), Qi} be an upper bound on the maximum demand that can be

satisfied by facility i within radius r.

First, we report the classical inequalities used to improve the linear relaxation of the

CSCP-r:

xij ≤ yi i ∈ F, j ∈ Cr
i . (16)

In addition, we use several techniques to improve the CSCP-r relaxation value and re-

duce the number of nodes explored by the MILP branch-and-bound. To illustrate these

techniques, we consider a small instance with five vertices, each representing both a cus-

tomer and a candidate location for a facility (i.e., C = F ), with demands q = [3, 5, 4, 1, 1],

capacities Q = [10, 15, 5, 15, 10], and positioned as illustrated in Figure 1 at the end of

this section. The dij values are assumed to be proportional to the Euclidean distances

in the figure.

Facility domination inequalities. Let i1 and i2 be two facilities with Cr
i2 ⊆ Cr

i1 and

Qi1 ≥ Ki2(r). Under these conditions, i1 can be preferred to i2 because it can serve a

larger or equivalent set of customers. Consequently, an optimal solution that includes

i2 but not i1 can always be transformed into an equivalent solution that includes i1 but

not i2. We say that i1 dominates i2. We thus obtain the following result:

Proposition 1. The following inequalities are valid for the CSCP-r:

yi2 ≤ yi1 i1, i2 ∈ F : Cr
i2
⊆ Cr

i1
and Qi1 ≥ Ki2(r). (17)

8



Mathematical models and search algorithms for the CPCP Kramer, R.; Iori, M.; Vidal, T.

Note that inequalities (17) do not forbid solutions in which both i1 and i2 are selected.

In the example in Figure 1, facility 1 dominates facility 2, because it can serve the same

customers of 2 and, in addition, customer 3.

Forcing service inequalities. If ∆i(r) ≤ Qi for a given facility i and coverage radius r,

then the capacity constraint associated with i becomes redundant. This means that

whenever i is open, all the customers j ∈ Cr
i can be served by it. Hence, we have:

Proposition 2. The following inequalities are valid for the CSCP-r:

xij ≥ yi i ∈ F : ∆i(r) ≤ Qi, j ∈ Cr
i . (18)

Note that the presence of two or more constraints (18) involving the same customer

j is allowed in our model because of the “≥” in constraint (12). For the example in

Figure 1, if facility 2 is open, then customers 1, 2, 4, and 5 are assigned to it.

Surplus demand inequalities. Let ∆i(r) > Qi and S ⊂ Cr
i be a subset of customers

whose total demand does not exceed the capacity of i. We obtain:

Proposition 3. The following inequalities are valid for the CSCP-r:

xik ≥ yi −
(

∑

j∈Cr
i \S

xij

)

i ∈ F, S ⊂ Cr
i :

∑

j∈S
qj ≤ Qi, k ∈ S. (19)

Inequalities (19) generalize (18) because they force all customers k ∈ S to be served

by i when i is open, and all customers j ∈ Cr
i \ S are served by a facility other than i.

In the example of Figure 1, this inequality occurs for i = 1 and S = {1, 3, 5}, imposing

customers 1, 3, and 5 to be assigned to facility 1 if x12 = x14 = 0 and y1 = 1.

Symmetry breaking inequalities. Consider the case in which two customers j1 and

j2, with identical demands, are located in the common coverage area of two facilities

i1 and i2, and suppose j1 < j2 and i1 < i2. Then, one can forbid the assignment of j1

to i2 and of j2 to i1, since this would be equivalent to assigning j1 to i1 and j2 to i2.

Consequently:

Proposition 4. The following inequalities are valid for the CSCP-r

xi1,j2 + xi2,j1 ≤ 1 i1, i2 ∈ F, j1, j2 ∈ Cr
i1
∩ Cr

i2
: i1 < i2, j1 < j2, qj1 = qj2. (20)

Inequalities (20) do not forbid the assignments of both customers to the same facility

(or to neither i1 nor i2). In the example in Figure 1, the assignment of 4 to 2 and 5 to 1 is

forbidden, but the equivalent assignment of 4 to 1 and 5 to 2 is still possible. Note that

9
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these inequalities may be incompatible with (18) and (19), which might force an assign-

ment instead of forbidding it. To avoid this issue, we simply remove from constraints

(18) and (19) all inequalities containing a variable that also appears in an inequality of

type (20).

Capacity inequalities. Let S ⊆ C be a subset of customers and FS =
⋃

j∈S Fj be

the subset of facilities covering at least one customer in S. If all facilities in FS had the

same capacity, say, Q, then a lower bound on the minimum number of facilities required

to serve S could be imposed by adding

∑

k∈FS

yk ≥
⌈

∑

j∈S
qj/Q

⌉

S ⊆ C.

Following the work on the heterogeneous vehicle routing problem by Yaman (2006), these

constraints can be extended to handle heterogeneous capacities using the next result:

Proposition 5. The following inequalities are valid for the CSCP-r:

∑

k∈FS

⌈Qk/γ⌉yk ≥
⌈

∑

j∈S
qj/γ

⌉

S ⊆ C, γ ∈ N. (21)

In our implementation, we consider a facility i, select all subsets S containing 2 or

3 customers and lying entirely in the coverage area of i, then compute FS and impose

γ = Qi in (21). The process is repeated for all i ∈ F . In Figure 1, the example for

inequality (21) is obtained by setting S = {1, 2, 3}, FS = {1, 2, 3, 4, 5}, and γ = Q1.

Subset sum inequalities. From Boschetti et al. (2002), the capacity of a facility i

can potentially be decreased, while preserving optimality, by computing the maximal

capacity usage through the solution of the following subset sum problem (SSP):

Q′
i = max

{

∑

j∈Cr
i

qjxij :
∑

j∈Cr
i

qjxij ≤ Qi, xij ∈ {0, 1} for j ∈ Cr
i

}

.

Since Q′
i ≤ Qi, the capacity constraints (5) can be improved to

∑

j∈Cr
i

qjxij ≤ Q′
iyi i ∈ F. (22)

The same idea can be applied to increase the customers’ demands. The demand of a

customer k, when assigned to a facility i, can be increased by evaluating the maximal

usage of the facility capacity through the solution of the SSP

β1
ik = max

{

∑

j∈Cr
i \{k}

qjxij :
∑

j∈Cr
i \{k}

qjxij ≤ Qi − qk, xij ∈ {0, 1} for j ∈ Cr
i \ {k}

}

.

10
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If β1
ik is lower than Qi−qk, then the unused capacity in i amounts to at least Qi−qk−β1

ik

units, so qk can be increased to qk +Qi − qk − β1
ik = Qi − β1

ik, leading to

Proposition 6. The following inequalities are valid for the CSCP-r:

∑

j∈Cr
i \{k}

qjxij + (Qi − β1
ik)xik ≤ Qiyi i ∈ F, k ∈ Cr

i . (23)

These cuts have been used intensively in the cutting and packing literature. However,

it is easy to find cases in which they do not provide any improvement with respect to

the original capacity constraints (5). This is highlighted by the example in Figure 1, in

which both (22) for facility 1, and (23) for facility 1 and customer 2 are equivalent to (5).

This fact holds for all possible cuts in the example. The following inequalities provide,

instead, a stronger improvement over (5).

Disjunctive subset sum inequalities. As discussed earlier in this section, β1
ik repre-

sents the maximum possible use of capacity Qi when k is served by i. Now let β0
ik be

the maximum ik use when k is not served by i, namely:

β0
ik = max

{

∑

j∈Cr
i \{k}

qjxij :
∑

j∈Cr
i \{k}

qjxij ≤ Qi, xij ∈ {0, 1} for j ∈ Cr
i \ {k}

}

.

An extension of the subset sum inequalities (23) can be performed by embedding these

β0
ik values in the trivial disjunctive cuts by Balas (1973) (in our case being xij ≤ 0∨xij ≥ 1

for i ∈ F, j ∈ Cr
i ), as follows:

Proposition 7. The following inequalities are valid for the CSCP-r:

∑

j∈Cr
i \{k}

qjxij ≤ β0
ikyi − (β0

ik − β1
ik)xik i ∈ F, k ∈ Cr

i . (24)

Proof. We wish to prove that inequalities (24) correspond to the disjunction

∑

j∈Cr
i \{k}

qjxij ≤ β0
ikyi ∨

∑

j∈Cr
i \{k}

qjxij ≤ β1
ikyi i ∈ F, j ∈ Cr

i .

We consider the two cases in which xik takes value 0 (left) or 1 (right). When xik = 0,

constraints (24) directly reduce to

∑

j∈Cr
i \{k}

qjxij ≤ β0
ikyi,

which is valid because all xij take value 0 when yi = 0 and because of the maximality

of β0
ik. If xik = 1 instead, then yi must take value 1 too, and thus constraints (24) can

11
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be rewritten as

∑

j∈Cr
i \{k}

qjxij ≤ β0
ikyi − (β0

ik − β1
ik) ≤ β0

ikyi − (β0
ik − β1

ik)yi = β1
ikyi,

which is valid because of the maximality of β1
ik.

The idea behind inequalities (24) is reminiscent of up-lifting and down-lifting in cut-

ting plane theory. For instance, in a binary integer problem, a given inequality can be

strengthened by considering the linear relaxation solution at a certain node of a branch-

and-bound tree and taking into account the previously performed branches to 0 or 1

(see, e.g., Kaparis and Letchford 2008, and Vasilyev et al. 2016).

In Figure 1, the inequality (24) applied to facility 1 and customer 2 leads to a stronger

capacity constraint. Inequalities (24) are indeed more effective than the well-known

inequalities (23) but also more specialized: the constraints (23) can be readily extended

to integer x variables, whereas the constraints (24) hold only for binary x variables due

to the nature of the disjunction.

2 1 3

4 5

Examples of Inequalities:

y2 ≤ y1 (17)

x21 ≥ y2 (18)

x11 ≥ y1 − (x12 + x14) (19)

x34 + x25 ≤ 1 (20)

y1 + 2y2 + 1y3 + 2y4 + y5 ≥ 2 (21)

3x11 + 5x12 + 4x13 + 1x14 + 1x15 ≤ 10y1 (22)

3x11 + 5x12 + 4x13 + 1x14 + 1x15 ≤ 10y1 (23)

3x11 + 4x12 + 4x13 + 1x14 + 1x15 ≤ 9y1 (24)

Figure 1: Examples of valid inequalities for a small instance. Input data: F = C = {1, 2, 3, 4, 5};
Q =[10, 15, 5, 15, 10]; and q =[3, 5, 4, 1, 1].

5 Searching for the Optimal Radius

As presented in Section 3.3, an optimal CPCP solution can be found by iteratively

solving a series of CSCP-r subproblems, each associated with a different distance. Let

(z1, . . . , zD) be the distinct values from the distance matrix, in increasing order. Then,

zk, for k ∈ {1, . . . , D}, is the optimal distance value if and only if there exists a fea-

sible solution for the CSCP-r subproblem with r = zk, and either k = 1 or there is

no feasible solution for r = zk−1. Apart from the trivial case where z1 is optimal, at

least two subproblems, one feasible and one infeasible, have to be solved to prove op-

timality, but more subproblems are usually solved because the optimal value is unknown.

12
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Binary and sequential search. The most straightforward approach to find the op-

timal distance is to adopt a binary search over the vector (zilow , . . . , ziup), where zilow

is a strict lower bound on the distance (known to be infeasible) and ziup is an up-

per bound (known to be feasible). Iteratively, the subproblem obtained for zimid with

imid = ⌊ ilow+iup

2
⌋ is solved. If the subproblem is feasible, then the next iteration is per-

formed over (zilow, . . . , zimid), otherwise the search is performed over (zimid , . . . , ziup). The

process terminates when iup = ilow + 1. This search strategy is guaranteed to take

O(logD) = O(log(nm)) iterations. This is the best possible method in terms of number

of search iterations. However, the two drawbacks of this approach are that it tends to

overshoot the value of the optimal solution in the early steps of the search, and that it

solves on average 50% of feasible and infeasible subproblems. In our context, the size

of the mathematical formulation solved at each iteration grows quickly with z, because

more variables and constraints have to be considered. Moreover, in our experiments it

appeared to be more computationally expensive to solve a feasible problem (i.e., find a

feasible CPCP solution) than an infeasible one (i.e., to prove infeasibility).

In light of the previous observations, the second most natural strategy involves a

sequential search, solving the subproblems in increasing order of z ∈ (zilow , . . . , ziup) and

stopping as soon as a feasible solution is found. This strategy circumvents the two afore-

mentioned issues, because it avoids large problems with z values that are greater than

the optimum. It also requires the solution of only one feasible subproblem. However,

its drawback is the high number of iterations, which rises to O(nm) and renders this

approach slower for problems with many distinct distance values and a weak lower bound.

Layered search. We thus propose an alternative search methodology, called L-Layered

Search and described in Algorithm 1, which combines the benefits of both previous

approaches. This method can be viewed as a recursive sequential search, starting with

larger increments (when L > 1), and finishing with smaller ones (a classical sequential

search when L = 1). At each step, the algorithm solves a sequence of subproblems with

increasing distance bounds (lines 5–8), and then performs a recursive call with parameter

L−1 on a smaller interval (lines 9–13). The algorithm is initially called with the function

Layered Search(L, ilow, iup), and it terminates as soon as iup = ilow+1 (line 1). The

increment size of δ = ⌈(iup−ilow−1)(L−1)/L⌉ is chosen at each recursion (line 2) to attain

good overall complexity and guarantee a small number of calls to feasible subproblems.

Proposition 8. The number of feasible subproblems solved by Layered Search(L, ilow,

iup) is in O(L).

Proof. At each recursive call, at most one feasible subproblem is solved in the loop of

lines 5–8, and L is decremented by one unit. Moreover, when L = 1 the behavior

of the algorithm corresponds to a sequential search (because δ = 1 at step 2), and

13
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Algorithm 1: Layered Search(L, ilow, iup)

1 if iup = ilow + 1 then return ziup end if

2 δ ← ⌈(iup − ilow − 1)(L−1)/L⌉
3 i← ilow

4 isFeasible← False

5 while isFeasible = False and i+ δ < iup do

6 i← i+ δ

7 isFeasible← SolveCSCP-r(zi)

8 end

9 if isFeasible = True then

10 Layered Search(L− 1, i− δ, i)

11 else

12 Layered Search(L− 1, i, iup)

13 end

this necessarily leads to the termination criterion for L = 0, if that was not already

attained.

Proposition 9. The number of subproblems solved by Layered Search(L, ilow, iup)

is in O(L(iup − ilow − 1)1/L).

Proof. Let N = iup − ilow − 1 be the number of subproblems with unknown sta-

tus within the range {ilow, . . . , iup}, and let T (L,N) be the complexity of Layered

Search(L, ilow, iup) in terms of number of subproblem resolutions. The algorithm solves

up to N
⌈N(L−1)/L⌉

≤ N1/L subproblems, and then performs a recursive call on a smaller

range, in which the number of subproblems with unknown feasibility status is reduced

to ⌈N (L−1)/L⌉ − 1. Therefore, the following holds:

T (L,N) ≤







N if L = 1

N1/L + T (L− 1, ⌈N (L−1)/L⌉ − 1) if L > 1,

and T (L,N) ≤ LN1/L follows by direct induction.

The complexity of the three search strategies, in terms of total number of subproblem

calls and number of calls to feasible subproblems, is summarized in Table 1. One can

observe that the L-layered search constitutes an interesting alternative between sequen-

tial and binary search, behaving as a sequential search when L = 1, and coming closer

to a binary search (low number of subproblems overall, but no control on the number of

feasible subproblems) as L grows larger. Typical values for L are in the range {2, . . . , 5}.
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Table 1: Complexity of search strategies (N = number of distinct values in the range to be searched)

Sequential 2-Layers 3-Layers L-Layers Binary

# overall subproblems O(N) O(
√
N) O(N1/3) O(LN1/L) O(logN)

# feasible subproblems 1 2 3 L O(logN)

Other speedup techniques. A complete solution of the CSCP-r subproblem is often

unnecessary. To reduce the computational effort, we use three simple techniques: (i) we

estimate the maximum demand that can be covered by each facility by looking at the

customers in its coverage area, and then, if the sum of the p largest such values is lower

than the total demand, we avoid solving the CSCP-r (since the subproblem is clearly

infeasible); (ii) we terminate the solution of each CSCP-r whenever a valid lower bound

greater than p is achieved (infeasible subproblem); (iii) we terminate the solution of

the CSCP-r whenever a feasible solution opening at most p facilities is found (feasible

subproblem).

In addition, we obtain initial upper bounds on the optimal radius via the heuristic of

Quevedo-Orozco and Rı́os-Mercado (2015), which is the current state-of-the-art meta-

heuristic for the CPCP. However, as reported by the authors, this algorithm does not

perform well on instances with a small n/p ratio. Thus, we also perform a simple iterated

local search (ILS), possibly obtaining a better initial upper bound.

Our simple ILS builds an initial solution by opening one facility at a time and as-

signing customers as follows. Let C̄ be the set of unassigned customers. The facility i

that realizes the minimum of maxj∈C̄ dij/Qi is opened, and the closest customers in C̄

are assigned to i, iteratively, until the capacity constraints prevent further assignments.

This process is repeated until a maximum of p facilities have been opened. If some

customers remain unassigned, then they are assigned to their closest facility, possibly

giving an infeasible initial solution.

Subsequently, the method attempts to improve this solution with local search and

perturbation steps. Let Q̄i be the excess of capacity in facility i (either zero for a

feasible solution, or strictly positive for an infeasible solution), and d̄ij = dij +MQ̄i be

the cost function associated with the assignment of customer j to facility i, where M is

a large value. The ILS attempts to change the customer and facility associated with the

largest d̄ij. Three types of moves are considered: Cust-Swap, Relocate, and Fac-

Swap, invoked in this order. Cust-Swap exchanges two customers assigned to different

facilities, Relocate attempts to move a customer from one facility to another, and

Fac-Swap exchanges an open facility with a closed one. Finally, a strong perturbation

operator is invoked once no improving move can be found. This perturbation randomly

exchanges the open facilities with the closed ones (one exchange for each open facility).
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The algorithm terminates after 300 executions of the local search and perturbation

mechanism.

This simplistic metaheuristic was able to produce a feasible solution for all the in-

stances presented in Section 6.1, and it led to a better upper bound in 73 instances.

The detailed results are provided on our webpage: http://www.or.unimore.it/site/

home/online-resources.html.

6 Computational Experiments

We conducted extensive computational experiments to evaluate the performance of the

proposed techniques. The algorithms were coded in C++ and executed on a single

thread of an Intel Core i5-2410M 2.3GHz with 4GB of RAM, running under Linux Mint

17.2 64-bit. GUROBI 6.51 was adopted to solve the MILP models, using its default

parameters. A time limit of 600 seconds was allowed for each run.

6.1 Benchmark instances

We considered five sets of instances: four are from previous literature, and the fifth is

a set of large instances that we created to better evaluate our methods. Following the

literature, in all the test sets each vertex is both a customer and a candidate location

for a facility (i.e., C = F ).

• Set 1 (S1) – This set contains 160 instances proposed for the CPMP by Ceselli and

Righini (2005) and derived from 40 different graphs containing either 50, 100, 150,

or 200 vertices. This set includes and extends 20 instances from the OR-Library

used in Scaparra et al. (2004). The demands and the coordinates of the vertices

were randomly generated, and the distances were obtained by computing Euclidean

values rounded down to the nearest integer. From each graph, four instances were

produced by setting p equal to ⌊n/10⌋, ⌊n/4⌋, ⌊n/3⌋, or ⌊n/2.5⌋. The facility

capacities are homogeneous and set to ⌈12n/p⌉.

• Set 2 (S2) – This set contains eight instances by Scaparra et al. (2004), derived from

two different graphs containing either 100 or 150 vertices and with non-Euclidean

integer distances. From each graph, four instances with homogeneous capacities

and four with heterogeneous capacities were created by selecting p ∈ {5, 15}.

• Set 3 (S3) – Proposed by Lorena and Senne (2004) for the CPMP, this set contains

six instances with n varying from 100 to 402 and p from 10 to 40, with homogeneous

capacities equal to
⌈

∑

j qj/(τp)
⌉

and τ ∈ {0.8, 0.9}. The distances are Euclidean.

Albareda-Sambola et al. (2010) considered floating-point values, while Quevedo-

Orozco and Rı́os-Mercado (2015) rounded down to the nearest integer.
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• Set 4 (S4) – This set contains five instances by Lorena and Senne (2004), obtained

by modifying the Pcb3038 instance of the TSPLIB, varying p in {600, 700, 800, 900,
1000}. The facility capacities are homogeneous and set to

⌈

∑

j qj/(τp)
⌉

, with

τ ∈ {0.8, 0.9}.

• New set (KIV) – We generated 280 new instances that are similar to S1, but have ei-

ther n ∈ {300, 500, 1000, 2000, 3000} and integer distances, or n ∈ {50, 100, 150, 200,
300, 500, 1000, 2000, 3000} and floating-point distances. As in S1, the demand val-

ues were randomly generated within the interval [1, 20]. To obtain a customer

density similar to that of Scaparra et al. (2004), we randomly generated the vertex

coordinates in [1,
√
100n]. We created 20 instances for each value of n, dividing

them into four groups of five instances each, with p equal to
⌊

n
10

⌋

,
⌊

n
7

⌋

,
⌊

n
4

⌋

, or
⌊

n
3

⌋

. These instances are available at http://www.or.unimore.it/site/home/

online-resources.html.

6.2 Evaluation of the solution techniques for the CSCP subproblem

Our first experiment focused on the formulations and valid inequalities used to solve

the CSCP subproblem. Recall that the subproblem seeks to minimize the number of

facilities needed to cover the demands subject to a radius limit r, and that finding any

lower bound greater than p, or a feasible solution using up to p facilities, immediately

terminates the subproblem execution. For this experiment, we used S1 and considered

r = BLB − 1, where BLB is the best known lower bound from the literature, collected

from Quevedo-Orozco and Rı́os-Mercado (2015). Based on our computational experi-

ments, we know that this BLB matches the optimal radius in 150 of the 160 instances.

This choice of r is particularly relevant because the solution of the associated subproblem

usually constitutes the last and hardest infeasible iteration. A formulation that produces

good linear programming (LP) relaxation values in reasonable times is clearly preferable.

Choice of the CSCP formulation. Table 2 presents the results of our first experiment,

which compares the descriptive and arc-flow formulations (CSCP-r and CSCP-AF-r,

respectively), with and without additional inequalities. Each row refers to a group

of ten instances with the same n and p values. The left part of the table presents

the results of the LP relaxations of the “plain” formulations, obtained by disregarding

the inequalities of Section 4, namely, (11)–(15) for CSCP-r and (8)–(12), (14), (15)

for CSCP-AF-r. The right part shows the results achieved by adding the inequalities

(16)–(21) and (24) to the plain formulations, thus obtaining the “full” formulations.

Column “LB” gives the average LP relaxation lower bound, “> p” reports the number

of instances for which LB > p, “T(s)” gives the average CPU seconds required to solve
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the LP models, and “gap(%)” is the percentage gap between the two LP relaxations

(computed as 100 × (LBB − LBA)/LBA, where LBA and LBB are the LP bounds of

CSCP-AF-r and CSCP-r, respectively).

Table 2: Comparison of the linear relaxations of plain and full CSCP-AF-r and CSCP-r formulations.

plain formulations (LP) full formulations (LP)
instance

CSCP-AF-r CSCP-r CSCP-AF-r CSCP-r

n p # LB > p T(s) LB > p T(s)
gap(%)

LB > p T(s) LB > p T(s)
gap(%)

50 5 10 4.69 2 2.65 4.46 0 0.07 -4.90 5.28 8 3.77 5.28 8 0.44 0.00

100 10 10 9.22 0 5.51 8.82 0 0.14 -4.29 10.10 5 12.61 10.10 5 1.50 0.00

150 15 10 13.72 0 13.44 12.92 0 0.21 -5.83 15.67 7 25.94 15.67 7 3.18 0.00

200 20 10 18.40 0 28.58 17.58 0 0.33 -4.49 20.41 7 59.14 20.41 7 7.75 -0.01

50 12 10 11.75 2 0.17 10.70 0 0.02 -9.00 12.04 6 0.51 12.00 6 0.16 -0.32

100 25 10 24.18 2 0.34 22.05 0 0.04 -8.78 25.13 6 1.15 25.05 5 0.29 -0.30

150 37 10 36.21 2 0.52 31.64 0 0.07 -12.61 38.13 10 1.91 37.95 10 0.43 -0.46

200 50 10 49.34 2 0.90 43.95 0 0.11 -10.92 51.25 9 3.36 51.02 8 0.82 -0.45

50 16 10 15.78 2 0.08 14.07 0 0.01 -10.82 16.12 6 0.30 16.03 5 0.15 -0.54

100 33 10 32.65 3 0.19 28.61 0 0.03 -12.36 33.30 4 0.66 32.88 4 0.24 -1.25

150 50 10 49.75 3 0.31 43.07 0 0.06 -13.42 51.08 9 0.97 50.50 6 0.36 -1.13

200 66 10 67.16 7 0.54 57.01 0 0.10 -15.11 68.99 9 1.55 68.16 8 0.61 -1.20

50 20 10 19.86 4 0.07 17.83 0 0.01 -10.24 20.12 6 0.36 19.58 1 0.27 -2.69

100 40 10 39.83 2 0.15 35.29 0 0.03 -11.40 40.19 4 0.63 39.07 2 0.33 -2.77

150 60 10 59.77 3 0.27 51.68 0 0.06 -13.53 60.71 5 0.96 58.72 3 0.56 -3.28

200 80 10 81.58 8 0.44 70.32 0 0.09 -13.81 82.92 8 1.86 80.30 7 0.93 -3.16

avg/sum 33.37 42 3.39 29.38 0 0.09 -10.10 34.46 109 7.23 33.92 92 1.13 -1.10

From Table 2, we first observe that the plain CSCP-AF-r provides significantly better

LP bounds than the plain CSCP-r. For 42 instances, infeasibility is proven by simply

solving the plain CSCP-AF-r LP. The drawback of CSCP-AF-r is its higher CPU time

consumption, especially on instances with large n/p ratio. The full CSCP-AF-r also

provides better lower bounds than the full CSCP-r. However, the CSCP-r benefits more

from the additional inequalities: the gap between the two bounds reduces from −10.10%
to −1.10% when the additional inequalities are included. The full CSCP-r LP bound

is sufficient to prove CPCP infeasibility for 92 instances, compared to 109 instances for

the full CSCP-AF-r. However, solving the full CSCP-AF-r LP requires six times the

CPU effort required by the full CSCP-r LP. Given the similar performance of the two

full formulations, but their significant difference in terms of time, we decided to invoke

the CSCP-r at each iteration of our search algorithms.

Impact of the valid inequalities. Our second experiment, reported in Table 3, ana-

lyzes in detail the impact of the inequalities from Section 4. In the left part of the table,

column “LB” provides the average LP relaxation value of the plain CSCP-r. Each succes-

sive column under the label “gap(%)” reports the gap between LB and the LP relaxation
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value of the plain CSCP-r after the inclusion of the indicated inequality. Similarly, each

column in the right part of the table shows the gap(%) from the average LP relaxation

value of the full CSCP-r when removing the indicated inequality. From Table 3, we ob-

serve that the addition of inequalities (19) to the plain CSCP-r does not improve the LP

bound, but their removal from the full formulation decreases the LP bound, even if only

slightly. All the other inequalities have a visible impact on the LB when added to the

plain formulation or removed from the full formulation. The well-known inequalities (16)

are essential for the quality of the LB, as are the new disjunctive subset sum inequalities

(24). Inequalities (19), (21), and (24) have a larger impact on instances with small n/p

values, while inequalities (16) contribute more on instances with large n/p values.

Table 3: Impact of valid inequalities on linear relaxation of CSCP-r formulation.

plain CSCP-r (LP) full CSCP-r (LP)
instance

gap(%) gap(%)

n p # LB +(16) +(19)a +(19)b +(21)a +(21)b +(24) LB −(16) −(19)c −(19)d −(21)c −(21)d −(24)
50 5 10 4.46 18.50 0.00 0.00 0.00 0.00 2.47 5.28 -7.20 0.00 0.00 0.00 0.00 -0.03

100 10 10 8.82 14.46 0.00 0.00 0.00 0.00 3.99 10.10 -4.91 -0.01 -0.01 0.00 0.00 -0.02

150 15 10 12.92 21.25 0.00 0.00 0.00 0.00 5.98 15.67 -7.09 -0.01 -0.01 0.00 0.00 -0.04

200 20 10 17.58 16.00 0.00 0.00 0.00 0.00 3.61 20.41 -5.81 0.00 0.00 0.00 0.00 -0.06

50 12 10 10.70 10.01 0.00 0.00 0.49 0.90 5.47 12.00 -1.09 -0.04 -0.05 -0.48 -0.48 -0.91

100 25 10 22.05 10.13 0.00 0.00 0.35 1.84 5.49 25.05 -1.12 -0.01 -0.03 -1.90 -1.90 -0.56

150 37 10 31.64 15.65 0.00 0.00 0.61 2.24 8.13 37.95 -2.04 -0.02 -0.03 -2.20 -2.20 -0.64

200 50 10 43.95 11.93 0.00 0.00 0.97 1.85 6.41 51.02 -1.57 -0.02 -0.04 -1.92 -1.92 -0.88

50 16 10 14.07 10.22 0.00 0.00 1.35 1.42 6.15 16.03 -0.21 -0.03 -0.03 -1.31 -1.43 -1.27

100 33 10 28.61 10.81 0.00 0.00 1.81 2.43 6.85 32.88 -0.64 -0.04 -0.08 -1.34 -1.40 -1.43

150 50 10 43.07 10.81 0.00 0.00 2.21 3.19 7.06 50.50 -0.59 -0.06 -0.07 -2.14 -2.22 -2.06

200 66 10 57.01 12.11 0.00 0.00 2.66 3.74 8.33 68.16 -0.57 -0.06 -0.10 -2.34 -2.43 -1.83

50 20 10 17.83 4.23 0.00 0.00 1.70 2.00 6.21 19.58 -0.06 -0.04 -0.18 -0.86 -0.94 -3.08

100 40 10 35.29 4.48 0.00 0.00 2.06 2.65 6.24 39.07 -0.15 -0.06 -0.14 -1.01 -1.27 -3.06

150 60 10 51.68 7.00 0.00 0.00 2.41 3.21 6.61 58.72 -0.13 -0.13 -0.17 -1.26 -1.49 -2.84

200 80 10 70.32 7.07 0.00 0.00 3.02 3.31 7.12 80.30 -0.21 -0.10 -0.18 -1.27 -1.56 -3.07

average - 11.54 0.00 0.00 1.23 1.80 6.01 - -2.09 -0.04 -0.07 -1.13 -1.20 -1.36

a |S| ∈ {1, 2}. b |S| ∈ {1, 2, 3}. c |S| ∈ {2, 3}. d |S| ∈ {1, 2, 3}.

Impact of the symmetry-breaking inequalities. The impact of inequalities (17),

(18), and (20) is not shown in Table 3, because they do not enhance the linear relaxation

but rather help to reduce the search space. We thus evaluated their impact by computing

the number of nodes explored in the subproblems. For this experiment, we selected the

instances from S1 that were not proved to be infeasible after the solution of the LP

relaxation of the full CSCP-r (68 instances in total) and solved them with our models,

terminating upon proven infeasibility or when a time limit of 600 seconds was reached.

Table 4 reports the average number of nodes explored by GUROBI when solving the
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plain and full CSCP-r formulations (columns 4 and 8, respectively); the formulations

obtained by adding inequalities (17), (18), or (20) one at a time to the plain CSCP-r

(columns 5–7); and the formulations obtained by removing these inequalities one at a

time from the full CSCP-r (columns 9–11). We observe a significant decrease in the

number of nodes explored when using the full CPCP-r instead of the plain version. The

contribution of the three inequalities is not always relevant when they are added one

at a time to the plain formulation. One instance in particular (with n=100 and p=25)

could not be proven infeasible within the time limit, either by the plain CSCP-r or by

adding (18). However, the number of nodes explored increased significantly with the

use of inequalities (18). Their removal from the full formulation is detrimental, since it

significantly increases the number of nodes explored.

Table 4: Number of nodes explored to prove infeasibility with CSCP-r formulations

instance explored nodes explored nodes

n p # plain +(17) +(18) +(20) full −(17) −(18) −(20)
50 5 2 22.00 10.00 64.50 52.00 1.00 1.00 1.00 1.00

100 10 5 4,024.20 607.60 1,737.80 3,402.40 310.00 244.20 305.20 191.60

150 15 3 17,512.33 4,820.33 10,270.00 9,460.33 1,482.00 9,927.00 1,648.67 1,299.00

200 20 3 3,891.00 1,071.00 4,100.67 2,656.00 285.33 200.33 89.33 1.00

50 12 4 996.50 112.00 759.25 126.00 1.00 1.75 1.00 1.00

100 25 5 46,141.80 12,563.00 111,176.80 33,091.60 6,017.00 28,510.40 19,308.80 11,141.80

150 37 0 - - - - - - - -

200 50 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

50 16 5 1,706.00 205.20 2,237.20 3,183.40 1.00 3.20 1.00 1.00

100 33 6 625.00 637.33 695.50 494.50 1.00 18.83 1.00 1.00

150 50 4 2,110.25 1,002.50 2,832.00 3,606.50 144.50 162.00 138.00 376.00

200 66 2 420.50 521.00 263.50 266.00 1.00 1.00 1.00 1.00

50 20 9 2,515.78 2,767.89 2,000.67 1,375.11 155.44 71.67 474.56 138.56

100 40 8 1,637.63 397.75 340.25 1,834.88 10.88 107.25 19.00 65.50

150 60 7 691.71 342.43 410.14 670.71 87.00 90.00 85.00 85.57

200 80 3 380.67 384.00 365.67 363.00 1.00 1.00 1.00 1.00

average 5,511.76 1,696.20 9,150.33 4,038.90 566.61 2,622.71 1,471.70 887.07

6.3 Performance of the search algorithms for the CPCP

Based on the results of Section 6.2, we decided to integrate the full CSCP-r, composed of

(11)–(21) and (24), into the search algorithms presented in Section 5. We now evaluate

the performance of the resulting search approaches for the CPCP. We set the initial

search interval for the radius r to [0,UBbest], where UBbest is the best upper bound

found by the heuristic of Quevedo-Orozco and Rı́os-Mercado (2015) and by the ILS

that we described at the end of Section 5. Table 5 compares the results obtained by the

proposed algorithms with those of recent state-of-the-art heuristic and exact approaches,

on the classical instances from the literature, namely:
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SPS – the multi-exchange neighborhood search algorithm of Scaparra et al. (2004);

OP – the binary search of Özsoy and Pınar (2006) that solves plain CSCP models

at each iteration;

ADF – the Lagrangian relaxation method of Albareda-Sambola et al. (2010);

QR – the iterated greedy local search metaheuristic of Quevedo-Orozco and Rı́os-

Mercado (2015), including supplementary results available from a personal

communication.

For our search algorithms, we tested sequential search (SS), L-layered search with L=2,

3, or 4 (L2, L3, L4), and binary search (BS). Each row in the table reports the results for

a subset of instances. For each algorithm and subset, we report the number of proven

optimal solutions “#opt”, the average gap “gap(%)”, and the average computing time

in seconds “T(s)”. For the exact algorithms (all but SPS and QR), gap(%) is evaluated

as 100 · (UB − LB)/UB, where UB and LB are the upper and lower bounds produced

by the given algorithm, and #opt is the number of times for which LB=UB. For the

heuristics (SPS and QR), gap(%) and #opt are computed by considering the best known

LB values. The results for SPS, OP, ADF, and QR were taken from Quevedo-Orozco

and Rı́os-Mercado (2015), who ran the algorithms on a 2.0GHz AMD Opteron processor

with 32GB of RAM. As they did not solve the S3 instances with float distances, the ADF

results for these instances were collected from Albareda-Sambola et al. (2010), who used

a 2.39GHz Intel Pentium 4 processor with 512MB of RAM.

From Table 5, we can observe that the results of SS, L2, L3, L4, and BS on the set

S1 are better than those of the previous literature for the majority of the instances. The

ten instances with n = 200 and p = 20 are solved to optimality only by OP, SS, and

L3, while those with n = 200 and p = 50 are solved only by SS. Instances from S2 and

S3-int are solved by all the exact methods. Of the six instances from S3-float, five are

solved to proven optimality by L2, L3, L4 and BS, whereas SS can solve only two. The

five instances from S4, which involve more than 3000 vertices, are not solved to proven

optimality by any of the algorithms. This is also the only set for which the average gap

of our L-layered search algorithms is large, although it is still smaller than that of SPS,

ADF, and QR (that for OP is not computed because the memory exceeded the limit

imposed by the authors, and no upper bound could be found). The average CPU time

of SS, L2, L3, L4, and BS is smaller than that of OP and ADF, due to more generous

time limits for the latter approaches. Despite this difference, SS, L2, L3, L4, and BS are

all able to produce better results. Between them, our five algorithms were able prove

optimality for 179 of the 185 benchmark instances, including 13 open cases.
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Table 5: Evaluation of existing (SPS, OP, ADF, QR) and new (SS, L2, L3, L4, BS) exact CPCP algorithms on classical benchmark sets.

instance #opt gap(%) T(s)

set n p # SPS OPADFQR SS L2 L3 L4 BS SPS OP ADF QR SS L2 L3 L4 BS SPS OP ADF QR SS L2 L3 L4 BS

S1 50 5 10 7 10 10 10 10 10 10 10 10 1.88 0 0 0 0 0 0 0 0 1.2 2.9 1.4 0.2 0.8 1.2 0.9 0.7 0.4

12 10 2 10 10 3 10 10 10 10 10 5.39 0 0 6.64 0 0 0 0 0 2.4 5.5 9.7 0.4 0.9 1.4 1.5 1.1 1.7

16 10 3 10 10 2 10 10 10 10 10 2.87 0 0 8.97 0 0 0 0 0 2.8 21.3 82.8 0.6 0.7 0.8 1.4 1.3 0.9

20 10 2 10 8 0 10 10 10 10 10 3.59 0 2.14 21.28 0 0 0 0 0 1.9 86.5 1103.1 0.7 2.6 4.8 4.8 3.9 2.9

100 10 10 0 10 10 8 10 10 10 10 10 8.01 0 0 1.30 0 0 0 0 0 9.5 62.4 59.4 0.6 4.0 6.8 6.4 4.8 4.2

25 10 1 9 8 3 10 10 10 10 10 12.97 1.33 3.21 9.08 0 0 0 0 0 9.7 423.4 975.6 1.4 29.1 22.1 26.0 35.0 35.1

33 10 0 9 7 2 10 10 10 10 10 10.34 1.67 2.32 9.46 0 0 0 0 0 15.6 377.6 1380.4 2.1 4.7 8.4 9.9 8.3 6.8

40 10 1 10 6 0 10 10 10 10 10 9.89 0 3.93 35.82 0 0 0 0 0 30.8 191.0 2021.3 2.4 3.4 3.8 6.6 8.7 5.8

150 15 10 0 10 10 4 10 10 10 10 10 13.74 0 0 3.54 0 0 0 0 0 26.6 154.4 165.1 1.0 11.2 16.7 30.0 30.7 14.4

37 10 0 9 9 0 10 10 10 10 10 18.14 1.67 0.83 12.31 0 0 0 0 0 46.9 386.0 532.5 2.6 6.5 16.1 34.1 37.6 12.4

50 10 0 9 7 0 10 10 10 10 10 16.1 1.67 3.50 22.84 0 0 0 0 0 34.6 560.9 1834.6 5.5 1.9 4.7 6.0 10.8 4.0

60 10 0 9 6 0 10 10 10 10 10 16.2 3.57 4.21 38.47 0 0 0 0 0 51.5 914.8 1908.3 7.2 4.8 10.1 12.3 22.8 11.6

200 20 10 0 10 9 3 10 9 10 9 9 18.8 0 0.67 5.26 0 1.25 0 2.50 1.88 63.6 237.5 625.9 1.6 31.6 75.6 66.8 72.5 68.4

50 10 0 6 4 0 10 9 8 9 9 21.08 4.22 11.20 22.24 0 4.62 4.00 1.00 2.50 46.8 1145.3 2469.8 6.5 107.3 110.5 158.9 186.0 163.1

66 10 0 9 4 0 10 10 10 10 10 23.13 2.22 8.76 31.23 0 0 0 0 0 55.3 846.2 2163.5 9.8 9.3 45.9 26.4 34.1 27.9

80 10 0 7 5 0 10 10 10 9 10 23.91 7.17 9.05 36.53 0 0 0 4.74 0 94.4 560.3 1800.6 11.9 36.9 33.6 69.6 69.0 64.1

S2 8 0 8 8 1 8 8 8 8 8 6.21 0 0 3.25 0 0 0 0 0 27.3 152.7 219.4 0.8 51.9 64.0 99.3 57.6 72.0

S3-int 6 0 6 6 0 6 6 6 6 6 23.96 0 0 3.57 0 0 0 0 0 285.4 319.3 256.6 2.4 143.4 65.6 84.5 61.5 57.1

S3-float 6 – – 4 – 2 5 5 5 5 – – 0.55 – 23.38 0.18 0.04 0.02 0.00 – – 1201.5 – 555.5 242.6 190.2 150.1 150.0

S4 5 0 0 0 0 0 0 0 0 0 75.61 – 60.94 53.14 62.38 28.28 15.35 11.95 14.6 1877.6 – 21600.0 350.4 600.0 600.0 600.0 600.0 600.0

avg/sum 185 16 161 141 36 176 177 177 176 177 16.41 1.31 5.57 17.10 4.29 1.72 0.97 1.01 0.95 141.3 343.1 2020.6 21.5 80.3 66.7 71.8 69.8 65.1

2
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Overall, it seems that SS performs especially well for small instances with integer

distances, while BS behaves better on large instances with floating-point distances. The

L-layered search algorithms have a performance that is quite close to the best results

on both types of instances. This analysis, however, is restricted because of the limited

variety of the existing instances, with few test cases involving large and/or floating-point

distances. To fill this experimental gap, we conducted additional experiments on the new

KIV test set, reported in Tables 6 and 7, with either integer or floating point distances.

These two tables have the same format as Table 5.

Table 6: Performance of search algorithms on KIV instances – integer distances.

instance #opt gap(%) T(s)

n p # SS L2 L3 L4 BS SS L2 L3 L4 BS SS L2 L3 L4 BS

300 30 5 5 5 5 4 5 0.00 0.00 0.00 0.00 4.17 149.85 115.83 160.70 131.49 244.88

42 5 3 3 3 3 3 8.83 6.00 2.22 3.33 4.44 266.02 265.96 272.29 278.29 248.85

75 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 64.81 35.48 44.22 25.93 114.55

100 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 7.81 7.31 8.40 10.54 8.99

500 50 5 3 3 3 3 3 4.63 8.20 5.17 6.45 10.80 384.85 324.63 297.72 294.51 268.99

71 5 3 3 3 3 3 8.00 14.00 10.00 2.35 2.35 291.11 260.54 294.79 271.94 287.95

125 5 3 3 3 3 3 17.62 6.42 4.29 5.33 22.09 274.87 257.56 270.51 277.59 264.58

166 5 4 3 2 4 4 10.00 16.50 18.75 2.86 19.17 315.53 360.84 378.13 299.34 343.37

1000 100 5 1 1 0 0 0 19.06 5.00 19.33 17.91 14.61 520.71 598.12 600.00 600.00 600.00

142 5 0 0 0 0 0 29.12 42.41 41.82 11.11 11.50 600.00 600.00 600.00 600.00 600.00

250 5 2 2 2 2 2 29.17 17.51 9.11 8.19 57.56 408.05 423.35 449.11 433.46 410.31

333 5 1 1 1 1 1 44.05 16.00 20.29 31.29 7.69 490.49 491.41 500.35 538.24 497.69

2000 200 5 0 0 0 0 0 31.24 38.88 35.06 54.16 45.04 600.00 600.00 600.00 600.00 600.00

285 5 0 0 0 0 0 38.69 40.36 65.04 54.22 34.60 600.00 600.00 600.00 600.00 600.00

500 5 3 3 3 3 1 22.54 8.00 7.79 38.46 3.08 421.82 443.65 505.54 596.94 419.01

666 5 4 4 4 4 1 11.72 4.00 1.54 51.59 8.00 243.88 243.29 308.17 539.54 236.96

3000 300 5 0 0 0 0 0 33.77 41.13 47.45 54.42 45.58 600.00 600.00 600.00 600.00 600.00

428 5 0 0 0 0 0 42.78 54.88 65.40 54.11 45.09 600.00 600.00 600.00 600.00 600.00

750 5 2 1 0 2 0 35.04 12.00 12.82 70.83 10.97 566.33 583.55 600.00 600.00 567.66

1000 5 4 4 2 4 4 12.14 5.33 13.50 5.00 8.57 340.07 350.55 575.66 305.95 383.53

avg/sum 100 48 46 41 46 40 19.92 16.83 18.98 23.58 17.77 387.31 388.10 413.28 410.19 394.87

As can be observed in Table 6, SS solves the largest number of instances with integer

distances. However, the best average gap is attained by L2. This is because SS cannot

improve the upper bound if it is unable to prove optimality. Moreover, BS may spend

a significant time solving one or more feasible iterations with an overestimated value of

r, obtaining a worse overall #opt value. The layered searches constitute an alternative

between SS and BS: progressing faster than a sequential search toward the optimal

solution, and avoiding CSCP-r subproblems with large r. In terms of CPU time, the

global average of each method is similar, because these values are strongly influenced

by the time spent on the largest instances, where the time limit is usually reached.

Still, significant effects can be observed on some subgroups of instances. For small and

medium instances especially, the layered and binary searches usually prove optimality
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Table 7: Performance of search algorithms on KIV instances – floating-point distances.

instance #opt gap(%) T(s)

n p # SS L2 L3 L4 BS SS L2 L3 L4 BS SS L2 L3 L4 BS

50 5 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 5.32 1.28 1.05 1.39 0.99

7 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 6.10 2.07 2.34 1.42 1.30

12 5 5 5 5 5 3 0.00 0.00 0.00 0.00 27.12 1.28 0.60 0.90 0.55 1.07

16 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 0.60 0.33 0.34 0.37 0.29

100 10 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 30.17 17.19 13.49 15.93 14.83

14 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 15.60 10.25 8.58 15.35 10.46

25 5 4 4 4 4 4 6.24 1.06 0.61 0.14 0.57 158.07 220.95 166.26 166.96 167.92

33 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 42.58 48.79 70.50 31.30 36.28

150 15 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 32.23 13.05 21.64 20.45 12.58

21 5 5 4 4 5 5 0.00 1.17 0.10 0.00 0.00 166.67 172.82 185.70 77.61 126.11

37 5 4 4 4 5 4 5.58 0.05 0.15 0.00 0.05 237.82 247.20 260.61 225.36 211.39

50 5 4 4 4 4 4 5.24 0.30 2.88 0.62 0.87 156.58 153.83 159.03 145.42 146.85

200 20 5 5 5 4 5 4 0.00 0.00 0.29 0.00 0.20 169.19 87.50 166.74 169.80 184.77

28 5 5 5 5 5 5 0.00 0.00 0.00 0.00 0.00 71.36 49.19 41.97 29.46 49.32

50 5 4 4 5 5 4 5.96 0.75 0.00 0.00 0.10 245.93 282.82 116.00 210.95 226.99

66 5 4 4 4 4 4 4.40 5.43 0.52 1.34 0.88 173.39 180.51 168.94 161.10 233.10

300 30 5 2 2 2 3 2 11.80 4.42 2.88 0.89 6.92 487.59 507.61 475.35 416.42 476.94

42 5 0 1 0 1 0 23.23 12.98 10.62 13.67 22.82 600.00 598.77 600.00 565.02 600.00

75 5 1 1 1 1 1 23.69 9.26 17.61 22.68 5.46 516.02 525.55 575.60 503.92 581.75

100 5 4 4 4 4 4 5.56 0.23 1.14 0.80 0.17 192.91 155.79 166.97 159.29 172.72

500 50 5 1 1 1 0 1 22.88 14.82 5.14 10.05 7.38 543.02 580.47 532.92 600.00 572.86

71 5 0 0 0 0 0 29.64 8.72 13.79 14.45 59.70 600.00 600.00 600.00 600.00 600.00

125 5 1 1 1 1 1 27.70 25.62 7.18 9.96 24.39 511.39 506.27 506.38 496.78 499.03

166 5 0 0 0 0 0 40.21 5.54 9.43 11.40 7.00 600.00 600.00 600.00 600.00 600.00

1000 100 5 0 0 0 0 0 35.97 36.54 21.06 47.28 80.13 600.00 600.00 600.00 600.00 600.00

142 5 0 0 0 0 0 40.32 42.06 35.28 24.33 63.46 600.00 600.00 600.00 600.00 600.00

250 5 0 0 0 0 0 42.90 6.92 11.25 20.89 15.99 600.00 600.00 600.00 600.00 600.00

333 5 0 0 0 0 0 46.24 23.99 38.65 22.89 12.21 600.00 600.00 600.00 600.00 600.00

2000 200 5 0 0 0 0 0 45.23 41.22 49.48 55.55 96.77 600.00 600.00 600.00 600.00 600.00

285 5 0 0 0 0 0 49.21 48.07 30.01 35.97 70.28 600.00 600.00 600.00 600.00 600.00

500 5 0 0 0 0 0 47.16 15.84 34.96 12.70 16.99 600.00 600.00 600.00 600.00 600.00

666 5 0 0 0 0 0 50.10 16.19 18.53 17.62 12.34 600.00 600.00 600.00 600.00 600.00

3000 300 5 0 0 0 0 0 49.90 41.54 49.74 55.26 96.77 600.00 600.00 600.00 600.00 600.00

428 5 0 0 0 0 0 54.59 48.37 48.06 54.74 96.48 600.00 600.00 600.00 600.00 600.00

750 5 0 0 0 0 0 57.42 35.11 35.93 22.29 16.21 600.00 600.00 600.00 600.00 600.00

1000 5 0 0 0 0 0 58.55 8.96 9.89 9.77 9.23 600.00 600.00 600.00 600.00 600.00

avg/sum 180 84 84 83 87 81 21.94 12.64 12.64 12.92 20.85 354.55 354.52 351.12 344.86 353.50
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more quickly, because of their reduced number of subproblem iterations.

The results of Table 7, in the presence of floating-point distances, complete the anal-

ysis with a different perspective. In this case, the layered searches lead to better results

in terms of proven optimal solutions (L4), average gaps (L2 and L3), and time (L4).

This is because the number of iterations required by the sequential search is very large

in comparison to the other algorithms, and the speedup related to the solution of small

subproblems is not sufficient to counterbalance the number of iterations. BS is not a

good option either, since it fails to find the optimal solution on a few small instances (e.g.,

(n, p) = (50, 12)) or leads to large gaps (e.g., (n, p) = (1000, 100) or (2000, 200)) because

of large overestimates of r. The layered searches have much more stable performance,

with smaller gaps in the wide majority of cases.

7 Conclusions

In this paper, we have presented and evaluated different formulations and search algo-

rithms for the capacitated p-center problem. We have proposed valid inequalities and

symmetry-breaking constraints, as well as an alternative layered search strategy for the

distance bound which behaves in between the traditional sequential search and binary

search. Our combination of these techniques solved to proven optimality, for the first

time, all the instances from the literature with n ≤ 402 and integer distances, including

13 open cases. The inequalities, especially the disjunctive-based subset sum inequality,

helped to improve the lower bound and to reduce the number of nodes explored. The

layered search effectively limits the number of feasible subproblems and avoids large over-

estimates of the distance. It appears to be especially useful for instances with a large

number of distinct distance values, a typical situation in the presence of floating-point

distances, where both sequential search and binary search become inefficient.

To stimulate future research, we have also introduced a new set of larger instances,

ranging from 300 to 3000 nodes, with integer or floating-point distances. This set of in-

stances is currently at the frontier of the solution capabilities of exact methods. Future

research could focus on exact decomposition methods for the solution of the arc-flow

formulation, which has been shown to lead to higher-quality bounds despite its high

time consumption, or on the development of additional cutting planes and heuristic call-

back procedures. Since many applications arising from the machine-learning literature

involve problems with thousands or even millions of data points, we also recommend the

investigation of aggregation and dominance techniques, to achieve smaller gaps for very

large instances.
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