
A new branch-and-bound algorithm for the Maximum
Weighted Clique Problem

Pablo San Segundo
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Abstract

We study the Maximum Weighted Clique Problem (MWCP), a generalization of the Maximum
Clique Problem in which weights are associated with the vertices of a graph. The MWCP calls
for determining a complete subgraph of maximum weight. We design a new combinatorial
branch-and-bound algorithm for the MWCP, which relies on an effective bounding procedure.
The size of the implicit enumeration tree is largely reduced via a tailored branching scheme,
specifically conceived for the MWCP. The new bounding function extends the classical MWCP
bounds from the literature to achieve a good compromise between pruning potential and
computing effort. We perform extensive tests on random graphs, graphs from the literature and
real-world graphs, and we computationally show that our new exact algorithm is competitive
with the state-of-the-art algorithms for the MWCP in all these classes of instances.

Keywords: Maximum Weighted Clique Problem, Branch-and-Bound Algorithm,
Computational Results.

1. Introduction

Given a simple undirected graph G = (V,E) with |V | = n vertices and |E| = m edges, a
subset C ⊆ V of vertices is called a clique of G if any two vertices of C are connected by an
edge in E. The Maximum Clique Problem (MCP) calls for determining the largest clique of
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Figure 1: An example graph G of 10 vertices (part (a)) and the maximum weighted clique (C = {v4, v5, v9, v10})
of value ω(G,w) = 18 (part (b)).

G. It is a fundamental NP-hard problem, very challenging to solve from a computational
viewpoint. It has been covered by a large body of literature, and it still is heavily studied.
The size of the maximum clique is called the clique number of G and it is denoted by ω(G).

In this paper, we propose an exact branch-and-bound algorithm for the Maximum Weighted
Clique Problem (MWCP). Let w : V → R+ be a weight function; the MWCP calls for
determining a clique C of G maximizing w(C) =

∑
v∈C w(v), where w(v) is the weight of

a vertex v ∈ V , and w(C) is the weight of a clique C. We denote by ω(G,w) the optimal
MWCP solution value and call it the weighted clique number of G.

Let us consider the example graph of Figure 1 with ten vertices; in part (a) of the figure we
depict the graph as well as a numbering of its vertices; in the part (b), we report the weights
of the vertices. The value ω(G,w) of this graph is 18, as determined by the weight of the
clique C = {v4, v5, v9, v10}. In part (b) of the figure, the vertices of the maximum weighted
clique are colored in red and the edges with both endpoints in C are drawn with solid lines
(the remaining edges show up dashed).

1.1. Literature review

Both the maximum clique and the maximum weighted clique problems are fundamental
problems in graph theory and combinatorial optimization. Many are their practical applica-
tions, which span different fields. Examples can be found in computer vision [24, 38], coding
theory1, robotics [26], bioinformatics [2], combinatorial auctions [37] and network analysis
[8]. The importance of determining large cliques is witnessed by the large body of literature

1https://oeis.org/A265032/a265032.html
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developed for the MCP and MWCP. A recent algorithmic survey can be found in [36]; see also
[34, 27, 28, 25, 29, 31, 32, 14, 15, 16, 17, 6, 11, 10, 22] for effective recent exact algorithms
for both problems. The referenced algorithms are all branch-and-bound frameworks, which
combine an enumeration scheme (that can be traced back to [3]) with strong upper and lower
bounds.

As far as upper bounds for the MCP are concerned, since the seminal work of [5] most of
the state-of-the-art exact algorithms employ the greedy sequential vertex coloring bound.
Specifically, the number of colors of any legal coloring of a graph provides an upper bound on
the size of the maximum clique (this bound has also been extended to the MWCP). Moreover,
this bound has been improved via a number of post-optimization procedures. In [34], a local
search procedure (called reNumber) is designed with the goal of obtaining stronger bounds
and of reducing the number of colors prescribed by the greedy sequential coloring heuristic.
More recently, greedy infrachromatic bounds have been introduced in the literature. The term
infrachromatic first appeared in this context in [29], to refer to the potential of a maximum
clique bound of being tighter than the chromatic number of the graph. The first infrachromatic
algorithm is, to the best of our knowledge, the MaxSAT-based algorithm proposed in [18]
(before the term infrachromatic was invented). Examples of recent infrachromatic algorithms
are [29, 32, 14, 15]. It is worth noting that while the bounds described in [29, 32] are relatively
simple to implement, the bounds described in [14, 15] are more complex and use MaxSAT
technology. Finding large cliques in massive graphs has also received a lot of attention in the
literature. Specific techniques are described in [31], enhanced by a bitstring representation
and pre-processing of the massive graphs.

Determining good upper bounds for MWCP is generally more difficult than for the MCP,
since the vertex weights give an additional degree of freedom to the problem. A well-known
greedy color-based bound for MWCP is the sum of the weights of the vertices with maximum
weight in each independent color set. Unfortunately, this bound has limited pruning ability
in the general case. In [10], a stronger bound is designed by determining a set of overlapping
independent color sets “covering” the weights of the vertices (see Section 2.1 for further
details). The procedure proposed in [10] generates the independent color sets incrementally,
aiming at determining a “good” covering of the vertex weights and, accordingly, a strong
bound.

MaxSAT-based upper bounds for the MCP have also been extended to the MWCP, see e.g.,
[6] and [11]. The most recent algorithm of this type is described in [12]. However, these
bounding functions are complex, and it is hard to implement them effectively.

To conclude this brief survey, we mention the work [17], in which the authors introduce the
notion of a weight cover bounding function. The proposed bounding function determines a
set of overlapping independent color sets as in [10]. However, it employs a more sophisticated
heuristic to drive the generation of the independent color sets. Specifically, this algorithm
takes into account both the graph structure and the weights of the vertices which have to be
covered.
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1.2. Paper contribution

This article describes a new efficient combinatorial branch-and-bound (B&B) algorithm for
MWCP called BBMCW (BB stands for bitstring, MC for maximum clique and W for weighted).
We design a new incremental fast-bounding procedure, which is able to effectively reduce
the number of the branching nodes required by the implicit enumeration scheme. The new
exact algorithm relies on effective data-encoding structures as well as an effective heuristic
which is able to find feasible solutions of good quality required to initialize BBMCW. Extensive
computational tests show that BBMCW is competitive with the state-of-the-art exact algorithms
for the MWCP. Finally, we test BBMCW to compute the Fractional Chromatic Number of a
graph, using BBMCW as the pricing algorithm for the Column-Generation phase (see Section 4.3).
Also in this test-bed, we show that considerable speed-ups can be achieved when compared to
the state-of-the-art algorithm.

The paper is structured as follows. Section 2 presents the new combinatorial MWCP branch-
and-bound algorithm and Section 3 develops an example to illustrate how the algorithm
operates. Extensive computational experiments are reported and discussed in Section 4. In
Section 5, we present some conclusions.

1.3. Notation

We end this section by introducing the notation used in the remainder of the article. The
complement graph G = (V,E) is a graph where E = {u, v ∈ V, v 6= u : uv /∈ E}. A subset of
vertices I ⊆ V is called an independent set if it is a clique in G or, equivalently, if no two
vertices of I are connected by an edge in E. We also introduce the collection I of the all
independent sets of G. Finally, let N(u) = {v ∈ V |uv ∈ E} denote the neighborhood of a
vertex u ∈ V and N(u) = V \ (N(u) ∪ {u}) denote the anti-neighborhood of u.

2. The new combinatorial branch-and-bound algorithm

We present in this section the new combinatorial branch-and-bound (B&B) algorithm for
the MWCP. Our implicit enumeration scheme is based on the concept of Branching Set and
Pruned Set of vertices of the graph, and it belongs to the family of effective B&B algorithms
proposed for the MCP and MWCP; see e.g., [25, 29, 32, 15, 11, 17].

Before the execution of the exact algorithm, a pre-preprocessing phase computes a heuristic
solution Ch (maximal clique) as well as a lower bound lb = w(Ch) (see Section 2.5).

During search, and at each node of the branching tree, we have a (non-maximal) clique
Ĉ ⊆ V (feasible solution) and a subproblem graph Ĝ = (V̂ , Ê). This subproblem graph is the
subgraph induced by the intersection of the neighboorhoods of the vertices in Ĉ:

V̂ =
⋂
v∈Ĉ

N(v), and Ê = E(V̂ ).
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By construction, V̂ is the set of vertices that can potentially be added to clique Ĉ in subsequent
nodes of the branching tree (child nodes), and in each leaf of the branching tree clique Ĉ is
maximal. At the root node of the branching tree, the clique is an empty set (Ĉ = ∅) and the
subproblem graph is the original graph (Ĝ = G). The child nodes are created by selecting
a vertex in Ĝ and including it into clique Ĉ in a repetitive fashion. During the implicit
enumeration, if w(Ĉ) > lb, the incumbent solution and the value lb are updated accordingly.

Only a subset of the nodes of Ĝ has to be considered as branching vertices to be fixed in
Ĉ in order to create the child nodes of a given subproblem graph, thanks to the following
property (also used, e.g., in [34, 27, 25]). Precisely, the vertex set of the subproblem graph Ĝ
can be partitioned into two sets: the (subproblem) Branching Set B of candidate vertices for
branching, and the (subproblem) Pruned Set P = V̂ \B of vertices, which do not have to be
fixed in Ĉ in the current subproblem 2. For a pair (Ĝ, lb) we want to determine a set P ⊆ V̂
for which a MWCP upper bound UB(P ) is smaller than or equal to lb− w(Ĉ). The upper
bound is computed for graph Ĝ[P ], which is the graph induced by the vertices of P . The
Pruned and Branching Sets can be defined as follows:

P = arg max
P̂⊆V̂

{
|P̂ | : lb− w(Ĉ) ≥ UB(P̂ ) ≥ ω(Ĝ[P̂ ], w)

}
, and B = V̂ \ P. (1)

Precisely, the set P is ideally the largest subset of vertices of V̂ such that the defining property
of P holds. Since determining an optimal set P can be computationally expensive, P is
determined in a heuristic fashion, see Section 2.1. The optimal MWCP solution value of a
specific subproblem is then either lb, or determined in one of the child subproblems that
results when branching on the vertices in B. The computation of UB(P ) is oriented to reduce
the size of the set B efficiently (see Section 2.1).

The bounding function UB(P ) can be designed incrementally and the vertices can be
transferred from the set B to the set P as long as UB(P ) ≤ lb−w(Ĉ). For each subproblem,
initially the set B corresponds to V̂ and P is the empty set. Similar ideas have also been used,
e.g., in [25, 29, 32, 15, 16]. The key element of these families of branch-and-bound algorithms
lies in the way the Pruned Set P is determined using the bounding function UB(P ). In the
following section, we describe how our new and effective bounding function has been designed.

2.1. Outline of the bounding function

Our bounding function is based on the following MWCP model. Given a subproblem graph
Ĝ = (V̂ , Ê), and by introducing a binary variable xv for each vertex v ∈ V̂ (which takes value
1 if and only if vertex v is chosen in the clique), a valid Integer Linear Programming (ILP)

2Vertices in P could make part of the Branching Set in deeper levels of the branching tree.
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formulation for MWCP reads as follows:

ω(Ĝ, w) = max
∑
v∈V̂

w(v) · xv (2)

∑
v∈I

xv ≤ 1 I ∈ I , (3)

xv ∈ {0, 1} v ∈ V̂ . (4)

The objective function (2) maximizes the weights of the vertices in the clique. Constraints (3)
impose that at most one vertex be selected from each independent set (an exponential family
of constraints, one constraint for each independent set I ∈ I ).

Strong MWCP upper bounds can be obtained by computing feasible solutions of the dual of
the Linear Programming (LP) relaxation of formulation (2)-(4)3. Given a (small) collection
of independent sets Ĩ ⊆ I ( covering all the vertices of Ĝ at least once) and associating
a non-negative continuous variable πI with each of them, the dual of the LP relaxation of
formulation (2)-(4), restricted to Ĩ , reads as follows:

ω(Ĝ, w) ≤ min
∑
I∈Ĩ

πI (5)

∑
I∈Ĩ :v∈I

πI ≥ w(v) v ∈ V̂ , (6)

πI ≥ 0 I ∈ Ĩ . (7)

The objective function (5) minimizes the sum of the variable values, and constraints (6)
impose to cover the weight w(v) of each vertex v ∈ V̂ .

Any feasible solution π̃ of formulation (5)-(7) provides a valid upper bound for ω(Ĝ, w)
according to:

UB(Ĩ , π̃):=
∑
I∈Ĩ

π̃I ≥ ω(Ĝ, w). (8)

From equation (8), it is clear that the quality of the MWCP upper bound strongly depends
on the collection of independent sets Ĩ and on the feasible solution π̃ of formulation (5)-(7).
Several are the combinatorial ways of computing MWCP upper bounds based on feasible
solutions of this formulation; see e.g., [10] and [17], where two effective procedures for
computing such a bound are proposed.

In particular, strong MWCP upper bounds can be heuristically determined by covering the
vertex set V̂ with independent sets. Given a cover C of k independent sets: C = {I1, . . . , Ik},
where each vertex of Ĝ is covered by one or more independent sets in C , we define the

3Computing an optimal solution is NP-hard, since the separation of constraints (6) requires the solution
of the Maximum Weighted Independent Set Problem.
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load l(I, v) as the fraction of the weight w(v) of a vertex v ∈ V̂ covered by the independent
set I ∈ C . It immediately follows that a sufficient condition to have a feasible solution of
formulation (5)-(7) is:

∑
I∈C :v∈I

l(I, v) = w(v), v ∈ V̂ . (9)

Given a distribution of load values satisfying equation (9), and by defining:

Ĩ :=C and π̃j:=l̂(Ij), j = 1, 2, . . . , k, where l̂(I):= max
v∈I
{l(I, v)}, (10)

we obtain the following MWCP upper bound, called the Covering Bound in what follows:

UB(C , l̂):=
k∑
j=1

l̂(Ij) ≥ ω(Ĝ, w). (11)

The Covering Bound is a valid bound also in the case of a “partial” cover C̃ which corresponds
to a cover of a subset P ⊆ V̂ of the vertices of the graph Ĝ (the Pruned Set), and (9) holds
for the vertices in P . Clearly, in this case the bound is valid for the subgraph Ĝ[P ] induced
by the vertices of P :

UB(C̃ , l̂, P ):=
k∑
j=1

l̂(Ij) ≥ ω(Ĝ[P ], w). (12)

We now describe the core ideas of the procedure we have designed to compute the Covering
Bound of the family (12), used in our B&B algorithm to determine the Pruned Set P . We
denote the new procedure by SFA (the acronym of the first letters of the surname of the
authors) in the remainder of this article. We propose to compute the bound incrementally,
building the partial cover C̃ and the loads l via a two-phase computation.

First Phase. The SFA bounding procedure starts heuristically building a partial coloring:
formally, a partial coloring of Ĝ is a partition of a subset P ⊆ V̂ of vertices into k independent
sets (where k represents the number of colors): P̃ = {I1, . . . , Ik}. The remaining vertices
B = V̂ \ P are non-colored. The sets P and B become the initial Pruning and Branching
Sets which are further processed during the second phase. See Section 2.3 for further details
on the sequential greedy coloring procedure. By defining I(v) as the unique independent set
in P̃ containing the vertex v ∈ P , we have:

Ĩ :=P̃ and l(I(v), v):=w(v), v ∈ P. (13)

In practice, the greedy sequential coloring procedure stops when the Covering Bound (12) is
below lb−w(Ĉ) and no other vertices can be colored without exceeding it. Further details on
this important point are given in Section 2.3.
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Second Phase. In the second phase, we process one by one the remaining vertices u ∈ B with
the goal of extending the partial coloring P̃ (or equivalently Ĩ ) to a partial cover C̃ . In
other words, the goal is precisely to (potentially) reduce the branching set B. During the
computation of SFA, the independent sets I ∈ Ĩ are sorted according to non-increasing
loads l; that is, for any two nodes vr, vs ∈ I , if r < s then l(I, vr) ≥ l(I, vs). Let
N(u, Ĝ) = {v ∈ V̂ |uv ∈ Ê} denote the neighborhood of u in the subproblem graph Ĝ, and
N̄(u, Ĝ) = V̂ \ (N(u, Ĝ) ∪ {u}) denote the anti-neighborhood of u. Specifically, we propose
to build the partial cover C̃ (or, equivalently, extend Ĩ ) by applying the following three
(independent set) splitting rules denoted by R1, R2 and R3:

• R1 (insertion rule): this rule is triggered when an independent set I ∈ Ĩ exists such
that I ⊆ N̄(u, Ĝ) and w(u) ≤ l̂(I). In this case, the vertex u can be added to the
independent set I and its weight w(u) can be fully covered by the current loads l of I.
Thus we set:

I:=I ∪ {u}, l(I, u):=w(u), and P :=P ∪ {u}. (14)

It is easy to see that the bound (12) on the graph Ĝ[P ] induced by P remains unchanged.

• R2 (one-split rule): this rule is triggered when an independent set I ∈ Ĩ exists such
that I ⊆ N̄(u, Ĝ) and w(u) > l̂(I). The vertex u can be added to the independent set I
but its weight w(u) cannot be fully covered by the current loads l of I. In this case we
set:

I:=I ∪ {u}, l(I, u):=l̂(I), and P :=P ∪ {u}. (15)

In addition, a new independent set Iu:={u} is created and added to Ĩ as follows:

Ĩ :=Ĩ ∪ Iu, and l(Iu, u):=w(u)− l̂(I). (16)

The bound (12) on the graph Ĝ[P ] induced by P increases in this case by w(u)− l̂(I).

• R3 (two-split rule): this rule is triggered when no independent sets I ∈ Ĩ exists
such that I ⊆ N̄(u, Ĝ). Let I = {v1, . . . , v|I|} ∈ Ĩ be an independent set sorted by
non-increasing vertex loads, and let vj be the first vertex adjacent to vertex u according
to the ordering, see Section 2.3 for further details about the independent set partitioning
procedure. Finally, let l(I, v1):=l̂(I):=α.

A first new independent set Ĩ:={v1, v2, . . . , vj−1} ∪ {u} is created and added to Ĩ as
follows:

Ĩ :=Ĩ ∪ Ĩ , l(Ĩ , vi):=l(I, vi)− l(I, vj) i = 1, . . . , j − 1, (17)

l(Ĩ , u):= min{α− l(I, vj), w(u)}, and P :=P ∪ {u}.
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A second new independent set Iu:={u} is created and added to Ĩ as follows:

Ĩ :=Ĩ ∪ Iu, and l(Iu, u):=w(u)− l(Ĩ , u). (18)

And, finally, the loads l of the independent set I are modified as follows:

l(I, vi):=


l(I, vj) if i < j

l(I, vi) otherwise

i = 1, . . . , |I|. (19)

The load l̂ of each independent set of the split are:

l̂(I):=l(vj), l̂(Ĩ):=α− l(vj), and l̂(Iu):= max{w(u)− l̂(Ĩ), 0}.

Clearly, if l̂(Iu) = 0, the weight of u is fully covered by I and Ĩ, and Iu can be discarded.

The bound (12) on the graph Ĝ[P ] induced by P remains unchanged if l̂(Ĩ) ≥ w(u);
otherwise, it increases by w(u)− l̂(Ĩ).

Moreover, since the splitting rules R2 and R3 can potentially increase the bound UB(C̃ , l̂, P )
(12), they are both only triggered when UB(C̃ , l̂, P ) remains smaller than or equal to lb−w(Ĉ)
(preserving in this way a feasible P set); see Section 2.4 for further details.

Compared with other bounds, such as the one proposed in [6], our computational tests show
that SFA gives a good compromise between computational effort and pruning potential (see
Section 4.5). In addition, the fact that the bound can be computed incrementally divides the
computational effort in a more efficient way than if SFA was designed for the full subproblem.
Specifically, each vertex transferred from B to P is expected to prune the search space. Similar
advantages have been described in the literature for a few recent MCP exact algorithms, e.g.,
in [15] and [25]. The particular design of the heuristic rules is inspired, e.g., by [6], [10] and
[17].

It is worth mentioning that the incremental nature of SFA makes it possible to stop the
computation after a vertex fails to be transferred from set B to set P . However, in our SFA
implementation we stop after all the vertices in B are examined once for each subproblem.

2.2. Example of the splitting rules of the SFA bounding function

In this section, we demonstrate how the three proposed splitting rules operate using the graph
of Figure 1. In this example Ĝ = G. For the sake of simplicity, we consider Ĩ to be made
up of a single independent set I. This is the situation in which the first phase of SFA has
determined a single color. Moreover, in this section, we simply denote the assignment symbol
:= as =, to simplify the notation.
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• Application of rule R1: Consider I = {v4, v8} with l̂(I) = w(v4) = 4. The weights
of the two vertices are w(v4) = 4 = l(I, v4) and w(v8) = 3 = l(I, v8). We consider now
vertex v6. Since I ⊂ N̄(v6) and w(v6) = 1 ≤ l̂(I), the R1 rule updates the unique
independent set I to I = {v4, v8, v6} which now covers the weight w(v6) as well, by
setting l(I, v6) to 1. The bound (12) on the graph induced by P = {v4, v6, v8} is equal
to 4 (|Ĩ | = 1).

• Application of rule R2: Consider I = {v8, v6}, with l̂(I) = w(v8) = 3. The
weights of the two vertices are w(v8) = 3 = l(I, v8) and w(v6) = 1 = l(I, v6). We
consider now vertex v4. The situation is different from the previous case, because
w(v4) = 4 > l̂(I), and thus the weight of v4 cannot be covered simply by inserting v4
in I. By applying rule R2, we update the independent set I to I = {v4, v8, v6} and we
set l(I, v4) = l̂(I) = 3. We then create a new independent set Iv4 = {v4} and we set
l(Iv4 , v4) to w(v4)− l̂(I) = 4− 3 = 1 (l̂(Iv4) = 1). The bound (12) on the graph induced
by P = {v4, v6, v8} is again equal to 4 (|Ĩ | = 2).

• Application of rule R3: Consider I = {v8, v6} (as for R2) but we consider now vertex
v10 with w(v10) = 5 and α = l̂(I) = w(v8) = 3 = l(I, v8). The vertex v6 is the first
vertex adjacent to v10 in I, so applying rule R3 does not change the independent set
I but updates its load l(I, v8) to 1 and, accordingly, l̂(I) = w(v6) = 1. The rule then
creates two new independent sets: Ĩ = {v8, v10} and Iv10 = {v10} with:

l(Ĩ , v8) = l(Ĩ , v10) = α− w(v6) = 3− 1 = 2, and l̂(Ĩ) = 2,

l(Iv10 , v10) = w(v)− lĨ(v10) = 5− 2 = 3, and l̂(Iv10) = 3.

The bound (12) on the graph induced by P = {v6, v8, v10} is equal to 6 (|Ĩ | = 3).

The rules R1-R3 provide thus a methodology to obtain an upper bound with the goal of
enlarging the Pruned Set P , at the same time.

2.3. Greedy sequential coloring procedure

At each node of the implicit enumeration scheme, a greedy sequential coloring procedure
is executed to determine P̃ = {I1, . . . , Ik}. In this way, we obtain a partial coloring of the
vertices of the subproblem graph Ĝ using k colors and a set of loads for the vertices in P̃.
This procedure tries to color the vertices in V̂ by examining them in the order determined
during pre-processing (see Section 2.5). As a result, it computes a partition of a subset P ⊆ V̂
of vertices into k independent sets. Once the initial Pruned Set P is determined, it is then
incrementally enlarged by applying the splitting rules described in Section 2.1.

The greedy sequential coloring procedure is outlined in Algorithm 1. COLOR receives as input
a subproblem graph Ĝ, the incumbent solution value lb and the weight w(Ĉ) of the clique
Ĉ. This procedure is inspired by the greedy sequential independent-set coloring algorithm
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described in [27] for the MCP, which incrementally computes maximal independent sets. It is
implemented with an outer and an inner loop. Each execution of the inner loop computes a
new independent set I, which is then added to P̃. Specifically, a vertex v ∈ V̂ is added to I
if the bound (12) is lower than or equal to lb− w(Ĉ) (see Step 8). The outer loop initializes
the auxiliary data structures. With a slight abuse of notation, we define l̂(I) = 0 if I is the
empty set.

At the end of the procedure, COLOR also returns the gap value g between the bound (12) and
lb− w(Ĉ), defined as follows: g = lb− w(Ĉ)− UB(P̃, l̂, P ). This gap is used as a budget to
trigger the splitting rules R2 and R3, as long as the bound UB(P̃, l̂, P ) increases by no more
than the gap.

Algorithm 1: COLOR(Ĝ, lb, w(Ĉ))

Input: A graph (Ĝ, w). A solution value lb ≤ ω(Ĝ, w). The weight w(Ĉ) of the clique Ĉ. // The

order of V̂ is determined during pre-processing

Output: A feasible partial coloring P̃ = {I1, . . . , Ik}, the loads l for the vertices in P̃, and a gap
value g.

1 B ← V̂ , k ← 0, ub← 0
2 repeat
3 k ← k + 1
4 Bk ← B, Ik ← ∅
5 repeat
6 v ← the first vertex in Bk
7 Bk ← Bk \ {v}
8 if w(v) ≤ l̂(Ik) or ub+ w(v)− l̂(Ik) ≤ lb− w(Ĉ) then
9 Bk ← Bk \N(v)

10 B ← B \ {v}
11 Ik ∪ {v} // sorted by non-increasing weight

12 if w(v) > l̂(Ik) then

13 ub← ub+ w(v)− l̂(Ik)
14 end

15 end

16 until Bk = ∅
17 until Ik = ∅
18 k ← k − 1, P ← V̂ \B
19 return P̃ = {I1, . . . , Ik} , l, g ← lb− w(Ĉ)− ub

COLOR has a worst-case time complexity of O(|V̂ |2). However, compared with the greedy
sequential independent-set coloring function described in [27], COLOR inserts the vertices in
the independent sets according to non-increasing weight (see Step 11), so that each insertion
is done in O(|I|). Preserving vertices ordered in this way allows to efficiently compute the
triggering conditions of the splitting rules, as well as the new independent set produced by
the splitting rule R3. In practice, it is possible to reduce this extra complexity by setting
a maximum cardinality threshold for every independent set I of P̃. We comment on this
optimization strategy in Section 2.6.
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2.4. Reducing the branching set

The output of procedure COLOR provides a partial coloring P̃ which determines our initial
Pruned Set P ; In other words, we obtain the vertices in P̃ and the Branching Set B = V̂ \P .
We recall that the search procedure is only branching on vertices in B and it examines child
subproblems by fixing vertices in Ĉ from set B. We now propose two bounding schemes: the
single independent set cover and the multiple independent set cover, using the splitting rules
R1, R2 and R3 from subsection 2.1 to reduce the size of this initial Branching set B.

2.4.1. Single independent set cover

We consider the problem of transferring a vertex v from the Branching set B to the Pruned
set P , thus pruning the search space. This problem is equivalent to determining if ω(Ĝ[P ∪
{v}], w) ≤ lb−w(Ĉ), given that ω(Ĝ[P ], w) ≤ lb−w(Ĉ) by construction of P . The procedure
COVER, described in Algorithm 2, outlines an efficient procedure for this task.

COVER receives as input a k independent set cover C̃ of the Pruned Set P , where the vertices
of the independent sets are sorted by non-increasing loads. It is worth mentioning that for
the first call to COVER, C̃ is the partial coloring P̃ computed by COLOR. The template of
COVER also contains the loads l of C̃ , the gap value g and a vertex v ∈ B that is not in the
cover. The procedure attempts to insert v into C̃ while, at the same time, keeping the bound
(12) lower than or equal to lb− w(Ĉ). If COVER is successful, the input cover C̃ is modified
according to the splitting rules R1, R2 and R3 (see Section 2.1). For the single independent
set cover described in this Section, each transfer attempt works with a single independent set
I ∈ C̃.

We recall that firing the bounding rules R2 and R3 increases the number of independent sets
of the cover by 1 and (at most) 2, respectively. In order to avoid an explosion of the size of
C̃ , we do not allow more than one new independent set for each transferred vertex from the
set B to the set P in any subproblem. Thus, procedure COVER does not include the singleton
set Iv = {v} when rules R2 and R3 are triggered; consequently, the transferred vertex v is
covered by a single independent set in the new cover, independently of the splitting rule that
is fired. The P defining property is assured by Steps 11 and 20, limiting the increment of the
bound UB(Ĉ , l̂, P ) to the available gap value g. We further recall that R1 is the only rule
that guarantees that the bound will not change, but it can seldom be applied.

To better understand how COVER operates, we now summarize the structural properties of
C̃ when each splitting rule is succesful. In what follows, we denote by C̃0 the input cover to
procedure COVER and by C̃ the new cover computed by the procedure. Also let α(I) denote
the maximum load l̂(I) of the independent set I of C̃0. Let Ij be the candidate independent
set used to trigger the splitting rules.

• When R1 is applied to (v, Ij): There is no increment of the bound UB(C̃0, l̂, P ).

Also, the cardinality of the cover remains unchanged (|C̃ | = |C̃0|) and so do the loads.
The load assigned to the transferred vertex v is w(v), because it is covered completely
by Ij.
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• When R2 is applied to (v, Ij): The bound UB(C̃0, l̂, P ) is increased by w(v)−α(Ij).
The cardinality of the cover remains unchanged as in the previous rule, and so do the
loads. Finally, the load assigned to the transferred vertex v is now l(Ij, v) = α(Ij) (see
Step 12), which is the part of the weight of v that is covered. The remaining weight is
accounted by the gap value.

• When R3 is applied to (v, Ij): The bound UB(C̃0, l̂, P ) increases by max{w(v)−
(α(Ij)− l(Ij, vl)), 0}, where vl is a vertex adjacent to the vertex v with maximum load
in Ij. In other words, it is the first vertex adjacent to v according to the ordering of
Ij. The independent set Ij remains unchanged, but the loads of the vertices preceding4

vl are changed to l(Ij, vl). Moreover, the cardinality of the cover increases by one:

|C̃ | = |C̃0|+ 1. The new independent set Ĩj contains all the vertices in Ij preceding vl,
as well as v. The loads of these vertices in Ĩj, except v, are reduced by α(Ij)− l(Ij, vl).
Finally, the load of the vertex v is set to l(Ĩj, v) = min{α(Ij)− l(Ij, vl), w(v)} in Step
24.

2.4.2. Multiple independent set cover

The procedure COVER, outlined in the previous section, works with a single independent set of
the input cover C̃ to determine if a vertex v ∈ B can be added to C̃ (and the Pruned Set P )
according to the defining property of P (see (1)). We now describe an additional efficient
procedure, called MCOVER, which works with multiple independent sets. MCOVER is outlined in
Algorithm 3; it has the same template as COVER and operates as follows.

MCOVER examines one by one the independent sets in the cover C̃ and, each time an independent
set I ∈ C̃ triggers a splitting rule, the procedure determines the maximum part of the weight
w(v) that I can cover (which depends on the specific rule), and increments a variable ∆. The
goal of MCOVER is to identify a subset of independent sets Ĩ ⊆ C̃ such that it covers w(v)
completely using ∆, and, at the same time, preserves the validity of P . This is evaluated by
the expression ∆ + g ≥ w(v) in Step 7, which is relative to the triggering of R1 and R2, and
in Step 15, relative to the triggering of R3. If such a subset Ĩ is found, MCOVER returns TRUE
to indicate that v can be transferred to P without incrementing the bound (12) by more than
the gap value g (and g is updated accordingly); otherwise MCOVER returns FALSE after having
examined all the indepedent sets of C̃ . It is worth noticing that C̃ is not modified during
the operation of MCOVER for efficiency reasons. In addition, we do not split the independent
sets in Ĩ (following the rules R1, R2 and R3) to avoid an explosion of the cardinality of C̃ .
Specifically, the algorithm returns the set Ĩ , which is removed from the input cover C̃ in
subsequent calls to MCOVER when examining the remaining vertices in B.

As far as specific implementation details are concerned, we highlight the following. The
algorithm starts with ∆ = 0. Steps 4-11 are intended for the case in which the rules R1
or R2 are applicable. This is the case in which vertex v is non-adjacent to all the vertices
in the examined independent set I ∈ C̃ . In this situation, either the remaining weight
d = w(v)− g −∆ of v is less than or equal to l̂(I), which corresponds to the application of

4The vertices of a stable set I are sorted by non-increasing loads l(I, v).
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Algorithm 2: COVER (C̃ = {I1, . . . , Ik}, l, g, v)

Input: A cover C̃ with loads l, a gap value g and a vertex v not in C̃ .
// all I = {v1, v2, . . . , vm} ∈ C̃ are sorted by loads

(
l(v1) ≥ l(v2) ≥ · · · ≥ l(vm)

)
.

Output: A (potential) new cover C̃ and a (potential) new gap value g.

1 j ← 0
2 repeat
3 token← false
4 j ← j + 1
5 if R1( v, Ij) is applicable then
6 Ij ← Ij ∪ {v} // Ij = {v1, . . . , v, . . . , vm}
7 l(Ij , v)← w(v)
8 token← true

9 else if R2( v, Ij) is applicable then

10 if w(v)− l̂(Ij) ≤ g then

11 g ← g − (w(v)− l̂(Ij))
12 l(Ij , v)← l̂(Ij)
13 Ij ← Ij ∪ {v} // Ij = {v, v1, . . . , vm}
14 token← true

15 end

16 else if R3( v, Ij) is applicable and token = false then
// Ij = {v1, . . . , vl−1, vl, vl+1, . . . , vm}

17 vl ← first vertex in Ij such that vl ∈ N(v)

18 α← l̂(Ij), β ← α− l(Ij , vl)
19 if w(v)− β ≤ g then
20 g ← g −max{w(v)− β, 0}
21 l(Ij , vk)← l(Ij , vl), 1 ≤ k < l

22 Ĩj ← {v1, v2, . . . , vl−1} ∪ {v}
23 l(Ĩj , vk)← l(Ij , vk)− l(Ij , vl), 1 ≤ k < l

24 l(Ĩj , v)← min{α− l(Ij , vl), w(v)} // l̂(Ĩj) = β

25 C̃ ← C̃ ∪ Ĩj
26 token← true

27 end

28 end

29 until token = true or j = k

30 return C̃ , g

R1, or d > l̂(I), which corresponds to the application of R2. In both cases, I can cover at
most l̂(I). On the other hand, Steps 12-19 consider the application of R3. In this situation,
the maximum weight that can be covered by I is l̂(I)− l(I, vl), where, as in COVER, vl denotes
a vertex in I with maximum load belonging to the neighbor set of v.
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Algorithm 3: MCOVER (C̃ = {I1, . . . , Ik}, l, g, v)

Input: A cover C̃ with loads l, a gap value g and a vertex v not in C̃ .
// all I = {v1, v2, . . . , vm} ∈ C̃ are sorted by loads

(
l(v1) ≥ l(v2) ≥ · · · ≥ l(vm)

)
.

Output: A subset of indepedendent sets Ĩ that cover w(v). A (potential) new gap value g. TRUE
is returned if the algorithm is successful; FALSE otherwise.

1 ∆← 0, j ← 0, token← false
2 repeat
3 j ← j + 1
4 if N̄(v) ⊇ Ij then
5 ∆← ∆ + l̂(Ij)

6 Ĩ ← Ĩ ∪ Ij
7 if ∆ + g ≥ w(v) then
8 token← true
9 g ← g −max{∆− w(v), 0}

10 end

11 else
12 vl ← first vertex in Ij such that vl ∈ N(v)

13 ∆← ∆ + (l̂(Ij)− l(Ij , vl))
14 Ĩ ← Ĩ ∪ Ij
15 if ∆ + g ≥ w(v) then
16 token← true
17 g ← g −max{∆− w(v), 0}
18 end

19 end

20 until token = true or j = k
21 if token then

22 return Ĩ , g, TRUE
23 else return ∅, g, FALSE

2.4.3. Determining the branching set

By making use of the procedures COLOR, COVER and MCOVER, we further define the procedure
GenBranchSet, which determines a (small) Branching Set B for a given subproblem graph Ĝ,
such that ω(Ĝ, w) is less than or equal to lb− w(Ĉ).

Procedure GenBranchSet is outlined in Algorithm 4. It starts by calling the procedure COLOR

to compute a partial coloring P̃ of G such that UB(P̃, l̂, P ) ≤ lb− w(Ĉ). As described in
previous sections, this determines an initial Branching Set B composed by the vertices in
V̂ , which remain uncolored. After that, GenBranchSet calls COVER and MCOVER in succession
for every remaining vertex in B. Each time any one of these two functions is succesful, the
examined vertex from set B is transferred to the Pruned set P and a new vertex in B is
selected for examination.

The vertices are always selected from the set B in reverse order with respect to the way
they are computed by COLOR, and they are treated according to non-decreasing load. This is
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because vertices with a lower weight have a higher probability of being covered by C̃ . At the
end of the procedure a (small) set of vertices with (high) weights are left in the Branching
Set B for every subproblem.

Algorithm 4: GenBranchSet (Ĝ, lb, w(Ĉ))

Input: A graph (Ĝ, w). An incumbent solution value lb. A weight w(Ĉ) of a clique Ĉ.
Output: A Branching Set B of vertices such that ω(G[V \B], w) ≤ lb− w(Ĉ).

1 (C̃ , l, g)← COLOR(Ĝ, lb, w(Ĉ))

2 B = {b1, . . . , b|B|} ← V \ C̃ // vertices in B are sorted by non-increasing loads

3 if B = ∅ then
4 return B
5 end
6 for bi := b|B| downto b1 do

7 (Ĩ , g)← COVER(C̃ , l, g, bi)
8 end
9 if B = ∅ then

10 return B
11 end
12 for bi := b|B| downto b1 do

13 (Ĩ , g, success)← MCOVER(C̃ , l, g, bi)

14 C̃ ← C̃ \ Ĩ
15 if sucess = true then B ← B \ {bi}
16 end
17 return B

2.5. The outline of the algorithm

The design of our new recursive B&B algorithm BBMCW for the MWCP is outlined in Algorithm
5 and is inspired by recent state-of-the-art MCP solvers, such as [25, 15]. The first call to
BBMCW requires some pre-processing, as follows. It is well established that pre-processing
is critical for efficiency in many B&B frameworks, see [30] for an in-depth discussion on
pre-processing concerning the MCP.

A first consideration is how the vertices are sorted initially. BBMCW employs a new adaptive
initial vertex ordering procedure inspired by the work of [14] and [30]. The procedure always
computes two orderings for the vertices in the preprocessing phase: one based on vertex
degree and the other on an independent set partition of the vertex set V .

First Order. The degree-based ordering is described as follows. Let V = {v1 ≺ v2 ≺ · · · ≺ vn}
be the original ordering of the vertices of the graph G. The procedure BBMCW sorts the vertices
of G as follows. First, a vertex vj, 1 ≤ j ≤ n with minimum degree in V becomes the last
vertex vn in the new ordering. Next, another vertex with minimum degree in V \ {vj} is
placed at vn−1 and so on, until all vertices are sorted. This is a typical degenerate ordering
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(so called because the sorting criterion is applied dynamically to the vertices that remain to
be sorted, and thus “degenerates” as the ordering proceeds) used by state-of-the art solvers
for the MCP , see [30] for a recent in-depth study of different vertex orderings for the MCP.
In addition, if vertices have the same degree we select the one with smallest weight.

Second Order. The overarching idea of the independent set-based ordering is to compute an
independent set partition of V with a small number of independent sets (colors), and sort the
vertices according to this partition, i.e., by non-decreasing color number. An independent set
ordering for the MCP was originally described in [14]. In this work we use the COLOUR SORT

procedure described in [30].

Once the two vertex orderings have been computed, our initial sorting procedure selects the
one which produces the smallest branching set at the root node. Finally, we compute a graph
G0 isomorphic to G with such ordering, and use a bitstring representation of G0 in memory.
The advantages of both orderings, as well as the bitstring encoding, are well established in
literature for the MCP, see, e.g., [27, 28, 30].

We obtain a “good” feasible solution C0 using the heuristic AMTS (acronym for Adaptive
Multi-start Tabu Search), see [35]. This solution is the initial incumbent solution Cmax used
by the algorithm. It is worth noticing that AMTS is used only by BBMCW; the other exact
algorithms tested in our computational results have their own heuristic initialization phase.
A first root Branching Set B0 is computed by the call GetBranchSet(G0, |C0|, ∅). Finally,
vertices in B0 are sorted by non-increasing weights so that the more promising vertices with
high weights are examined first at the root node (see Step 1). At the end of the pre-processing
phase, the first call to the algorithm is BBMCW((G0, w), V , ∅, C0, B0).

2.6. Further implementation details

We highlight that BBMCW uses the sequence determined by the initial ordering of vertices
to compute the greedy sequential coloring heuristic in procedure COLOR. This favours the
production of large partial colorings, as described in [27, 28], specifically in the shallower
levels of the branching tree.

In addition, BBMCW employs the following optimization related to the size of the independent
sets of the cover C̃ of each subproblem. We recall that, in COVER, the vertex that triggers
rule R3 for a pair (v ∈ B, I ∈ C̃ ) is the first vertex adjacent to v in I (we recall that vertices
in I are ordered by non-increasing loads, see Section 2.3). It is clear that the probability
that m vertices in I precede this first neighbor of v decreases with m. Thus, we conceive a
modified COLOR procedure that only stores a subset of the vertices for each independent set
I ∈ C̃ , precisely those with the highest weights and, therefore, more pruning potential. In our
experiments, the best compromise between efficiency and pruning capability was obtained
when the size of the color sets was restricted to a maximum of 3 vertices. It is easy to tailor
the design of the procedures COVER and MCOVER for this optimization.

We end this section with a consideration on the way the vertices in the subproblems analyzed
are sorted during tree traversal. BBMCW uses a bitstring representation of the input graph and
is able to efficiently preserve the relative order of vertices determined at root in all subsequent
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Algorithm 5: BBMCW((G,w), V̂ , Ĉ, Cmax, B)

Input: A graph (G = (V,E), w). A subproblem V̂ ⊆ V . A (feasible solution) clique Ĉ. An
incumbent solution Cmax. An ordered Branching Set B = {b1, b2, . . . , b|B|} ⊆ V̂ sorted by
non-increasing loads.

Output: A maximum weighted clique of G in Cmax.

1 for b := b1 to b|B| do

2 V̂b ← V̂ ∩N(b)

3 if V̂b 6= ∅ then
4 Bb ← GenBranchSet(G[V̂b], w(Cmax), w(Ĉ))
5 if Bb 6= ∅ then
6 Ĉ ← Ĉ ∪ {b}
7 C1 ← BBMCW((G,w), V̂b, Ĉ, Cmax, Bb)
8 if w(C1) > w(Cmax) then Cmax ← C1

9 Ĉ ← Ĉ \ {b}
10 end

11 end

12 V̂ ← V̂ \ {b}
13 end
14 return Cmax

subproblems. Specifically, the vertices of the (bit encoded) vertex set V̂b in step 2 of algorithm
5 are stored always according to the initial order. During pre-processing, BBMCW additionally
computes a mapping between the initial order and the weight-based order of vertices that is
required by the Branching set in Algorithm 4. With this mapping, it is always possible to
sort any (bit encoded) set of vertices according to vertex weight in linear time on the size of
the set. This optimization detail is used in step 2 of Algorithm 4 to efficiently determine the
order of vertices.

3. Algorithm demonstration

We present in this section a demonstration graph to illustrate how the proposed bound is used
by the algorithm BBMCW. We consider the graph depicted in Figure 2, part (a), with n = 7 and
m = 14, together with weights: w(v0) = 1, w(v1) = 2, . . . , w(v6) = 7. The algorithm, during
pre-processing, finds an initial clique v0, v1, v3, v6 of size w({v0, v1, v3, v6}) = 14 and branches
on vertex v3 (thus Ĉ = {v3}). The child subproblem, determined by the neighborhood
{v0, v1, v2, v4, v5, v6} of v3, is shown in Figure 2, part (b), and the (initial) gap value g is
defined as g = lb− w(Ĉ) = 14− w(v3) = 10.

We now trace the work of the procedure GenBranchSet, described in Algorithm 4, for the child
subproblem V̂ = {v0, v1, v2, v4, v5, v6}. The call to COLOR made by GenBranchSet computes
the independent set partition P̃ = {I1, I2} shown in Table 1. As can be seen, the bound (12)
for P̃ is l̂(I1)+ l̂(I2) = 6+3 = 9, and no other vertex v ∈ V̂ may be added to P̃ such that the
bound (12) for the enlarged partition is less or equal to the initial gap value 10. Consequently,
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Figure 2: In part (a) of the Figure, we depict a demonstration graph Ĝ where we show in red the vertex v3
that is examined by the branching scheme. In part (b), we show the corresponding child subproblem graph
Ĝ[N(v3)], together with the vertex weights.

the new gap value is g = 10− 9 = 1. The initial Pruned Set P for the subproblem contains
the vertices of P̃ where P = {v0, v1, v2, v5}, and the Branching Set is B = V̂ \ P = {v4, v6}.

I1 = {v5, v0} l(I1, v5) = 6, l(I1, v0) = 1
I2 = {v2, v1} l(I2, v2) = 3, l(I2, v1) = 2

Table 1: A partial coloring of the graph in Figure 2, part (b).

At this point, the call to COVER in GenBranchSet fails to transfer any vertex from B to P ,
because it is not possible to cover the weight of either vertex v4 or v6 in B using the single
independent set cover of I1 or I2. Consider, for example, vertex v4. Applying rule R2 to the
pair (v4, I2) increments the bound by w(v4)−w(v2) = 5− 3 = 2, thus exceeding the unit gap.
Similar reasonings can be made for the other rules and pairs.

Having failed COVER, the procedure GenBranchSet calls MCOVER, which succeeds in transferring
vertex v6 from set B to set P as follows:

• By applying R3(v6, I1): The first adjacent vertex in I1 to vertex v6 is v5, so R3 is
triggered. As a result, l(I1, v5) = l(I1, v1) = 1 and the new independent set split
according to rule R3 is Ĩ1 = {v5, v6}, where l(I1, v5) = l(I1, v6) = 5. MCOVER does not
compute the split, but instead updates ∆ with the maximun weight units that I1 can
cover, which is 5. At this point, this is not enough to cover w(v6) = 7.

• By applying R3(v6, I2): The first adjacent vertex in I2 to vertex v6 is v2, so again R3
is triggered. As a result, l(I2, v2) = l(I1, v1) = 2 and the new independent set split
according to rule R3 is Ĩ2 = {v2, v6}, where l(Ĩ2, v2) = l(Ĩ2, v6) = 1. As noted in the
previous case, MCOVER does not compute the split but instead increments ∆ by the
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maximum weight that I2 can cover which is 1, so ∆ = 5 + 1 = 6. This value of ∆ is still
not enough to cover w(v6) = 7 by itself.

• The gap value g: The remaining unit weight w(v6)−∆ can be accounted by the gap
value, which is 1. The gap value is reduced by this one unit to g = g − 1 = 0.

The independent set cover C̃ = {I1, Ĩ1, I2, Ĩ2}, which corresponds to the operations done by
MCOVER to determine the transfer of vertex v6 ∈ B to the Pruned Set P , is shown in Table 2.

I1 = {v5, v0} l(I1, v5) = 6, l(I1, v0) = 1

Ĩ1 = {v5, v6} l(Ĩ1, v5) = 5, l(Ĩ1, v6) = 5
I2 = {v2, v1} l(I2, v2) = 2, l(I1, v1) = 2

Ĩ2 = {v2, v6} l(Ĩ2, v2) = 1, l(Ĩ2, v6) = 1

Table 2: A partial independent set cover of the graph in Figure 2, part (b).

We conclude this section by comparing our bounding technique with the principal bounding
technique proposed in [10]. This bounding technique is the greedy algorithm proposed to
compute a weighted clique cover. We denote the algorithm WCC for brevity; moreover, this
procedure is the core of the branch-and-bound algorithm called MWSS and described in detail
in [10]. In our case, we are interested in a weighted independent set cover and we will describe
WCC adapted to the latter case. In addition, we will use WCC, as in [10], to determine the
branching set B (and, accordingly, the pruned set P = V̂ \B). More precisely, given a graph
Ĝ = (V̂ , Ê) and a set of weights on the vertices w(v) (v ∈ V̂ ), WCC incrementally covers the
vertex weights using maximal cliques (independent sets in our case).

Before the execution of the algorithm, an initialization step sets the residual weight w̃(v) of
each vertex v ∈ V̂ to its original weight w(v). WCC then iteratively determines the vertex
v̄ with the smallest residual weight w̃(v̄) and greedily builds a maximal independent set Ĩ
containing it. Once the set Ĩ has been constructed, πĨ (see Formulation (2)-(4)) is set to
the (current) residual weight of the vertex v̄ (πĨ = w̃(v̄)) and all the residual weights of the
vertices in Ĩ are decreased by πĨ . We note that, by construction, w̃(v̄) = 0. Moreover, a
vertex v̄ can only be used as seed for a new independent set if and only if its residual weight
plus the sum of the π variable (as established by the previous independent sets) does not
exceed the initial gap value lb− w(Ĉ). If no vertex with positive residual weight meets this
condition, the algorithm stops and the pruned set P is determined by the union of vertices
that have residual weights equal to 0 (B = V̂ \ P ). Alternatively, if there are no vertices with
positive residual weights that can be the seed of a new independent set, the algorithm stops
and outputs an empty branching set B.

We show now how WCC works on the graph in Figure 2, (part (b)), under the same assumptions
as for BBMCW (the initial gap g is set to 10) . To the best of our knowledge, no additional detail
on how to build the maximal cliques (independent sets in our case) is given in [10]. For this
reason, we make the assumption that the vertices are considered in order of non-increasing
residual weight (in a sequential greedy fashion). We recall that the initial residual weights of
the vertices in the graph are:

w̃(v0) = 1, w̃(v1) = 2, w̃(v2) = 3, w̃(v4) = 5, w̃(v5) = 6, w̃(v6) = 7.
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WCC determines a first independent set I1 = {v0, v5} (the seed v̄ = v0) and sets πI1 to w̃(v̄) = 1.
After updating, the residual weights of the vertices in I1 become w̃(v0) = 0 and w̃(v5) = 5.
A second independent set I2 = {v1, v2, v4} is then computed with πI2 = 2. The residual
weights of the vertices in I2 become w̃(v1) = 0, w̃(v2) = 1, w̃(v4) = 3. A third independent set
I3 = {v2, v4, v6} is computed and πI3 = w̃(v2) = 1. The residual weights of the vertices in I3
become w̃(v2) = 0, w̃(v4) = 2, w̃(v6) = 6. A fourth independent set I4 = {v4, v6} is computed
and πI4 = 2. The residual weights of the vertices in I4 become w̃(v4) = 0, w̃(v6) = 4. Finally,
a fifth independent set I5 = {v5, v6} is computed and πI6 = 4. The residual weights of the
vertices in I5 become w̃(v6) = 0, w̃(v5) = 1. WCC then stops since the residual weight of v5 is
equal to 1 and

∑5
i=1 πIi = 10. The branching set B computed by WCC is B = {v5}, and the

pruned set P = {v0, v1, v2, v4, v6}. In the example, the algorithm BBMCW obtains a different
branching set B = {v4}. In this case, the size of the two branching sets coincides, but, as
shown in the next section, our new algorithm computationally outperforms MWSS.

4. Computational results

We conducted extensive tests to computationally evaluate the ideas presented in this paper
and the new combinatorial branch-and-bound algorithm for the MWCP. The hardware used
in the experiments was a 20-core Intel(R) Xeon(R) CPU E5-2690 v2@3.00GHz, with 128GB
of main memory, and running a 64-bit Linux OS. All algorithms presented in the previous
sections are implemented in C++, compiled using gcc 4.8.4 (with –o3 optimizations) and run
on a single core of the machine. The performance of the algorithm dfmax, commonly used for
calibration between different machines, is 0.189, 1.155 and 4.369 seconds for the benchmark
graphs r300.5, r400.5 and r500.5, respectively. In each experiment, the CPU time is reported
in seconds.

The goal of this computational section is to compare the performance of the new exact MWCP
algorithm, called BBMCW, with state-of-the-art algorithms from the literature. We consider the
following four algorithms (where either the source code or the binaries were available):

• MWSS5: the exact algorithm for the Maximum Weighted Stable Set Problem presented
in [10] (tested as a MWCP algorithm on the complemented graph). Stable set and
Independent set are used as synonyms.

• MWCLQ6: the exact algorithm for the MWCP presented in [6].

• WLMC: the exact algorithm for the MWCP described in [11].

• TSM-MWC: the very recent exact algorithm for the MWCP described in [12]

The choice of algorithms requires some clarification. We note that the algorithm WLMC, see [11],
uses MaxSAT reasoning as the the algorithm MWCLQ, but its overarching bounding scheme is
directed at reducing a Branching set, in a similar fashion as BBMCW. In [11], WLMC is described
as an algorithm for large and massive vertex-weighted graphs but, as can be seen in the

5https://github.com/heldstephan/exactcolors
6A Linux release was provided by the one of the developers
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reported results, it also performs well on graphs of small and medium size. The TSM-MWC

algorithm presented in [12] is also based on MaxSAT reasoning but uses a more sophisticated
branching strategy than WLMC. The source codes of both WLMC and TSM-MWC are publicly
available7.

We divide this computational Section into five subsections, in which we test the performance
of BBMCW in different categories of instances and analyse its bounding function. In Section
4.1 we present the results on “hard” DIMACS and BHOSHLIB instances. In Section 4.2 we
present the results on random-graph instances, with up to 15,000 vertices and different edge
densities. Section 4.3 reports tests carried out to compute the Fractional Coloring Number
of a graph, using the classical instances typically used for the Vertex Coloring Problem. In
Section 4.4 we analyse the behaviour of the algorithm over four real-world datasets. Finally,
Section 4.5 reports the impact of the different individual bounding schemes that are combined
in BBMCW.

4.1. DIMACS and BHOSHLIB instances

The majority of the structured graphs tested are taken from the DIMACS 2 benchmark set
of instances, see [1]; in addition we consider also several frb graphs from the BHOSHLIB8

benchmark set. These two datasets, DIMACS 2 and BHOSHLIB, are commonly used for
evaluating MCP algorithms; see e.g., [30, 29, 15, 6] , and comprise non-weighted graphs. We
generate the vertex weights according to the function w(vi) = (i mod 200) + 1, a method
originally proposed in [23], which has been employed in several recent works for the MWCP;
see e.g., [17, 10, 6, 11]. From the two benchmarks, we reported those instances which were
non-trivial but “tractable”. More precisely, we selected those graphs that are solved to proven
optimality in more than 0.1s and less than 5h by at least one of the algorithms considered in
this work. We thus identify 45 graphs for this set of tests.

Table 3 reports the names of the selected instances, together with their corresponding size
(|V |), number of edges (|E|), edge density (µ(G)) and clique number (ω(G)). The latter is
obviously an upper bound on the size (maximum number of vertices) of any clique solution to
the MWCP. The table also reports the optimal MWCP solution value (ω(G,w)), as well as
the computing times spent by the five algorithms we considered: BBMCW, MWSS, MWCLQ, WLMC
and TSM-MCW. In the case of BBMCW, the table further provides the initial incumbent solution
value (lb0) determined during preprocessing. As explained in Section 2.5, this solution was
obtained using the AMTS heuristic. The time spent by AMTS to compute lb0 for each graph is
reported in the column with the same name. In addition, the best computing time of the five
algorithms is highlighted in bold for each instance. With respect to actual setup of the runs,
the time limit was set to 5 hours for all the algorithms.

According to Table 3, the new algorithm BBMCW is the fastest algorithm for 21 out of the 45
reported graphs, while second best is the algorithm TSM-MWC, which is the fastest for 19 of the
graphs. The other algorithms are far behind, the third being WLMC, which is the fastest in two

7https://home.mis.u-picardie.fr/~cli/EnglishPage.html
8http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
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cases. On the other hand, TSM-MWC is able to solve the full set to proven optimality, while
the new algorithm BBMCW cannot solve within the 5h time limit the graphs gen400 p0.9 55,
gen400 p0.9 75 and hamming10-2. With respect to individual families, BBMCW performs well
in the brock, dsjc and frb datasets, while it is outperformed by TSM-MWC and WLMC in a
significative number of instances from the p hat, san and gen families. It is worth noting that
the algorithm MWSS is several orders of magnitude faster than all the other algorithms over
the latter instance.

As far as the incumbent solution value lb0 is concerned, the table shows that the AMTS
heuristic is able to provide very good initial feasible solutions. Specifically, AMTS is able to
compute the optimal solution value in 34 out of the 45 instances, and the difference with the
optimal solution value is larger than 100 units in just two graphs.

In order to give a graphical representation of the relative performance of the different exact
algorithms considered in this section, we report the performance profile of Figure 3. For each
instance, we compute a normalized time τ as the ratio of the computing time of the considered
algorithm over the minimum computing time for solving the instance to optimality. For each
value of τ in the horizontal axis, the vertical axis reports the percentage of the instances for
which the corresponding algorithm spent at most τ times the computing time of the fastest
algorithm. The curves start from the percentage of instances in which the corresponding
algorithm is the fastest and, at the right end of the chart, we can read the percentage of
instances solved by a specific algorithm. The best performances are graphically represented
by the curves in the upper part of Figure 3.

The performance profile visually confirms that BBMCW and TSM-MWC are the two best algorithms
for the set of instances reported. The remaining three algorithms are clearly outperformed.
To note, BBMCW is the fastest in 46% of the instances while TSM-MWC is the fastest in 42% of
the graphs. On the other hand, BBMCW is able to solve to optimality 94% of the graphs, while
TSM-MWC is able to solve to optimality all of the graphs. It is worth noting that TSM-MWC

requires time ratios of τ = 300 and τ = 900 to complete this task and there are instances
where it is more than two orders of magnitude slower than the fastest algorithm.

4.2. Random instances

We tested a set of 270 Erdős-Rényi random G(n, p) graphs of different sizes (n = |V | ∈
{150, 200, 300, 500, 1000, 3000, 5000, 10000, 15000}) and different edge densities (see Table 4
for the specific density values tested). These random graphs are created according to a given
probability (equal to the desired edge density value) of existence of an edge between any
pair of vertices. Similar graphs are commonly used for testing MCP and MWCP algorithms.
Specifically, the concrete test bed is the same as the one used in [32]. For each class of random
graphs, we created 10 instances with similar features. The vertex weights were generated
using the same distribution used for the DIMACS and BHOSHLIB graphs (see 4.1).

For this set of experiments we also test the performance of one state-of-the art commercial
Integer Linear Programming (ILP) solver. Specifically, we test CPLEX 12.7.0 in single-thread
mode (called just CPLEX in what follows) to solve the standard edge formulation of the MWCP
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Figure 3: Performance profile on selected “hard” DIMACS and BHOSHLIB instances.

(all CPLEX parameters were set to their default values). The edge formulation is an ILP where
ω(G,w) = max

∑
v∈V w(v) ·xv over x in CLIQ(G), that is, the set of vectors of RV satisfying:

CLIQ(G) =

{
xu + xv ≤ 1, uv ∈ E, xv ∈ {0, 1}, v ∈ V

}
. (20)

Table 4 reports, for each subset of 10 instances with similar features, their size (|V |) and their
edge density (µ(G)). It then reports the maximum and minimum clique number (ω(G)) of the
instances. The last four columns provide the average CPU time required by the algorithms
BBMCW, MWSS, MWCLQ, CPLEX, WLMC and TSM-MWC respectively. For each row of the table we
report in bold text the average CPU time required by the fastest algorithm.

The results presented in Table 4 demonstrate that BBMCW is characterized by the best overall
computational performance for this test bed of random instances. In particular, of the 27
families of uniform random graphs reported, BBMCW is the fastest algorithm for 19 cases,
whereas the second best algorithm, TSM-MWC, is the fastest for 6 of them. Notably, TSM-MWC
performs best in the families of small dense graphs with 150 and 200 vertices and edge
density values (µ(G)) ranging from 0.8 up to 0.95. The remaining algorithms are the fastest
for, at most, a single family. For the large instances that have 500 or more vertices, BBMCW
always performs best and achieves speedups averaging ≈ 3× with respect to the second best
algorithm TSM-MWC.

4.3. Computing the fractional chromatic number of a graph using BBMCW

The chromatic number of a graph G, denoted by χ(G), is the minimum number of independent
sets (or equivalently colors) in any legal coloring of G. The Vertex Coloring Problem (VCP)
calls for determining the chromatic number of the graph. The fractional chromatic number
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χf (G) corresponds to the optimal solution value of the Linear Programming (LP) relaxation
of the VCP formulation proposed in [21] and it is NP-hard to compute (see [7]).

Let A ∈ {0, 1}|V |·|I | be a binary matrix with avI = 1 if and only if the vertex v ∈ V belongs to
independent set I ∈ I , and let e be the all-one vector of |V | components. Upon introducing a
binary variable ξI for each independent set I ∈ I , equal to 1 if and only if the independent set
I is chosen, the LP relaxation of the VCP formulation proposed in [21], featuring exponentially
many variables (or columns), reads as follows:

χf (G) = min
ξ≥0

{∑
I∈I

ξI : Aξ ≥ e

}
. (21)

Formulation (21) is typically solved by Column Generation (CG) (we refer the interested
reader to [4] for further details on CG). Starting from Formulation (21) initialized with a
subset of columns Ĩ admitting a feasible solution, known as Restricted Master Problem
(RMP), CG iteratively solves a Pricing Problem (PP) to generate columns with a strictly
negative reduced cost to be added to Ĩ . RMP is then reoptimized, and the procedure is
iterated until no more columns with a negative reduced cost exist. When the algorithm
terminates, the fractional chromatic number χf (G) is determined.

To compute the strong VCP lower bound χf(G), one of the state-of-the-art algorithms is
presented in [10]9. The computational results of [10] show that this implementation is among
the fastest in the literature. In particular, this algorithm relies on the exact solution of a
series of MWSSPs using MWSS. The PP corresponds then to a MWSSP in which the objective
function weights are the dual variable values of the RMP constraints.

To compare the performance of BBMCW to MWSS as PP algorithms, we consider the standard
set of instances 10 typically used for testing algorithms for the VCP (see e.g., [19]). We
discard each of the instances for which χf (G) can be computed in less than 1 sec or cannot
be computed within a time limit of 1 hour. We determine in this way a set of 49 instances.

In Table 5, we report the results of this set of tests. The table reports the name of each
selected instance, with the corresponding number of vertices (|V |), number of edges (|E|) and
edge density (µ(G)). The table then shows the rounded-up value of the fractional chromatic
number of the graph (dχf (G)e). As previously mentioned, this value provides a strong lower
bound for the chromatic number χ(G). Finally, the table shows the total computing time and
the time spent to solve the PPs, for BBMCW and MWSS, respectively. The difference between
the total and the pricing time corresponds to the time necessary to solve the RMP, using the
Linear Programming solver of CPLEX.

Table 5 clearly demonstrates that BBMCW compares favourably with MWSS for this set of
instances. For each instance, we report in bold text the time required by the fastest algorithm.
Using BBMCW, the bound can be computed for 47 out of 49 instances, and, using MWSS, for

9code available at https://github.com/heldstephan/exactcolors
10http://mat.gsia.cmu.edu/COLOR/instances.html
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46 instances. In particular, using MWSS the fractional chromatic number can be computed
faster in 12 instances; for the remaining 37, BBMCW is faster. It is worth mentioning that a
large portion of the computational time is taken by PP compared to the time taken by the
solution of RMP. These tests demonstrate that very good computational performance can be
achieved by BBMCW when the vertex weights correspond to the dual variable values of the RMP
constraints. These weights are typically not correlated with any particular structural property
of the graph and they evolve during the CG algorithm. As far as the impact of edge density
on performance is concerned, the table shows that BBMCW consistently outperforms MWSS when
the density is high, contrary to what is experienced for low density values (≈ µ(G) ≤ 0.1).

4.4. Real-world instances

We also experiment with a number of real-world instances derived from practical applications
and mentioned in [20] as being potentially interesting to test MWCP algorithms. Specifically,
we consider the following four datasets:

• Kidney-Exchange schemes (KES) [20]: Kidney-exchange schemes exist in several countries
to determine a way of pairing donors to patients with end-stage renal disease. Typically,
a patient enters the scheme along with a friend or family member who is willing to
donate to that patient but is unable to due to some medical incompatibility. These
two participants form a donor-patient pair. An exchange is established according to
medical constraints and involves two or more donor-patient pairs. In the 100 graphs of
this dataset, vertices are exchanges, the weights represent medical scores and there is
an edge between two exchanges if they have no participants in common.

• Error-correcting codes (ECC): The graphs of this set derive from coding theory, specifically
from a problem proposed by Österg̊aard in [22]. Given a length n, a distance d, a weight
w, and a permutation group Π, the problem calls for determining a maximum cardinality
set C of binary vectors (codes) of length n and Hamming weight w, such that each pair
of codes in C is separated at least by a Hamming distance d. Furthermore, for every
permutation σ ∈ Π and for every code c ∈ C, it happens that σ(c) ∈ C. This is due to
the fact that a permutation of a code is another code also in C. This problem can be
reduced to solving a MWCP on a graph such that the vertices represent each orbit of
the permutation group, the weight of each vertex is the size of the corresponding orbit
and there is an edge between two vertices if and only if all pairs of members of the two
orbits are separated by at least a Hamming distance d. The dataset contains 15 graphs
and was originally proposed in [22].

• Winner Determination Problem (WDP): In auctions where combined bids on sets of
items are allowed, as opposed to single item bids, the same item can be part of two or
more different bids. Determining an allocation of items that maximizes the auctioneer’s
revenue is called the Winner Determination Problem, see [33]. An instance of the WDP

can be modelled as a MWCP where each vertex of the graph represents a (combined)
bid, a vertex weight is the value of the corresponding bid, and there is an edge between
two vertices if the bids do not share a common item. In the tests, we consider the set
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of 499 problem instances originally generated by [13]. The set is publicly available via
cspLib 11.

• Research Excellence Framework (REF): The Research Excellence Framework is an impact
evaluation which analyzes the research work of British higher education institutions. It
was first used in the year 2014 to evaluate the six year period 2008–2013, and the next
iteration of REF will be in 2021. As explained in [20], the rules for REF2021 establish
that an academic can be evaluated over a maximum of 4 papers in a given period of
time (typically 4 years). In the evaluated units from universities, such as schools or
departments, each academic submits six authored papers which are then ranked by
the management of the unit (with numbers from 1 to 4). This generates

(
6
4

)
possible

selections, each one of them with a combined value that ranges from four to 16. In the
final submission for REF2021, each unit accepts only one selection for each member of
the staff, and selections that contain co-authored papers are not allowed. Allocating
the (4-paper) sets that maximizes the unit’s combined ranking can be reduced to a
MWCP that resembles the Winner Determination Problem. In this case, each vertex is
a four-paper combination submitted by a member of the staff (bidder); its weight is the
combined ranking of the proposal (the value the bid), and there is an edge between two
vertices if the two bids have no co-authors in common. The dataset used for the tests
contains 129 graphs of this type.

The full datasets KES, ECC and REF, and a subset of WDP, have been brought together by the
authors of [20] in DIMACS format 12.

Table 6 reports the results obtained for the proposed new algorithm BBMCW, together with
the algorithms TSM-MWC and WLMC, averaged over all the graphs of each of the four datasets
considered. For each dataset, the table reports the number of instances (#), together with
the computing time in seconds (t[s]) and the instances solved to optimality by the three
algorithms. In every graph we considered a maximum computing time of 600 seconds, and
cells in boldface indicate the best result in the corresponding dataset. According to the table,
both BBMCW and TSM-MWC solve to optimality the same number of instances; BBMCW is the
fastest in the datasets KES and REF while TSM-MWC is the best in the two remaining datasets,
WDP and ECC. The algorithm WLMC performs comparably to TSM-MWC except in the auction
dataset, where it is slower and closer to BBMCW.

4.5. Impact of the new bounding procedure

We also study the new bounding procedure in terms of the number of recursive calls to
the algorithm and the total computing time on a subset of 10 DIMACS graphs. For the
analysis we compared BBMCW with and without individual parts of the bounding function: i)
the multiple independent set cover bounding function MCOVER described in Section 2.4.2 and
ii) the single independent set cover function COVER described in Section 2.4.1. The specific
choice of the graphs spans over 6 different families to be as representative as possible.

11http://www.csplib.org/Problems/prob063/
12https://doi.org/10.5281/zenodo.816293
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Table 7 reports the results of this analysis. The first two columns show the number of vertices
|V | and edges |E| of each problem instance, and the remaining columns report the number of
recursive calls (#calls) and the computing time in seconds (t[s]) spent by the corresponding
three algorithms. Cells in boldface indicate the best results for each graph.

From the table, it becomes clear that both COVER and MCOVER have a significant impact on
the overall performance of BBMCW. A first consideration is that BBMCW is always faster, and
produces smaller branch-and-bound trees, than the other two variants. When removing
MCOVER, the algorithm shows an average reduction in speed of more than a 30% with respect
to BBMCW, reaching up to nearly a 70% for the graph p hat500-3. Moreover, when the bound
derived from the independent set partition is considered, the algorithm becomes on average
more than three times slower (we note that it is more than 5 times slower in p hat500-3 ).

Finally, we also measure the impact of the heuristic AMTS employed by BBMCW to determine
an initial solution. The results appear in the last column of Table 7. The column reports
the time taken by BBMCW when AMTS is substituted by the construction of a clique in a greedy
sequential way, taking vertices by non-increasing degree (and non-increasing weight in case of
a tie). From the table, it can be seen that the improvement in the overall performance of the
algorithm BBMCW with the heuristic AMTS is never more than a 36%.

5. Conclusions and future research

In this manuscript, we have studied the Maximum Weight Clique Problem (MWCP), an
important well studied problem in graph theory. For the MWCP, we describe (and implement)
a new combinatorial Branch-and-Bound algorithm, which employs a novel bound inspired
by a prior independent set cover bound. In addition, the algorithm is designed so that it
exploits bitstring representation and color partitioning, following recent literature for MCP.
The extensive computational results provided in the manuscript prove that the new B&B
algorithm improves on previous state-of-the-art exact approaches reported in the literature.

Concerning future research, it is interesting to consider further enhancements of the proposed
algorithm so as to improve its performance on the very dense graphs. Specifically, we are
planning to test the local search scheme (reNumber) proposed in [34] for the MCP to attempt
to improve the initial independent set partition of the bounding procedure. Another interesting
attempt would be to include some form of incremental MaxSAT reasoning in the algorithm,
as in [6, 12, 17]. Finally, we also consider worth investigating the conflict-directed clause
learning (CDCL) reasoning scheme proposed in the work [9], which has been published during
the reviewing process of this manuscript. This new SAT-based approach seems very promising
for clique solvers.
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AMTS BBMCW MWSS MWCLQ WLMC TSM-MWC

|V | |E| µ(G) ω(G) ω(G,w) lb0 t. [s] t. [s] t. [s] t. [s] t. [s] t. [s]

brock400 1 400 59,723 0.75 27 3,422 3,422 1.51 84.0 387.6 102.1 441.0 93.9

brock400 2 400 59,786 0.75 29 3,350 3,350 1.48 99.5 452.2 99.4 533.1 120.6

brock400 3 400 59,681 0.75 31 3,471 3,471 0.65 75.9 410.6 83.6 344.3 71.5

brock400 4 400 59,765 0.75 33 3,626 3,626 1.45 40.4 209.2 64.1 573.8 121.4

brock800 1 800 207,505 0.65 23 3,121 3,121 2.80 830.4 5,840.5 1,163.8 7,371.4 1,567.3

brock800 2 800 208,166 0.65 24 3,043 3,043 2.78 1,260.3 8,188.5 1,660.9 8,382.5 2,133.6

brock800 3 800 207,333 0.65 25 3,076 3,076 2.98 990.5 6,919.8 1,293.6 7,103.2 1,761.7

brock800 4 800 207,643 0.65 26 2,971 2,970 2.80 1,341.3 8,565.2 1,694.4 9,092.4 2,214.1

C2000.5 2,000 999,836 0.50 16 2,466 2,466 9.30 6,735.2 t.l. 9,813.1 t.l. 14,063.3

C250.9 250 27,984 0.90 44 5,092 5,092 0.74 68.0 251.7 31.8 72.5 17.5

dsjc500.5 500 62,624 0.50 13 1,725 1,725 0.03 0.5 3.2 0.8 2.8 1.2

dsjc1000.5 1,000 249,826 0.50 15 2,186 2,186 0.13 41.4 309.0 69.7 219.3 74.7

gen200 p0.9 44 200 17,910 0.90 44 5,043 5,043 0.01 4.2 20.8 5.5 2.5 0.7

gen200 p0.9 55 200 17,910 0.90 55 5,416 5,382 0.00 1.6 12.3 2.2 2.4 0.7

gen400 p0.9 55 400 71,820 0.90 55 6,718 6,718 0.97 t.l. t.l. 6,822.3 t.l. 5,161.2

gen400 p0.9 75 400 71,820 0.90 75 8,006 7,980 0.79 14,483.2 t.l. 11,841.2 10,329.1 337.8

hamming10-2 1,024 518,656 0.99 512 50,512 50,512 2.28 t.l. 0.1 973.0 1,257.8 38.6

keller5 776 225,990 0.75 27 3,317 3,219 2.21 3,973.4 17,077.8 t.l. t.l. 10,868.4

MANN a27 378 70,551 0.99 126 12,283 12,268 0.02 0.5 28,829.2 t.l. 0.9 4.6

MANN a45 1,035 533,115 1.00 345 34,265 34,174 15.88 t.l. t.l. t.l. 334.4 1,362.8

p hat300-3 300 33,390 0.74 36 3,774 3,774 0.01 0.7 6.8 1.9 1.2 0.4

p hat500-2 500 62,946 0.50 36 3,920 3,920 0.03 0.4 8.0 1.8 0.5 0.3

p hat500-3 500 93,800 0.75 50 5,375 5,375 1.21 173.0 2,483.7 682.0 99.1 11.7

p hat700-2 700 121,728 0.50 44 5,290 5,290 0.05 2.3 197.5 36.2 2.2 0.9

p hat700-3 700 183,010 0.75 62 7,565 7,563 1.26 487.9 t.l. 8,751.7 258.6 25.1

p hat1000-1 1,000 122,253 0.24 10 1,514 1,514 0.09 0.2 2.6 0.4 0.6 0.5

p hat1000-2 1,000 244,799 0.49 46 5,777 5,777 2.51 106.6 5,448.6 1,933.9 5.3 13.3

p hat1500-1 1,500 371,746 0.33 12 1,619 1,619 0.21 1.5 21.1 3.3 5.3 2.7

p hat1500-2 1,500 284,923 0.25 65 7,360 7,360 3.67 11,153.1 t.l. 8,429.5 6,807.0 576.1

san200 0.9 2 200 17,910 0.90 60 6,082 5,835 0.01 1.2 5.4 1.2 3.6 0.2

san200 0.9 3 200 17,910 0.90 44 4,748 4,748 0.01 8.5 38.4 11.8 6.9 2.2

san400 0.7 1 400 55,860 0.70 40 3,941 3,641 0.03 9.3 2.9 2.7 2.6 1.1

san400 0.7 2 400 55,860 0.70 30 3,110 3,110 0.03 7.5 6.9 3.8 11.6 3.2

san400 0.7 3 400 55,860 0.70 22 2,771 2,771 0.02 1.2 12.6 5.0 8.7 2.5

san400 0.9 1 400 71,820 0.90 100 9,776 9,776 2.25 449.0 1,268.3 992.2 1,975.4 65.9

san1000 1,000 250,500 0.50 15 1,716 1,716 0.11 1.0 3.5 145.0 1.2 7.0

sanr200 0.9 200 17,863 0.90 42 5,126 5,126 0.81 10.3 24.6 4.8 5.1 1.6

sanr400 0.5 400 39,984 0.50 13 1,835 1,835 0.02 0.1 1.1 0.2 0.7 0.3

sanr400 0.7 400 55,869 0.70 21 2,992 2,992 0.02 13.5 66.0 19.5 75.6 21.1

monotone 0.7 343 46,305 0.79 19 1,998 1,998 0.02 16.9 66.5 321.1 106.5 11.0

frb30-15-1 450 83,198 0.82 30 2,990 2,990 1.44 122.4 4,693.4 199.4 t.l. 3,753.1

frb30-15-2 450 83,151 0.82 30 3,006 3,006 1.38 156.8 962.7 24.5 10,254.0 1,424.1

frb30-15-3 450 83,216 0.82 30 2,995 2,988 1.30 22.7 1,752.3 106.6 8,163.3 1,189.6

frb30-15-4 450 83,194 0.82 30 3,032 3,032 1.34 16.9 2,265.4 148.5 14,711.3 1,052.8

frb30-15-5 450 83,231 0.82 30 3,011 3,003 0.02 1.9 751.1 46.2 9,802.2 1,541.5

Table 3: Results on “hard” DIMACS and BHOSHLIB instances. Time limit is fixed at 5h.
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BBMCW MWSS MWCLQ CPLEX WLMC TSM-MWC

|V | µ(G) ω(G) # t. [s] t. [s] t. [s] t. [s] t. [s] t. [s]

150 0.7 16-17 10 0.01 0.06 0.02 5.40 0.05 0.03

150 0.8 23 10 0.05 0.19 0.09 4.90 0.13 0.07

150 0.9 35-38 10 0.41 1.05 0.41 1.49 0.27 0.13

150 0.95 51-58 10 0.41 0.33 0.35 0.34 0.08 0.07

150 0.98 75-84 10 0.01 0.00 0.02 0.00 0.02 0.06

200 0.7 17-18 10 0.06 0.33 0.12 60.47 0.25 0.13

200 0.8 25-26 10 0.82 2.59 0.80 81.88 1.97 0.67

200 0.9 40-42 10 14.96 46.36 13.09 43.10 9.71 2.47

200 0.95 58-66 10 17.41 37.81 20.22 2.12 1.69 0.52

200 0.98 90-103 10 0.62 0.05 0.23 0.01 0.08 0.24

300 0.6 15-16 10 0.10 0.53 0.15 445.90 0.61 0.28

300 0.7 20-21 10 0.75 2.74 0.85 935.03 4.08 1.10

300 0.8 28-29 10 13.78 53.23 12.35 2431.00 56.52 11.05

500 0.4 10-11 10 0.07 0.62 0.13 tl 0.34 0.24

500 0.5 13 10 0.39 2.83 0.67 tl 2.15 0.97

500 0.6 17 10 3.81 19.04 5.10 tl 23.36 6.58

500 0.7 22-23 10 70.04 331.13 76.27 tl 467.00 106.53

1000 0.2 7-8 10 0.05 0.81 0.15 tl 0.18 0.23

1000 0.3 9-10 10 0.32 4.13 0.64 tl 1.28 0.95

1000 0.4 12 10 2.95 28.83 5.25 tl 12.78 7.21

1000 0.5 15 10 42.27 290.92 63.56 tl 225.80 76.94

3000 0.1 6-7 10 0.24 10.48 1.14 tl 0.75 1.01

3000 0.2 9 10 4.26 80.06 8.37 tl 11.87 10.39

5000 0.1 7 10 1.54 95.09 4.89 tl 3.40 5.63

5000 0.2 9-10 10 53.84 875.23 93.24 tl 116.24 87.97

10000 0.1 7-8 10 22.87 1408.91 49.56 tl 30.13 61.69

15000 0.1 8 10 132.73 7250.20 273.18 tl 149.46 259.98

Table 4: Results on random instances. Time limit is fixed at 1h.
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BBMCW MWSS

|V | |E| µ(G) dχf (G)e t[s] tot t[s] pricing t[s] tot t[s] pricing

1-Insertions 5 202 1227 0.06 3 250.36 242.21 52.03 44.22

2-FullIns 5 852 12201 0.03 5 12.53 5.74 72.54 65.43

2-Insertions 4 149 541 0.05 3 305.63 301.98 18.51 14.76

3-FullIns 4 405 3524 0.04 6 1.66 1.07 4.12 3.46

3-Insertions 4 281 1046 0.03 3 t.l. t.l. 423.18 383.96

4-FullIns 4 690 6650 0.03 7 6.01 2.88 22.11 18.77

5-FullIns 4 1085 11395 0.02 8 270.47 255.02 650.22 635.45

DSJC1000.9 1000 449449 0.90 215 341.33 202.63 3191.66 3061.14

DSJC125.1 125 736 0.09 5 741.27 738.68 44.29 41.87

DSJC125.5 125 3891 0.50 16 2.36 1.85 3.83 3.33

DSJC250.5 250 15668 0.50 26 36.36 28.77 184.66 176.64

DSJC250.9 250 27897 0.90 71 5.07 4.47 9.40 8.93

DSJC500.5 500 62624 0.50 43 2522.41 2381.04 t.l. t.l.

DSJC500.9 500 112437 0.90 123 30.91 24.19 154.21 148.32

DSJR500.1c 500 121275 0.97 85 8.73 8.43 40.27 39.97

DSJR500.5 500 58862 0.47 122 21.35 18.67 94.86 93.04

flat300 20 0 300 21375 0.48 20 387.39 322.87 1439.75 1380.04

flat300 26 0 300 21633 0.48 26 393.57 349.12 2352.34 2308.34

flat300 28 0 300 21695 0.48 28 136.06 118.29 881.03 863.05

fpsol2.i.1 496 11654 0.09 65 2.65 2.13 11.15 10.65

fpsol2.i.2 451 8691 0.09 30 4.19 3.39 16.27 15.73

fpsol2.i.3 425 8688 0.10 30 4.20 3.35 14.66 13.91

homer 561 1628 0.01 13 2.89 1.30 9.39 7.92

inithx.i.1 864 18707 0.05 54 44.70 11.91 158.47 153.65

inithx.i.2 645 13979 0.07 31 11.01 7.53 74.76 69.49

inithx.i.3 621 13969 0.07 31 6.53 5.50 69.36 66.60

latin square 10 900 307350 0.76 90 108.90 49.15 670.20 608.60

le450 25a 450 8260 0.08 25 1006.87 1002.37 118.63 114.21

le450 25b 450 8263 0.08 25 t.l. t.l. 1071.29 1067.70

le450 5d 450 9757 0.10 5 181.31 181.30 t.l. t.l.

mug100 1 100 166 0.03 4 336.86 334.61 93.72 91.67

mug100 25 100 166 0.03 4 168.27 166.59 71.33 69.36

mug88 1 88 146 0.04 4 80.70 79.55 22.40 21.30

mug88 25 88 146 0.04 4 30.38 29.30 18.55 17.47

mulsol.i.1 197 3925 0.20 49 1.11 1.01 1.75 1.53

mulsol.i.3 184 3916 0.23 31 1.31 1.28 1.08 1.01

mulsol.i.4 185 3946 0.23 31 1.44 1.40 1.28 1.08

myciel7 191 2360 0.13 5 2.47 1.75 3.33 2.68

queen10 10 100 1470 0.30 10 3.19 2.64 4.92 4.37

queen11 11 121 1980 0.27 11 9.20 8.21 13.87 12.98

queen12 12 144 2596 0.25 12 41.51 39.63 67.42 65.60

queen13 13 169 3328 0.23 13 234.69 231.10 303.05 299.73

queen14 14 196 4186 0.22 14 1564.04 1558.14 1922.45 1916.36

r1000.1c 1000 485090 0.97 96 57.72 54.13 773.80 770.50

r1000.5 1000 238267 0.48 234 268.40 211.79 2556.25 2508.37

r250.1c 250 30227 0.97 64 1.35 1.32 1.88 1.85

r250.5 250 14849 0.48 65 3.88 3.54 6.41 6.15

school1 nsh 352 14612 0.24 14 3369.82 2433.05 t.l. t.l.

zeroin.i.1 211 4100 0.19 49 1.67 1.62 1.94 1.72

Table 5: Comparing the performance of BBMCW and MWSS as pricing algorithms in computing the fractional
cromatic number χf (G). Time limit is fixed at 1h.
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BBMCW TSM-MWC WLMC

Group # t[s] # solved t[s] # solved t[s] # solved

ECC 15 19.71 15 10.01 15 11.31 15

KES 100 2.04 81 5.20 81 6.85 79

REF 129 0.98 106 1.94 106 2.69 106

WDP 499 17.70 499 4.50 499 13.92 499

Table 6: Results on real-world instances. Time limit is fixed at 600s.

BBMCW BBMCW no MCOVER BBMCW no COVER no MCOVER BBMCW no AMTS

|V | |E| # calls t[s] # calls t[s] # calls t[s] t[s]

brock400 1 400 59723 7,869,547 84.0 13,793,678 115.1 24,941,238 235.3 93.5

brock400 2 400 59786 9,751,100 99.5 16,059,030 132.7 29,055,021 278.1 105.2

brock800 1 800 207505 41,490,556 830.4 75,834,270 1,155.8 124,128,767 2,079.6 931.6

brock800 2 800 208166 70,463,326 1,260.3 125,328,373 1,693.0 208,705,792 3,160.2 1,344.2

C250.9 250 27984 7,224,238 68.0 12,108,657 92.6 29,441,985 336.8 76.9

dsjc1000.5 1000 249826 1,967,325 41.4 3,084,468 52.3 4,618,631 68.7 42.9

p hat500-3 500 93800 10,384,545 173.0 24,101,240 293.3 58,841,327 1,043.1 181.1

san200 0.9 3 200 17910 1,161,350 8.5 1,792,078 10.3 4,084,597 28.5 11.6

frb30-15-1 450 83198 25,081,348 122.4 29,937,620 126.6 52,624,228 215.1 140.2

frb30-15-2 450 83151 31,237,012 156.8 40,591,578 179.3 78,815,232 311.5 201.0

Table 7: Impact on performance of the (individual) bounding procedures employed by BBMCW.
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