
Generalized Affine Scaling Algorithms for Linear

Programming Problems

Md Sarowar Morshed and Md Noor-E-Alam
Department of Mechanical & Industrial Engineering

Northeastern University

360 Huntington Avenue, Boston, MA 02115, USA

Email : mnalam@neu.edu

Abstract

Interior Point Methods are widely used to solve Linear Programming problems.
In this work, we present two primal Affine Scaling algorithms to achieve faster
convergence in solving Linear Programming problems. In the first algorithm, we
integrate Nesterov’s restarting strategy in the primal Affine Scaling method with
an extra parameter, which in turn generalizes the original primal Affine Scaling
method. We provide the proof of convergence for the proposed generalized al-
gorithm considering long step size. We also provide the proof of convergence for
the primal and dual sequence without the degeneracy assumption. This con-
vergence result generalizes the original convergence result for the Affine Scaling
methods and it gives us hints about the existence of a new family of meth-
ods. Then, we introduce a second algorithm to accelerate the convergence rate
of the generalized algorithm by integrating a non-linear series transformation
technique. Our numerical results show that the proposed algorithms outperform
the original primal Affine Scaling method.

Key words: Linear Programming, Affine Scaling, Nesterov Acceleration,
Dikin Process, Shanks Series Transformation

1 Introduction

The Affine Scaling (AFS) algorithm was introduced by Dikin [1], which re-
mained unnoticed to the Operations Research (OR) community until the seminal
work of Karmarkar [2]. Karmarkar’s work transformed the research in Interior
Point Methods (IPMs) and induced a significant development in the theory of
IPMs. As a result, several variants of AFS have been studied over the years by
researchers (see [3], [4]). We refer to the books of Wright [5], Ye [6], Bertsimas
[7] and Vanderbei [8] for more comprehensive discussion of these methods.

Apart from the simplicity, convergence analysis of the AFS methods for
generalized degenerate setup are considered difficult to analyze. Dikin first
published a convergence proof with a non-degeneracy assumption in 1974 [9].
Both Vanderbei et al. [10] and Barnes [4] gave simpler proofs in their global
convergence analysis but still assumed primal and dual non-degeneracy. First

1

ar
X

iv
:1

80
4.

07
37

3v
4

 [
m

at
h.

O
C

]
 1

2
O

ct
 2

01
9

attempt to break out of the non-degeneracy assumption was made by Adler et
al. [11], who investigated the convergence of continuous trajectories of primal
and dual AFS. Subsequently, assuming only dual non-degeneracy, Tsuchiya [12]
showed that under the condition of step size α < 1

8 , the long-step version of
AFS converges globally. In another work, Tsuchiya [13] showed that the dual
non-degeneracy condition is not a necessary condition for the convergence as as-
sumed previously [12]. Moreover, Tsuchiya [13] introduced the idea of potential
function, a slightly different function than the one provided by Karmarkar [2],
for the analysis of the local behavior of the AFS near the boundary of the feasi-
ble region. Finally, using that potential function [13], Dikin [14] and Tsuchiya
et al. [15] provided proofs for the global convergence of degenerate Linear Pro-
gramming (LP) problems with α∗ < 1

2 and α 6 2
3 , respectively. Later, Hall et

al. [16] showed that the sequence of dual estimates will not always converge for
α > 2

3 .
As a self-contained paper for a global convergence analysis for AFS, Mon-

teiro et al. [17] and Saigal [18] provided two simple proofs for the long-step AFS
algorithms of degenerate LP’s. Subsequently, Saigal [19] introduced two step
predictor corrector based methods to fasten the convergence of AFS. Besides,
the chaotic analysis of AFS was first addressed by Castillo et al. [20]. Bruin et
al. [21] provided a proper chaotic explanation of the so called Dikin Process by
showing the similarity of it with the logistic family in terms of chaotic behavior.
In their work, they showed why the AFS algorithms behave differently when the
step size α is close to 2

3 , which in general complies with the chaotic behavior of
IPMs analyzed by several other researchers. There has been a significant devel-
opment in applying the AFS techniques to solve various types of optimization
problems: Semi Definite Programming [22], Nonlinear Smooth Programming
[23], Linear Convex Programming [24], Support Vector Machine [25], Linear
Box Constrained Optimization [26], Nonlinear Box Constrained Optimization
[27]. Recently, Kannan et al. [28] applied the idea of AFS algorithm to generate
a random walk for solving LP problems approximately.

In a seminal work, Nesterov [29] proposed an acceleration technique for the
Gradient Descent that exhibits the worst-case convergence rate of O(1

k2) for
minimizing smooth convex functions compared to the original convergence rate
of O(1

k). Since the inception of Nesterov’s work, there has been a body of work
done on the theoretical development of first-order accelerated methods (for a
detailed discussion see [30], [31] and [32]). Furthermore, an unified summary
of all of the methods of Nesterov can be found in [33]. Recently, Su et al.
[34] carried out a theoretical analysis on the methods of Nesterov and showed
that it can be interpreted as a finite difference approximation of a second-order
Ordinary Differential Equation (ODE).

1.1 Motivation & Contribution

We have seen from the literature that Nesterov’s restarting scheme is very suc-
cessful in achieving faster convergence for Gradient Descent algorithms. How-
ever, to the best of our knowledge, the potential opportunity of Nesterov’s ac-
celeration has not been yet explored to IPMs to solve LP problems. Motivating
by the power of acceleration and to fill the research gap, as a first attempt, in

∗α is the step size

2

this work we apply acceleration techniques in the Affine Scaling method. Affine
Scaling method was chosen for the following three reasons:

• Historical Importance: Affine Scaling method was the first discovered
Interior Point algorithm discovered by Dikin in 1967 [1]. In 1984 Kar-
markar introduced potential reduction method (Karmarkar method) based
on Dikin’s original idea [2]. After that a significant amount of research
was done in the field of IPM algorithms. Dikin’s original Affine Scaling
method worked as a stepping stone for the development of further IPM
algorithms for solving LP problems.

• Algorithmic Simplicity: Affine Scaling method uses the simplest primal
update whereas Path following/Barrier method and Karmarkar method
use penalty function driven update formulas [7] (i.e., both Barrier method
and Karmarkar method have different objectives in the EAP problem
shown in equation 48 of Section 7). Note that in the EAP problem (equa-
tion (3) and (48)) Affine Scaling method uses the objective function cT d,
whereas Karmarkar method uses the objective G(x + d, s) and Barrier
method uses the objective Bµ(x + d) (where G(x, s) and Bµ(x) are the
potential function and barrier function respectively, see Section 7 for de-
tails).

• Generalized Dikin Process: The chaotic behavior of Affine Scaling method
can be explained by the so called Dikin Process [21], which has a similarity
to the logistic map in Chaos Theory. From a Chaos Theory perspective,
our proposed algorithms may reveal a more generalized versions of Dikin
Process, which can be represented as dynamic systems ([11], [20], [21]).

Based on the above discussion in this work, we propose two algorithms: 1) Gen-
eralized AFS and 2) Accelerated AFS (see Section 2). In the Generalized AFS
algorithm, we propose to use the acceleration scheme discovered by Nesterov
[29, 31, 32, 30, 35] in the AFS framework to achieve super linear convergence
rate as compared to the linear rate shown in [36]. Note that, Nesterov’s accel-
erated scheme can be incorporated with Affine Scaling scheme by defining two
new sequences {uk} and {vk} † as following:

uk = αkvk + (1− αk)xk Uk = diag [(uk)1, (uk)2, ...(uk)n]

ȳk =
(
AU2

kA
T
)−1

AU2
k c, s̄k = c−AT ȳk

xk+1 = uk − θk
U2
k s̄k

‖Uks̄k‖
(1)

vk+1 = βkvk + (1− βk)uk − γk
U2
k s̄k

‖Uks̄k‖

In equation (1), instead of using ∇f as in standard Gradient Descent we use
U2

k s̄k
‖Uk s̄k‖ and θk is the step-size. The main contribution for the above scheme

is that it uses appropriate values for the parameters αk, βk and γk
‡, which in

turn yield better convergence in the context of standard Affine Scaling meth-
ods. Surprisingly, the generalized AFS algorithm also follows the same types

†Representation of this update formula is different than Algorithm 1 but they implies the
same steps
‡Used as a standard notation for Nesterov’s method, throughout the paper we used the

same notations with new definition

3

of convergence scheme as the original AFS method (i.e., feasible step size for
convergence is α ≤ 2

3 for AFS, generalized AFS shows the same types of conver-
gence α+ β ≤ 2

3), which leads to a more generalized method. We then provide
a generalized proof of convergence of the proposed generalized AFS under suffi-
cient conditions. To gain further acceleration, in the generalized AFS algorithm,
we propose to exploit the entry-wise Shanks Series Transformation (SST) to the
generalized update of the generalized AFS algorithm. We then carry out rig-
orous convergence analysis to provide guarantee for acceleration and show the
effectiveness of the proposed algorithms through numerical experiments.

This is the first time, Nesterov’s momentum method and SST are used to de-
sign better algorithms in the context of general IPMs. We believe our proposed
acceleration scheme will facilitate the application of such acceleration techniques
in Barrier method/Path following method and Karmarkar method. This scheme
will also serve as a foundation for developing accelerated techniques for other
more efficient but complex methods in the IPM family. In terms of theoretical
contribution, our proposed algorithms reveal interesting properties about the
convergence characteristics of Affine Scaling method. Based on our analysis, it
is evident that the convergence criterion for AFS ’α ≤ 2/3’ is a universal bound
as the proposed algorithms satisfy a more generalized bound ’α + β ≤ 2/3’.
Finally, the proposed algorithms suggest availability of a more general family of
numerically efficient and theoretically interesting AFS methods.

The paper is organized as follows. In Section 2, we provide a preliminary
idea of the original AFS algorithm, then we describe the proposed variant AFS
algorithms. In Section 3, we show the convergence of primal sequence for the
proposed algorithms. In section 4, we exploit the convergence rate of the accel-
erated AFS algorithm. In section 5, we present convergence of the dual sequence
under sufficient conditions for both algorithms. In section 6, we present numeri-
cal results to demonstrate the effectiveness of the proposed algorithms. Finally,
in Section 7, we conclude the paper with future research directions.

2 Generalization of AFS

Affine Scaling method uses the simple idea of reformulation, instead of minimiz-
ing over the whole interior, it generates a series of ellipsoids inside the interior
of feasible region and moves according to min. cost direction. Consider the
following standard LP and its dual,

(P): min cTx (D): max yT b

Ax = b AT y + s = c (2)

x > 0 s > 0

Let P = {x | Ax = b, x > 0} be the primal feasible set, then we call the set
{x ∈ P | x > 0} as the interior of P and its elements as interior points. The
basic idea of Affine Scaling method is that instead of minimizing over P , we
solve a series of optimization problems over ellipsoids. Starting from an initial
strictly feasible solution x0 > 0, we form an ellipsoid S0 centered at x0, which is
contained in the interior of P . Then by minimizing cTx over all x ∈ S0, we find a
new interior point x1 and proceed in a similar way until stopping restrictions are
satisfied. The AFS method can be easily formulated as the following problem:

4

given a strictly feasible solution x ∈ Rn, we need to find direction vector d such
that x̄ = x+ αd for some α ∈ (0, 1) § and it holds x̄ ∈ P, cT x̄ 6 cTx.
To integrate acceleration and generalization in the AFS, we have proposed the
following two algorithms which are variant of original AFS algorithm:

1. Generalized AFS algorithm (GAFS)

2. Accelerated AFS algorithm (AAFS)

In GAFS, we propose to use Nesterov’s restarting strategy with the original
AFS to generalize AFS. To facilitate the convergence process of GAFS, we
propose to use entry-wise Shanks series transformation (SST) introduced by
Shanks [37] to GAFS. This integrated algorithm is referred as AAFS in this
work. We explain details about these two algorithms below:

GAFS: We followed the Nesterov’s restarting strategy and introduced a
generalized version of AFS in a way that it will give us the original AFS in the
absence of the other parameter. For doing so, we integrate an extra term from
the original idea of Nesterov [29]. Here this variant of AFS is refereed as GAFS.
In the GAFS, we consider two strict feasible points x, z with cTx < cT z, instead
of one point x to find a direction vector d ∈ Rn such that x̄ = x+αd+β̄(x−z) for
some α, β ∈ (0, 1), β̄ = β

‖1−X−1z‖∞ , X = diag(x), where β is the generalization

parameter. It allowed us to reformulate the problem as below:

min w = cT d

s.t Ad = 0 (3)

‖X−1d‖ 6 α

The above problem is known as Ellipsoidal Approximating Problem (EAP), see
[18] and [38] for more detailed information.

Since the generalization parameters do not affect the EAP problem, the main
properties discussed in [14], [18] and [38] are valid for (3) (see 8 for more details).
From now on, we denote δ(xk) = xk − xk−1. For all k > 0, we constructed the
sequence zk using the following update with α, β ∈ (0, 1) and a strictly feasible
point x0 > 0 :

zk =

{
xk, k = 0

xk + β δ(xk)

‖X−1
k δ(xk)‖∞

, k > 0
(4)

When the stopping criteria is not satisfied (k > 0), xk+1 can be calculated using
the following formula:

xk+1 = zk − α
X2
ksk

‖Xksk‖
(5)

AAFS: In the AAFS, we integrated the SST with the GAFS to gain accelera-
tion. Since the primal sequence generated by the GAFS converges as i goes to
infinity (i.e., limi→∞ xi = x∗, see Section 3), it allowed us to write the following
equation:

x∗ − x0 =

∞∑
i=0

(xi+1 − xi)

§α is the step size

5

Algorithm 1 Generalized Affine Scaling Algorithm (GAFS)

1: Start with A, b, c, ε > 0, α, β ∈ (0, 1), x0 > 0, k = 0
2: repeat

Xk = diag [(xk)1, (xk)2, ...(xk)n]

yk =
(
AX2

kA
T
)−1

AX2
kc, sk = c−AT yk

zk =

{
xk, k = 0

xk + β δ(xk)

‖X−1
k δ(xk)‖∞

, k > 0

3: if sk ≥ 0 and eTXksk < ε then
4: Stop; the current (xk, yk) are primal and dual ε optimal.
5: else if X2

ksk ≤ 0 then
6: Stop; the problem is unbounded
7: else

xk+1 = zk − α
X2
ksk

‖Xksk‖

8: until repeat

Algorithm 2 Accelerated Affine Scaling Algorithm (AAFS)

1: Start with A, b, c, ε > 0, α ∈ (0, 1), x0 > 0, k = 0
2: repeat

Xk = diag [(xk)1, (xk)2, ...(xk)n]

yk =
(
AX2

kA
T
)−1

AX2
kc, sk = c−AT yk

zk =

{
xk, k = 0

xk + β δ(xk)

‖X−1
k δ(xk)‖∞

, k > 0

(B(xk))j =

{
(xk)j , k = 0, 1 j = 1, 2, ...n

(xk)j − ((xk)j−(xk+1)j)2

(xk)j−2(xk+1)j+(xk+2)j
, k > 1, j = 1, 2, ...n

Bk = diag [B(xk)1, B(xk)2, ...B(xk)n]

3: if sk ≥ 0 and eTBksk < ε then
4: Stop; the current (B(xk), yk) are primal and dual ε optimal.
5: else if X2

ksk ≤ 0 then
6: Stop; the problem is unbounded
7: else

xk+1 = zk − α
X2
ksk

‖Xksk‖

8: until repeat

6

We denoted the entry-wise partial sum of the right hand side of above equation
as Ck,j as follows:

Ck,j =

k∑
i=0

(xi+1 − xi)j

We see that Ck,j + (x0)j converges to (x∗)j as k goes to infinity for all j =
1, 2, .., n. This setup allowed us to introduce the entry-wise SST to the sequence
xk generated by the GAFS. In the above algorithm, we define (B(xk))j for all
k > 0 and j = 1, 2..., n as follows:

(B(xk))j
def
=

{
(xk)j , k = 0, 1∣∣∣(xk)j − ((xk)j−(xk+1)j)2

(xk)j−2(xk+1)j−(xk+2)j

∣∣∣, k > 1
(6)

As (xk)j is approximated by (B(xk))j for all j = 1, 2, .., n, we can modify the
stopping criteria of AAFS algorithm with eTBksk.

3 Convergence of the primal sequence

In this section, we provided proof of convergence for the primal sequence {xk}
generated by the GAFS and AAFS algorithms discussed in Section 2. We used
some Lemmas related to the properties of the sequences {xk}, {yk}, {sk}, {dk} =
{X2

ksk} generated by the GAFS provided in the 8 for proving the next few
Theorems of this section.

We made the following assumptions before providing the proof of conver-
gence of the primal sequence {xk} and the cost function sequence {cTxk}:
• The Linear Program (2) has at least one interior point feasible solution.

• The objective function cTx is not constant over the feasible region of (2).

• The matrix A has rank m.

• The Linear Program has an optimal solution.

Remark. Note that, here we didn’t assume primal and dual non-degeneracy of
the LP problem (2).

For step size selection, we considered three well-known function defined for a
vector u as

γ(u) = max {ui | ui > 0} , ‖u‖∞ = max
i
|ui|, ‖u‖2 =

√∑
u2
i

Whereas the second and third terms are l∞ and l2 norm, respectively. The
1st function is not a norm and not well defined as γ(u), is undefined for a
non-positive vector u 6 0. The following relationship holds:

γ(u) 6 ‖u‖∞ 6 ‖u‖2

For the generalization term, we considered only l∞ and l2 norm as the first func-
tion is undefined for some cases, since there is no guarantee that X−1

k δ(xk) > 0
will always hold for all k > 1. For our analysis, we select long-step size and long

7

generalization parameter, i.e., we redefine the update formula (5) for k > 1 as
follows:

xk+1
def
= xk − α

X2
ksk

γ(Xksk)
+ β

δ(xk)

‖X−1
k δ(xk)‖∞

; x1
def
= x0 − α

X2
0s0

γ(X0s0)
(7)

Now, by defining αk
def
= α

γ(Xksk) , βk
def
= β

‖X−1
k δ(xk)‖∞

, we get the modified update

formula as follows:

xk+1 = xk − αkX2
ksk + βkδ(xk); x1 = x0 − α0X

2
0s0 (8)

Let us assume limk→∞ xk = x∗, then define sequences {uk}, {γk}, {rk} and {pk}
as follows:

uk
def
=

Xksk
cTxk − cTx∗

, γk
def
=

k∏
j=1

βk, rk
def
=

γk
cTxk − cTx∗

, pk
def
= γkX

−1
k e (9)

Theorem 1. The sequences {xk+1} and {xk} generated by the GAFS algorithm
satisfy the following two identities for all k > 0:

cTxk+1 − cTx∗

cTxk − cTx∗
= 1− α

k∑
j=0

‖uj‖2

γ(uj)

rk
rj

(
X−1
k xk+1

)
j

=
(xk+1)j
(xk)j

= 1− α
k∑
i=0

(ui)j
γ(ui)

(pk)j
(pi)j

Proof. Taking inner product with c in both sides of (8) and using the definitions
from (9), we can find the following relationship:

cTxk − cTxk−1 = −αk−1‖Xk−1sk−1‖2 + βk−1(cTxk−1 − cTxk−2)

= −αk−1‖Xk−1sk−1‖2 − βk−1αk−2‖Xk−2sk−2‖2

+ βk−1βk−2(cTxk−2 − cTxk−3)

...

= γk−1(cTx1 − cTx0)−
k−1∑
j=1

γk−1

γj
αj‖Xjsj‖2

= −α0γk−1‖X0s0‖2 −
k−1∑
j=1

γk−1

γj
αj‖Xjsj‖2

= −α
k−1∑
j=0

‖uj‖2

γ(uj)

γk−1

γj
(cTxj − cTx∗) (10)

Now using the update formula (8), the definition (9) and equation (10), we find

8

the following equation,

cTxk+1 − cTx∗

cTxk − cTx∗
= 1− αk

cTX2
ksk

cTxk − cTx∗
− βk

cTxk−1 − cTxk
cTxk − cTx∗

= 1− α‖uk‖
2

γ(uk)
− α

k−1∑
j=0

‖uj‖2

γ(uj)

βkγk−1

γj

cTxj − cTx∗

cTxk − cTx∗
(11)

= 1− α
k∑
j=0

‖uj‖2

γ(uj)

rk
rj

(12)

The above equation (12) proves part (1) of Theorem 1. Similarly, using equation
(8) and (9), we have,

xk+1 − xk = −αkX2
ksk + βkδ(xk)

= −αkX2
ksk − βkαk−1X

2
k−1sk−1 + βkβk−1δ(xk−1)

...

= γkδ(x1)−
k∑
j=1

γk
γj
αjX

2
j sj = −α

k∑
j=0

γk
γj

Xjuj
γ(uj)

(13)

Then, multiplying both sides of (13) by X−1
k and after simplification, we have

for all j = 1, 2, ..., n.,

(
X−1
k xk+1

)
j

=
(xk+1)j
(xk)j

= 1− α
k∑
i=0

(ui)j
γ(ui)

γk(xi)j
γi(xk)j

= 1− α
k∑
i=0

(ui)j
γ(ui)

(pk)j
(pi)j

(14)

The above equations (12) and (14) prove part (1) and part (2) of Theorem 1,
respectively.

Now, for the rest of our analysis let us define the set Q as below:

Q
def
= {(α, β)| 0 < α < 1, 0 6 β <

1

φ
, α+ β 6

2

3
}

Where φ = 1.618... is the so called golden ratio.

Theorem 2. For α, β ∈ Q, starting from a strictly feasible point x0, the se-
quence xk+1 generated by the update formula (8) has the following three prop-
erties for all k > 0:

1. Axk+1 = b

2. xk+1 > 0

3. cTxk+1 < cTxk

9

Proof. Since the sequence v̄j =
X2

j sj
γ(Xjsj) solves the EAP problem (3) for all j > 0,

we have Av̄j = 0 for all j > 0. As Ax0 = b, using equation (13), we have,

Axk+1 = Ax0 +

k∑
l=0

Aδ(xl+1)

= Ax0 − α
k∑
l=0

l∑
j=0

γl
γj

AXjuj
γ(uj)

= b− α
k∑
l=0

l∑
j=0

γl
γj

AX2
j sj

γ(Xjsj)
= b− α ∗ 0 = b

This proves part (1) of Theorem 2. For the second part, let us evaluate the
upper bound of ‖X−1

k δ(xk+1)‖∞,

‖X−1
k δ(xk+1)‖∞ =

∥∥∥− α Xksk
γ(Xksk)

+ β
X−1
k δ(xk)

‖X−1
k δ(xk)‖∞

∥∥∥
∞

6 α
‖Xksk‖∞
γ(Xksk)

+ β
‖X−1

k δ(xk)‖∞
‖X−1

k δ(xk)‖∞

6 α+ β 6
2

3
< 1

In particular, for all j = 1, 2, ..., n, we have,

|xjk+1 − x
j
k|

xjk
6 ‖X−1

k δ(xk+1)‖∞ 6 α+ β 6
2

3
< 1 (15)

Which implies xjk+1 > 0 for all j. Therefore, xk+1 > 0 for all k > 0. Now
equation using (7) we have,

cTxk+1 = cTxk − α
cTX2

ksk
γ(Xksk)

+ β
cT δ(xk)

‖X−1
k δ(xk)‖∞

6 cTxk − α‖Xksk‖+ β
cT δ(xk)

‖X−1
k δ(xk)‖∞

< cTxk + βk
(
cTxk − cTxk−1

)
< cTxk + γk

(
cTx1 − cTx0

)
= cTxk − αγk

‖X0s0‖2

γ(X0s0)
< cTxk (16)

Therefore, cTxk+1 < cTxk for all k > 0.

Theorem 3. The following statements hold for the GAFS algorithm:

1. The sequence of objective function values {cTxk} generated by the GAFS
strictly decreases and converges to a finite value.

2. Xksk → 0 as k →∞.

Proof. As a consequence of Theorem 2, we know that the sequence {cTxk} is
a decreasing sequence. For the part (1) of Theorem 3, we just need to show

10

that the sequence {cTxk} is bounded. As per our assumption, x∗ is the optimal
solution of the primal problem (P) in (2). However, it implies the following,

cTx∗ 6 · · · < cTxk+1 < cTxk < ... < cTx0

It means that the sequence {cTxk} is bounded. Therefore, using the Monotone
Convergence Theorem we can conclude that the sequence {cTxk} is convergent
and limk→∞ cTxk = cTx∗. For the second part, we see that,

0 < ‖Xksk‖ 6
1

α

[
(cTxk − cTxk+1) + βk(cTxk − cTxk−1)

]
<

1

α

[
(cTxk − cTxk+1) + γk(cTx1 − cTx0)

]
(17)

Now, by the properties of {cTxk}, we have cTx0 − cTx∗ < ∞ and c̄ = cTx0 −
cTx1 < ∞, also as a consequence of Lemma 13, we have G =

∞∑
k=0

γk < ∞.

Combining these facts and equation (17), we can write the following equation,

∞∑
k=0

‖Xksk‖ <
1

α

[∞∑
k=0

(cTxk − cTxk+1) + c̄

∞∑
k=0

γk

]

=
1

α

[
cTx0 − cTx∗ + c̄ G

]
< ∞ (18)

Now, equation (18) allows us to write Xksk → 0 as k →∞. This proves second
part of Theorem 3.

Remark. By using Theorem 3, we see that the complementary slackness con-
dition holds in the limit since, limk→∞(xk)j(sk)j = 0 for all j = 1, 2, 3, ..., n.

Theorem 4. The following statements hold for the GAFS algorithm:

1. The sequence {xk} converges to a point x∗, belongs to interior of the primal
feasible region.

2. For all k > 0 there exists a N = N(x,A) > 0 such that,

‖xk−x∗‖ 6 M
(
cTxk − cTx∗

)
+
‖x1 − x0‖

γ1
G(k) 6 (M+N)

(
cTxk − cTx∗

)
Proof. Denoting tk = (cTxk−cTxk−1), as a direct consequence of equation (16)

11

and Lemma 20 we have,

‖xk+1 − xk‖ 6 αM
cT dk
‖Xksk‖

+
β

‖X−1
k δ(xk)‖∞

‖xk − xk+1‖

= M
(
cTxk − cTxk+1

)
+
Mβ

(
cTxk − cTxk−1

)
‖X−1

k δ(xk)‖∞
+
β‖xk − xk+1‖
‖X−1

k δ(xk)‖∞
= Mβktk −Mtk+1 + βkδ(xk+1)

= M

k−1∑
j=1

γk
γj
tj+1 −M

k∑
j=2

γk
γj
tj+1 +

γk
γ1
δ(x1)

= M
γk
γ1
t2 −M

γk
γk
tk+1 +

γk
γ1
δ(x1)

= M
γk
γ1

(
cTx2 − cTx1

)
+M

(
cTxk − cTxk+1

)
+
γk
γ1
‖x1 − x0‖

(19)

Furthermore, from Lemma 13, we know that the sequence γk converges to 0 as

k →∞, so we can assume that the sequence

{
m∑
k=1

γk

}
converges to some finite

value G as m goes to infinity, i.e.,

∞∑
k=1

γk = G <∞

Then from equation (19) we have,

∞∑
k=0

‖xk+1 − xk‖ = ‖x1 − x0‖+

∞∑
k=1

‖xk+1 − xk‖

6 ‖x1 − x0‖+M

∞∑
k=1

(
cTxk − cTxk+1

)
+
M

γ1

(
cTx2 − cTx1

)
+
‖x1 − x0‖

γ1

∞∑
k=1

γk

= ‖x1 − x0‖+M
(
cTx1 − cTx∗

)
+
G

γ1

[
M
(
cTx2 − cTx1

)
+ ‖x1 − x0‖

]
<∞

The above identity shows that, {xk} is a Cauchy sequence, and therefore, it is
a convergence sequence (i.e., every real Cauchy sequence is convergent). Now,
for all 0 6 k 6 l, using equation (19) we have,

‖xl − xk‖ 6
∥∥ l−1∑
j=k

(xj+1 − xj)
∥∥ 6

l−1∑
j=k

‖xj+1 − xj‖

6M

l−1∑
j=k

(
cTxj − cTxk+1

)
+

1

γ1

[
M
(
cTx2 − cTx1

)
+ ‖x1 − x0‖

] l−1∑
j=k

γj

6 M

l−1∑
j=k

(
cTxj − cTxk+1

)
+
‖x1 − x0‖

γ1

l−1∑
j=k

γj (20)

12

Now, letting l→∞ in (20) and defining G(k)
def
=
∞∑
j=k

γj , we have,

‖xk − x∗‖ 6 M
(
cTxk − v∗

)
+
‖x1 − x0‖

γ1
G(k)

6M
(
cTxk − cTx∗

)
+
‖x1 − x0‖

γ1
N̄
(
cTxk − cTx∗

)
= (M +N)

(
cTxk − cTx∗

)
(21)

This is the required bound. In the last line, we used Lemma 15 with N =
‖x1−x0‖

γ1
N̄ .

Theorem 5. The sequence {B(xk)} generated by the AAFS algorithm converges
to the same point x∗ and belongs to the interior of the primal feasible region.

Proof. From Theorem 4, we know that the sequence {xk} generated by GAFS
converges to x∗. Then using the definition (6) and the basic idea of SST, we can
immediately conclude that for all j = 1, 2, ..., n, the following relation holds:

lim
k→∞

(B(xk))j = (x∗)j

Since, this holds for all j = 1, 2, ..., n, we can prove limk→∞B(xk) = x∗. The
last part of Theorem 5 follows from the fact that (B(xk))j > 0, for all k > 1
and j = 1, 2, ..., n.

With limk→∞ xk = x∗, let us define the sets N and B as follows,

N
def
= {i | x∗i = 0}, B = {i | x∗i > 0}, |N | = p

Now, we provide proof for an important property of the sequence {xk}, which
subsequently holds for original AFS algorithm. We showed that it holds for
GAFS too with different constant. For the original AFS algorithm, the Theorem
was proven by several authors in their work [18] and [38].

Theorem 6. There exists a δ > 0 and a R > 0 such that for each k > 0

cTxk − cTx∗

‖xk − x∗‖
>

1

R
,

cTxk − cTx∗∑
i∈N (xk)i

> δ,
cTxk − cTx∗∑

i∈B
∣∣(xk)i − (x∗)i

∣∣ > δ

Proof. Let, R = M +N , then from equation (21), we have for all k > 0,

cTxk − cTx∗

‖xk − x∗‖
>

1

M +N
=

1

R

It proves the first part of Theorem 6. Similarly from equation (21),

cTxk − cTx∗ >
‖xk − x∗‖

R
>
‖xk,N‖
R

>

∑
i∈N (xk)i√
pR

cTxk − cTx∗ >
‖xk − x∗‖

R
>
‖xk,B − x∗B‖

R
>

∑
i∈B

∣∣(xk)i − (x∗)i
∣∣

√
n− pR

By denoting δ = min{ 1√
pR ,

1√
n−pR}, we have the remaining results of Theorem

6.

13

Theorem 7. If α, β ∈ Q, then the following identities hold:

1. For all k > 1,
‖X−1

k Xk−1‖∞ < 5

2. There exists a L2 > 1 such that for all k ≥ L2,

− ‖Xksk‖
cTxk − cTx∗

6
−1

‖X−1
k (xk − x∗) ‖

6
−1√
n

3. For all k > 1,

1

γk
=

1

β1β2...βk
<

∏k
j=1 ‖X

−1
j Xj−1‖
βk

(α+ β)k <

(
5

β

)k
Proof. From equation (15) for all j = 1, 2, ..., n, we have,

|(xk+1 − xk)j |
(xk)j

6 ‖X−1
k δ(xk+1)‖∞ 6 α+ β 6

2

3
(22)

Simplifying equation (22) further for all k > 1, j = 1, 2, ..., n we have,

3

5
6

(xk−1)j
(xk)j

6 3 (23)

Then using equation (23) to the definition of maximum norm, we have,

‖X−1
k δ(xk)‖∞ 6 max

j

{
1 +

(xk−1)j
(xk)j

}
6 4

Therefore, we have,

‖X−1
k xk−1‖∞ 6 ‖e−X−1

k xk−1‖∞ + ‖e‖∞ 6 4 + 1 = 5 (24)

Which proves part (1) of Theorem 7. Part (2) of Theorem 7 is well studied in
the literature (see [18], [38]). We can prove part (2) of this Theorem easily as

the sequence
X2

ksk
‖Xksk‖ generated by the GAFS algorithm solves the EAP problem

provided in equation (3), i.e., there exists a L2 such that for all k > L2,

− ‖Xksk‖
cTxk − cTx∗

6
−1

‖X−1
k (xk − x∗) ‖

6
−1√
n

For proving the last part, we first need an upper bound of 1
βk

. For all k > 1,
we have,

1

βk
=
‖X−1

k δ(xk)‖∞
β

=
∥∥ X−1

k δ(xk−1)

‖X−1
k−1δ(xk−1)‖∞

− α

β

X−1
k X2

k−1sk−1

γ(Xk−1sk−1)

∥∥
∞

6 ‖X−1
k Xk−1‖∞

∥∥ X−1
k−1δ(xk−1)

‖X−1
k−1δ(xk−1)‖∞

− α

β

Xk−1sk−1

γ(Xk−1sk−1)

∥∥
∞

6 ‖X−1
k Xk−1‖∞

(
1 +

α

β

)
<

5(α+ β)

β
<

5(β + 2)

3β
<

5

β

14

Here, we use the identity in equation (24). Then by the definition of γk for all
k > 1 we have,

1

γk
=

1

β1β2...βk
<

(
5

β

)k
It proves the remaining parts of Theorem 7.

For the remaining sections, let us define sequences {uk}, {vk} and {hk} as fol-
lows:

uk
def
=

Xksk
cTxk − cTx∗

, vk
def
=

X−1
k δ(xk)

‖X−1
k δ(xk)‖∞

(cTxk − cTx∗) hk
def
=

cT δ(xk)

‖X−1
k δ(xk)‖∞

(25)

4 Convergence Rate

In this section, we measured the significance of AAFS over GAFS in terms of
convergence rate given that GAFS converges linearly (see the following Theo-
rem 8). The following Theorem gives us the linear convergence rate of GAFS
algorithm.

Theorem 8. The following statements holds for the GAFS algorithm:

1. There exists a L > 1 such that for all k > L,

cTxk+1 − cTx∗

cTxk − cTx∗
6 1− α√

n
− α√

n

(
β

5

)k
2. For α, β ∈ Q the following limit holds:

lim
k→∞

cTxk+1 − cTx∗

cTxk − cTx∗
= 1− α√

n
< 1

Proof. We used Theorem 1 for proving part (1) of this Theorem. First, let us
choose L = L2 (part (2) of Theorem 7), then using the update formula (7) for
all k > L, we have,

cTxk+1 − cTx∗

cTxk − cTx∗
= 1− α

γ(Xksk)

cTX2
ksk

(cTxk − cTx∗)
+

β

‖X−1
k δ(xk)‖∞

cTxk − cTxk−1

(cTxk − cTx∗)

6 1− α ‖Xksk‖
cTxk − cTx∗

+ βk
cTxk − cTxk−1

cTxk − cTx∗

6 1− α

‖X−1
k (xk − x∗) ‖

+ βkγk−1
cTx1 − cTx0

cTxk − cTx∗

6 1− α√
n
− αγk

‖X0s0‖
cTxk − cTx∗

6 1− α√
n
− αγk

‖Xksk‖
cTxk − cTx∗

6 1− α√
n
− αγk√

n
6 1− α√

n
− α√

n

(
β

5

)k
< 1− α√

n

15

Here, we used the the fact that the sequence {‖Xksk‖} is a decreasing sequence
and converges to zero due to the property of complementary slackness, i.e.,
‖X0s0‖ > ‖X1s1‖ > ... > ‖Xksk‖ (see part (2) of Theorem 3).

Now, part (2) of Theorem 8 is a direct consequence of part (1) of Theorem

8 as the sequence {
(

β
4
√
n

)k
} converges to zero as k →∞.

Remark. Note that, Theorem 8 indicates that GAFS algorithm converges lin-
early. Next, we compared the convergence rates between the proposed algorithms.
In other words, how good is the sequence {cTB(xk)} compared to the sequence
{cTxk} when the latter converges linearly. The next Theorem (Theorem 9) shows
that it is better, in the sense that it converges faster, meaning that the AAFS
accelerates the convergence of GAFS.

Theorem 9. Assume that the sequence {cTxk} converges to cTx∗ linearly. Let
B(xk) be as in (6), then the sequence {cTB(xk)}, converges faster to cTx∗ than
{cTxk} in the sense that,

lim
k→∞

cTB(xk)− cTx∗

cTxk − cTx∗
= 0

Proof. By virtue of Theorem 8, we can argue that there exists sequences {σj}
and {(λk)j} such that,

cj(xk+1)j − cj(x∗)j
cj(xk)j − cj(x∗)j

= σj + (λk)j ∀ j = 1, 2, ..., n, k ≥ 1 (26)

And limk→∞(λk)j = 0 ∀ j. Simplifying (26) for (k + 1)th and (k + 2)th terms,
we have,

cj(xk+1)j = cj(x
∗)j + (σj + (λk)j) (cj(xk)j − cj(x∗)j)

cj(xk+2)j = cj(x
∗)j + (σj + (λk+1)j) (cj(xk+1)j − cj(x∗)j) (27)

for all j = 1, 2, ..., n, k ≥ 1. Now using (26) and (27), we have,

cTB(xk)− cTx∗

cTxk − cTx∗
=
cTxk − cTx∗

cTxk − cTx∗
(28)

−
n∑
j=1

[cj(xk)j − cj(xk+1)j]
2

[cTxk − cTx∗][cj(xk)j − 2cj(xk+1)j + cj(xk+2)j]

= 1− 1

n

n∑
j=1

[cj(xk)j − cj(xk+1)j]
2

[cj(xk)j − cj(x∗)j][cj(xk)j − 2cj(xk+1)j + cj(xk+2)j]

= 1− 1

n

n∑
j=1

[
cj(xk)j−cj(xk+1)j
cj(xk)j−cj(x∗)j

]2
cj(xk)j−2cj(xk+1)j+cj(xk+2)j

cj(xk)j−cj(x∗)j

= 1− 1

n

n∑
j=1

[σj + (λk)j − 1]
2

[σj + (λk)j] [σj + (λk+1)j]− 2 [σj + (λk)j] + 1
(29)

Taking the limit k →∞ in (29) and using the property of sequence {(λk)j}, we
have,

16

lim
k→∞

cTB(xk)− cTx∗

cTxk − cTx∗

= 1− lim
k→∞

1

n

n∑
j=1

[σj + (λk)j − 1]
2

[σj + (λk)j] [σj + (λk+1)j]− 2 [σj + (λk)j] + 1

= 1− 1

n

n∑
j=1

(σj − 1)2

σ2
j − 2σj + 1

= 1− 1 = 0

This proves the required Theorem.

5 Convergence of the Dual sequence

In this section, we introduced a local version of potential function largely studied
in the literature. For the convergence of the dual sequence, it is required to
control both the step sizes α and β. For the original Affine Scaling method, it
was first shown by Tsuchiya et al. [38] that for the dual convergence we need to
have α 6 2

3 . A simpler version of its proof is also available in Saigal [18]. Here,
we proved that the dual sequence generated by GAFS method converges if we
have α, β ∈ Q. We see that the original result of AFS can be found with the
choice of β = 0 in our proof. At first, we introduced the local potential function
(defined in [13]). For any x > 0 with cTx− cTx∗ > 0 and N = {j | (x∗)j = 0}
with p = |N |, let us define the following function:

FN (x)
def
= p log(cTx− cTx∗)−

∑
j∈N

log(x)j

Theorem 10. For the sequence {xk} we can show that for all k > 0,

FN (xk+1)− FN (xk) = p log(1− θ‖wk,N‖2 − θσ2
k + θwTk,Nvk,N

− θ
(

2δk
p
− 2ωk

p
+ εk + φhk

)
)−

∑
j∈N

log (1− θ(wk)j − (φ− θ)(vk)j) (30)

; where wk,N = uk,N + vk,N − 1
pe, ᾱ = α

γ(uk,N) , β̄ = β
‖vk,N‖∞ , θ = pᾱ

p−ᾱ , φ =
pβ̄
p−ᾱ ,
∞∑
k=L

|εk| <∞,
∞∑
k=L

|δk| <∞,
∞∑
k=L

|ωk| <∞

Proof. Using the update formula (7) and definition (25), we have,

cTxk+1 − cTx∗

cTxk − cTx∗
= 1− α cTX2

ksk
γ(Xksk)(cTxk − cTx∗)

− β cTxk−1 − cTxk
‖X−1

k δ(xk)‖∞(cTxk − cTx∗)

= 1− α‖uk‖
2

γ(uk)
− β hk
‖vk‖∞

= 1− ᾱ‖uk‖2 − β̄hk (31)

17

And also for all j ∈ N , we have,

(xk+1)j
(xk)j

= 1− α (Xksk)j
γ(Xksk)

− β

[
X−1
k δ(xk)

]
j

‖X−1
k δ(xk)‖∞

= 1− α (uk)j
γ(uk)

− β (vk)j
‖vk‖∞

= 1− ᾱ(uk)j − β̄(vk)j (32)

Now from part 2(a) of Lemma 22 , there exist a L > 1 such that for all k > L,
we have,

1−ᾱ‖uk‖2 − β̄hk = 1− ᾱ ‖ wk,N − vk,N +
1

p
e ‖2 − ᾱεk − β̄hk

= 1− ᾱ

p
− ᾱ(‖wk,N‖2 + ‖vk,N‖2) +

2ᾱ

p
eT (vk,N − wk,N)

+ 2ᾱvTk,Nwk,N − ᾱεk − β̄hk

=
p− ᾱ
p

[
1− θ

(
‖wk,N‖2 + σ2

k + εk − 2vTk,Nwk,N +
2

p
(δk − ωk)

)
− φhk

]
(33)

This is a simplification of equation (31). Also simplifying equation (32), we
have,

1− ᾱ(uk)j − β̄(vk)j = 1− ᾱ

p
− ᾱ(wk)j + ᾱ(vk)j − β̄(vk)j

=
p− ᾱ
p

[1− θ(wk)j − (φ− θ)(vk)j] (34)

Using these two identities from (33) and (34), we have the desired result of
Theorem 10.

We know from the problem structure and assumptions that the sequence
{cTxk} is bounded. In the next Theorem (Theorem 11) we show that with
α, β ∈ Q, the dual sequence converges to the analytic center of the optimal

face of dual polytope. As defined by Saigal [18], with D
def
= {(y, s) : ATBy =

cB , A
T
Ny + sN = cN , sB = 0}, we define the Analytic Center Problem (ACP) of

the optimal dual face as the solution of (y∗, s∗) to the following problem:

max
∑
j∈N

log sj

(y, s) ∈ D (35)

sN > 0

Theorem 11. If α, β ∈ Q, then there exist vectors x∗, y∗ and s∗ such that the
sequences {xk}, {yk} and {sk} generated by the GAFS algorithm converges to
x∗, y∗ and s∗, respectively, i.e.,

1. xk → x∗,

2. yk → y∗,

3. sk → s∗

18

Where x∗, y∗ and s∗ are the optimal solutions of the respective primal and dual
problems, and they also satisfy the strict complementary slackness property. Fur-
thermore, the dual pair (y∗, s∗) converges to the analytic center of the optimal
dual face and the primal solution x∗ converges to the relative interior of the
optimal primal face.

Proof. Since, log(1− a) < −a, we can find a L1 > 1 such that for all k > L1,

FN (xk+1)− FN (xk) 6 −pθ
[
‖wk,N‖2 + σ2

k + εk − 2vTk,Nwk,N +
2

p
(δk − ωk)

]
− pφhk −

∑
j∈N

log (1− θ(wk)j − (φ− θ)(vk)j) (36)

Now, we analyze equation (36) for two cases based on the sign of θγ(wk,N) +
(φ− θ)γ(vk,N).
Case 1: θγ(wk,N) + (φ− θ)γ(vk,N) 6 0
Then we must have θ(wk)j + (φ− θ)(vk)j 6 0 for all j ∈ N , which implies,

log (1− θ(wk)j − (φ− θ)(vk)j) > 0 for all j ∈ N (37)

Using part (d) of Theorem 16 and equation (36) and (37), for all k > L1 we
have,

FN (xk+1)− FN (xk)

6 −pθ‖wk,N‖2 + 2pθvTk,Nwk,N − θ(2δk + pεk − 2ωk + pσ2
k)− pφhk

6 −pθ‖wk,N‖2 + 2pθε‖wk,N‖ − θ(2δk + pεk − 2ωk + pσ2
k)− pφhk

(38)

Case 2: θγ(wk,N) + (φ− θ)γ(vk,N) > 0
Let ε̄ > 0, since γ(vk,N) = (cTxk − cTx∗) → 0, there exist a L2 > 1 such that
for all k > L2,

γ(vk,N) < ε̄

Then, using the condition of Case 2, we have for all k > L2,

γ(wk,N)− γ(vk,N) > (1− φ

θ
)γ(vk,N)− γ(vk,N) = −φ

θ
γ(vk,N) > −φ

θ
ε̄

(39)

Since in equation (39), our choice of ε̄ > 0 is arbitrary, this is true for any ε̄ > 0,
which implies for all k > L2, we must have γ(wk,N)− γ(vk,N) > 0. Then, from
the definition, we have,

γ(uk,N) = γ(wk,N − vk,N +
1

p
e) >

γ(wk,N − vk,N) + 1

p
>
γ(wk,N)− γ(vk,N) + 1

p
(40)

As a simple consequence of the definition (30) and the condition α, β ∈ Q, we
have,

θ

2(1− θγ(wk,N)− (φ− θ)γ(vk,n))
=

ᾱ

2(1− α− β)
=

α

2(1− α− β)

1

γ(uk,N)
6

1

γ(uk,N)

φ

2(1− θγ(wk,N)− (φ− θ)γ(vk,n))
=

β̄

2(1− α− β)
=

β

2(1− α− β)

1

γ(vk,N)
6

1

γ(vk,N)
(41)

19

Now, as θ(wk)j + (φ− θ)(vk)j 6 θγ(wk,N) + (φ− θ)γ(vk,N) for all j ∈ N , using
Lemma 21 and equation (41), we have,

−
∑
j∈N

log (1− θ(wk)j − (φ− θ)(vk)j)

6 θδk + (φ− θ)ωk +
‖θwk,N + (φ− θ)vk,N‖2

2(1− θγ(wk,N)− (φ− θ)γ(vk,n))

6 θδk + (φ− θ)ωk +
θ‖wk,N‖2

γ(uk,N)
+ 2

ε(φ− θ)‖wk,N‖
γ(uk,N)

+
(φ− θ)2σ2

k

θγ(uk,N)
(42)

Now, by combining equation (36) and (42), we have,

FN (xk+1)− FN (xk) 6 θ‖wk,N‖2[−p+
1

γ(uk,N)
] + 2ε‖wk,N‖(pθ +

φ− θ
γ(uk,N)

)

+ σ2
k(−pθ +

(φ− θ)2

θγ(uk,N)
)− pθεk − pθδk + (φ+ θ)ωk − pφhk (43)

Using the lower bound of equation (40), we can easily find,

−pθ +
θ

γ(uk,N)
6 −pθ γ(wk,N)− γ(vk,N)

1 + γ(wk,N)− γ(vk,N)
= −pā

pθ +
φ− θ
γ(uk,N)

6 p
φ+ θ(γ(wk,N)− γ(vk,N))

1 + γ(wk,N)− γ(vk,N)
= pb̄

Where, by the definition of ā and b̄ given above, we can show that ā, b̄ > 0

are both finite constants. Now, from Theorem 6, we see that
∞∑
k=L

(FN (xk+1) −

FN (xk)) > −∞. Also from Theorem 10, we get the following relation,

∞∑
k=L

(
|δk|+ εk + ωk + hk + σ2

k

)
<∞ (44)

Considering equations (38), (43) and (44), for all k > L, we have,

Case 1:

∞∑
k=L

‖wk,N‖2 − 2ε

∞∑
k=L

‖wk,N‖ < ∞ (45)

Case 2: ā

∞∑
k=L

‖wk,N‖2 − b̄
∞∑
k=L

‖wk,N‖ < ∞ (46)

Both of the above cases, equation (45) and (46) imply that either the sequence
{γ(wk,N)} has a strictly positive/negative cluster point or limk→∞ γ(wk,N) = 0.
If {γ(wk,N)} has a cluster point then we must have, ‖wk,N‖ → 0. Now, since
eTwk,N = δk and δk → 0, this implies whenever limk→∞ γ(wk,N) = 0, we must
have, wk,N → 0. Either way, we have the following relationship,

lim
k→∞

wk,N = 0 ⇒ lim
k→∞

uk,N =
1

p
e (47)

20

Now, for each j ∈ N , consider the sequences { (xk)j
cT xk−cT x∗ }, {

(xk)i−(x∗)i
cT xk−cT x∗ }, {yk}

and {sk} for each i ∈ B. Let spk → s∗ for some sub-sequence {pk} of k. Since
all of them are bounded for all 1 6 i, j 6 n. Thus using equation (47), we have,

ypk → y∗, spk → s∗,
p(xpk)j

cTxpk − cTx∗
→ aj for each j ∈ N

p
(xpk)i − (x∗)i
cTxpk − cTx∗

→ bj for each j ∈ B

Considering equation (14), we know that aj > 0 for all j ∈ N and (wpk)j → 0,
for all j ∈ N we have the following,

(spk)j =
cTxpk − cTx∗

(xpk)j

(
(wpk)j −

1

p

)
→ 1

aj

Since from the definition of D, ANxk,N + ABxk,B = ABx
∗
B + AN ∗ 0 = ABx

∗
B

holds and taking the limits, we see that ANa + ABb = 0. This implies that
sj = 1

aJ
, for each j ∈ N and x = [xB , xN] = [−a,−b], s = [0, s∗N], y = y∗

solve the corresponding Karush Kahn Tucker (KKT) conditions for the Analytic
Center Problem (35). Thus, spk,B converges to the analytic center for each sub-
sequence, which in turn proves part (2) and (3) of Theorem 11. For proving the
optimality, we notice that as x∗, y∗ and s∗ satisfies the primal and dual feasible
criteria, respectively. They also satisfy the complementary slackness property.
Thus, x∗, y∗ and s∗ are the optimal solutions for the respective primal and dual
problems.

Remark. Notice that, Theorem 11 is a generalization of the original AFS al-
gorithm. In this Theorem, if we consider β = 0 (without acceleration term),
then it gives us the condition α 6 2

3 , which is in fact the respective bound for
the original AFS (see [18], [38]).

Theorem 12. If α, β ∈ Q, then there exist vectors x∗, y∗, s∗ such that the
sequences {B(xk)}, {yk} and {sk} generated by the AAFS algorithm converges
to x∗, y∗ and s∗ respectively, i.e.,

1. B(xk)→ x∗,

2. yk → y∗,

3. sk → s∗

Where x∗, y∗ and s∗ are the optimal solutions of the respective primal and dual
problems, and they also satisfy the strict complementary slackness property. Fur-
thermore, the dual pair (y∗, s∗) converges to the analytic center of the optimal
dual face and the primal solution x∗ converges to the relative interior of the
optimal primal face.

Proof. From Theorem 11, we know that the sequence {xk}, {yk} and {sk} gen-
erated by the GAFS converges to x∗, y∗ and s∗, respectively. Then, using the
definition (6) and the basic idea of SST, we can conclude that for all j = 1, 2, ..., n
and α, β ∈ Q the following relation holds,

lim
k→∞

(B(xk))j = (x∗)j , lim
k→∞

yk = y∗, lim
k→∞

sk = s∗

21

Since, this holds for all j = 1, 2, ..., n, we can prove limk→∞B(xk) = x∗. The
last part is satisfied as we do not update the dual sequences at each iteration
based on the sequence {B(xk)}.

6 Numerical Experiments

In this section, we verified the efficiency of the proposed variants of primal Affine
Scaling algorithm presented in Section 2 through several numerical experiments.
All of the experiments were carried out in a Intel Xeon Processor E5-2670, with
double processors each with 20 MB cache, 2.60 GHz, 8.00 GT/s Intel QPI and
64 GB memory CPU. For simplicity of exposition, we considered three pairs of
step sizes (α, β) = (0.4, 0.2), (0.5, 0.1) and (0.55, 0.1), respectively for our ex-
perimental setup. We considered three types of LP problems: (1): Randomized
Gaussian LP, (2): Netlib Sparse LP (real life instances [39]) and (3): Random-
ized LP with increasing n, constant m. We evaluated the performance of GAFS
and AAFS with a long-step version of classical AFS. We considered duality gap
tolerance ε as 10−3, 10−4 and 10−7 respectively and compared the results of
our algorithms with the commercial LP solver (CPLEX-dual simplex [40]) and
with the MATLAB Optimization Toolbox function fmincon ¶ [41]. The fmincon
function allows us to select ‘Interior Point’ algorithm for a basic comparison as
AFS is also an Interior Point Method.

6.1 Comparison among AFS, GAFS and AAFS for dense
data:

The random dense data for these tests are generated as follows: All elements
of the data matrix A ∈ Rm×n and the cost vector c ∈ Rn are chosen to be
i.i.d. Gaussian ∼ N (−9, 9). The right hand side b ∈ Rm is generated at
random from corresponding distribution, but we made sure that b ∈ R(A). For
that, we generated two vectors x1, x2 ∈ Rn at random from the corresponding
distributions, then multiplied them by A and set b as a convex combination
of those two vectors. We also made sure that the generated problems have
bounded feasible solutions. We ran all algorithms 15 times and reported the
averaged performance.

(a) α = 0.4, β = 0.2 (b) α = 0.5, β = 0.1 (c) α = 0.55, β = 0.1

Figure 1: Number of columns and rows (m + n) vs run time (duality gap
= 10−3, dense data)

¶For simplification, we used ‘fmin’ in all of the figures and tables

22

(a) α = 0.4, β = 0.2 (b) α = 0.5, β = 0.1 (c) α = 0.55, β = 0.1

Figure 2: Number of columns and rows (m + n) vs run time (duality gap
= 10−4, dense data)

(a) α = 0.4, β = 0.2 (b) α = 0.5, β = 0.1 (c) α = 0.55, β = 0.1

Figure 3: Number of columns and rows (m + n) vs run time (duality gap
= 10−7, dense data)

In the above figures (Figure 1, 2 and 3), we compared AFS, GAFS and AAFS
for different sets of α, β with diferent duality gaps. Our results show that the
proposed variant algorithms reduced the runtime significantly. Furthermore,
the reduction of runtime increases as the size of the instance gets larger (see
Figure 1, 2 and 3). From figure 1, 2 and 3, we can conclude that the GAFS is
faster than the original AFS irrespective of the size of the instances. Similarly,
AAFS further accelerates the convergence of GAFS as the runtime decreases for
all the instances. This is due to the integration of SST with the acceleration
process and it converges much faster than the original AFS algorithm.

Now, we compared the performance of our proposed algorithms and AFS
with the standard LP solvers fmincon and ‘CPLEX-dual simplex’. For the com-
parison, we chose the best α, β pair from the above results (α = 0.55, β = 0.1,
validates our claim that ‘good result for larger (α + β) ∈ Q’) and compared
them for the duality gaps. At first, we presented the comparison graph for all
the algorithms (AFS, GAFS, AAFS, fmincon and CPLEX), where it is evident
that performance of original AFS compare to fmincon and CPLEX solver is very
poor. However, our proposed acceleration scheme has significantly improve this
performance gap. For better understanding and fairness benchmark compar-
ison, we compared our proposed AAFS with classical AFS and fmincon (this
comparison is fair as fmincon uses the raw Barrier function method and CPLEX
uses dual simplex [42], [40]).

23

(a) duality gap = 10−3 (b) duality gap = 10−4 (c) duality gap = 10−7

Figure 4: Comparison with ‘fmincon’ and ‘CPLEX’ (dense data)

(a) duality gap = 10−3 (b) duality gap = 10−4 (c) duality gap = 10−7

Figure 5: Comparison of ‘AAFS’ with ‘AFS’ and ‘fmincon’ (dense data)

Table 1: Comparison among ‘GAFS’, AAFS’, ‘AFS and fmin’a

Instances Dimension AFS GAFS AAFS fmin
m n Time Time Time Time

1 400 650 9.02 7.96 7.11 5.07
2 700 1000 18.16 16.22 13.87 9.87
3 1000 2000 67.64 53.34 43.46 31.47
4 1500 2500 123.95 111.40 99.30 69.34
5 2000 3000 202.95 187.67 176.34 142.47
6 2500 3000 231.20 216.90 181.03 147.79
7 3000 3500 351.00 321.88 287.60 218.73
8 3500 4000 467.07 401.00 356.10 281.20
9 4000 4500 700.13 610.20 497.86 406.39
10 4500 5500 1281.00 1019.00 787.20 619.31

a MATLAB Optimization Toolbox

Based on the above figure (Figure 5) and Table 1, we concluded that AFS
takes on average ‖ 75-80 % (min. 40 %, max. 118 %) more CPU time than
fmincon (Barrier method). However, our proposed AAFS takes on average
25-30 % (min. 20 %, max. 45 %) more CPU time than fmincon. It is evident
that the proposed acceleration reduced the CPU time consumption considerably
(approximately on average 50 % reduction). The reason for this is that the
classical AFS is an exponential time algorithm whereas the Barrier method is
a polynomial time method. When we applied the proposed generalization and

‖Note that, all comparison percentages reported in this work are calculated based on
‘fmincon’ CPU time

24

acceleration in AFS to generate GAFS and AAFS method respectively, they
did well against Barrier function method as both methods uses the history
information (i.e., AFS uses only xk to generate xk+1, GAFS and AAFS uses
x0, x1, x2, ..., xk to generate xk+1).

6.2 Comparison among AFS, GAFS and AAFS for sparse
data

In this subsection, we investigated the performance behaviour of classical AFS
with the proposed GAFS and AAFS methods and also with MATLAB Opti-
mization Toolbox function fmincon [41] for several Netlib LP instances (real life
examples with sparse data [39]). The experiment parameters remains the same
as in the randomized instances. Figures 6, 7 and 8 show the comparison graphs
among AFS, GAFS and AAFS.

In the following figures, we compared AFS, GAFS and AAFS with the same
parameters for the Netlib LPs ∗∗. Based on the figures below (Figure 6, 7 and 8),
we can conclude that GAFS is faster than the original AFS and AAFS further
accelerates the convergence of GAFS for all of the instances. Furthermore, one
can notice that the runtime graphs do not follow the same trend as before (Figure
1, 2 and 3). The main reason for that is in these instances, we have another
important parameter involved called sparsity (portion of nonzero entries in the
matrix, δ = nonzero entries of A

total entries of A) of the data matrix A. As shown in the following
figures, sparsity affected the performance of the algorithms significantly.

(a) α = 0.4, β = 0.2 (b) α = 0.5, β = 0.1 (c) α = 0.55, β = 0.1

Figure 6: Number of columns and rows (m + n) vs run time (duality gap
= 10−3, sparse data)

(a) α = 0.4, β = 0.2 (b) α = 0.5, β = 0.1 (c) α = 0.55, β = 0.1

Figure 7: Number of columns and rows (m + n) vs run time (duality gap
= 10−4, sparse data)

∗∗For some instances, we slightly modify parameters b and c to make the instances solvable
by our setup, for instance in some cases b vector had some values as infinity which our setup
can’t handle, we replaced infinity with very large numbers

25

(a) α = 0.4, β = 0.2 (b) α = 0.5, β = 0.1 (c) α = 0.55, β = 0.1

Figure 8: Number of columns and rows (m + n) vs run time (duality gap
= 10−7, sparse data)

Now, we evaluated the performance of our proposed algorithms and AFS
with the standard solver fmincon. At first, we presented the comparison figure
for all the algorithms (AFS, GAFS, AAFS and fmincon). Then finally, for
better understanding, we compared our proposed AAFS with classical AFS and
fmincon (we explain in subsection 6.1 that it is fair to compare with fmincon as
AFS, GAFS, AAFS and fmincon uses the raw Interior Point Method whereas
CPLEX uses dual simplex method [42], [40]).

(a) duality gap = 10−3 (b) duality gap = 10−4 (c) duality gap = 10−7

Figure 9: Comparison of ‘GAFS’ and ‘AAFS’ with ‘AFS’ and ‘fmincon’ (sparse
data)

(a) duality gap = 10−3 (b) duality gap = 10−4 (c) duality gap = 10−7

Figure 10: Comparison of ‘AAFS’ with ‘AFS’ and ‘fmincon’ (sparse data)

26

Table 2: Comparison of ‘GAFS’ and ‘AAFS’ with ‘AFS’ and ‘fmina

’

Instances Dimension
Nonzero
Entries

Sparsity AFS GAFS AAFS fmin

Title m n Z δ Time Time Time Time
lp blend 377 114 1302 0.0303 6.83 3.98 2.57 1.54

lp adlittle 389 138 1206 0.0225 8.76 5.04 3.19 1.97
lp stocfor1 565 165 1359 0.0146 9.70 5.94 3.72 2.12
lp recipe 591 204 1871 0.0155 10.75 7.13 5.47 3.19
lp brandy 1047 303 5012 0.0158 13.71 12.91 9.1 7.15
lp bandm 1555 472 6097 0.0083 29.30 25.74 20.95 19.79

lp scorpion 1709 466 4282 0.0054 18.01 14.64 11.16 9.61
lp agg 2207 615 7085 0.0052 25.37 20.48 16.81 14.47

lp degen2 2403 757 10387 0.0057 14.41 12.70 9.71 7.67
lp finnis 3123 1064 8052 0.0024 31.59 25.73 22.59 19.34

a MATLAB Optimization Toolbox

Based on the above figure (Figure 10) and Table 2, we conclude that AFS
takes on average 160-170 % (min. 50 %, max. 357 %) more CPU time than
fmincon (Barrier method). In comparison our proposed AAFS takes on average
30-35 % (min. 16 %, max. 75 %) more CPU time than fmincon. It is evident
that the proposed acceleration reduced the CPU time consumption considerably
(approximately on average 130-135 % reduction). The reason for this is that we
use the history information (i.e., x0, x1, ..., xk to update xk+1) to develop GAFS
and we use acceleration to GAFS to develop AAFS. By the construction of
AAFS and GAFS, they should accelerate the convergence of AFS based on our
convergence analysis, presented in Section 3. Another important consequence of
acceleration is that the proposed AAFS is competitive with ‘fmincon’ for sparse
instances (for some instances i.e., lp-bandm AAFS time consumption is much
closer to ‘fmincon’ solver).

6.3 Comparison between AFS, GAFS and AAFS for large
n and fixed m

In this subsection, we considered the case where m stays constant and n grows
exponentially. For better understanding, we consider m = 50, 100 and n =
100, 1000, 10000, 100000, 1000000 and run the experiments for duality gap =
10−3 and α = 0.55, β = 0.1. The comparison results of all algorithms (AFS,
GAFS, AAFS and fmincon) for this special instance is shown in Figure 11.

27

(a) m = 50 (b) m = 100

Figure 11: Comparison of GAFS, AAFS, AFS and fmincon while m stays
constant, n increasing

One interesting fact can be noted from Figure 11 is that the runtime graph
follows the logarithmic trend as opposed to the exponential trend obtained in
randomized instances. The main reason for this phenomenon is that though n
is increasing and total number of entries in the data-set A is also increasing, the
computational cost for computing the term AX(AX2AT)−1XAT is cheap (A ∈
Rm×n, AAT ∈ Rm×m, for small m, AAT inversion is cheap compared to the
other cases). Furthermore, AAFS and GAFS both algorithms outperformed the
classical AFS which supports the claim of this work. For a better understanding
of the comparison, we plotted AFS, AAFS and fmincon and the result is shown
in Figure 12. Based on Figure 12, we can conclude that AFS takes on average
130-140 % (min. 54 %, max. 240 %) more CPU time than fmincon (Barrier
method). In comparison, our proposed AAFS takes on average 28-35 % (min.
12 %, max. 52 %) more CPU time than fmincon. It is evident that the proposed
acceleration reduced the CPU time consumption considerably (approximately
on average 100-105 % reduction).

(a) m = 50 (b) m = 100

Figure 12: Comparison of GAFS, AFS and fmincon while m stays constant,
n increasing

Our main goal of the numerical experiments is to show that the proposed GAFS
and AAFS accelerate the classical AFS and support the claim proven in Section
3. From the numerical results presented in Subsections 6.1, 6.2 and 6.3, it is evi-
dent that the GAFS works faster than the classical AFS and AAFS outperforms

28

AFS and GAFS for all of the instances. Apart from that, we also compared the
proposed algorithms with standard LP solvers like fmincon and CPLEX. Al-
though the proposed GAFS and AAFS did not outperform the commercial LP
solvers but in comparison with AFS, AAFS reduces the CPU time considerably
(approximately on average 93-97 %) for all of the instances. And almost for all
of the instances, AAFS CPU time consumption is within (approximately 20-25
%) of fmincon solver. Proposed accelerated work show evidence of potential
opportunity for applying acceleration to other Interior Point methods (i.e., Bar-
rier method). Furthermore, it is a natural question to ask whether GAFS and
AAFS require more computational cost compared to the original AFS for the
additional acceleration effort. Since, the extra term β

‖X−1
k (xk−xk−1)‖∞

(xk−xk−1)

in GAFS requires only O(n2) algebraic operations and the extra term B(xk) in
AAFS requires only O(n3) algebraic operations, both GAFS and AAFS require
at most O(n3) algebraic operations at each iterations which make them com-
putationally cheap. Benefits gained from the proposed accelerated techniques
offset this additional computational effort. While the original AFS algorithm
uses the current update to find the next update, the proposed algorithms use
all the previous updates to find the next update (see Theorem 1) and thus the
proposed generalized algorithm runs faster than the original algorithm.

7 Conclusion

In this work, we proposed two Affine Scaling algorithms for solving LP prob-
lems. The first algorithm (GAFS) integrated Nesterov’s restarting strategy with
the AFS method. Here, we introduced an additional residual term to the ex-
trapolation step and determined the acceleration parameter β adaptively. The
proposed algorithm also generalizes the original AFS algorithm in the context
of an extra parameter (i.e., the original AFS has β = 0). The second algorithm
(AAFS) integrated Shanks non-linear acceleration technique with the update of
GAFS. Here, we introduced entry-wise SST to accelerate the process of GAFS.
It is evident from our numerical experiments that the proposed AAFS and
GAFS outperformed the classical AFS algorithm in comparison with standard
LP solver fmincon (AFS takes approximately more than 121-130 % of CPU
time compared to fmincon whereas in comparison AAFS takes approximately
more than 20-25 %). In terms of theoretical contribution, our proposed GAFS
and AAFS revealed some interesting properties about the convergence charac-
teristics of Affine Scaling method in general. Based on our analysis it is evident
that the convergence criterion for AFS “α ≤ 2

3” is a universal bound as GAFS
and AAFS satisfy a more generalized bound “α + β ≤ 2

3”. Finally, we believe
that standard LP solvers can adapt acceleration in Barrier method (see below)
for designing much more efficient solvers based on the theoretical and numerical
results presented in this work.

Future research: Based on our theoretical and numerical analysis of GAFS
and AAFS, it is evident that in future it is possible to discover a more general
family of numerically efficient and theoretically interesting Affine Scaling meth-
ods and our work can help researchers to look for these types of methods for
other IPMs. Moreover, based on our theoretical analysis, we believe these types
of efficient Affine Scaling variants can also be designed for the following class

29

of problems: Semi Definite Programming [22], Nonlinear Smooth Programming
[23], Linear Convex Programming [24], Support Vector Machine [25], Linear
Box Constrained Optimization [26], Nonlinear Box Constrained Optimization
[27]. This is due to the similarity of these methods in terms of algorithmic
structure, i.e., the only difference between AFS and the above-mentioned AFS
variants [22, 23, 24, 25, 26, 27] is the defining formulas for the sequences {yk}
and {sk} (see Algorithm 1 in Section 2). Furthermore, recent developments in
optimization literature shows that Affine Scaling scheme is quite competitive
with the state-of-the-art techniques for Linear Box Constrained Optimization,
Nonlinear Box Constrained Optimization and Support Vector Machine prob-
lems [26, 27, 25]. Our convergence analysis will enrich optimization literature
and serve as a theoretical basis for applying the proposed acceleration schemes
to the above-mentioned algorithms.

Finally, the numerical results and the convergence analysis suggest that ac-
celeration can also be applied to other efficient Interior Point methods (Barrier
method/Path following method and Karmarkar method). Since AFS and Bar-
rier method follow the same scheme (only difference is that the objective function
defined in the EAP problem 3 is different for Barrier method), the convergence
analysis will also hold for Barrier method. Note that, for the Affine Scaling
method, we defined the EAP problem (equation 3 is Section 2) as follows:

min w = cT d

s.t Ad = 0 (48)

‖X−1d‖ 6 α

The main difference among Affine Scaling, Karmarkar method and Path follow-
ing/Barrier method is that the later two methods use the following objective
functions G(x+ d, s) and Bµ(x+ d) in the EAP problems respectively,

w = G(x+ d, s)
def
= q log sT (x+ d)−

n∑
j=1

log(dj + xj)−
n∑
j=1

log sj

w = Bµ(x+ d)
def
= cT (x+ d)− µ

n∑
j=1

log(dj + xj)

Here, (x, s) is the primal dual pair and q, µ are parameters. Now, instead of
using the original functions, we approximate the above penalty functions as
follows:

G(x+ d, s) ≈ G(x, s) +∇TG(x, s)d = G(x, s) +
q

sTx
s−X−1 =: w

Bµ(x+ d) ≈ Bµ(x) +
(
cT − µeTX−1

)
d+

1

2
µdX−2d =: w

We can easily find the respective optimal solution d∗ for the EAP problems for
the Karmarkar method and the Barrier method as follows:

d∗Karmarkar = −αXu
‖u‖

; u =
(
I −XAT

(
AX2AT

)−1
AX

)(q

sTx
Xs− e

)
d∗Barrier(µ) =

(
I −X2AT

(
AX2AT

)−1
A
)(

Xe− 1

µ
X2c

)
(49)

30

Finally, considering the optimal direction vectors in (49), we can write the
update formula for the primal sequences as follows:

Karmarkar: xk+1 = zk + d∗Karmarkar

Barrier: xk+1 = zk + d∗Barrier

Here, the sequence zk is defined in (4). Using the similar setup of this work,
we can construct the update formula for the respective dual sequences. We also
believe that by designing special iterated sequences for αk, βk with appropri-
ate choice of sequences {πk} and {τk}, one can design efficient quadratically
convergent algorithms, i.e.,

αk+1 =: αk + πk

βk+1 =: βk + τk

8 Acknowledgements

We thank Mr. Tasnim Ibn Faiz, MIE, Northeastern University for his help
and advice on programming in AMPL. We also thank Mr. Md Saiful Islam,
MIE, Northeastern University for his help in the Numerical section. Finally,
the authors are truly grateful to the anonymous referees and the editor for their
valuable comments and suggestions in the revision process which have greatly
improved the quality of this paper.

Appendix A

In this section, we presented some Lemmas and their proofs which are required
for the convergence analysis (most of the Lemmas are well known in the litera-
ture but they need proof in our context).

Lemma 13. For α, β ∈ Q, the sequences βk and γk defined in (9) have the
following properties:

1. There exists an L > 1 such that βk < 1 for all k > L.

2. The sequence γk → 0 as k →∞.

Proof. Let, limk→∞ xk = x∗ and N = {j | (x∗)j = 0}. Then, we have
limk→∞(xk)j = 0, for all j ∈ N . As we know, |β| < 1, there exists a M > 0 and
L > 1 such that for all k > L, we have,

(xk−1)j > Mβk−1, (xk)j 6 Mβk

Thus for all j ∈ N and for all k > L, we have,

‖X−1
k (xk−1 − xk) ‖∞ > | (xk−1)j

(xk)j
− 1| > |Mβk−1

Mβk
− 1| = 1− β

β

Since, β ∈ Q, thus β < 1
φ gives us β2

1−β < 1, therefore, we have,

βk =
β

‖X−1
k (xk−1 − xk) ‖∞

<
β2

1− β
< 1

31

This proves part (1) of Lemma 13. For the second part, let β̃ = β2

1−β < 1, then
it is easy to see that for all k > L,m > 0, we have,

γk+m =

k−1∏
i=1

βi.

k+m∏
j=k

βj <

k−1∏
i=1

βi.
(
β̃
)m
→ 0 as m→∞

This proves γk → 0 as k →∞.

Lemma 14. There exists a L2 > 1 such that for all k > L2,

γk
cTxk − cTx∗

< L2

Proof. From Lemma 22, we know that the sequence {uk} is bounded, it means
there exists a M1 > 0 such that for all k, we have ‖uk‖ 6M1. Since, ‖Xksk‖ >
0, there exists a ε2 > 0 such that for all k, we have ‖Xksk‖ > ε2. Similarly, as
γk → 0 as k →∞, there exists a L3 > 1 such that for all k > L3,

γk < ε2

Combining these facts, for all k > L3, we have,

rk =
γk

cTxk − cTx∗
=
γk‖uk‖
‖Xksk‖

6
ε2M1

ε2
= M1

Let, L2 = max{M1, r1, r2, ..., rL3
}, then for all k, we have,

rk 6 max{r1, r2, ..., rL3 , rL3+1, ...} 6 max{M1, r1, r2, ..., rL3} = L2

Therefore, for all k we have rk 6 L2.

Lemma 15. If we define G(k) =
∞∑
j=k

γj, then there exists a N̄ > 0 such that

for all k > 0 the following relation holds:

fk =
G(k)

cTxk − cTx∗
6 N̄ (50)

Proof. From Lemma 13, we know that there exists a L > 1 such that for all
k > L, βk < 1. Let β̃ = maxj>k{βj}, then from the definition of G(k) for all
k > L, we have,

fk =
G(k)

cTxk − cTx∗
=

γk
cTxk − cTx∗

(1 + βk+1 + βk+1βk+2 + βk+1βk+2βk+3 + ...)

< L2

∞∑
J=0

(β̃)j =
L2

1− β̃

Let, N̄ = max{f1, f2, ..., fL,
L2

1−β̃ }, then for all k > 0, we have,

fk =
G(k)

cTxk − cTx∗
6 max{f1, f2, ..., fL,

L2

1− β̃
} = N̄

This proves Lemma 15.

32

Theorem 16. The sequences {vk} and {hk} satisfy the following properties:
Let ε > 0, then there exists a L > 1 such that for all k > L,

(a) ‖vk,N‖ = σk,

∞∑
k=L

σk <∞ and

∞∑
k=L

σ2
k <∞

(b) eT vk,N = ωk,

∞∑
k=L

ωk <∞

(c)

∞∑
k=L

hk <∞

(d) There exists a ε1 > 0 such that ε1 6 γ(vk,N) 6 ε

(e) ‖vk‖∞ = ‖vk,N‖∞ = γ(vk) = γ(vk,N)

Proof. Part (a): We know from Theorem 8, there exist a L1 > 1 such that for
all k > L1,

cTxk − cTx∗ 6
(

1− α√
n

)
(cTxk−1 − cTx∗) 6

(
1− α√

n

)k−L1

(cTxL1
− cTx∗)

(51)

As a consequence of (51), for all k > L1, we have,

∞∑
k=L1

σk =

∞∑
k=L1

‖vk,N‖ 6
∞∑

k=L1

‖X−1
k (xk−1 − xk)‖

‖X−1
k (xk − xk−1)‖∞

(cTxk − cTx∗)

6
√
n

∞∑
k=L1

(cTxk − cTx∗)

6
√
n(cTxL1

− cTx∗)
∞∑

k=L1

(
1− α√

n

)k−L1

=
n(cTxL1

− cTx∗)
α

< ∞

Using the similar process, we can show that for all k > L1,

∞∑
k=L1

σ2
k =

∞∑
k=L1

‖vk,N‖2 < ∞

This proves part (a) of Theorem 16.

Part (b): Using (51), for all k > L1, we have,

eT vk,N =
eTX−1

k,N (xk−1,N − xk,N)

‖X−1
k (xk − xk−1)‖∞

(cTxk − cTx∗) 6 q
√
n(cTxk − cTx∗)

Then we have,

∞∑
k=L1

ωk =

∞∑
k=L1

eT vk,N 6 q
√
n

∞∑
k=L1

(cTxk − cTx∗) <
nq(cTxL1 − cTx∗)

α
< ∞

33

This proves part (b) of Theorem 16.

Part (c): From Lemma 13, we know there exist a L2 > 2 such that for all
k > L2,

βk =
β

‖X−1
k (xk−1 − xk) ‖∞

<
β2

1− β
< 1

As a consequence of the above relation, we have,

∞∑
k=L2

hk =

∞∑
k=L2

cT (xk−1 − xk)

‖X−1
k (xk − xk−1)‖∞

=

∞∑
k=L2

βk
β

(cTxk−1 − cTxk)

<
β

1− β
(cTxL2−1 − cTx∗) < ∞

This proves part (c) of Theorem 16.

Part(d): Now, let ε > 0. Since, limk→∞(cTxk−cTx∗) = 0 and cTxk−cTx∗ > 0,
there exists an ε1 > 0, L3 > 1 such that for all k > L3, we have ε1 < γ(vk,N) < ε,
which is exactly what we want for part (d) of Theorem 16.

Part (e): Since, from the definition, we have limk→∞
(xk−1)j
(xk)j

= 1, for all j ∈ B
and also

(xk−1)j
(xk)j

> 1, for all j ∈ N , the required result follows as there exists a

L4 > 1 such that for all k > L4, the following relation holds,

‖vk‖∞ = ‖vk,N‖∞ = γ(vk) = γ(vk,N)

Finally, if we choose L = max{L1, L2, L3, L4} and combine all of the identities,
we get part (e) of Theorem 16.

Appendix B

In this section, we provided some known results and their variants for the
EAP problem given in (3). We discussed some properties of the sequences
{xk}, {yk}, {sk}, {dk} = {X2

ksk}; generated by the GAFS discussed in Section
2. We provided some required proofs here as well. These properties also hold for
the original AFS. We also describe some of the properties of the solution of the
EAP problem (3) as per our formulation. The EAP problem (3) is similar to the
one well studied in the literature (see [18]). Since the generalization parameter
doesn’t affect the EAP problem, we introduced some properties of EAP without
providing proofs as most of the proofs are available in the literature (see [14],
[18], [38]). As shown in several works by Saigal [18], Vanderbei et al. [10] and
Dikin [1], the solution d∗ of the EAP problem (3) satisfies the following Lemma.

Lemma 17. Assume that the rows of A are linearly independent and c is not a
linear combination of the rows of A. Let x and z be some positive vectors with
Ax = Az = b. Then the optimal solution d∗ of (3) is given by

d∗ = −α X2(c−AT y)

‖X(c−AT y)‖
= −α X2s

‖Xs‖
with y =

(
AX2AT

)−1
AX2c

Furthermore, the vector x̄ = x+ d∗ + β̄(x− z) satisfies Ax̄ = b and cT x̄ < cTx.

34

Proof. We see that d∗ is the optimal solution of the EAP problem (2) (see
[10]). Now, since x and z satisfy the condition, Ax = Az = b, then we have
Ax̄ = Ax+Ad∗ + β̄(Ax−Az) = b, which shows Ax̄ = b. Now for the last part,
we have,

cT x̄ = cTx− αc
TX2s

‖Xs‖
+ β̄(cTx− cT z) < cTx− α‖Xs‖ < cTx

This proves the above Lemma. Here, we use the identity cTX2s = ‖Xs‖2 (see
Lemma 18).

Lemma 18. [Theorem 1 in [18]] For all k > 0 the following identity holds:

cT dk = cTX2
ksk = ‖Xksk‖2 = ‖X−1

k dk‖2

Proof. At first, let us denote Pk = I −XkA
T
(
AX2

kA
T
)−1

AXk, it can be easily
shown that Pk is a projection matrix, (i.e., Pk = PTk = P 2

k). Thus, we have,

cT dk = cTX2
ksk =cTXk

(
I −XkA

T
(
AX2

kA
T
)−1

AXk

)
Xkc

= cTXkPkXkc = ‖PkXkc‖2

And PkXkc = Xk

(
c−AT

(
AX2

kA
T
)−1

AX2
kc
)

= Xksk

The proof is complete.

Lemma 19. [Theorem 4 in [18]] For all x > 0, there exists a q(A) > 0 such
that,

‖
(
AX2AT

)−1
AX2p‖ 6 q(A)‖p‖

Lemma 20. [Corollary 6 in [18]] For all x > 0, there exists a p(A, c) > 0 such
that, if d̄ solves EAP (2) then the following relationship holds:

‖d̄‖ 6 p(A, c) cT d̄ = McT d̄

Lemma 21. [Lemma 8 in [18]] Let w ∈ Rq and 0 < λ < 1 be such that wj 6 λ
then

q∑
i=1

log(1− wi) > −eTw −
‖w‖2

2(1− λ)

Lemma 22. It is a very well known Lemma in the literature for AFS methods
(see Theorem 13 in [18], Lemma 3.8 and 3.11 in [38]). The sequence {uk} has
the following properties:

1. It is bounded

35

2. There exists a L > 1 such that for all k > L,

(a) ‖uk‖2 = ‖uk,N‖2 + εk,

∞∑
k=L

|εk| <∞

(b) eTuk,N = 1 + δk,

∞∑
k=L

|δk| <∞

(c)
1

α
> γ(uk,N) >

1

2p

(d) γ(uk) = γ(uk,N)

Proof. The proof is similar to the one for AFS method given by Saigal [18], as the

direction
X2

ksk
‖Xksk‖ generated by GAFS algorithm also satisfies the EAP problem

defined in equation (3) (for a detailed proof see Tsuchiya et al. [38]).

Lemma 23. (Lemma 15 in [18]) If the analytic center defined by the solution
of problem (35) exists, it is unique.

References

[1] I. Dikin, “Iterative solution of problems of linear and quadratic program-
ming,” Dokl. Akad. Nauk, vol. 174, p. 747, 1967.

[2] N. Karmarkar, “A new polynomial-time algorithm for linear programming,”
Combinatorica, vol. 4, pp. 373–395, Dec 1984.

[3] B. Jansen, C. Roos, and T. Terlaky, “A polynomial primal-dual dikin-type
algorithm for linear programming,” Mathematics of Operations Research,
vol. 21, no. 2, pp. 341–353, 1996.

[4] E. R. Barnes, “A variation on karmarkar’s algorithm for solving linear
programming problems,” Mathematical Programming, vol. 36, pp. 174–182,
Jun 1986.

[5] S. Wright, Primal-Dual Interior-Point Methods. Society for Industrial and
Applied Mathematics, 1997.

[6] Y. Ye, Interior Point Algorithms: Theory and Analysis. New York, NY,
USA: John Wiley & Sons, Inc., 1997.

[7] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Athena
Scientific, 1st ed., 1997.

[8] R. J. Vanderbei, “Linear programming: Foundations and extensions,”
Journal of the Operational Research Society, vol. 49, pp. 94–94, Jan 1998.

[9] R. J. Vanderbei and J. C. Lagarias, “I. i. dikin’s convergence result for the
affine-scaling algorithm,” Contemporary Mathematics, vol. 114, 1990.

[10] R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, “A modification of
karmarkar’s linear programming algorithm,” Algorithmica, vol. 1, pp. 395–
407, Nov 1986.

36

[11] I. Adler and R. D. C. Monteiro, “Limiting behavior of the affine scaling
continuous trajectories for linear programming problems,” Mathematical
Programming, vol. 50, pp. 29–51, Mar 1991.

[12] T. Tsuchiya, “Global convergence property of the affine scaling methods
for primal degenerate linear programming problems,” Mathematics of Op-
erations Research, vol. 17, no. 3, pp. 527–557, 1992.

[13] T. Tsuchiya, “Global convergence of the affine scaling methods for degen-
erate linear programming problems,” Mathematical Programming, vol. 52,
pp. 377–404, May 1991.

[14] I. Dikin, “The convergence of dual variables,” Technical Report, Siberian
Energy Institute, Russia, 1991.

[15] T. Tsuchiya and M. Muramatsu, “Global convergence of a long-step affine
scaling algorithm for degenerate linear programming problems,” SIAM
Journal on Optimization, vol. 5, no. 3, pp. 525–551, 1992.

[16] L. A. Hall and R. J. Vanderbei, “Two-thirds is sharp for affine scaling,”
Operations Research Letters, vol. 13, no. 4, pp. 197 – 201, 1993.

[17] R. D. C. Monteiro, T. Tsuchiya, and Y. Wang, “A simplified global conver-
gence proof of the affine scaling algorithm,” Annals of Operations Research,
vol. 46, pp. 443–482, Sep 1993.

[18] R. Saigal, “A simple proof of a primal affine scaling method,” Annals of
Operations Research, vol. 62, pp. 303–324, Dec 1996.

[19] R. Saigal, “A three step quadratically convergent version of primal affine
scaling method,” Journal of the Operations Research Society of Japan,
vol. 40, 09 1997.

[20] I. Castillo and E. R. Barnes, “Chaotic behavior of the affine scaling algo-
rithm for linear programming,” SIAM Journal on Optimization, vol. 11,
no. 3, pp. 781–795, 2001.

[21] H. Bruin, R. Fokkink, G. Gu, and C. Roos, “On the chaotic behavior of the
primal–dual affine scaling algorithm for linear optimization,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 24, no. 4, p. 043132,
2014.

[22] M. Muramatsu and R. J. Vanderbei, “Primal dual affine scaling algorithms
fail for semidefinite programming,” Mathematics of Operations Research,
vol. 24, no. 1, pp. 149–175, 1999.

[23] Y. Wang and D. Zhu, “An affine scaling optimal path method with inte-
rior backtracking curvilinear technique for linear constrained optimization,”
Applied Mathematics and Computation, vol. 207, no. 1, pp. 178 – 196, 2009.
Includes Special issue on Emergent Applications of Fractals and Wavelets
in Biology and Biomedicine.

[24] F. Cunha, A. Pinto, P. Oliveira, and J. da Cruz Neto, “A class of primal
affine scaling algorithms,” Applied Mathematics and Computation, vol. 218,
no. 8, pp. 4523 – 4532, 2011.

37

[25] M. D. Gonzalez-Lima, W. W. Hager, and H. Zhang, “An affine-scaling
interior-point method for continuous knapsack constraints with application
to support vector machines,” SIAM Journal on Optimization, vol. 21, no. 1,
pp. 361–390, 2011.

[26] Z. Wang and D. Zhu, “Projected affine-scaling interior-point newton’s
method with line search filter for box constrained optimization,” Applied
Mathematics and Computation, vol. 230, pp. 484 – 495, 2014.

[27] X. Huang and D. Zhu, “An interior affine scaling cubic regularization algo-
rithm for derivative-free optimization subject to bound constraints,” Jour-
nal of Computational and Applied Mathematics, vol. 321, pp. 108 – 127,
2017.

[28] R. Kannan and H. Narayanan, “Random walks on polytopes and an affine
interior point method for linear programming,” Mathematics of Operations
Research, vol. 37, no. 1, pp. 1–20, 2012.

[29] Y. Nesterov, “A method for solving the convex programming problem
with convergence rate o(1/k2),” Soviet Mathematics Doklady, vol. Vol. 27,
pp. p(372–376), 1983.

[30] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathemat-
ical Programming, vol. 103, pp. 127–152, May 2005.

[31] Y. Nesterov, “Gradient methods for minimizing composite functions,”
Mathematical Programming, vol. 140, pp. 125–161, Aug 2013.

[32] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Springer Publishing Company, Incorporated, 1 ed., 2014.

[33] P. Tseng, “Approximation accuracy, gradient methods, and error bound
for structured convex optimization,” Mathematical Programming, vol. 125,
pp. 263–295, Oct 2010.

[34] W. Su, S. Boyd, and E. J. Candès, “A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights,” Journal of
Machine Learning Research, vol. 17, no. 153, pp. 1–43, 2016.

[35] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale opti-
mization problems,” SIAM Journal on Optimization, vol. 22, no. 2, pp. 341–
362, 2012.

[36] T. Tsuchiya and R. D. C. Monteiro, “Superlinear convergence of the affine
scaling algorithm,” Mathematical Programming, vol. 75, pp. 77–110, Oct
1996.

[37] D. Shanks, “Non linear transformations of divergent and slowly convergent
sequences,” Journal of Mathematics and Physics, vol. 34, no. 1-4, pp. 1–42,
1965.

[38] T. Tsuchiya and M. Muramatsu, “Global convergence of a long-step affine
scaling algorithm for degenerate linear programming problems,” SIAM
Journal on Optimization, vol. 5, no. 3, pp. 525–551, 1995.

38

[39] Netlib, “The netlib linear programming library.”

[40] IBM ILOG CPLEX Optimization Studio, “Cplex user’s manual,” Version
12 Release 7, 2017.

[41] R2018b Documentation, “Find minimum of constrained nonlinear multi-
variate function,” 2018.

[42] Ricardo Lima, “IBM ILOG CPLEX: What is inside of the box?,” EWO
Seminar.

39

	1 Introduction
	1.1 Motivation & Contribution

	2 Generalization of AFS
	3 Convergence of the primal sequence
	4 Convergence Rate
	5 Convergence of the Dual sequence
	6 Numerical Experiments
	6.1 Comparison among AFS, GAFS and AAFS for dense data:
	6.2 Comparison among AFS, GAFS and AAFS for sparse data
	6.3 Comparison between AFS, GAFS and AAFS for large n and fixed m

	7 Conclusion
	8 Acknowledgements

