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Abstract

In system optimal traffic assignment of traffic flows with user constraints the total travel

time is minimized on a set of paths with bounded length ensuring a certain level of fairness

for users. Minimizing the total travel time may lead to experience large travel times on

some arcs. On the other hand, when minimizing the maximum arc travel time, the total

travel time cannot be controlled. The increase of arc travel time with respect to arc free-

flow travel time is related to the arc congestion level that is one of the main issues in road

networks. In this paper we propose a new model that is a compromise between minimizing

the average arc congestion level and the worst arc congestion level. The model is a linear

program that minimizes the average arc congestion over a given percentage of the most

congested arcs. A heuristic algorithm aimed at reducing the number of paths that feed the

model is also proposed. A computational study is performed that shows the flexibility of

the model and the quality of the heuristic.

Keywords: traffic assignment, congestion, linear programming, CVaR.
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1 Introduction

Traffic congestion regulation is one of the most important issues to be considered in a city

environment. Route guidance is a natural way to alleviate congestion on a road network. The

IoV (Internet of Vehicles), i.e. the infrastructure providing information on traffic level, helps in

finding the best route for a single driver given the current traffic situation. However, when sat-

nav devices are fed with the same information, they provide the same route for drivers travelling

from an origin to a destination. As a result, congestion may be simply shifted to other arcs of

the road network. Thus, users coordination, by means of a traffic assignment policy, is crucial

to alleviate congestion. The technological advances in vehicles design and the advent of self-

driving vehicles make the perspective of coordination of users paths more realistic than only a

few years ago.

Traffic assignment on a road network consists in assigning demand from each origin to each

destination (OD pair) to paths in such a way that an objective function is optimized. Among

traffic assignment models proposed in the literature, we investigate a system optimal assignment

of traffic flows with user constraints since it embeds the system point of view (minimizing a

function related to the travel time experienced on the road network) and the users point of view

(allowing only paths that ensure a certain level of fairness). The first attempt to compute a

system optimal assignment of traffic flows with user constraints is due to Jahn et al. (2000)

and successively improved in Jahn et al. (2005). Other contributions can be found in Schulz

and Stier-Moses (2006) and Lujak et al. (2015). These papers propose non-linear models. The

first attempt to use linear programming models was proposed in Angelelli et al. (2016a) where

a hierarchical approach using a constant latency function has been developed. This approach

is considered reliable only if the arc traffic flow is lower than a certain threshold. In order to

overcome this limitation, in Angelelli et al. (2016b) a linear programming model, in which a

flow-dependent latency function is embedded, is presented.

Traditionally, system optimum traffic assignment optimizes the total travel time over all net-

work arcs (see Jahn et al. (2005), Lujak et al. (2015) and Angelelli et al. (2016b)). In some cases

the optimization concerns only the arc experiencing the worst travel time (or related measures)

in the network (as in Correa et al. (2007) and Angelelli et al. (2016a)). Optimizing a measure

involving all network arcs could lead to situations in which a small set of arcs is highly de-
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layed with respect to the free-flow travel time. On the other hand, optimizing the worst case

could lead to a very poor result in terms of average value. In a traffic assignment context, it

is important to have a good average value, but controlling the worst cases is equally important

especially when specific regulations are imposed to the traffic planner (a threshold on air pollu-

tant emissions, noise pollution control in restricted areas, etc.). Furthermore, as shown in Zhang

and Batterman (2013), the air pollution and noise pollution on an arc are strongly related to the

arc congestion, intended as the increase of travel time with respect to the free-flow travel time.

Thus, controlling the arc congestion in terms of increase of travel time means controlling also

these two environmental factors.

In this paper a compromise solution between optimizing the average arc congestion and the

maximum arc congestion is proposed. The idea is to minimize the average congestion over a

given percentage of the most congested arcs. Traditionally, the experienced travel time on an

arc is evaluated through the latency function in which the experienced travel time depends on

several parameters, related to the type of road, and on the arc traffic flow rate. The congestion

on arc (i, j) coping with an arc flow rate xi j is defined as the ratio between the travel time ex-

perienced by users ti j(xi j) and the free-flow travel time tFF
i j = ti j(0), known as the travel time

index, weighted by the arc flow rate ti j(xi j)/tFF
i j ×xi j. The model proposed in this paper adopts

a piecewise approximation of the latency function, similar to the one proposed in Angelelli et al.

(2016b). The percentage of the most congested arcs over which the congestion is minimized is

a choice of the regulator. The model, called β -Average Constrained System Optimum model

(A-C-SO(β )), allows us to minimize as particular cases, on one extreme, the average arc con-

gestion, and, on the other extreme, the maximum arc congestion. The model also limits the

user inconvenience by considering only a selected subset of the possible paths for each OD pair

guaranteeing a certain level of fairness, and turns out to be a Mixed Integer Linear Program. The

idea of optimizing over a percentage of the worst outcomes was proposed in the financial field

in Rockafellar and Uryasev (2000) (an useful tutorial can be found in Sarykalin et al. (2008)),

where the measure adopted is called Conditional Value-at-Risk. Several applications in other

fields have been also proposed (see Filippi et al. (2017) for a survey). In Filippi et al. (2016),

the use of the measure in Mixed Integer Linear Programming is discussed and the measure is

called β -average.

The remainder of the paper is organized as follows. In Section 2, we introduce and discuss
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the A-C-SO(β ) model with some basic properties. In Section 3, we propose a heuristic for

the A-C-SO(β ) model. In Section 4, we discuss the results of an extensive study of the A-C-

SO(β ) model and the heuristic. Finally, in Section 5, we present some concluding remarks.

2 The β -average constrained system optimum

model

The problem is defined on a graph G = (V,A) representing the road network. Vertices V

represent road junctions while arcs A represent oriented road segments between junctions. For

each arc (i, j) ∈ A, a decision variable xi j gives the rate of vehicles entering arc (i, j) in a

steady-state situation. A latency function ti j(xi j), evaluating the arc (i, j) traversing time as a

non-decreasing convex function of the entering flow rate, is assigned to each arc (i, j). A set

C of OD pairs is defined where each OD pair c ∈C has origin Oc ∈V , destination Dc ∈V and

positive demand dc defining the rate of vehicles from Oc to Dc.

The relative difference between the length of path k and the shortest path for OD pair c is

called path inconvenience. For a fixed percentage γ , called maximum inconvenience, the set of

eligible paths Kγ
c associated with each OD pair c ∈C is defined as the set of paths from Oc to

Dc such that their inconvenience is less than or equal to γ . For each OD pair c ∈C and for each

path k ∈ Kγ
c , the demand routed on k is specified by the decision variable yck. Variables xi j and

yck are linked by the parameter ack
i j whose value is 1 if arc (i, j) belongs to path k ∈ Kγ

c , and 0

otherwise.

Arc congestion experienced by a single user on a given arc (i, j) is evaluated using the travel

time index, i.e. the ratio ti j(xi j)/tFF
i j , weighted by the arc flow rate. This measure can be used in

comparing arc congestion on different roads and it quantifies, for each unit of free-flow travel

time, how much time is needed to traverse the road for all vehicles traversing the arc. The arc

congestion measure is clearly a non-linear function of the arc flow rate xi j. In order to linearize

the model, an approximated version of it is adopted: εi j(xi j) ≈
ti j(xi j)

tFF
i j

xi j (for the linearization

technique, see Angelelli et al. (2016b)).

The idea is to fix an upper bound on the flow rate xi j, Ui j, and to approximate each non-

linear term ti j(xi j)

tFF
i j

xi j on the range [0,Ui j] of the potential flow rate on arc (i, j) by a piecewise
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linear function.

The range [0,Ui j] is partitioned in n flow rate intervals at fixed break-points B = {b0
i j =

0,b1
i j, ....,b

n−1
i j ,bn

i j = Ui j} with corresponding values εi j = {ε0
i j = 0,ε1

i j =
ti j(b1

i j)

tFF
i j

b1
i j, ...,ε

n
i j =

ti j(Ui j)

tFF
i j

Ui j}. The interval width is denoted by ∆h
i j = bh

i j−bh−1
i j (h = 1, . . . ,n).

As pointed out in the introduction, when minimizing the average arc congestion value

among all arcs, a few arcs may turn out to be heavily congested and the remaining arcs almost

empty in view of having the average arc congestion value as small as possible. On the other

hand, a model in which the maximum arc congestion is minimized could help in controlling the

worst case but may lead to a high average arc congestion. In order to alleviate these drawbacks,

a linear programming model that is able to return a trade-off solution is proposed in this section.

The trade-off consists in minimizing the average arc congestion of the dβ |A|e most congested

arcs in the network. This allows us to control the arcs in the right tail of the arc congestion

distribution. We follow the method to transform a generic mixed-integer linear programming

into a new mixed-integer linear programming optimizing the dβ |A|e worst terms of objective

function, recently proposed in Filippi et al. (2016). The result of applying this method to the

average arc congestion minimization is the following β -Average Constrained System Optimum

model (A-C-SO(β )).

The A-C-SO(β ) model
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Γβ ≡mindβ |A|eω + ∑
(i j)∈A

ηi j

s.t. dβ |A|e(ω +ηi j)≥ εi j ∀(i, j) ∈ A (1)

xi j =
n

∑
h=1

λ
h
i j ∀(i, j) ∈ A (2)

εi j =
n

∑
h=1

εh
i j− ε

h−1
i j

∆h
i j

λ
h
i j ∀(i, j) ∈ A (3)

0≤ λ
h
i j ≤ ∆

h
i j ∀(i, j) ∈ A ∀h = 1, ...,n (4)

xi j = ∑
c∈C

∑
k∈Kγ

c

ack
i j yck ∀(i, j) ∈ A (5)

dc = ∑
k∈Kγ

c

yck ∀c ∈C (6)

xi j ≥ 0 ∀(i, j) ∈ A (7)

yck ≥ 0 ∀c ∈C ∀k ∈ Kγ
c (8)

ηi j ≥ 0 ∀(i, j) ∈ A. (9)

Auxiliary variable λ h
i j represents the amount of the flow rate xi j assigned to interval

[bh−1
i j ,bh

i j] as in constraints (4). The arc flow rate on arc xi j is evaluated as the sum over all

λ h
i j variables as in constraints (2). Constraints (3) set the arc congestion on arc (i, j) as the sum

over all the pieces in the piecewise function of the h-th slope multiplied by the correspond-

ing λ h
i j. Constraints (5) link the flow rate xi j to flow rates on paths containing the arc (i, j).

Constraints (6) ensure that the demands dc is completely routed. Constraints (7)-(8) are non-

negativity constraints. Variables ηi j and variable ω are auxiliary variables. Variables ηi j are set

to be non-negative as in constraints (9) while ω is unbounded.

We point out that the average arc congestion minimization and the maximum arc conges-

tion minimization are particular cases of the A-C-SO(β ) model in which β = 1 and β = 1
|A| ,

respectively. In Table 1 the notation used in the model is summarized.

When optimizing with respect to a certain β value, the traffic planner could also look at the

behaviour of the arc congestion on a broader or on a smaller arc set. In order to do this, we

propose an additional measure, denoted by Γκ

β
, representing the average arc congestion value

among the most congested arcs resulting from the A-C-SO(β ) model. This measure allow us

to derive some considerations on the accuracy of the A-C-SO(β ) assignment when the traffic

6



regulator is also interested in optimizing the κ most congested arcs.

In the following, some properties for the A-C-SO(β ) model are derived.

Definition 1. Let Γκ

β
be the average arc congestion on the κ-th quantile of the most congested

arcs for the traffic assignment produced by the A-C-SO(β ) model for β ∈ (0,1] and κ ∈ (0,1].

The following remark trivially states that the average arc congestion value among the κ

most congested arcs resulting from the A-C-SO(β ) assignment is always greater than the one

obtained by using κ as β parameter in the A-C-SO(β ) model. Since Γκ is the assignment

for which the average arc congestion on the κ most congested arcs is minimized, any other

assignment will trivially produce an average arc congestion on the κ most congested arcs that

is greater or equal to Γκ .

Remark 1. For any β ∈ (0,1] and κ ∈ (0,1], the inequality

Γ
κ

β
≥ Γκ

holds.

The following proposition states that, considering the assignment produced by the A-C-

SO(β ) model, the larger the κ value considered is the smaller the value the correspondent

average arc congestion value is.

Proposition 1. Let β ∈ (0,1] and κ
′
,κ
′′ ∈ (0,1] with κ

′ ≤ κ
′′
. Then,

Γ
κ
′

β
≥ Γ

κ
′′

β
.

Proof. Given the assignment produced by the A-C-SO(β ) model, arcs can be sorted in de-

creasing order with respect to εi j forming the vector f = [a1, ...,a|A|] with an ≥ an+1 for

n = 1, .., |A|−1. Let k
′
=
⌈

κ
′|A|
⌉

and k
′′
=
⌈

κ
′′ |A|
⌉

. Trivially, k
′ ≤ k

′′
. By A-C-SO(β ) model

definition, Γκ
′

β
= 1

k′
k
′

∑
n=1

an and Γκ
′′

β
= 1

k′′
k
′′

∑
n=1

an. The equivalence between the objective function

Γβ and the average arc congestion of the dβ |A|e most congested arcs is shown in Filippi et al.

(2016).
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Now,

Γ
κ
′′

β
=

1
k′′
(

k
′

∑
n=1

an +
k
′′

∑
n=k′+1

an) =
1
k′′
(k
′
Γ

κ
′

β
+

k
′′

∑
n=k′+1

an)

≤ k
′

k′′
Γ

κ
′

β
+

1
k′′

k
′′

∑
n=k′+1

ak′ =
k
′

k′′
Γ

κ
′

β
+

k
′′− k

′

k′′
ak′

≤ k
′

k′′
Γ

κ
′

β
+

k
′′− k

′

k′′
Γ

κ
′

β
= Γ

κ
′

β
.

In the chain of inequalities we used the fact that max{an | n = k
′
+ 1, . . . ,k

′′} ≤ ak′ and ak′ ≤

Γκ
′

β
.

Finally, the following proposition shows that the objective function of the A-C-SO(β )

model is a monotonic decreasing function of β .

Proposition 2. Let β
′
and β

′′
be two parameters in [0,1] with β

′ ≤ β
′′
. Then,

Γ
β
′′ ≤ Γ

β
′ .

Proof. From Proposition 1 we have Γ
β
′′

β
′ ≤ Γ

β
′

β
′

Given β
′ ≤ β

′′
, for Proposition 1, Γ

β
′′

β
≤ Γ

β
′

β
for any β . In particular, it is true for β

′
and,

hence, Γ
β
′′

β
′ ≤ Γ

β
′

β
′ . From Proposition 1 we have Γ

β
′′ ≤ Γ

β
′′

β
′ and, trivially, Γ

β
′

β
′ = Γ

β
′ . Hence,

Γ
β
′′ ≤ Γ

β
′′

β
′ ≤ Γ

β
′

β
′ = Γ

β
′ .

3 A heuristic for the β -average constrained sys-

tem optimum model

The presented model requires the complete enumeration of all eligible paths from origin to

destination for each OD pair. However, as proved in Angelelli et al. (2016a), the number of

paths may grow exponentially with the instance size, and the model becomes computationally

intractable when large size instances are considered. Furthermore, computational experiments

show that only a very small number of the generated paths are used in the optimal solution.
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Notation

Sets

V set of vertices
A set of arcs
C set of OD pairs
Kγ

c set of eligible paths for c ∈C with maximum inconvenience γ

Parameters

γ maximum inconvenience
dc demand for OD pair c ∈C
Ui j maximum flow rate allowed on arc (i, j) ∈ A
tFF
i j free-flow travel time of arc (i, j) ∈ A

akc
i j 1 if path k ∈ Kγ

c contains arc (i, j) ∈ A, 0 otherwise
n number of intervals
bh

i j h-th breakpoint related to the flow range
[
0,Ui j

]
, (h = 0, . . . ,n))

εh
i j value of the function ti j(xi j)

tFF
i j

xi j at breakpoint bh
i j, (h = 0, . . . ,n)

∆h
i j = bh

i j−bh−1
i j h-th interval size, (h = 1, . . . ,n)

Decision variables

yck flow rate of OD pair c ∈C routed on path k ∈ Kγ
c

xi j total flow rate entering arc (i, j) ∈ A: xi j = ∑
c∈C

∑

k∈Kγ
c

akc
i j yck

εi j piecewise linear approximation of the arc congestion ti j(xi j)

tFF
i j

xi j

λ h
i j amount of flow rate in the h-th flow interval of arc (i, j)

ηi j auxiliary variable for the A-C-SO(β ) model associated with arc (i, j)
ω auxiliary variable for the A-C-SO(β ) model.

Table 1. Notation related to the proposed model
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Since most of the computational issues are related to the number of paths, the idea is to generate

only those paths that are more likely involved in the optimal solution. In this section, a heuristic

method called Heuristic β -average algorithm (H-A(β )), able to produce a path set on which

the A-C-SO(β ) model returns a near-optimal solution, is proposed.

Algorithm H-A(β ) solves a sequence of restricted versions of the A-C-SO(β ) model in

which only a small subset of the eligible paths are considered. The idea is to start with a

solution provided by a minimal set of paths and to iteratively add a few paths to the current path

set in order to improve the current solution.

The algorithm stops when no new paths are found or a maximum number of iterations is

reached.

The H-A(β ) algorithm is sketched in Algorithm 1. The most relevant variables are: variable

PCurr (initialized to /0) represents the restricted path set; variable xCurr represents the optimal

solution of the restricted A-C-SO(β ); variable ΓCurr
β

represents the objective value of the re-

stricted A-C-SO(β ); variable L represents the set of new promising paths found in an attempt

to enlarge set PCurr and improve the current solution and is initialized with the set of the shortest

paths for each OD pair in the network G; variable Ccrit represents the set of the critical pairs,

that are those OD pairs with at least one active path (with non-zero flow) traversing one or more

of the dβ |A|e most congested arcs and, finally, variable Iter is an iteration counter.

At each iteration the set L containing the new paths is added to the restricted set PCurr. Then,

the restricted A-C-SO(β ) model is solved on the new set PCurr. Variables xCurr and ΓCurr
β

are

updated and variables xCurr are used to evaluate the new congestion values εi j for each arc and

to construct the set of the critical OD pairs Ccrit . The set of improving paths L is searched for by

means of the routines LeastcongestedPaths and Modi f iedShortestPaths that will be described

in Section 3.1. Finally, the counter Iter is updated. The algorithm stops as soon as one of the

termination criteria is met.

3.1 Searching for an improving path set

At each iteration of the H-A(β ) algorithm, the optimal solution xCurr of the restricted A-C-

SO(β ) model is computed and the set Ccrit is updated. At this point, two path searching routines

are run with the aim to find, for at least one critical OD pair c ∈Ccrit , some paths avoiding at
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Algorithm 1: H-A(β ) algorithm
input : G : graph of the road network,

C : set of OD pairs,
γ : maximum inconvenience,
MaxIter,
ConvT hreshold

output: ΓH
β

heuristic objective value of A-C-SO(β )
global : G,C,γ,PCurr

– PCurr := /0;
– L := set of shortest paths for each c ∈C;
– Iter := 0;

do
– PCurr := PCurr⋃L;
– Solve the restricted A-C-SO(β ) on path set PCurr;
– ΓCurr

β
:= objective function value;

– xCurr := optimal solution of the restricted A-C-SO(β );
for (i, j) ∈ A do

–εi j =
ti j(xCurr

i j )

tFF
i j

xCurr
i j ;

– Ccrit := set of critical OD pairs;
– L1 := LeastcongestedPaths(xCurr,Ccrit);
– L2 := Modi f iedShortestPaths(xCurr,Ccrit);
– L := L1

⋃
L2;

– Iter++;
while (L 6= /0∧ Iter < MaxIter)
– ΓH

β
:= ΓCurr

β
;

– return ΓH
β

11



least one of the arcs for which the OD pair is considered critical.

For each c∈Ccrit , the idea is, for each most congested arc traversed by paths of the OD pair,

to remove the arc from the network and, then, to search for the cheapest path for the OD pair first

in terms of arc congestion εi j (LeastcongestedPaths routine), evaluated using the current xCurr

solution, and, secondly, in terms of free-flow travel time (Modi f iedShortestPaths routine). In

both routines, we check the feasibility of new paths. If no path with the required properties is

found, the routines return an empty set. Routine LeastcongestedPaths is sketched in Algorithm

2. The set L1 represents an auxiliary path set in which new paths are added and is initialized

Algorithm 2: LeastcongestedPaths
input : xCurr : traffic assignment to arcs, Ccrit
output: L1 improving path set
global : G,C,γ,PCurr

– L1 := /0;

for c ∈Ccrit do
– Hc := find the arcs in the dβ |A|e most congested arcs traversed by the OD pair c;
for h ∈ Hc do

– A′ := A\{h};
– G′ = (V,A′);
– p := shortest path in G′ from Oc to Dc with respect to arc weights εi j;
– nl p := length of p with respect to arc length;
– nlsp := length of shortest path from Oc to Dc with respect to arc length;
if nl p≤ (1+ γ)nlsp∧ p /∈ PCurr then

– L1 := L1⋃{p};

– return L1

as empty. Let Hc be the subset of the most congested arcs traversed by c and Ccrit the set of

pairs whose paths contain at least one of the arc in Hc. For each OD pair in Ccrit , the algorithm

removes the arc from the graph G and searches for the shortest path on a network considering

εi j as arc weight. If eligible, it is added to L1.

Routine Modi f iedShortestPaths is sketched in Algorithm 3. As for routine

LeastcongestedPaths, the set L2 represents an auxiliary path set in which new paths are added

and it is initialized as empty. The only difference with respect to the previous routine is that, in

searching for the shortest path, we use tFF
i j as arc weight and, if the new path is eligible, it is

added to L2.
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Algorithm 3: ModifiedShortestPaths
input : xCurr : traffic flow rate, Ccrit
output: L2 improving path set
global : G,C,γ,PCurr

– L2 := /0;

for c ∈Ccrit do
– Hc := find the arcs in the dβ |A|e most congested arcs traversed by the OD pair c;
for h ∈ Hc do

– A′ := A\{h};
– G′ = (V,A′);
– p := shortest path in G′ from Oc to Dc with respect to arc weights tFF

i j ;
– nl p := length of p with respect to arc length;
– nlsp := length of shortest path from Oc to Dc with respect to arc length;
if nl p≤ (1+ γ)nlsp∧ p /∈ PCurr then

– L2 := L2⋃{p};

– return L2

4 Computational results

A benchmark of 40 fixed size instances and a benchmark of 8 growing size instances has

been used in a computational study to assess the performance of the presented model and the

heuristic algorithm. The 40 fixed size instances used in Section 4.2 are 150 nodes networks

and differ in terms of number of nodes and distribution, OD pairs and demand patterns. The

8 growing size instances (from 120 to 330 nodes) have been generated and analyzed in Sec-

tion 4.3 in order to show the efficiency of the H-A(β ) algorithm. Instances are available at

http://or-brescia.unibs.it/instances. Details on the instance generation pro-

cess can be found in Angelelli et al. (2016a). For each instance, a traffic assignment has been

found using a restricted path set with maximum inconvenience γ ranging from 0% to 25%

with increments of 5% and β values in B ≡ { 1
|A| ,0.01,0.03,0.05,0.07,0.1,0.25,1} (i.e., 48 traf-

fic assignments). The linear programs are solved using CPLEX 12.6.0. The experiments were

conducted on a Windows 64-bit computer with Intel Xeon processor E5-1650, 3.50 GHz, and

16 GB Ram. For all experiments, the latency function proposed by the U.S. Bureau of Public

Roads,

ti j(xi j) = tFF
i j [1+0.15(

xi j

ui j
)4],
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has been used. Shape parameters tFF
i j = ti j(0) (free-flow travel time) and ui j are associated to

each arc (details on ui j parameters generation can be found in Angelelli et al. (2016a)). We

considering as natural upper bound on the arc (i, j) flow Ui j = 4ui j. The maximum number of

iterations allowed for the H-A(β ) algorithm is MaxIter = 20.

The statistics collected for each instance are described in Section 4.1. Results for the A-C-

SO(β ) model are presented and discussed in Sections 4.2. Results for the proposed heuristic

are presented in Section 4.3. For an easier understanding, results presentation relies on graphics

and tables.

4.1 Statistics

In the following all the computed and collected statistics are defined.

• Arc congestion distribution

– Γβ : optimal value of the A-C-SO(β ) model, i.e. average arc congestion on the

dβ |A|e most congested arcs for the traffic assignment produced by the A-C-SO(β )

model.

– Γκ

β
: average arc congestion on the dβ |A|e most congested arcs for the traffic assign-

ment produced by the A-C-SO(β ) model.

– ΓH
β

: heuristic value produced by the H-A(β ) algorithm.

– Rκ

β
=

Γκ

β
−Γκ

Γκ
: relative difference of Γκ

β
with respect to Γκ .

– Aβ = ∑
κ∈K

ακRκ

β
: performance measure of the optimal solution produced by the A-

C-SO(β ) model obtained as a convex combination ( ∑
κ∈K

ακ = 1) of Rκ

β
values.

– εi j: congestion on arc (i, j) resulting from the A-C-SO(β ) model.

• User experience for each OD pair c ∈C

– tck: experienced travel time on path k ∈ Kγ
c .

– tcSP: free-flow travel time on the shortest path for OD pair c.
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– IFF = 1
∑

c∈C
dc

∑
c∈C

∑

k∈Kγ
c

yck
tck−tcSP

tcSP
: total weighted experienced inconvenience with re-

spect to free-flow travel time.

• H-A(β ) approximation error

– τβ =
ΓH

β
−Γβ

Γβ
: the relative error produced by algorithm H-A(β ) with respect to A-

C-SO(β ).

• Computational time

– A-C-SO(β ) computational time: accounts for the time to generate the paths and to

solve the A-C-SO(β ) linear model.

– H-A(β ) computational time: accounts for the iterated path generation and model

solution.

• Memory usage The number of generated paths.

4.2 Optimal solutions

The traffic assignment produced by the A-C-SO(β ) model is analyzed for maximum in-

convenience γ ranging from 0% to 25% with increments of 5% and for β values in

B≡ { 1
|A|

, 0.01, 0.03, 0.05, 0.07, 0.1, 0.25, 1}.

Reported values are averaged over the 40 instances. Figure 1 shows the objective function,

Γβ , as a function of γ . Let us observe the behaviour of Γβ with β = 1
|A| . As expected, Γβ is

monotone non-increasing with respect to γ (the larger γ is the more relaxed the model is). We

observe the most relevant drop in Γβ when passing from γ = 0%, where only the shortest paths

are eligible, to γ = 5%. The decrease rate of Γβ is getting lower and lower as γ increases; from

γ = 15%, Γβ becomes almost steady. The same behaviour can be observed with increasing

value of β . We observe that the curves become more and more flat as β increases. Dominance

between curves with different values of β is guaranteed by Proposition 2.

In Tables 2-6, the behaviour of the Rκ

β
statistics, i.e. the relative difference of Γκ

β
with

respect to Γκ , with β ∈ B and κ ∈ B, is reported. Each table is computed for a different value
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Figure 1. Γβ as a function of γ

of γ . However, a table for γ = 0% is not reported as in this case only shortest paths are allowed

and no choice is allowed with respect to β . Values of β are reported through rows and values

of κ are reported through columns. Thus, in each row we have a fixed value of β and we are

considering the same optimal solution of A-C-SO(β ). Elements on the same rows show, for

each κ , the average arc congestion increase of the κ-quantile with respect to the potential value

that could be obtained if we choose β = κ . Conversely, each column shows the behaviour of Rκ

β

when κ is fixed and β changes. Obviously, the entries in the main diagonal of each table equal 0

as Γ
β

β
= Γβ . Accordingly, it seems reasonable to expect monotonicity in entries: reading either

along a row or a column we may expect a smaller value as we approach the main diagonal.

This is true reading by rows, while it is not always true reading by columns. Monotonicity

by columns is broken a few times. For instance, consider κ = 1
|A| . We note that using β = 1

is better than using β = 0.1 or β = 0.25. However, exceptions of this kind are very rare in

Tables 2-6, and happen only for small κ and big β . In general, the closer the κ value is to the γ

value the lower the Rκ

β
value is but this behaviour is not monotonic. Greater values are obtained

for γ = 5%. Looking at Table 2, where Rκ

β
statistics for γ = 5% are shown, we see that with

β = 1
|A| , the overall average arc congestion (κ = 1) is about 221% of the average arc congestion

produced having β = 1 while, allowing β = 0.01, the resulting average arc congestion is about

156% of the average arc congestion produced having β = 1. In Tables 3-6 we recognize the
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same pattern as in Table 2, but values are generally lower with bigger values of γ .

As already pointed out, the closer κ is to a fixed β the lower the statistic Rκ

β
is. The key

point in choosing the right β value is the trade-off between the different Rκ

β
values with the

whole set of κ values.

κ
1
|A| 0.01 0.03 0.05 0.07 0.1 0.25 1

β

1
|A| 0 9.3 21.7 29.4 35.5 42.2 92.4 220.5
0.01 3.1 0 5.4 10.6 14.9 20 52 156.4
0.03 5.5 1.7 0 1.2 3.2 6.3 21.2 64.8
0.05 6.9 3.1 0.7 0 0.5 2.4 21.5 102.9
0.07 7.9 4 1.6 0.6 0 0.8 14.5 89.2
0.1 9.5 4.7 2.6 2 0.9 0 9.3 77
0.25 13.5 7.9 5.7 5.3 4.3 3.2 0 35.2
1 8.3 5.5 4.9 4.9 4.3 3.6 0.8 0

Table 2. R statistics (%) with γ = 5% for different κ and β values

κ
1
|A| 0.01 0.03 0.05 0.07 0.1 0.25 1

β

1
|A| 0 5.8 12.7 15.6 18.4 21.8 35.5 77.7
0.01 5.1 0 2 3.8 5.8 8.6 20.3 60.8
0.03 9.7 1.9 0 0.7 2.1 4.4 15.1 55.5
0.05 12.5 5.8 1 0 0.4 2 11.4 50.9
0.07 14 8.6 3.3 0.6 0 0.7 8.6 47.2
0.1 17.5 11.1 6.5 3.2 1 0 4.7 42.1
0.25 27.3 19 12.9 9.6 7.2 4.9 0 29.8
1 20 16.9 14.4 11.7 9.7 8 3.8 0

Table 3. R statistics (%) with γ = 10% for different κ and β values

κ
1
|A| 0.01 0.03 0.05 0.07 0.1 0.25 1

β

1
|A| 0 0.9 3.6 5.7 7.5 9.8 19.9 65.1
0.01 1.4 0 1.6 3.5 5.1 7.3 17.1 61.3
0.03 12.1 3 0 0.8 1.9 3.7 12.5 57.3
0.05 18.7 8.5 0.7 0 0.3 1.5 9.2 53
0.07 20 11.4 2.7 0.5 0 0.5 7.1 50.2
0.1 23.2 14.3 6.1 2.8 0.6 0 4.5 46.2
0.25 39.5 25.3 16 12 9 6.1 0 31.8
1 32.8 25.7 19 15.7 13.1 10.5 4.6 0

Table 4. R statistics (%) with γ = 15% for different κ and β values

To this aim, in Figure 2, the function Aβ , with increasing γ values, is plotted for each β

value. The function Aβ represents a performance measure of the optimal solution produced by
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κ
1
|A| 0.01 0.03 0.05 0.07 0.1 0.25 1

β

1
|A| 0 0.1 2.4 4.4 6.1 8.2 17.5 65
0.01 0.5 0 2 3.9 5.6 7.7 16.8 63.3
0.03 13.8 3 0 0.9 2 3.6 11.9 58.2
0.05 20.3 9.8 0.8 0 0.1 1.1 8.1 54.3
0.07 22.9 12.3 2.4 0.4 0 0.5 6.7 52.3
0.1 27.2 16.4 7 3 0.8 0 3.9 48.2
0.25 40.6 26.2 16.8 12.5 9.4 6.3 0 34.3
1 36 27.4 20.4 17 14.2 11.4 4.7 0

Table 5. R statistics (%) with γ = 20% for different κ and β values

κ
1
|A| 0.01 0.03 0.05 0.07 0.1 0.25 1

β

1
|A| 0 0.1 2.2 4.3 5.9 7.8 16.7 62.3
0.01 0.7 0 1.7 3.7 5.3 7.2 15.9 59.8
0.03 12.9 2.7 0 1 2.1 3.6 11.6 56.5
0.05 21.1 9.7 0.6 0 0.2 1.1 7.9 52.8
0.07 23.7 13.4 2.8 0.6 0 0.2 5.9 49.7
0.1 26.9 15.8 6.4 2.8 0.8 0 3.9 46.9
0.25 40.6 26.3 16.8 12.8 9.6 6.4 0 34.1
1 37.2 28.7 21.3 17.8 14.9 11.9 4.9 0

Table 6. R statistics (%) with γ = 25% for different κ and β values

the A-C-SO(β ) model obtained as a convex combination of Rκ

β
values. This measure reflects

the impact of choosing a certain β value on all the other κ-quantiles considered. Furthermore,

weights can be chosen depending on the preferences of the traffic regulators assigning an im-

portance ranking to different κ-quantiles. In case of recurrent bottlenecks, the focus should be

on the most congested arcs and, hence, on low number of arcs κ-quantiles while, in case of

widespread congestion, the focus should be on κ-quantiles that consider a higher number of

arcs. Here we consider a generic case in which weights are all equal to 1
|K| . Using the pro-

posed weights, the highest performance function Aβ value is obtained with β = 1 as long as

the maximum inconvenience γ remains under 10%. Once higher values of γ are considered, the

performance function Aβ value is lower for β < 0.1. This means that, if we consider a broader

path set (γ ≥ 10%) it is convenient to consider the A-C-SO(β ) model with small β values in

terms of performance function.

Even though the proposed model is focused on a system perspective in which the arc con-

gestion on a set of arcs is minimized, the users satisfaction is a key point in considering a traffic

assignment. In Figure 3 the total weighted experienced inconvenience with respect to free-flow
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Figure 2. Aβ curves for different β values

travel time IFF is shown. We recall that the experienced inconvenience is evaluated as the rela-

tive difference between the user experienced travel time and the user free-flow travel time from

origin to destination. The proposed plot highlights that, until γ values under 10% are consid-

ered, the assignments are substantially indifferent in terms of inconvenience. From that point,

the smaller β is, the higher the average inconvenience experienced by users is. The reason is

that, when β = 1, the model will tend to choose paths containing less arcs as in the following

example. Let the network be the one in Figure 4 and let the flow rate from O to D be 20. In

Figure 4(a) the free-flow travel time and parameter u of each arc is shown. When β = 1, we

are considering the average among all arc congestion values. Sending OD pair flow rate on the

shortest path, as in Figure 4(b), will produce an average arc congestion level equal to 68
5 = 13.6.

On the other hand, sending OD pair flow rate on the longest path, as in Figure 4(c), will produce

an average arc congestion level equal to 92
5 = 18.4. Thus, choosing the shortest path is more

convenient than the longest path when β = 1. On the contrary, when lower enough values of

β are considered, it is more convenient to send flow on the longest path since the objective is

to minimize the average over the dβ |A|e most congested arcs. For instance, with β = 25%, the

objective is to minimize the average over the two most congested arcs. Choosing the shortest

path the objective value is equal to 68+0
2 = 34 while choosing the longest path the objective
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Figure 3. IFF curves for different β values

value is equal to 23+23
2 = 23.

O D
tFF = 10,u = 10

t FF
=

20,u
=

20

tFF = 20,u = 20
tF
F =

20
,u
=

20

(a) Free-flow travel time

O D
ε = 68

ε
=

0

ε = 0

ε
=

0

(b) Sending flow on shortest path

O D
ε = 0

ε
=

23

ε = 23

ε
=

23

(c) Flow on longest path

Figure 4. An example

In this section, we examined the objective function values, the Aβ measures and the experi-

enced inconvenience averaged over all instances. To better explore the arc congestion distribu-

tion, we next investigate a single instance for γ = 25%.

The experiment uses an instance with 150 nodes, 480 arcs, and 1170 OD pairs, and gen-
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Figure 5. γ = 25% curves

eration parameter values: oligo-centric, in-peak, and high in-city traffic (the instance name is

RG_Big_oligo_heavytraffic_10_A from the same benchmark instances repository used for av-

eraged results and explanations about used parameters can be found in Angelelli et al. (2016a)).

In Figure 5 the arc congestion distribution for γ = 25% is shown. The arc congestion distri-

bution is obtained showing the arc congestion level of all arcs increasingly sorted by the arc

congestion value, i.e. from the least to the most congested arc. For large part of the arcs, con-

sidering β = 1, the arc congestion level is lower than considering other β values. However, a

set of arcs have an arc congestion value that is greater than the one obtained with smaller β

values. In the magnified part, the set of arcs for which the phenomenon can be observed is

shown. In this particular instance, the difference between the maximum arc congestion value

obtained using β = 1 with respect to β = 1
|A| is around the 45% (15230 versus 10507).

4.3 Performance of the heuristic against optimal solutions

In this section we summarize the results obtained by algorithm H-A(β ) on 40 networks

with 150 nodes and values of γ ranging from 0% to 25% with step 5%.
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γ

β Time (sec) 0% 5% 10% 15% 20% 25%
1
|A|

H-A(β ) 56.6 81.3 96.6 91.1 77.3 75.4
CE 2.3 13.1 31.9 75.5 115.2 313.7

0.01
H-A(β ) 63.3 82.3 95.4 85.7 76.7 75.4
CE 2.4 13.6 30.6 76 114.9 313.9

0.03
H-A(β ) 61.6 85 81.9 83.7 75.7 81.2
CE 2.2 13.7 30.4 77.1 118.8 313.6

0.05
H-A(β ) 58.8 86.3 93.1 87 79.2 82.9
CE 2 13.6 31.7 75 114.5 319.6

0.07
H-A(β ) 60.2 95.2 101.1 88.6 83.3 87.8
CE 2.8 15 36.1 70.1 110.6 296.3

0.1
H-A(β ) 61.3 92.4 98 88.3 84.6 88.1
CE 2 15.6 36 70.2 112.6 298.4

0.25
H-A(β ) 68.4 75.12 82.8 96.1 97.2 99.2
CE 2.2 15.7 31.0 64.0 107.8 263.4

1
H-A(β ) 73.8 93.7 105.6 101 98.3 99.2
CE 2.5 14.5 34.4 65.7 114 269

Table 7. Computational time (sec)

From now on, we denote with CE the A-C-SO(β ) model requiring the complete enumera-

tion of all feasible paths from origin to destination. In Table 7, the CE and H-A(β ) computa-

tional times are shown for different γ and β values. If small γ values are considered, it seems

to be better to use the CE model since computational times are better in most cases. However,

algorithm H-A(β ) is less time consuming when γ > 15% and time savings grow as growing

values of γ are considered and the advantage in using the H-A(β ) becomes clear. Moreover, the

computational time needed by algorithm H-A(β ) is almost stable with γ increasing values. The

reason is that, considering greater γ values, the number of paths grows and the CE requires a

huge number of variables (one for each considered path) and, hence, computational time rapidly

grows. On the other hand, algorithm H-A(β ) generates a number of paths that is polynomial

(in the worst case, at each iteration, it is proportional to the number of arcs in the objective

function multiplied by the number of OD pairs).

The memory usage of algorithm H-A(β ) is compared to CE in Table 8, where, for different

values of β and γ , we report the number of paths generated by the H-A(β ) algorithm and

the percentage of generated paths with respect to CE. The first row shows the number of paths

generated by CE which rapidly grows with increasing values of γ . Note that β does not influence

the number of eligible paths. Thus, we showed this number in a single row as far as CE is
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γ

β Paths 0% 5% 10% 15% 20% 25%
All β s CE 1202.5 16389.4 43305 91046.4 160740.1 452059.3
1
|A|

H-A(β ) 1202.5 7363.3 10708.7 10300.8 10892.9 11626.1
% on CE 100 44.93 24.73 11.31 6.78 2.57

0.01
H-A(β ) 1202.5 7286.3 10550.1 10052.5 10693.1 11439.4
% on CE 100 44.46 24.36 11.04 6.65 2.53

0.03
H-A(β ) 1202.5 7184.1 9802.1 10053.3 10728.9 11544.9
% on CE 100 43.83 22.64 11.04 6.67 2.55

0.05
H-A(β ) 1202.5 6939.7 9672.8 10026.8 11057.2 12106.2
% on CE 100 42.34 22.34 11.01 6.88 2.68

0.07
H-A(β ) 1202.5 6750.9 9509.9 10165.6 11099.2 12361.9
% on CE 100 41.19 21.96 11.17 6.91 2.73

0.1
H-A(β ) 1202.5 6471 9136.4 10041.7 11343.6 12451.1
% on CE 100 39.48 21.1 11.03 7.06 2.75

0.25
H-A(β ) 1202.5 5149.7 7691.4 9996.9 11506.1 12953.1
% on CE 100 31.42 17.76 10.98 7.16 2.87

1
H-A(β ) 1202.5 4862 6674.5 7263.5 7597.3 8454.6
% on CE 100 29.67 15.41 7.98 4.73 1.87

Table 8. Number of generated paths

concerned. Subsequent rows contain, for each β value, the number of paths generated by the

H-A(β ) algorithm and the percentage of the H-A(β ) generated paths with respect to CE model

one for different γ values. If γ = 5%, memory savings with respect to the CE are not very high

(around a half of generated paths). When γ increases, memory savings become more and more

significant. Using γ = 25%, memory saving for all β values is around 50 times the CE memory

consumption. Observe that for γ ≥ 10% the number of generated paths remains almost steady

which confirms the analysis about computational times.

In Table 9 statistics on the H-A(β ) average relative error τβ for different β and γ values

are shown. Note that, for all β values and γ = 0%, the average τβ is zero. This is because the

H-A(β ) algorithm (after one iteration) and CE generate the same path set. Considering greater

γ values, the average τβ has a decreasing trend with increasing γ values. However, for some γ

values, the behaviour is different. For instance, the H-A(β ) algorithm produces an average τβ

with γ = 5% that is lower than one obtained with γ = 10% when β = 0.01 is considered.

In Figure 6, the τβ density function on all 1920 H-A(β ) runs (Cartesian product between

40 instances, the 8 β values and 6 γ values) is shown.

Note that, in the 20% of the runs, the problem is optimally solved by the H-A(β ) algorithm
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Figure 6. τβ density function

while, in the 96.97% of the runs, τβ is lower than 4%. The percentage of runs in which the τβ

value is greater than 5% is very low, around 0.7%. Moreover, this happens only with γ value

equal to 5% and 10% where the A-C-SO(β ) model can be easily optimally solved.

γ

β 0% 5% 10% 15% 20% 25%
1
|A| 0 0.71 2.31 1.45 0.85 1.07

0.01 0 0.91 1.92 1.32 1.04 1
0.03 0 1.46 1.71 1.15 1.05 1.09
0.05 0 2.1 1.59 1.1 1.05 1.11
0.07 0 2.13 1.38 0.99 0.97 1.09
0.1 0 2.56 1.32 0.73 0.81 0.78
0.25 0 1.92 0.86 0.23 0.24 0.13
1 0 0.21 0.09 0.03 0.03 0.02

Table 9. Average relative error τβ (%)
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4.4 Performance of the heuristic on larger instances

Experiments were carried out considering 8 networks, with a number of nodes that ranges

from 120 to 330 with step 30, and γ ranging from 0% to 25% with step 5%. Parameter β is fixed

at 0.25. In Tables 10 and 11 the number of generated paths and the computational time for CE

and H-A(β ) algorithm are reported as well as the relative error τ0.25. Note that, for instances

with a number of nodes greater than 210 and for some values of γ , the statistics for algorithm

CE are not shown because either the path generation procedure ran out of memory or the solver

running time exceeded a time threshold of 10800 seconds (3 hours). The number of paths

generated by algorithm CE grows dramatically fast, with respect to algorithm H-A(β ), as the

number of nodes increases. In rows ’Time CE (sec)’ the computational time (including the time

needed in generating the path set) is shown, while in rows ’Time H-A(β ) (sec)’ the H-A(β )

computational time is shown in seconds. Rows ’Paths CE’ and rows ’Paths H-A(β ) ’ represent

the number of generated paths by the two algorithms. Finally, rows ’Relative error τ0.25 (%)’

represent the relative error produced by H-A(β ) with respect to the CE with β = 0.25. With

γ = 25%, for the 150 nodes instance the number of paths generated by the H-A(β ) algorithm

(13125) is approximately 2.5% of the number of generated paths by CE (524067) while for the

180 nodes instance the percentage is approximately 0.87% (16403 versus 1896053).

When the instance size grows to 210 nodes this percentage decreases to 0.37% (22462

versus 6104204) and, when it grows to 240 nodes the A-C-SO(β ) model runs out of memory.

This means that the H-A(β ) algorithm produces a number of paths that is less than 2 orders

of magnitude of the paths generated by CE. With higher instance sizes there is no available

data for γ = 25% since the solver exceeded the time threshold or ran out of memory. However,

regardless of the value of γ , the percentage of H-A(β ) generated paths with respect to CE

continues to decrease with the increase of the instance size.

Regarding the computational time, the time required by algorithm CE grows fast, with re-

spect to H-A(β ), as the number of nodes increases. With γ = 25%, for the 150 nodes instance

the H-A(β ) algorithm computational time is approximately 28.64% of the CE computational

time while for the 180 nodes instance it is approximately 9.48%. When the instance size grows

to 210 nodes the percentage decreases to 4.45% and when it grows to 240 nodes the A-C-

SO(β ) model runs out of memory. This means that algorithm H-A(β ) for large instances takes
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a time that is around 2 orders of magnitude lower than the time required by CE. Small instances

should be solved using the CE since the computational time is reasonable. On the contrary, the

number of iterations set for the H-A(β ) makes the algorithm slower when small instances are

considered. However, a significant number of iterations have to be set in order to let the algo-

rithm converge to the heuristic solution. Like for the number of paths, with larger instance sizes

there is no available data for γ = 25% but the percentage continues to decrease with the increase

of the instance size. For example, with a 330 nodes instance and γ = 10% the computational

time required by H-A(β ) is 20% of the time required only for the generation of the eligible

path set by algorithm CE and generated paths are the 0.97% of the paths required by CE.

After the analysis of H-A(β ) memory and time savings, some conclusions also on its effec-

tiveness in generating high quality solutions can be derived. The relative error τβ is quite stable

with growing instances and relative error is always under 6% for all tested instances. We recall

that τβ is a relative error evaluated on a measure that is a percentage itself. This means that the

relative error is a percentage of a percentage. The average computed relative error for all γ and

instance sizes is around 1.68%.

5 Conclusions

In this paper a model for the system optimal traffic assignment with users constraints to

minimize the congestion over a given percentage of the most congested arcs is proposed. Com-

putational experiments show that the solution produced by the proposed model is a compromise

solution between those obtained by the minimization of the average arc congestion and the

minimization of the maximum arc congestion. As the computational complexity of the model

is mainly affected by the number of paths, we propose a heuristic for the path generation. Com-

putational experiments show that the proposed heuristic reduces by orders of magnitude the

number of generated paths and, consequently, by orders of magnitude the amount of memory

usage and computational time, while allowing high quality solutions of the model.

Future research directions include the design of a column generation algorithm for the so-

lution of the proposed model. Moreover, an interesting alternative model might minimize the

congestion on the most congested paths as an alternative to the most congested arcs, moving

the focus from the system to the users inconvenience. Another interesting research direction is
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a time-dependent extension of the proposed model.
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