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Túlio A. M. Toffolo1,2, Thibaut Vidal3, Tony Wauters1

1 KU Leuven, Department of Computer Science, CODeS & imec - Belgium

2 Federal University of Ouro Preto, Department of Computing - Brazil
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Abstract. We investigate a structural decomposition for the capacitated vehicle routing problem

(CVRP) based on vehicle-to-customer “assignment” and visits “sequencing” decision variables.

We show that an heuristic search focused on assignment decisions with a systematic optimal

choice of sequences (using Concorde TSP solver) during each move evaluation is promising

but requires a prohibitive computational effort. We therefore introduce an intermediate search

space, based on the dynamic programming procedure of Balas & Simonetti, which finds a

good compromise between intensification and computational efficiency. A variety of speed-up

techniques are proposed for a fast exploration: neighborhood reductions, dynamic move filters,

memory structures, and concatenation techniques. Finally, a tunneling strategy is designed to

reshape the search space as the algorithm progresses.

The combination of these techniques within a classical local search, as well as in the unified

hybrid genetic search (UHGS) leads to significant improvements of solution accuracy. New best

solutions are found for surprisingly small instances with as few as 256 customers. These solutions

had not been attained up to now with classic neighborhoods. Overall, this research permits to

better evaluate the respective impact of sequence and assignment optimization, proposes new

ways of combining the optimization of these two decision sets, and opens promising research

perspectices for the CVRP and its variants.

Keywords. Decision-set decompositions, Metaheuristics, Dynamic programming, Integer pro-

gramming, Large neighborhood search, Vehicle routing problem
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1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is classically described as a combination

of a Traveling Salesman Problem (TSP) with an additional capacity constraint which lends a

Bin Packing (BP) substructure to the problem (Toth and Vigo 2014). It can be seen as a Set

Packing (SP) problem in which the cost of each set corresponds to the distance of the associated

optimal TSP tour (Balinski and Quandt 1964). These problem representations emphasize the

two decision sets at play: customer-to-vehicle Assignments, and Sequencing choices for each

route (Vidal et al. 2013b), a duality that has left long-standing impressions in the literature,

from the early developments of route-first cluster-second (Bodin and Berman 1979, Beasley 1983)

and cluster-first route-second constructive methods (Fisher and Jaikumar 1981), all the way to

the set-covering-based exact methods and matheuristics which are currently gaining popularity.

Examining the recent progress on metaheuristics for the CVRP, little has changed in recent

years concerning intra-route neighborhood search: Relocate, Swap and 2-opt neighborhoods

and their immediate generalizations are employed, and these neighborhoods alone are sufficient

to guarantee that most solutions resulting from a local search contain TSP–optimal routes. This

is generally because classical CVRP instances involve short routes with up to 15 or 20 visits. For

such small problems, even simple neighborhood search methods for the TSP tend to produce

optimal tours.

Based on this observation, a larger effort dedicated to TSP tour optimization, as a stand-alone

neighborhood, is unlikely to result in further improvements. For this reason, it is very uncommon

to observe the use of larger intra-route neighborhoods (e.g., 3-Opt or beyond) in recent state-

of-the-art metaheuristics. Nevertheless, does this mean that Sequencing optimization should

be abandoned in favor of more extensive search concerning Assignment choices? Certainly

not. Indeed, even if local minima exhibit optimal TSP tours, inter-route moves frequently lead

to TSP-suboptimal tours which are rejected due to their higher cost, but would be accepted

otherwise if the tours were optimized. Such solution improvements would then not arise from

separate Assignment or Sequencing optimizations, but from a careful combination of both.

Figure 1 schematically represents the solution set of the CVRP, whose decision variables are

split into Sequencing decisions (x-axis) and Assignment decisions (y-axis). The y-axis also

represents the solutions in terms of their Assignment decisions solely, ignoring Sequencing

choices. These partial solutions can be viewed as a projection (Geoffrion 1970) of the original
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solutions S on the space SA defined by a single decision subset (Assignment). Moreover,

from a solution represented in terms of Assignment decisions, it is possible to find the best

associated complete solution by solving each TSP associated with the routes.

Sequencing decisions

	
TSP optimization
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Figure 1: Two alternative search spaces for the CVRP

With this picture in mind, it is tempting to conduct a search in the space SA rather than S.

After all, the size of SA is exponentially smaller than that of S, the solutions of SA are in average

of better quality, and the average size of a path in SA is smaller, such that fewer LS iterations

are expected for convergence. However, the obvious drawback is that each move evaluation in SA

requires solving one or several small TSPs to optimality, leading to a significant computational

effort. Still, note that considerable progress has been made in the past 30 years with regard to

the efficient solution of TSPs, and small problems with approximately 20 customers are solvable

in a few milliseconds. Based on these observations, this article takes a fresh look at heuristic

searches for the CVRP to answer two essential questions about the search space SA:

1. Is it practical and worthwhile to search in the space SA rather than S ?

2. If searching in SA requires an excessive effort, can we define a search space which maintains

most of the key properties of SA but can be more efficiently explored ?

As will be demonstrated in Section 4, our experiments led us to answer the first question

negatively: even with non-trivial memory and speedup techniques (hashtables and move filters)

the computational overhead related to the exact solution of TSPs during each move evaluation,

for a complete search in SA, does not appear worth the gain in terms of solution quality.

By contrast, our answer to the second question is positive. Rather than requiring a complete

exact solution of each TSP, the dynamic programming approach of Balas and Simonetti (2001),

3



hereafter referred to as B&S, can be employed to perform a restricted route optimization during

move evaluations. Given a range parameter k and an initial tour, the B&S algorithm finds, in

O(k22k−2n) operations, the vertex sequence with minimum cost such that no vertex is displaced

by more than k positions. This allows us to define a search space SB
k such that SB0 = S and

lim
k→∞

SB
k = SA. Moreover, even for a fixed k, we propose tunneling techniques that exploit

the memory of past solutions to dynamically reshape the search space, in such a way that SB
k

converges towards SA as the search progresses.

To evaluate experimentally the potential of the new search spaces, we conduct experiments

with a simple multi-start local search (MS-LS), and with the unified hybrid genetic search

(UHGS) of Vidal et al. (2012, 2014a). The use of SB
k for k ∈ {1, . . . , 3} appears to lead to

solutions of higher quality on the new instances from Uchoa et al. (2017). New best solutions

were also found for surprisingly small instances with as few as 242 or 256 customers. These

solutions had not been attained up to now with classic neighborhoods. Overall, this research

allows to better evaluate the respective impact of Sequencing and Assignment optimization,

proposing new ways to combine the optimization of these two decision sets, and leading to new

state-of-the-art algorithms for the CVRP.

2 Related Literature

This section reviews some key milestones concerning the management of Sequencing and

Assignment decisions in vehicle routing heuristics, as well as decision-set decompositions.

Sequencing and Assignment decisions were first optimized separately in early constructive

heuristics, giving rise to different families of methods. Route-first cluster-second algorithms

(Bodin and Berman 1979, Beasley 1983) first produce a giant TSP tour, before subsequently

assigning consecutive visits into separate trips to produce a complete solution. In cluster-first

route-second methods (Fisher and Jaikumar 1981), a clustering algorithm is employed to group

customer visits into clusters, followed by TSP optimizations. Finally, petal algorithms (Foster

and Ryan 1976, Renaud et al. 1996) are based on an a-priori generation of candidate routes

(petals), followed by the solution of a set packing or covering problem.

In the development of local search and metaheuristic algorithms which ensued in the 1990s

and thereafter, Assignment and Sequencing optimizations began to be better integrated.

Classical moves such as Relocate, Swap, 2-opt* and their close variants allow to optimize
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both decision subsets. The associated neighborhood search methods form the basis of the vast

majority of state-of-the-art algorithms. Petal algorithms have withstood the test of time, and

high-quality routes are now extracted from local minima of metaheuristics instead of being

enumerated in advance (see, e.g., Muter et al. 2010, Subramanian et al. 2013).

The variety of vehicle routing problem variants has also triggered studies concerning problem

decompositions. Vidal et al. (2013b) established a review of the classical variants and their

associated constraints, objectives, and decision sets, called attributes. The attributes were

classified in relation to their impact on Sequencing, Assignment decisions, and Route

evaluations in heuristics, leading to a structural problem decomposition which serves as a

basis for the Unified Hybrid Genetic Search (UHGS) algorithm of Vidal et al. (2014a) and allows

to produce state-of-the-art results for dozens of VRP variants. Many problem attributes come

jointly with new decision subsets, e.g., when optimizing vehicle routing with packing, timing

or scheduling constraints (Goel and Vidal 2014, Pollaris et al. 2015, Vidal et al. 2015b), visit

choices (Vidal et al. 2014b) or service-mode choices (Vidal et al. 2015a, Vidal 2017).

Decision-set decompositions are employed throughout many of the aforementioned papers to

perform a search in the space of Sequencing and Assignment choices and optimally determine

the remaining decision variables during each route and move evaluation. In this paper, the

decision-set decomposition does not result from supplementary problem attributes, but is instead

used to define exponential-size polynomially-searchable neighborhoods and transform the search

space. Exponential-size neighborhoods have a long history in the combinatorial optimization

literature (Deineko and Woeginger 2000, Ahuja et al. 2002, Bompadre 2012). Most of these

neighborhoods are based on shortest path or matching subproblems, as well as specific graph

and distance matrix structures with which some NP-hard problems become tractable (consider,

as examples, Halin graphs or Monge matrices). As a rule of thumb, larger neighborhoods and

faster search procedures are generally desirable. There are, however, theoretical limitations to

the size of polynomially-searchable neighborhoods. Gutin and Yeo (2003) proved that, for the

TSP, no neighborhood of cardinality at least (n− k)! for a given constant k can be searched

unless NP ⊂ P/poly.

The neighborhood of Balas and Simonetti (2001) is an exponential-size neighborhood for the

TSP. Given an incumbent tour represented as a permutation σ and a value k, it contains all

permutations π ◦σ such that π fulfills π(1) = 1 and π(i) ≤ π(j) for all i, j ∈ {1, . . . , n} such that
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i+ k ≤ j. In other words, if i precedes j by more than k positions in σ, then π(i) precedes π(j).

Setting π(1) = 1 allows to fix the origin location (e.g., depot). This neighborhood contains 2Θ(n)

solutions, and can be explored in O(k22k−2n) using dynamic programming. This is a linear

time complexity when k is constant, and a polynomial complexity when k = O(log n). Balas

and Simonetti (2001) performed extensive experiments, and demonstrated that this dynamic

programming procedure can be used as a stand-alone neighborhood to improve high quality

local minima of the TSP and its immediate variants. Later, Irnich (2008), Gschwind and Drexl

(2016), and Hintsch and Irnich (2017) employed this neighborhood to solve arc-routing problems

with possible cluster constraints, and dial-a-ride problems. One common characteristic of these

studies is that they employed B&S as a stand-alone neighborhood for route improvements. Only

in one conference presentation (Irnich 2013), the possibility of using the B&S neighborhood in

combination with some classical CVRP moves has been highlighted, but the performance of

such an approach remains largely unexplored.

We seek to go one step further. Rather than applying this tour optimization procedure as

a stand-alone optimization technique or in combination with a single classical neighborhood,

we investigate its systematic use in combination with every move of a classical CVRP local

search. As discussed in the following, the methodological implications of such a redefinition of

the search space are noteworthy.

3 Proposed Methodology

We will describe the methodology as a local search on indirect solution representations, using

a decoder. This algorithm can be readily extended into a wide range of vehicle routing

metaheuristics, e.g., tabu search, iterated local search, or hybrid genetic algorithm (Gendreau

and Potvin 2010, Laporte et al. 2014). There is no widely accepted term, in the current heuristic

literature, for referring to the elements which represent such indirect solutions. The evolutionary

literature usually refers to a genotype to denote solution encodings (and phenotype for the

solutions themselves), whereas the local-search based metaheuristic literature refers to incomplete

or indirect solutions (which are converted into complete solutions via a decoder function).

Incomplete lets us think that the representation is necessarily a subset of a complete solution,

and unnecessarily restricts the application scope. To circumvent this issue, we henceforth employ

the term primitive solutions. We first recall some basic definitions related to neighborhood
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search and indirect solution representations, then proceed with an analysis of alternative search

spaces and the description of the proposed local search algorithm.

Definition 1 (Primitive solutions and search space). We consider a combinatorial optimization

problem of the form min
x∈X

z(x), where X is the solution space, and z is an objective function

to minimize. Let Y be the set of primitive solutions, and let the decoder f : Y → X be an

injective application that transforms any y ∈ Y into a complete solution x ∈ X. A neighborhood

is defined as a mapping N : Y → 2Y that associates with each primitive solution y a set of

neighbors N (y) ⊂ Y . The graph induced by Y and N is referred to as the search space.

Definition 2 (TSP–optimal tour). A tour σ is TSP–optimal if there exists no other permutation

of its visits π ◦ σ such that π(1) = 1 with a shorter total distance.

Definition 3 (Bk–optimal tour). A tour σ is Bk–optimal if there exists no other permutation

of its visits π ◦ σ with a shorter total distance such that π(1) = 1 and π(i) ≤ π(j) for all

i, j ∈ {1, . . . , n} with i+ k ≤ j. The parameter k is the range of the B&S neighborhood.

3.1 A Choice of Search Space

In this section, we examine the search spaces associated with the set of all solutions (S), of

those with TSP–optimal tours (SA), and of those with Bk–optimal tours (SB
k ) and discuss their

relative merits.

Search Space S. Classical local search methods for the CVRP do not distinguish between

primitive and complete solutions. In the usual search space S, solution sets X and Y are equal

and the decoder f is the identity function. The neighborhood N is based on the definition

of one or several classes of moves. A move φ is a local modification that can be applied to a

primitive solution y to generate a neighbor φ(y) ∈ N (y). For each search space considered in

this paper, we will eventually refer to several classes of moves, but to a single neighborhood only,

which corresponds to the union of all primitive solutions attainable from y via one single move.

Classical moves for the CVRP are based on relocations and exchanges of a bounded number of

vertices, or replacements of a bounded number of edges. Most common neighborhoods have

a quadratic cardinality (|N (y)| = O(n2) for all y ∈ Y ). We refer to Vidal et al. (2013b) for a

comprehensive survey on classical local searches for the CVRP.
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Figure 2 represents the search space S associated with Relocate moves only, for a small

asymmetric CVRP instance with three customers. There are 13 possible solutions for this prob-

lem, each represented by a set of ordered customer visits. Solution ‘[1,2,3]’, for example, employs

one vehicle to visit customers 1, 2 and 3, while solution ‘[1][2][3]’ employs three vehicles, one

per customer. Each solution is represented by a node, positioned on the x-axis according to its

quality (the more to the right, the better a solution is). The set of outgoing arcs of each solution

points towards its neighbors. Moreover, solutions with identical customer-route assignments are

grouped within dashed areas. Note that, for this instance size, it is always possible to reach

the optimum solution from any starting point in two successive moves. In a local search that

explores the neighborhood in random order and applies an improving move as soon as it is

found, the worst case corresponds to five moves (when the initial solution is ‘[2][1,3]’ or ‘[1][2][3]’).

solution quality

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[1,2,3]

[3,1,2]

Figure 2: Search space S for a small asymmetric CVRP instance

Search Space SA. As discussed earlier in this work, CVRP solutions can also be represented in

terms of their Assignment decisions, excluding the Sequencing decisions in the representation

and delegating the choices of the best visit sequences to the decoder. With such a paradigm,

one can define a local search in the space Y of primitive solutions, where each y ∈ Y represents

a partition of the customer set into subsets whose sums of demands do not exceed the vehicle

capacity. The decoder f is based on an exact TSP solver, responsible for generating the best
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visit sequence originating and finishing at the depot for each subset of customers. In this sense,

the image f [Y ] ⊂ X contains exclusively solutions with TSP–optimal tours.

The neighborhood used to explore the search space SA can remain similar to classical CVRP

neighborhoods, based on relocations or exchanges of customers between subsets, or involve other

families of moves specialized for partition problems. Figure 3 represents the resulting search

space with simple Relocate moves. Only TSP–optimal tours are explored and therefore the

size of the search space reduces down to six primitive solutions. The other solutions and their

connections are represented in light gray. Note, in our small example, that now at most three

successive improving moves may be applied to attain the optimum from ‘[1][2][3]’.

solution quality

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[1,2,3]

[3,1,2]

Figure 3: Search space SA for a small asymmetric CVRP instance

Search space SA is smaller than S, and our computational experiments (Section 4) demon-

strate that a search in this space indeed leads to solutions with higher quality. However, each

move evaluation in this space requires executing an algorithm with exponential worst-case time

complexity, a TSP solver, in order to decode each primitive solution in the neighborhood for

cost evaluation. Although research on the TSP has culminated in very efficient algorithms over

the past thirty years, thousands (or millions) of small TSP instances should be solved during

a local search in SA, and thus the total computational effort dedicated towards decoding can

grow prohibitively large. Moreover, bad behavior in a single case (e.g., due to an unusual long

route with many customers or bad branching decisions) can be sufficient, without any other
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safeguard, to stall the entire algorithm.

Search Space SB
k . To circumvent the aforementioned issues, we study an alternative search

space in which the set of primitive solutions Y is a subset of the complete solutions (with their

Assignment and Sequencing decisions), but where the decoder f is nontrivial, and consists of

applying B&S multiple times to each route with a fixed range (k value) until the tours become

Bk–optimal. With these assumptions, the image f [Y ] contains exclusively complete solutions

with Bk–optimal tours. As such, the application of B&S can be viewed as a post-optimization step

during classical CVRP move evaluations, opening the way for additional solution improvements.

A careful analysis of the resulting search space gives even more significance to this approach,

due to three properties:

Property 1. From an initial solution containing a Bk–optimal tour, a local search in the

space SB
k explores only Bk–optimal tours.

Property 2. For a fixed range k, each move evaluation and subsequent solution decoding is

done in polynomial time as a function of n and the number of applications of B&S.

Property 3. The search space SB
k is such that SB

0 = S and SB
n−1 = SA, with n being the

number of customers.

These three properties are all fundamental for the methodology that follows. Property 1

demonstrates how space SB
k contains fewer solutions than S, and that the overall quality of these

solutions tends to be higher (since non-Bk-optimal tours are filtered out). Moreover, Property 2

gives some computational time guarantees: even if the computational effort grows quickly with

the range k, the effort of the decoder is guaranteed to remain stable for all y ∈ Y when k is

constant, eliminating the possibility of a computational effort peak for specific TSP instances.

Finally, Property 3 demonstrates how k balances the effort dedicated towards the optimization

of the Assignment and Sequencing decision sets, and establishes SB
k as an intermediate search

space generalizing S and SA.

Figure 4 illustrates the search space SB
k for the same example as previous figures with k = 1.

It is an intermediate between the spaces depicted by Figures 2 and 3, which correspond to

SB
0 = S and SB2 = SA, respectively. Note how the solution [1, 2, 3] is now a neighbor of [2][3, 1]

and [1][3, 2], as highlighted by the two dotted arcs.
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solution quality

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[1,2,3]

[3,1,2]

Figure 4: Search space SB
1 for a small asymmetric CVRP instance

Discussions and Choice. In light of these observations, we have conducted computational

experiments on search space SB
k , using the dynamic programming algorithm of Balas and

Simonetti (2001) to decode each solution, as well as on search space SA using the TSP solver

Concorde (Applegate et al. 2006). Despite several speedup techniques (Section 3.2), the search

in space SA remained inefficient throughout our current experiments, especially for instances

with a large number of customers per route. We therefore decided to focus on search space SB
k ,

and devised several speedup techniques to enable its efficient exploration.

3.2 Efficient Local Search

To efficiently explore space SB
k , we developed a local search algorithm which exploits static

neighborhood reductions, dynamic move filters, efficient memory structures and concatenation

techniques. Most of these techniques seek to limit the search effort in SB
k . This resulting method,

displayed in Algorithm 1, can be easily integrated in state-of-the-art metaheuristics for vehicle

routing problems.

Neighborhood Reductions. First of all, as in the majority of recent local search based

metaheuristics for the CVRP, the neighborhood N (xt) of each incumbent solution xt is limited

to moves that involve close vertices (Algorithm 1, Line 3). In particular, we use the classical
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Algorithm 1: Efficient local search in the space SB
k

Input: An initial complete solution x0, an evaluation threshold ψ and a granularity threshold Γ
1 t← 0
2 repeat

// Enumerating O(Γn) moves - candidate lists based on vertex proximity

3 for each move φ(xt) ∈ N (xt) involving a vertex pair (i, j), j ∈ Γ(i)

4 The move φ modifies up to two routes of xt. Let zbefore be the sum of the costs of these
two routes, and let (σ1

1 , . . . , σ
1
b1

) and (σ2
1 , . . . , σ

2
b2

) be the new routes in φ(xt).

// First, filter infeasible moves with respect to capacity constraints in O(1):

5 if Q(σ1
1 ⊕ · · · ⊕ σ1

b1
) > Q or Q(σ2

1 ⊕ · · · ⊕ σ2
b2

) > Q then

6 continue.

// Second, consider the cost of the classical CVRP move to filter non-promising solutions in O(1):

7 if z(xt) + C(σ1
1 ⊕ · · · ⊕ σ1

b1
) + C(σ2

1 ⊕ · · · ⊕ σ2
b2

)− zbefore > (1 + ψ)× z(xt) then

8 continue.

// Third, decode the routes σ1 and σ2 to evaluate the move φ in SBk :

9 zmove ← 0
10 for each route σi with i ∈ {1, 2}

// Compute hash key in O(1) and check memory in O(1):

11 (σ̄i, z̄i)← Lookup(H(σi
1 ⊕ · · · ⊕ σi

bi
))

// If not in memory, repeatedly apply the dynamic programming algorithm of Balas and Simonetti

(2001) until the route becomes :

12 if (σ̄i, z̄i) = Not Found then
13 (σ̄i, z̄i)← Balas-Simonetti(σi

1 ⊕ · · · ⊕ σi
bi

)

14 Store((σ̄i, z̄i), H(σi
1 ⊕ · · · ⊕ σi

bi
))

15 zmove ← zmove + z̄i

// Filter non-improving moves:

16 if zmove ≥ zbefore then

17 continue.

// At this stage, apply φ since it is an improving move in SBk :

18 Set xt+1 = φ(x) ; t = t+ 1
19 Replace the routes (σ1,σ2) by (σ̄1,σ̄2) in xt+1

20 until xt is a local minimum
21 return xt
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intra-route and inter-route Relocate and Swap moves, for single vertices or generalized to pairs

of consecutive vertices, as well as the 2-Opt and 2-Opt* moves. The resulting neighborhood

contains a quadratic number of moves. As detailed in Vidal et al. (2013a), and in a similar way

as Johnson and McGeoch (1997) and Toth and Vigo (2003), the search can be restricted to a

subset of these moves that reconnect at least one vertex i with a vertex j belonging to the Γ

closest vertices of i. The neighborhood size becomes O(Γn), enabling a significant speedup for

large-scale problem instances.

Dynamic move filters. To further restrict the search to promising moves, each move φ’s

feasibility is evaluated in O(1), in terms of capacity constraints, being discarded if it leads

to an infeasible solution. The total cost z(φ(xt)) of the solution generated by φ prior to its

optimization by the B&S decoder is evaluated subsequently. This cost represents an upper bound

for the final cost of the move in SB
k after the application of the decoder. The move evaluation is

pursued only if the solution cost has increased by a factor 1 + ψ or less due to its application,

that is, only if Condition (1) is satisfied. Otherwise, the move is discarded.

z(φ(xt)) ≤ (1 + ψ)× z(xt) (1)

Parameter ψ plays an important role in defining how many moves are evaluated. The higher

the value of ψ, the less pruning is induced by Equation (1). Contrastingly, when ψ = 0 only

immediately improving neighbors are evaluated. Defining a good value for ψ is non-trivial,

given that it is an instance-dependent parameter. Since a fixed value would not suit instances

with different sizes and characteristics, we suggest to use an adaptive parameter. The principle

consists in adjusting ψ to ensure a target range [ξ−, ξ+] for the fraction of filtered moves. After

each 1,000 move evaluations, the fraction ξ of filtered moves is collected and whenever it falls

outside of the desired range, ψ is updated. If this fraction is too large, then ψ is increased by a

multiplicative factor α. Conversely, if ξ is insufficient, then the parameter ψ is decreased:

ψ =





ψ × α if ξ ≤ ξ−,

ψ / α if ξ ≥ ξ+,

ψ otherwise.

(2)
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Global memory. The B&S algorithm, used as a decoder, requires a computational effort which

grows linearly with the route size and exponentially with parameter k. It is thus essential to

restrain the use of this procedure to a strict minimum and avoid decoding twice the same route

over the course of the search. To that end, we rely on a global memory to store the routes that

have been decoded, avoiding recalculations (Lines 12–14). We use a hashtable for this task,

since it allows O(1) queries given the hash key associated with a route.

Two important aspects should be discussed. First, since the available memory space is finite,

some strategy is necessary to limit the memory size in case of an excessive space consumption.

To that end, we define an upper bound Mmax on the number of routes stored in the memory

and eliminate half of the entries, those used with less frequency, whenever this limit is attained.

The second aspect to be discussed concerns the effort spent querying the memory. It is well

known that local searches for the CVRP evaluate millions of moves, and that constant-time move

evaluations are essential for a good performance. Capacity checks (Line 5) and simple distance

computations (Line 7) can be easily achieved in O(1) using incremental move evaluations or

concatenation techniques (Vidal et al. 2014a). Moreover, querying the memory for a given route

supposes the availability of a hash index which characterizes the associated sequence of visits,

but a direct approach that sweeps through the route to compute this index already takes O(n)

time. To avoid this bottleneck, we employ specific hash functions and calculation techniques

based, again, on concatenations in O(1). These concepts are discussed in the following section.

3.3 Constant-Time Evaluations

We use the concatenation strategy of Vidal et al. (2014a, 2015b) to perform efficient cost- and

load-feasibility evaluations. This strategy exploits the fact that any route obtained from a

classical move φ(xt) on an incumbent solution xt corresponds to a recombination of a bounded

number of (customer and depot) visit sequences of xt. As such, the new routes can be expressed

as a concatenation of sequences σ1 ⊕ · · · ⊕ σb. We also extend this approach to enable O(1)

computations of hash keys.

To efficiently evaluate the cost, load, and compute the hash keys, we perform a preliminary

preprocessing on the O(n2) subsequences of consecutive visits which compose the solution xt.

Four quantities are calculated: the total demand Q(σ) of a sequence σ, its distance C(σ),
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and its hash keys Hp(σ) and Hs(σ). For a sequence σ̄ = [i] containing a single visit i with

demand qi, Q(σ̄) = qi, C(σ̄) = 0, Hp(σ̄) = ρ× i and Hs(σ̄) = ρi, where ρ is a prime number.

Moreover, Equations (3–5) extend these quantities, by induction, for any sequence of visits

σ1 ⊕ σ2 expressed as the concatenation of two sequences σ1 and σ2. In these equations, dij

expresses the distance between visits i and j.

Q(σ1 ⊕ σ2) = Q(σ1) +Q(σ2) (3)

C(σ1 ⊕ σ2) = C(σ1) + dσ1(|σ1|),σ2(1) + C(σ2) (4)

Hp(σ1 ⊕ σ2) = Hp(σ1) + ρ|σ1| ×Hp(σ2) (5)

Hs(σ1 ⊕ σ2) = Hs(σ1) +Hs(σ2). (6)

As in Vidal et al. (2014a), Equations (3–6) are first employed iteratively, in lexicographic

order, to obtain information concerning all sequences during the preprocessing phase. Afterwards,

the same equations are used for move evaluations. Since any route obtained from a classical

move corresponds to the concatenation of a bounded number of sequences, it is possible to

obtain the associated load, distance, and hash keys by applying these equations a limited number

of times. Then, the information on subsequences is updated every time an improving move is

applied, a rare occurrence in comparison to the number of moves evaluated.

The two hash functions defined in Equations (5–6) are employed together as a means of

reducing chances of two distinct sequences having identical hashes. The function Hp is a

multiplicative hash which depends on the visit permutation (Knuth 1973). Note that, when

implementing such a function, the values ρi must be precomputed and bounded (taking the rest

of the integer division by a large number) to prevent overflow during multiplication. The second

function Hs is an additive hash which only depends on the set of visited customers, and not on

the visit sequence. These hash functions are easily recognized when reformulated as follows:

Hp(σ) =

|σ|∑

i=1

ρi × σi (7)

Hs(σ) =

|σ|∑

i=1

ρσi . (8)

These functions fit well our purposes due to their inductive definition based on the con-

catenation operation. They are employed, along with the route distance and its number of
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visits, to verify a correct match in the memory in O(1) without a complete route comparison

in O(n). To minimize the risk of two routes having identical hashes, we duplicated these hash

functions with different values for ρ, leading to four hash values overall. In the first case, ρ is

set to the smallest prime number greater than the number of customers. In the second case,

ρ is set to 31 (multiplier of Kernighan and Ritchie 1988). Despite this strategy, a tiny chance

of false positives remains. However, no false positive was registered within our computational

experiments considering multiple runs on 100 different instances.

3.4 Reshaping the search space – Tunneling strategy

Until now, the purpose of the global memory has been focused on saving computational effort

by avoiding duplicate calls to the B&S algorithm. Yet, as shown in the following, this structure

can be exploited to a larger extent to promote the discovery of good solutions.

Consider two input routes σ1 and σ2 indexed in the order of their appearance in the local

search, and representing the same set of customer visits. The route σ1 is first saved in the global

memory along with its associated Bk–optimal route of cost z1. Subsequently, the LS considers

σ2 without finding a match in the memory, triggering a new execution of the B&S algorithm

and leading to a cost z2. if z2 > z1, then the algorithm has failed to recognize that a better

TSP tour has been found in prior search for the same customers.

To improve the behavior of the algorithm in such situations, we introduce a guidance

mechanism called tunneling. Guidance techniques are a set of strategies which analyze and

exploit the search history to direct the search towards promising or unexplored regions of the

search space (Crainic and Toulouse 2008). Our method works as follows: every route σ issued

from a non-filtered LS move and absent from the memory is decoded by the B&S algorithm;

yet, rather than directly returning the output of B&S, the algorithm finds and returns the best

known permutation of the visits for this customer set, found over previous B&S executions.

The goal of this strategy is to intensify the search around known high-quality tours without

jeopardizing the discovery of better route configurations. It can be efficiently implemented with

a refinement of the hashtable-based memory structure, by grouping the routes into different

buckets according to their visit set, and using the additive hash function of Equation (6) for O(1)

queries. Figure 5 summarizes this process.
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 Input route σ 

Has σ already been 
decoded in the past 

search 

Apply B&S iteratively 
on σ to generate a  
Bk-optimal route π’ 

If π’ is better than the 
best known route for 

this visit set, update π 

Return the best known 
route π for this visit set 

“Decoded” route π 

NO 

YES 

Figure 5: Tunneling strategy and solution decoding

This tunneling strategy has a significant impact on the search space. Initially, as the search

starts, the algorithm explores the space SB
k . Then, as the search progresses, the memory starts

to be filled, and the algorithm re-introduces more and more frequently the best known routes in

its solutions. In a hypothetical situation where all feasible routes have already been memorized

(hypothetical due to the needed exponential memory size), the TSP–optimal routes would be

systematically returned, and the algorithm behaves as if it was searching in SA. With this limit

case in mind, the tunneling strategy contributes to reshape the space SB
k into SA as the search

progresses. Moreover, note that this strategy remains fully relevant for a classical neighborhood

search, even without B&S decoder.

Consider the same example as depicted in Section 3.1 (Figures 2, 3 and 4). Suppose that the

route [3, 2, 1] has been identified in the past search along with its associated Bk–optimal tour

[3, 1, 2] and that the tunneling strategy is employed. Figure 6 illustrates the resulting search

space: all solutions that include ‘[1, 2, 3]’ in their neighborhood now point towards solution

‘[3, 1, 2]’ instead, which has identical customer-to-vehicle Assignments but a lower cost due

to better Sequencing decisions. With only one route in memory, the resulting search space

already becomes equivalent to SA.
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solution quality

[1,2,3]

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[3,1,2]

Figure 6: Search space SB1 with the tunneling search strategy, after discovering the route [3, 1, 2]

4 Computational experiments

We conducted extensive computational analyses to measure the benefits of a search in SA and SB
k ,

the impact of the tunneling strategy and move evaluation filters. For these tests, we considered

the simple local search (LS) described in Section 3, as well as a more advanced metaheuristic, the

UHGS of Vidal et al. (2012, 2014a), which was adapted by replacing its native local search by

the proposed method. This extension of the method will be referred as UHGS-BS. Except this

modification of the local search, all other parameters and procedures of UHGS-BS remain the

same as in the original article, and the termination criterion is set to Itmax = 20000 consecutive

iterations without improvement.

A single local search requires only a limited computational effort. Thus, the first analyses

(Section 4.1) on the performance of the LS in SA and SB
k could be done for multiple values of

the range parameter k. It was also possible to evaluate the impact of k without the interference

of dynamic move filters and tunneling techniques. Since UHGS-BS performs a more extensive

search with multiple local search runs, our analyses with this method (Section 4.2) are focused

on a smaller set of values for the range parameter k, in the presence of dynamic move filters.

All algorithms were implemented in C++ and executed on a single thread of an Intel(R)

Xeon(R) E5-2680v3 CPU. A RAM limit of 8GB was imposed for each run. To solve the TSP

problems when considering the space SA, we used the Concorde solver (Applegate et al. 2006).
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To conduct the experiments with the UHGS-BS, we used the code base made available at

https://github.com/vidalthi/HGS-CARP, from Vidal (2017).

4.1 Preliminary experiments with a simple local search

In a first experiment, we tested the local search of Section 3 on spaces SA and SB
k for k ∈

{0, . . . , 9}, to observe the growth of its computational time as a function of the parameter k,

and identify a range of values over which the approach remains practical. As an initial solution,

we used the result of the savings algorithm of Clarke and Wright (1964). We set ψ =∞ in order

to observe the results without the interference of move filters.

We considered the 100 recent benchmark instances of Uchoa et al. (2017), as these instances

remain highly challenging for metaheuristics and cover a larger variety of instance size and

characteristics: demand and customer distribution, depot location, and route length. For each

instance, we ran the method 20 times with different random seeds. The results are summarized

in Figure 7, in the form of boxplots. The leftmost graph represents the percentage gap in terms

of solution quality, relative to that of the best known solution (BKS) collected from Uchoa et al.

(2017): Gap = 100× (z − zbks)/zbks, where z is the solution value of the method and zbks is the

BKS value. The rightmost graph represents the CPU time of the method, using a logarithmic

scale.
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Figure 7: Solution quality and CPU time of the LS, depending on the search space

As illustrated by these experiments, the search in space SA visibly leads to solutions of

higher average quality, albeit in a CPU time largely greater than that of a classical local search
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in S. The solution quality of a search in the space SB
k consistently increases as k grows, along

with the needed CPU time. When k = 0, the algorithm behaves as a classical local search in S.

When k is large, the method becomes more similar to a search in SA. A difference of solution

quality can still be noticed between SB
9 and SA, due to some instances containing up to 25

deliveries per route.

Each value of the range parameter k establishes a trade-off between computational effort

and solution quality. The computational time of the local search does not exceed two seconds

when exploring SB
k with k ≤ 2, but it culminates to 1000 seconds on the largest instances when

exploring SA. Clearly, the additional CPU time required by Concorde is not compatible with

the repeated application of local searches within state-of-the-art metaheuristic algorithms, such

that we should concentrate our efforts on the exploration of the space SB
k with moderate values

of k.

Moreover, a careful analysis of these results on subsets of instances with a different average

number of customers per route gives additional insights. This analysis is reported in Figure 8,

considering the 20 instances with smallest average route cardinality, in the range [3.0, 4.55], and

the 20 instances with largest average route cardinality, in [16.47, 24.43].

As illustrated in Figure 8, the benefits of a search in SB
k or SA are small for instances with a

small number of customer visits per route. In particular, all runs with k ≥ 4 lead to a similar

solution quality and CPU time. This is due to the fact that B&S does an exact TSP optimization

when k is greater or equal to the route cardinality. In contrast, the benefits in terms of solution

quality are larger on instances with a high number of customer visits per vehicle. We observe

a significant improvement of the solutions when k varies from 0 to 4, from an average gap of

6.15% down to 5.25%. Subsequently, as k increases beyond 4, the rate of improvement is smaller.

Increasing k up to the maximum route size would still be beneficial, but impracticable in terms

of CPU time.

4.2 Experiments with UHGS-BS – range parameter, move filters and tun-

neling

As viewed in the previous section, a local search in the space SB
k can lead to solutions of

better quality than a search in S, at the expense of a higher computational effort. Still, even if

solution improvements were observed for simple local searches, it is an open question whether
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(a) Instances with average route cardinality in range [3.0, 4.55]:
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(b) Instances with average route cardinality in range [16.47, 24.43]:
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Figure 8: Results (solution quality and runtime) of local search on different search spaces for
instances with different route cardinalities

the inclusion of these extended search procedures into state-of-the-art metaheuristics translates

back into significant quality improvements.

This section now analyses the performance of the UHGS-BS metaheuristic, considering

k ∈ {1, . . . , 5} in combination with dynamic move filters. The move filters are designed to

eliminate a large fraction of complete move evaluations, such that a larger computational effort

can be spent in the evaluation of each remaining move without significantly impacting the overall

CPU time of the method.
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After preliminary experiments, we observed that setting k = 2 and [ξ−, ξ+] = [90%, 95%]

establishes a good compromise between solution quality and computational effort. This config-

uration, without tunneling strategy, was used as baseline for the experiments of this section.

We then modified each parameter and design choice, in turn, to investigate its impact. This

experimentation was restricted to a subset of 40 instances with a number of customer visits

n ∈ {195, 411}, as these instances require limited CPU time and remain challenging for state-of-

the-art metaheuristics. For each instance, ten runs have been conducted with different seeds.

Impact of the range parameter. Figure 9 compares the performance, in terms of average

percentage gap and CPU time, of the classical UHGS with that of its extended version searching

in SB
k , for k ∈ {1, . . . , 5}. As in previous figures, the results are presented in the form of boxplots.
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Figure 9: Results (solution quality and runtime) of UHGS-BS for different cache strategies and
k values

As expected, the gaps obtained with the variants of UHGS-BS are much smaller than those

of simple local searches, due to the better exploration capabilities of the method. Average gaps

range from 0.25% when exploring the classical search space S, to 0.18% when exploring SB
5 . As

highlighted by pairwise Wilcoxon tests, statistically significant differences exist between the

results of S, SB
1 and SB

2 (p-values < 0.05). A decreasing returns effect can also be observed;

the difference of quality between the solutions obtained by S and SB
1 is larger than between

SB
1 by SB

2 , which is turn is larger than between SB
2 by SB

3 , and so on. The configuration SB
3 , in

particular, achieves a good trade-off between quality and search effort. As demonstrated by the

outliers with negative gap in the figure, this configuration has led to new best known solutions
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for surprisingly small instances with 256 and 294 customers, on which hundreds of test runs had

been conducted in past. This is an indication that the search in SB
k has the potential to lead to

structurally different solutions, which were not attained with more classical searches. The main

challenge therefore is to harness this ability without sacrificing too much computational effort.

Impact of the dynamic move filter. Figure 10 investigates the impact of different target

intervals [ξ−, ξ+] (desired quantity of filtered moves – Section 3.2) for the dynamic move filters.

The range parameter remains fixed to k = 2. It also indicates the results obtained when filtering

all non-improving moves (ψ = 0), which is equivalent to using B&S only as a post-optimization

procedure, after the discovery of each improving move.
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Figure 10: Results (solution quality and runtime) of UHGS-BS for different [ξ−, ξ+] values

These experiments demonstrate that move filters have a large incidence on the solution

quality. These filters, are however, essential to maintain a low computational effort. In particular,

filtering all non-improving moves prior to the evaluation of B&S (ψ = 0) leads to an average gap

of 0.26%, compared to 0.21% when setting [ξ−, ξ+] = [90%, 95%] as a target for the dynamic

move filter and evaluating the non-filtered moves in combination with B&S. This validates

an important hypothesis explored in this article: many moves that are usually discarded in

regular local search methods and metaheuristics can lead to improved solutions when applied in

combination with a route optimization procedure. Naturally, this capability goes along with

an increased CPU time. Nonetheless, by an adequate calibration of the move filters, the total
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CPU time dedicated to B&S can be restricted enough to not intervene as a bottleneck. This

is visible by the results of configuration [ξ−, ξ+] = [90%, 95%], which on average used no more

than twice the time of ψ = 0. For the remainder of these analyses, we selected this configuration,

which establishes a good balance between the exploitation of the capabilities of B&S and the

computational effort.

Impact of the tunneling strategy. Finally, Table 1 compares the performance of UHGS-BS

without and with the tunneling strategy. The range parameter has been set to k = 2, and

[ξ−, ξ+] = [90%, 95%]. The leftmost group of columns reports the instance name, number of

customers n average number of visits per route in the BKS for each instance. Then, the next

columns present, for each approach, the average solution value over ten runs, best solution value,

average CPU time, percentage of routes which have been successfully queried from the global

memory without a re-evaluation, number of executions of the B&S optimization procedure, total

number of iterations.

The tunneling strategy leads to an average Gap(%) of 0.15%, compared to 0.17% without

tunneling. Although this is only a difference of 0.02%, reducing the gap indeed becomes harder as

the solution quality approaches known BKS and optimal solutions. This improvement in solution

quality also comes with a reduction of the overall CPU time, as the tunneling stimulates a faster

convergence towards local minima and allows a better management of the global memory, by

storing at most one route per customer set. As a consequence, the chances of successful queries

in the memory is sensibly higher (81.5% compared to 80.2% on average), thereby reducing on

average the number of B&S executions as well as the total number of iterations. Based on these

observations, tunneling is beneficial without any other visible counterpart. We will use this

mechanism for the final tests on the complete set of benchmark instances, in the next section.
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Table 1: Impact of the tunneling strategy for 40 medium-size instances

# Instance

Without tunneling strategy With tunneling strategy

Time Avg. Best Cache B&S Iters Time Avg. Best Cache B&S Iters

21 X-n195-k51 3.8 44289.5 44225 60.6% 1.4E+08 34577 5.2 44272.6 44225 60.2% 1.8E+08 41713
22 X-n200-k36 5.3 58618.5 58578 97.8% 1.1E+07 43664 6.2 58625.7 58578 97.8% 1.0E+07 41788
23 X-n204-k19 5.8 19569.0 19565 91.0% 2.7E+07 31315 6.6 19568.5 19565 92.6% 2.2E+07 31118
24 X-n209-k16 15.5 30673.1 30656 77.6% 1.1E+08 35319 17.8 30676.8 30656 81.0% 9.1E+07 36174
25 X-n214-k11 34.8 10873.2 10856 70.5% 2.1E+08 48054 32.3 10872.0 10856 76.2% 1.5E+08 46133
26 X-n219-k73 12.9 117602.7 117595 3.7% 5.0E+08 30949 11.0 117603.8 117595 3.6% 5.0E+08 30773
27 X-n223-k34 6.2 40490.3 40437 95.4% 2.3E+07 38698 7.7 40489.0 40437 95.7% 2.1E+07 39268
28 X-n228-k23 14.5 25784.1 25743 87.9% 8.5E+07 48303 14.6 25779.5 25743 88.6% 6.9E+07 42435
29 X-n233-k16 10.9 19305.3 19230 87.1% 4.7E+07 31274 9.5 19309.0 19230 90.4% 3.2E+07 29652
30 X-n237-k14 16.6 27053.8 27050 75.9% 9.7E+07 26927 17.5 27047.2 27042 81.1% 8.1E+07 30294
31 X-n242-k48 8.7 82922.0 82792 94.3% 4.4E+07 49734 12.9 82919.6 82792 93.6% 6.6E+07 62591
32 X-n247-k47 14.6 37380.7 37278 49.2% 6.1E+08 63084 13.7 37393.1 37281 49.1% 5.1E+08 52872
33 X-n251-k28 12.7 38767.4 38699 90.8% 6.4E+07 48107 11.4 38793.5 38699 91.2% 4.5E+07 35265
34 X-n256-k16 8.8 18880.0 18880 85.9% 4.3E+07 22991 9.4 18875.9 18839 89.6% 3.3E+07 24930
35 X-n261-k13 43.0 26628.7 26579 71.9% 2.3E+08 46952 38.9 26620.5 26586 75.1% 1.7E+08 39770
36 X-n266-k58 14.3 75703.6 75558 98.9% 1.5E+07 69013 17.8 75737.9 75646 98.9% 1.5E+07 72435
37 X-n270-k35 6.6 35310.5 35303 96.8% 1.5E+07 34796 8.5 35318.5 35303 97.1% 1.4E+07 35654
38 X-n275-k28 11.7 21256.9 21245 89.0% 5.9E+07 36470 12.8 21255.0 21245 91.0% 4.4E+07 34488
39 X-n280-k17 69.1 33614.0 33593 66.7% 4.1E+08 53528 86.3 33600.8 33584 70.1% 4.3E+08 63405
40 X-n284-k15 82.2 20306.0 20255 70.0% 4.3E+08 73605 67.4 20283.3 20238 73.9% 3.0E+08 61772
41 X-n289-k60 18.3 95501.4 95395 69.6% 4.5E+08 75465 20.7 95475.6 95245 69.5% 4.4E+08 72940
42 X-n294-k50 9.3 47272.9 47240 96.8% 2.6E+07 47162 11.6 47289.7 47239 96.3% 3.3E+07 53125
43 X-n298-k31 7.1 34282.8 34231 94.6% 2.3E+07 27625 8.1 34280.8 34231 95.2% 2.0E+07 26203
44 X-n303-k21 22.3 21839.1 21744 86.7% 1.0E+08 43974 21.1 21833.3 21744 88.9% 7.9E+07 39415
45 X-n308-k13 73.6 25893.2 25864 68.5% 3.3E+08 48194 63.6 25911.8 25866 71.8% 2.6E+08 42804
46 X-n313-k71 15.8 94270.5 94169 57.8% 4.7E+08 54350 16.8 94289.7 94192 57.6% 4.9E+08 58766
47 X-n317-k53 29.7 78389.3 78372 97.5% 3.3E+07 60402 31.6 78405.0 78380 97.7% 3.2E+07 65092
48 X-n322-k28 10.9 29918.8 29880 93.3% 3.7E+07 36519 17.4 29894.6 29834 93.9% 4.3E+07 48316
49 X-n327-k20 31.2 27618.2 27560 81.3% 1.5E+08 44348 35.5 27591.7 27560 83.4% 1.5E+08 47634
50 X-n331-k15 71.6 31138.6 31103 65.2% 3.7E+08 47298 63.2 31128.3 31103 67.3% 3.0E+08 41354
51 X-n336-k84 34.3 139522.2 139303 39.0% 1.4E+09 86713 40.9 139572.7 139339 39.7% 1.4E+09 89964
52 X-n344-k43 11.7 42161.9 42086 97.1% 2.3E+07 42768 22.7 42136.7 42066 97.4% 3.0E+07 65989
53 X-n351-k40 26.1 26010.1 25958 94.6% 7.9E+07 72726 32.8 25991.2 25947 94.7% 8.3E+07 76997
54 X-n359-k29 65.3 51676.6 51608 84.9% 3.1E+08 84963 56.1 51684.5 51569 85.9% 2.4E+08 67011
55 X-n367-k17 92.0 22870.1 22814 72.2% 4.0E+08 60550 66.8 22894.6 22814 71.1% 2.8E+08 39572
56 X-n376-k94 61.3 147736.8 147718 99.2% 1.6E+07 64604 53.1 147738.1 147718 99.2% 1.4E+07 61378
57 X-n384-k52 26.0 66254.7 66095 97.7% 4.2E+07 77380 29.1 66184.1 66133 97.6% 3.8E+07 68679
58 X-n393-k38 22.7 38361.0 38269 92.7% 7.2E+07 47398 26.9 38305.5 38260 93.7% 6.5E+07 48965
59 X-n401-k29 79.6 66357.8 66269 83.9% 3.4E+08 86787 69.7 66347.6 66225 86.1% 2.7E+08 78713
60 X-n411-k19 110.9 19753.4 19725 72.8% 4.9E+08 65729 74.8 19748.3 19719 77.9% 2.9E+08 51034

Average values: 30.4 0.17% 0.02% 80.2% 2.1E+08 51058 29.3 0.15% 0.01% 81.5% 1.8E+08 49912
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4.3 Comparison with recent state-of-the-art algorithms

Finally, this section reports detailed results of UHGS-BS, using the baseline configuration and

the tunneling strategy, on the complete set of 100 instances proposed by Uchoa et al. (2017).

The results of UHGS-BS are compared to that of the current state-of-the-art algorithms: the

Hybrid Iterated Local Search (HILS) proposed by Subramanian et al. (2013), and the original

UHGS of Vidal et al. (2012, 2014a), which were executed 50 times for each instance. To keep

the total computational effort within reasonable limits, UHGS-BS was executed 10 times for

each instance. The maximum number of consecutive iterations without improvements was set to

Itmax = 50000 to evaluate UHGS-BS in the same conditions as UHGS on this set of instances

(Uchoa et al. 2017). A hard runtime limit of 24 hours was imposed for each run.

Tables 2 and 3 report the results obtained with UHGS-BS, in comparison with UHGS

and HILS. The columns present the average CPU time in minutes, the average solution value

and the best solution value for all approaches. The best results are highlighted in boldface

in the table, with ~ indicating an improvement over the best known solution from http:

//vrp.atd-lab.inf.puc-rio.br/, and the average gap to the best solution produced by the

considered methods (including those generated during this research) is presented for each

algorithm in each table’s final row.

These tables highlight how the local search applied on SB
2 resulted in several improvements

over the best solutions obtained by the state-of-the-art methods considered, with an average

gap of 0.10% and 0.24% on the medium and large instances, respectively, in comparison with

0.14% and 0.30% for a classical search in S. This improvement in solution quality comes at the

price of an overall twofold increase of CPU time.

Another notable observation of these experiments is that the search in SB
2 finds solutions

which are structurally different. Indeed, we obtained some new best known solutions for

unexpectedly small instances, with 256, 294, 322 and 327 customers (marked with a ~). This is

not a coincidence, given that the BKS listed at http://vrp.atd-lab.inf.puc-rio.br/ already

originate from various previous articles and methods, over a large cumulated amount of test

runs and parameter settings. For the particular case of the instance X-n256-k16, one interesting

characteristic was observed: only 16 vehicles are used, with a total capacity usage of 99.6%.
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Table 2: Results for the instances with up to 331 customers from Uchoa et al. (2017)

# Instance

ILS UHGS UHGS-BS

Time Average Best Time Average Best Time Average Best

1 X-n101-k25 0.1 27591.0 27591 1.4 27591.0 27591 2.4 27591.0 27591
2 X-n106-k14 2.0 26375.9 26362 4.0 26381.8 26378 17.6 26374.3 26362
3 X-n110-k13 0.2 14971.0 14971 1.6 14971.0 14971 3.9 14971.0 14971
4 X-n115-k10 0.2 12747.0 12747 1.8 12747.0 12747 6.4 12747.0 12747
5 X-n120-k6 1.7 13337.6 13332 2.3 13332.0 13332 38.3 13332.0 13332
6 X-n125-k30 1.4 55673.8 55539 2.7 55542.1 55539 6.1 55540.0 55539
7 X-n129-k18 1.9 28998.0 28948 2.7 28948.5 28940 8.4 28940.0 28940
8 X-n134-k13 2.1 10947.4 10916 3.3 10934.9 10916 20.2 10916.0 10916
9 X-n139-k10 1.6 13603.1 13590 2.3 13590.0 13590 8.9 13590.0 13590

10 X-n143-k7 1.6 15745.2 15726 3.1 15700.2 15700 33.1 15700.0 15700
11 X-n148-k46 0.8 43452.1 43448 3.2 43448.0 43448 5.1 43448.0 43448
12 X-n153-k22 0.5 21400.0 21340 5.5 21226.3 21220 15.2 21225.6 21225
13 X-n157-k13 0.8 16876.0 16876 3.2 16876.0 16876 28.4 16876.0 16876
14 X-n162-k11 0.5 14160.1 14138 3.3 14141.3 14138 12.2 14138.0 14138
15 X-n167-k10 0.9 20608.7 20562 3.7 20563.2 20557 36.1 20557.0 20557
16 X-n172-k51 0.6 45616.1 45607 3.8 45607.0 45607 5.7 45607.0 45607
17 X-n176-k26 1.1 48249.8 48140 7.6 47957.2 47812 16.2 47830.7 47812
18 X-n181-k23 1.6 25571.5 25569 6.3 25591.1 25569 13.9 25569.4 25569
19 X-n186-k15 1.7 24186.0 24145 5.9 24147.2 24145 20.2 24145.0 24145

20 X-n190-k8 2.1 17143.1 17085 12.1 16987.9 16980 161.9 16985.3 16980
21 X-n195-k51 0.9 44234.3 44225 6.1 44244.1 44225 9.3 44283.8 44225
22 X-n200-k36 7.5 58697.2 58626 8.0 58626.4 58578 12.0 58615.1 58578
23 X-n204-k19 1.1 19625.2 19570 5.4 19571.5 19565 15.7 19567.0 19565
24 X-n209-k16 3.8 30765.4 30667 8.6 30680.4 30656 35.7 30671.3 30656
25 X-n214-k11 2.3 11126.9 10985 10.2 10877.4 10856 52.3 10872.1 10856
26 X-n219-k73 0.9 117595.0 117595 7.7 117604.9 117595 18.2 117600.5 117595
27 X-n223-k34 8.5 40533.5 40471 8.3 40499.0 40437 18.6 40478.4 40437
28 X-n228-k23 2.4 25795.8 25743 9.8 25779.3 25742 29.0 25768.0 25743
29 X-n233-k16 3.0 19336.7 19266 6.8 19288.4 19230 34.0 19276.5 19230

30 X-n237-k14 3.5 27078.8 27042 8.9 27067.3 27042 32.2 27048.8 27042
31 X-n242-k48 17.8 82874.2 82774 12.4 82948.7 82804 18.1 82920.9 82751
32 X-n247-k47 2.1 37507.2 37289 20.4 37284.4 37274 27.7 37388.9 37274
33 X-n251-k28 10.8 38840.0 38727 11.7 38796.4 38699 20.2 38778.7 38684
34 X-n256-k16 2.0 18883.9 18880 6.5 18880.0 18880 23.0 18867.7 18839 ~
35 X-n261-k13 6.7 26869.0 26706 12.7 26629.6 26558 48.6 26618.1 26558
36 X-n266-k58 10.0 75563.3 75478 21.4 75759.3 75517 29.9 75710.7 75478
37 X-n270-k35 9.1 35363.4 35324 11.3 35367.2 35303 18.9 35314.6 35303
38 X-n275-k28 3.6 21256.0 21245 12.0 21280.6 21245 22.7 21255.0 21245
39 X-n280-k17 9.6 33769.4 33624 19.1 33605.8 33505 136.2 33587.9 33503

40 X-n284-k15 8.6 20448.5 20295 19.9 20286.4 20227 97.7 20282.1 20228
41 X-n289-k60 16.1 95450.6 95315 21.3 95469.5 95244 41.7 95447.2 95211
42 X-n294-k50 12.4 47254.7 47190 14.7 47259.0 47171 27.0 47272.7 47161 ~
43 X-n298-k31 6.9 34356.0 34239 10.9 34292.1 34231 20.7 34276.3 34231
44 X-n303-k21 14.2 21895.8 21812 17.3 21850.9 21748 48.4 21811.2 21744
45 X-n308-k13 9.5 26101.1 25901 15.3 25895.4 25859 112.8 25897.3 25861
46 X-n313-k71 17.5 94297.3 94192 22.4 94265.2 94093 30.6 94280.4 94045
47 X-n317-k53 8.6 78356.0 78355 22.4 78387.8 78355 50.3 78385.3 78355
48 X-n322-k28 14.7 29991.3 29877 15.2 29956.1 29870 27.7 29892.5 29834 ~
49 X-n327-k20 19.1 27812.4 27599 18.2 27628.2 27564 68.7 27590.8 27532 ~
50 X-n331-k15 15.7 31235.5 31105 24.4 31159.6 31103 102.1 31126.7 31103

Average gap: 0.37% 0.13% 0.14% 0.02% 0.10% 0.00%
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Table 3: Results for the instances with more than 331 customers from Uchoa et al. (2017)

# Instance

ILS UHGS UHGS-BS

Time Average Best Time Average Best Time Average Best

51 X-n336-k84 21.4 139461.0 139197 38.0 139534.9 139210 66.0 139460.1 139303
52 X-n344-k43 22.6 42284.0 42146 21.7 42208.8 42099 39.7 42156.1 42056 ~
53 X-n351-k40 25.2 26150.3 26021 33.7 26014.0 25946 51.5 25981.8 25938
54 X-n359-k29 48.9 52076.5 51706 34.9 51721.7 51509 112.0 51640.7 51555
55 X-n367-k17 13.1 23003.2 22902 22.0 22838.4 22814 117.3 22876.2 22814
56 X-n376-k94 7.1 147713.0 147713 28.3 147750.2 147717 70.3 147740.5 147714
57 X-n384-k52 34.5 66372.5 66116 40.2 66270.2 66081 56.8 66170.3 65997
58 X-n393-k38 20.8 38457.4 38298 28.7 38374.9 38269 49.3 38309.3 38260 ~
59 X-n401-k29 60.4 66715.1 66453 49.5 66365.4 66243 110.2 66359.0 66212

60 X-n411-k19 23.8 19954.9 19792 34.7 19743.8 19718 126.0 19736.7 19721
61 X-n420-k130 22.2 107838.0 107798 53.2 107924.1 107798 87.7 107913.7 107798
62 X-n429-k61 38.2 65746.6 65563 41.5 65648.5 65501 65.6 65661.6 65470
63 X-n439-k37 39.6 36441.6 36395 34.6 36451.1 36395 57.1 36410.1 36395
64 X-n449-k29 59.9 56204.9 55761 64.9 55553.1 55378 132.6 55432.7 55330
65 X-n459-k26 60.6 24462.4 24209 42.8 24272.6 24181 92.9 24226.0 24145 ~
66 X-n469-k138 36.3 222182.0 221909 86.7 222617.1 222070 142.3 222427.5 222235
67 X-n480-k70 50.4 89871.2 89694 67.0 89760.1 89535 73.1 89744.7 89513
68 X-n491-k59 52.2 67226.7 66965 71.9 66898.0 66633 81.9 66794.1 66607
69 X-n502-k39 80.8 69346.8 69284 63.6 69328.8 69253 177.7 69277.1 69247

70 X-n513-k21 35.0 24434.0 24332 33.1 24296.6 24201 99.4 24256.2 24201
71 X-n524-k137 27.3 155005.0 154709 80.7 154979.5 154774 207.3 155038.1 154787
72 X-n536-k96 62.1 95700.7 95524 107.5 95330.6 95122 144.5 95335.4 95112
73 X-n548-k50 64.0 86874.1 86710 84.2 86998.5 86822 136.6 86881.0 86778
74 X-n561-k42 68.9 43131.3 42952 60.6 42866.4 42756 77.2 42860.0 42733
75 X-n573-k30 112.0 51173.0 51092 188.2 50915.1 50780 782.4 50876.9 50801
76 X-n586-k159 78.5 190919.0 190612 175.3 190838.0 190543 234.3 190752.4 190442
77 X-n599-k92 73.0 109384.0 109056 125.9 109064.2 108813 166.9 108993.3 108576
78 X-n613-k62 74.8 60444.2 60229 117.3 59960.0 59778 103.6 59859.7 59654
79 X-n627-k43 162.7 62905.6 62783 239.7 62524.1 62366 543.1 62442.9 62254

80 X-n641-k35 140.4 64606.1 64462 158.8 64192.0 63839 304.4 64105.6 63859
81 X-n655-k131 47.2 106782.0 106780 150.5 106899.1 106829 253.2 106855.6 106804
82 X-n670-k126 61.2 147676.0 147045 264.1 147222.7 146705 267.7 147663.9 147163
83 X-n685-k75 73.9 68988.2 68646 156.7 68654.1 68425 177.0 68596.0 68496
84 X-n701-k44 210.1 83042.2 82888 253.2 82487.4 82293 368.0 82409.2 82174
85 X-n716-k35 225.8 44171.6 44021 264.3 43641.4 43525 437.2 43599.9 43498
86 X-n733-k159 111.6 137045.0 136832 244.5 136587.6 136366 334.2 136607.4 136424
87 X-n749-k98 127.2 78275.9 77952 313.9 77864.9 77715 308.3 77862.8 77605
88 X-n766-k71 242.1 115738.0 115443 383.0 115147.9 114683 330.5 115115.9 114812
89 X-n783-k48 235.5 73722.9 73447 269.7 73009.6 72781 351.2 72892.4 72738

90 X-n801-k40 432.6 74005.7 73830 289.2 73731.0 73587 424.0 73651.6 73466
91 X-n819-k171 148.9 159425.0 159164 374.3 158899.3 158611 675.6 158849.0 158592
92 X-n837-k142 173.2 195027.0 194804 463.4 194476.5 194266 634.9 194504.0 194356
93 X-n856-k95 153.7 89277.6 89060 288.4 89238.7 89118 314.6 89220.0 89020
94 X-n876-k59 409.3 100417.0 100177 495.4 99884.1 99715 543.1 99780.3 99610
95 X-n895-k37 410.2 54958.5 54713 321.9 54439.8 54172 500.2 54407.4 54254
96 X-n916-k207 226.1 330948.0 330639 560.8 330198.3 329836 1082.5 330153.2 329866
97 X-n936-k151 202.5 134530.0 133592 531.5 133512.9 133140 1022.2 133729.3 133376
98 X-n957-k87 311.2 85936.6 85697 432.9 85822.6 85672 307.9 85681.5 85555
99 X-n979-k58 687.2 120253.0 119994 554.0 119502.1 119194 928.4 119527.7 119188

100 X-n1001-k43 792.8 73985.4 73776 549.0 72956.0 72742 952.8 72903.3 72629

Average gap: 0.74% 0.42% 0.30% 0.06% 0.24% 0.03%
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5 Conclusions and future work

In this article, we investigated decision-set decompositions for the classic CVRP. Our experi-

ments show that decomposing the problem into Assignment and Sequencing decisions, and

conducting local search in the Assignment space (SA) generates consistently better results

than heuristically searching in the complete search space S. When doing so, each solution is

systematically decoded by finding optimal routes (Sequencing decisions) with the Concorde

TSP solver. However, the extra CPU dedicated to solution decoding is prohibitively high to

employ this technique within state-of-the-art metaheuristics. To circumvent this issue, the B&S

neighborhood was employed to define an intermediate search space (SB
k ) which can be more

efficiently searched while retaining a high solution quality.

Different techniques were proposed and evaluated for efficiently searching in space SB
k :

neighborhood reduction, dynamic move filters, concatenation techniques and efficient memory

structures. Moreover, tunneling techniques were employed to reshape SB
k into a search space

more similar to SA as the search progresses. The combination of these techniques within the

UHGS solver resulted in an significant improvement of solution accuracy. Multiple instances

from the literature had their best known solution improved, and new state-of-the-art results

were obtained for the CVRP.

This improvement of search space, however, still results in some extra computational effort.

Therefore, many research perspectives are open about how to fully exploit a larger search space

such as SB
k without any time compromise. One possibility could be to employ the search in

SB
k only in exceptional circumstances, for a selected subset of promising solutions (e.g., each

new best incumbent solutions during the search). Other open research possibilities relate to the

search space SA. Indeed, even with efficient memory structures and neighborhood reduction

techniques, using Concorde for each solution evaluation remains impracticable. This effort could

be mitigated if good and fast lower bounds were proposed for the cost of the routes, therefore

permitting to filter a large proportion of moves as in Vidal (2017). Concorde is also not

optimized to handle millions of small cardinality routes issued from a local search, such that a

dedicated TSP solution procedure exploiting information from the current incumbent solution

represents another promising research line. Finally, the proposed approach can be naturally

evaluated for other variants of the CVRP, in the presence of different types of attributes that

have an impact on the Assignment and Sequencing decision classes. These are all promising
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perspectives for future research at the crossroads of dynamic programming, integer programming,

and metaheuristics.
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