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Abstract

Production planning optimization remains a major challenge in almost all industries, particularly in high-
tech manufacturing. A critical task to support such optimization is performance evaluation, wherein an accurate
estimation of the cycle time as a function of the throughput rate plays a key role. This paper develops a novel
aggregation model based on a queueing network approach, so-called queue-based aggregation (QAG) model, to
estimate the cycle time of a job-shop production system that consists of several processing workstations, and in
which products are transferred via an Automated Material Handling System (AMHS). The proposed model
aggregates both production and automated material handling systems and provides an accurate and fast
estimation of the overall cycle time. The performance and superiority of the proposed model is validated by
comparing its results with those of a detailed simulation model. Numerous sensitivity analyses are performed to
provide valuable managerial insights on both the production and automated material handling systems.

Keywords: Performance evaluation; Aggregation model; Queuing network; Cycle time estimation; Automated
material handling system

1. Introduction

Processing a wide range of products in response to the dynamic nature of the customers’ demand has
become one of the greatest challenges in almost all manufacturing systems [1]. This challenge becomes more
severe as manufacturing systems have to meet customers’ orders in shorter time and at minimal cost to remain
competitive. This makes production planning of such manufacturing systems more and more important and
complex to improve the performance of factories. Several indicators are being used to analyze the performance
of manufacturing systems such as the cycle time and the throughput. The cycle time is the average time spent
by a product unit (i.e., waiting time plus processing time) in the system and the throughput, also referred to as
productivity, is the number of product units processed per time unit [2].

Managers aim at designing and planning highly productive production systems, in particular in capital
intensive industries, by keeping equipment throughput as high as possible. At the same time, they should respect
the due dates of customers’ orders by keeping product cycle times as short as possible. Therefore, there is usually
a trade-off between cycle time minimization and throughput maximization in production systems. As it is well
known, increasing the throughput results in a large Work-in-Process (WIP) and, consequently, significant waiting
times in the production system. The longer the waiting time, the longer the cycle time of products. The increased
level of complexity in the manufacturing systems alongside with the pressure on low prices of the final products
require a scientific approach to manage this trade-off between productivity and due date satisfaction.

Accordingly, an accurate prediction of the cycle time as a function of the throughput is necessary. A
prediction model has to incorporate all the contributing components of the production system. Processing
workstations have a major effect on the cycle time. The consideration of processing workstations in cycle time
prediction models has been well studied in the literature [3]-[7]. Another important component that highly
impacts the cycle time is the Material Handling System (MHS). A MHS performs as an interconnector for
workstations and should deliver the right amount of materials, to the right place, at the right time and at a
minimal cost [8]-[10]. The MHS impacts the performance of production systems, mainly by impacting the WIP
level. An efficient MHS can decrease the cycle time by reducing the WIP level and consequently the waiting time.
The contribution of the MHS to the total operating cost ranges between 15% and 70%, and this value is around
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20% of the product cycle time [11], [12]. Therefore, it is highly important to consider the MHS when developing
a cycle time prediction model, when the MHS’s capacity is limited and/or the transportation time is long.
However, when the MHS has infinite (very high) capacity or the transportation time is very short, this
consideration is not necessary. Different factors could be incorporated in the prediction model including
processing several products at the same time, predicted/unpredicted breakdowns of workstations and of the
MHS, vehicle blockage in the MHS, and dispatching rules. Although incorporating a large number of shop floor
factors makes the prediction model close to real settings, it also makes the model more complex. Broadly
speaking, a performance evaluation model should not be too complex and should require limited development
and maintenance effort and the model execution should be computationally cheap.

There are two common modeling approaches to predict cycle times in production systems: 1) “Simple”
analytical models (i.e., models that require only few easily-used and easily-estimated parameters) and 1) (mainly
discrete-event) Simulation models. Commonly-used simple analytical models are closed form G/G/m queueing
models [3]-[5], [7], [10], [11], [13]-[27]. Despite the promptness and easiness of analytical models to provide
solutions and performance evaluation, they cannot model complex shop-floor behavior such as
workstation/MHS breakdowns, and they suffer from the lack of accuracy for complex workstations/equipment
as well. Alternatively, simulation models are used to model complex behavior and to accurately represent the
processing operations in workstations [28]-[30]. Detailed simulation modeling allows all relevant shop-floor
details to be considered [31], [32]. An accurate simulation model requires all required input data related to
processing workstations and MHS. Consequently, it may become computationally expensive and require
significant development time for experimentation with a large set of scenarios. This issue renders simulation
model impractical for quick cycle time estimations as well as computationally heavy for designing or redesigning
a system [33].

One way to overcome this time inefficiency and to abstract a detailed simulation model is to perform
simulation runs according to a design of experiments, and use the responses to generate a metamodel [34], [35].
Re-running the simulation model after only making a small change is one of the drawbacks of these experiments.
Another approach to abstract a detailed simulation model is aggregation [4]. Aggregation can be done by
simplifying the complex components/assumptions of the system such as replacing non-bottleneck workstations
by a constant delay [36], [37]. An aggregation approach aggregates the raw processing times and all shop-floor
realities and processing disturbances at different workstations into a single process time distribution. The
inclusion of multiple phenomena into a single distribution is referred to as aggregation.

In this article, a new aggregation model based on a queueing network approach, so-called queue-based
aggregation (QAG) model, is proposed to estimate the cycle time of a job-shop (JS) production system that
consists of several processing workstations and where products are transferred via a MHS. The proposed QAG
aggregates a set of operating workstations in a job-shop frame into a single workstation. Open and closed
queueing networks with finite/infinite buffers have been typically used for modeling and analyzing discrete event
systems such as manufacturing systems, computer systems, communication systems, and MHS [38]. Comparing
to a detailed simulation, the proposed QAG model provides a prompt and reasonably accurate estimation of a
JS’s cycle time and throughput. The QAG model is proposed to support the early stages of design by exploring
and evaluating different scenarios before committing to the time and cost of a detailed simulation model.

The remainder of the paper is organized as follows. Section 2 reviews the most relevant articles and
outlines the literature gaps. Section 3 develops the QAG model. The proposed model is validated through
comprehensive experimental results in Section 4. The paper is concluded in Section 5.

2. Literature review

This section reviews what we believe are the most relevant articles in the literature that have studied the
performance evaluation of production systems. To the best of our knowledge, most of the papers have studied
processing workstations and MHS separately. Neglecting one of them may lead to a poor approximation of the
JS performance.

2.1. Performance evaluation of processing workstations

Brooks and Tobias [39] and Johnson et al. [36] provide a simple aggregation model by reducing non-
bottleneck processing workstations to a constant delay to estimate long-term throughput rates, but their model
does not estimate processing cycle times. They propose an eight-stage procedure for the reductions and study
two manufacturing cases. Similarly, Rose [37] aggregates all processing workstations, except the bottleneck
workstation, by replacing them with a constant delay; however, for certain scenarios, these simple aggregation
models fail to predict the cycle time distributions accurately.



Hopp and Spearman [40], [41] and Jacobs et al. [38], [42] propose an algorithm to aggregate the process
time distributions and impose delays (i.e., failures, maintenance, operator unavailability, etc.) in processing
workstations. Hopp and Spearman [40] define the aggregation process time as the Effective Process Time (EPT).
EPT is “the process time seen by a product at a workstation from a logistical point of view”. The Expected value
and variance of the EPTs are approximated from the raw process times, and the preemptive and non-preemptive
delays. After approximating the mean and the variance of the EPTs, a closed-form G/G/m queuing model is used
to estimate the mean cycle time. Due to the dependency between the EPT distribution parameters and the WIP,
Kock et al. [5] approximate a new WIP-based EPT and propose a G/G/m-based aggregate simulation model to
estimate the mean cycle time as a function of the processing throughput. The proposed model does not
necessarily lead to accurate cycle time estimation, due to the First-Come-First-Served (FCFS) rule in the aggregate
model.

To cope with this issue, Veeger et al. [6] develop an aggregate model using a WIP-dependent EPT
distribution that considers the order in which products are processed. Accordingly, each product that arrives in
the aggregate model has a probability of overtaking a number of other products already in the system. This
number is determined by a WIP-dependent overtaking distribution measured from the arrival and departure
times of the products. The authors in [5] and [6] first build a detailed simulation model of the processing
workstations and then the aggregate model is trained using arrival and departure data measured in the simulated
workstation model. Numerous replications (i.e., 10° runs) were required in a specific level of throughput rate
(e.g., 80%) for the simulated model to obtain significantly enough arrival and departure events to get a reliable
EPT estimation. This approach is computationally expensive due to the need for creating detailed simulation
models with numerous replications. Furthermore, the models are built for a specific throughput rate and
particular details of the processing workstation (e.g., number of parallel servers, number of processing steps,
etc.). Making a small change in the models requires the detailed simulation model to be re-built and re-ran,
making this approach relatively heavy.

Unlike simulation-based aggregation models, Morrison and Martin [4] and Morrison [43] use analytical
methods to estimate the cycle time in single-product clustered photolithography tools in semiconductor
manufacturing. Morrison and Martin [4] model each processing workstation as a general G/G/m queue and
propose a closed deterministic formulation to approximate the cycle time of the workstations subject to server
failures and cycle time offsets (e.g., events such as travel and hold upstream of a workstation). Morrison [43]
develops several analytical flow line models to calculate the cycle time of each processing workstation. In the
flow line models, cycle time, start time, and the process time of each processing workstation are recursively
calculated from the completion times of products. Although the proposed analytical models of [4] and [43] are
computationally cheaper than EPT-based aggregation models, they neither work for multiple-product
workstations nor are able to approximate the cycle time of integrated workstations including serial/non-serial
configurations of processing workstations.

Various studies have aimed at evaluating the performance of serial/non-serial configured production
systems through approximating queue length and waiting time at each processing workstation [7], [44]-[48]. As
a sample, Satyam and Krishnamurthy [45] and Satyam et al. [47] propose a new approach based on parametric
decomposition. Two-moment approximations are used to estimate the performance of individual processing
workstations. Subsequently, the traffic process parameters at different workstations are linked using stochastic
transformation equations. The resulting set of non-linear equations is solved using an iterative algorithm to
obtain estimates of key performance indicators (KPIs) such as the throughput and mean queue lengths.

Apart from queuing network and simulation techniques, Hillion and Proth [49] utilize timed event-graphs,
as a special class of timed Petri nets, for modelling and analyzing job-shop systems. Their proposed model allows
the steady-state performance of the system to be evaluated under a deterministic and cyclic production process.
The authors explain that, by fixing processing times, the production throughput can be determined from the
initial state. In addition, given any desired product mix, it is possible to start the system with enough WIPs in
front of bottleneck machines. In that case, the system works at the maximal rate and the throughput is optimal.
Suri et al. [50] discuss different approaches for performance evaluation of discrete manufacturing systems
through different performance indicators such as the utilization of each server, the throughput, the flow time of
a job through the system, the queue length at a station, and the WIP in the system. These approaches fall into
three categories as: Static (allocation) models, aggregate dynamic models (ADMs), and detailed dynamic models.

Silva and Morabito [51] apply performance evaluation and capacity allocation models to support decisions
in the design (or redesign) and planning of a job-shop queueing network in a metallurgical plant. In this work,
approximate parametric decomposition methods are used to evaluate system performance measures, such as
the expected WIP and production lead times. Based on these methods, optimization models are then applied for
the allocation (or reallocation) of capacity to the stations of the job-shop network. Abdi and Labib [52] develop



holonic architecture for reconfigurable manufacturing systems (RMS), which are capable of adapting to
unpredictable changes in demands. RMS are designed to produce various products grouped into families in a
short time and at low cost. A holonic structure reflecting basic holons for RMS is developed and then linked to
an analytical network process (ANP) model, as a multi-criteria approach, to evaluate the system performance.
The proposed generic model provides flexibility for holons and facilitates the evaluation of RMS considering
economical and operational aspects as the main performance objectives.

To the best of our knowledge, almost all of these works have decomposed the production system into its
contributing workstations and have evaluated each workstation separately to estimate its queue length and
waiting time. None of these works propose an overall approximation model for the whole production system.

Recently, we developed a new aggregation model [53] based on queuing network, so-called queue-based
aggregation (QAG) model, to estimate the cycle time in a production system. Multiple workstations in serial and
job-shop configurations were aggregated into a single-step workstation. The parameters of the aggregated
workstation are approximated based on the parameters of the original workstations. Finally, the numerical
experiments indicate that the proposed QAG model is computationally efficient and yields fairly accurate results
when compared to other aggregation approaches in the literature. Our recent model does not take the MHS into
account, while the MHS has a significant effect on the overall performance of the production system.

2.2. Performance evaluation of MHS
Bedell and Smith [54] categorize material handling devices into three groups:
I.  Transporters (vehicles, carts, trucks, people, etc.),
Il.  Conveyors (belt, chain, roller, overhead conveyors, escalators, etc.),
IIl.  Lifts (hoists, elevators, cranes, etc.).

Simulation models have been widely employed to model MHS in manufacturing and service systems.
There are few analytical models and their wide-spread use is not significant. Analytical models have been
proposed for both discrete part transfer and continuous part material handling flow [54]. The discrete part
transfer is mainly concerned with carts, transporters, or people moving the products (i.e., group I). Continuous
material handling flows correspond to material handling devices of groups Il and lll. This section focuses on
analytical models for the performance evaluation of MHS with discrete part transfer.

The first analytical approach for MHS’s performance evaluation is the queuing-based approach proposed
by Benson and Gregory [55] who consider closed cyclic systems with exponentially distributed transit times
between successive processing workstations. As an extension, Posner and Bernholtz [56] model a closed
queueing network of two processing workstations and model the transfer time between these stations with a
general distribution through a supplementary variable technique. It has been shown in the literature that finite
buffer, single server queues with general service times along with state-dependent queues are robust with
respect to the general flow processes in MHS [56]-[58].

Bedell and Smith [54] examine the integration of multi-server and state-dependent queues and the
robustness properties in these queueing network models. Raman et al. [10] develop a two-step analytical
approach to determine the quantity of material handling equipment (MHE) required for effective handling of
products among facilities. In the first step, the authors obtain a preliminary solution by considering the time
required for loading and unloading products, loaded traveling, empty traveling and breakdown of the MHE. A
detailed model, which integrates both operational and cost performance factors such as the utilization of the
MHE, the work-in-process at the MHS, and the life-cycle cost is then utilized to rank alternatives that are
generated from the preliminary solution. They finally use queuing theory in order to cope with the stochasticity
of the MHS.

Nazzal and McGinnis [59] propose a queue-based analytical approach to evaluate the performance of a
simple closed loop automated MHS (AMHS), which is typical in 300 mm wafer fab bays. Due to the significant
impact of vehicle blocking, a straightforward queueing network model which treats the material handling system
as a central server can be inaccurate. Therefore, the authors propose an alternative model to estimate the MHS
performance considering the possibility of vehicle blocking. Nazzal [33] models a multi-vehicle material handling
system as a closed-loop queueing network with finite buffers and general service times, where the vehicles model
the jobs in the network. In this work, the vehicles’ residence times on track segments (servers) depend on the
number of jobs (vehicles) in circulation. A new iterative approximation algorithm is developed that estimates
throughput capacity and decomposes the network consisting of S servers into S separate G/G/1 systems.

Tu et al. [60] study the AMHS capacity determination model in order to maintain the originally designed
optimal production throughput or cycle time of products. A GI/G/m queuing model is applied based on the FCFS
dispatching rule of the AMHS to determine the required number of vehicles. In this model, products should be
transported to the specific workstation before the workstation completes the existing process; therefore,



sufficient WIP in front of this specific workstation should be kept. In order to improve the performance of the
AMHS, Johnson [61] presents analytical models to predict empty vehicle travel under two popular vehicle
dispatching rules. It is shown that using analytical models to estimate empty vehicle traffic in the design process
can significantly improve the AMHS performance.

2.3. Paper contributions
The main contributions of the paper to the literature are detailed below:

. Queuing systems have been widely used to evaluate the performance of manufacturing systems [3]-[5],
[71, [10], [11], [213]-[27], [62], [63]. HOwever, it is worth mentioning that the existing papers evaluate the
production system workstation per workstation. To the best of our knowledge, there is no aggregation
model that approximates the overall performance of the system through closed form analytical
formulations as the ones proposed in this paper.

. Moreover, there is no work in the literature that explicitly considers the AMHS in the performance
evaluation of the production system, although it can be very important when developing cycle-time
prediction models for highly automated manufacturing systems. The previous studies discussed in Section
2.2 focus on the optimal performance of AMHS. However, the AMHS is only an auxiliary system for
production, and the optimal performance of the AMHS does not guarantee a better performance of the
overall production system. Accordingly, this paper develops an aggregation model for a job-shop
production system with an AMHS.

. Furthermore, two important factors affecting the performance of complex production systems are
unexpected failures and the priorities of products. These factors have not been taken into account in the
performance evaluation of job-shop production systems. This paper investigates the impact of these
factors on the overall performance of the production system.

. In terms of computational complexity, the recent simulation-based aggregation models in [5], [6] and [62]
are not timely-efficient for quick and real time decisions; while the aggregation model proposed in this
paper is solved within less than one second, even for complex production systems with numerous
workstations and products. Also, the proposed model has very small gaps when compared to the detailed
simulation models.

. Besides to comparison between the proposed QAG model and detailed simulation, a remarkable
sensitivity analysis is performed to investigate the sensitivity of the KPIs to the input parameters.
Sensitivity analysis using detailed simulation model is difficult in practice since it is timely expensive.
Performing sensitivity analysis provides knowledge on the behavior of important parameters. Having this
knowledge helps experts to achieve the desired level of KPIs by correctly adjusting these parameters.

. As the last effort, a capacity planning is conducted for the AMHS system by identifying the required
number of vehicles to reach a high throughput rate of the production system.

To summarize, we propose a new aggregation model based on a queueing network approach, so-called
queue-based aggregation (QAG) model, to estimate the cycle time in a JS production system that consists of
several processing workstations and in which products are transferred via a MHS. This work is actually an
extension of our previous work [53], but with the aggregation of the AMHS that makes the model closer to real
settings. Promising and more interesting results are provided. In our model, the whole JS system is aggregated
into a single-step workstation. The parameters of the single-step aggregated workstation are approximated
based on the parameters of the original processing workstations and the MHS. This paper not only helps to
provide an abstraction of detailed simulation models for complex manufacturing systems, but also proposes an
accurate and timely efficient estimation of the cycle time as a function of the throughput rate.

3. Proposed QAG Model

This section develops new aggregation models based on queuing networks to estimate the cycle time in
complex manufacturing systems accurately and efficiently. This is done by modeling manufacturing systems as
single/multiple-class open queuing networks, wherein the nodes in the network are the processing workstations
of the manufacturing system. A queueing network is said to be open when external flow units (products) can
enter the network at every node, and the internal flow can leave the network from any node. A queueing network
is called closed when flow units can neither enter nor leave the network. Accordingly, the number of flow units
in a closed queue network is constant. The queueing network can also be called single class or multiclass,
depending on whether the queueing network serves a single type or multiple types of products [45].

Queueing networks with several service workstations are more suitable than simple queue models with
only a single service station for modeling the structure of many manufacturing systems with a wide range of



resources. Note that an underlying assumption in a queueing network is that at least two workstations are
connected to each other.

3.1. Job-shop manufacturing system

Figure 1 shows an example of a multi-class JS manufacturing system with six workstations and three
products. Each product requires a set of workstations, and the processing routes of the products are different,
e.g. the processing routes of products P;, P, and P; are E; ={1,2,4}, E, ={4,5,3}, and E5; = {5,6,1},
respectively. In addition, the subsets R; of products requiring workstation j are R; = {1,3}, R, = {1}, R; = {2},
R, ={1,2}, Rs = {2,3}, and Ry = {3}. Figure 2 depicts the product-focused structure of the multi-class JS system
and shows the serial processing route of each product [53].
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Figure 2. Product-focused structure of a multi-class JS manufacturing system

The products are transferred between each pair of workstations using the AMHS and the FCFS dispatching
rule. Figure 3 illustrates the integration of the AMHS in the JS manufacturing system of Figure 2. In the following,
analytical models are provided based on queuing theory to analyze the performance of the workstations and the
AMHS and finally, to evaluate the performance of the JS manufacturing system in terms of the product cycle
time. Figure 4 depicts how two workstations and the in-between AMHS are modeled by queuing systems. The
product cycle time is the time spent by the products in the workstations and the AMHS.
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Figure 4. Two workstations and the in-between AMHS modeled by the queuing system

3.2. Processing workstation characterization
3.2.1. Notations

Before characterizing the processing workstation and developing the QAG model for the JS system, the
required notations are provided in this section.

Sets and Indices:

i,j Indices of workstations; i, j € {1, ..., WS}, where WS is the number of workstations,
p Index of products; p € {1, ..., P}, where P is the number of products,
E, Processing route of product p (E, = {elp, €2ps wves Cipy s eNP}),
R; Subset of products requiring workstation i.
Parameters:
Aapi Arrival rate of product p to workstation i (4 ,; = Z]V":O Aapji)
Upi Service rate of product p at workstation i,
Upp Service rate of bottleneck workstation B corresponding to product p,
Tapi Inter-arrival time of product p at workstation i,
Ts,pi Service (process) time of product p at workstation i including downtime (ts,; = 1/c;p;),
¢ Number of servers (machines) at workstation i,

aj,m- Variance of the inter-arrival time of product p at workstation i,

JSZ’W- Variance of the service time of product p at workstation i,

Cj'pi Squared coefficient of variation (SCV) of the inter-arrival time of product p at workstation i,
csz'pi SCV of the service time of product p at workstation i,

Ppi Throughput rate of product p at workstation i,

Wy Weight of product p at workstation i.

In the following, variables are defined as either related to the “Original products” or related to the
“Aggregated product”. The original products are the real products p € {1, ..., P} that enter the production
system, while the aggregated product corresponds to the aggregation of the original products into a dummy
single product.

Variables:
. Original products
Appi Departure rate of product p from workstation i,
Cg‘pi SCV of the inter-departure time of product p at workstation i,
Wi Waiting time of product p in the queue at workstation i,
Lypi WIP of product p in the queue at workstation i,
CTy; Cycle time of product p in the queue at workstation i.

. Aggregated product
Aapi Arrival rate of the aggregated product to workstation i,
App;  Departure rate of the aggregated product from workstation i,
Upi Service rate of the aggregated product at workstation i,
Ppi Utilization rate of the aggregated product at workstation i (pp; = Yper; Ppi = Aapi/ Ciktpi),



Cipi SCV of the inter-arrival time of the aggregated product at workstation i,

cSZ,Pi SCV of the service time of the aggregated product at workstation i,

Clz)_lpi SCV of the inter-departure time of the aggregated product at workstation i,

Ty pi Inter-arrival time of the aggregated product at workstation i (t,p; = 1/4p;),

Ts pi Service time of the aggregated product at workstation i including downtime (tgp; = 1/c;p;p),

Wp; Waiting time of the aggregated product at workstation i,
Lp; WIP of the aggregated product at workstation i,

CTp; Cycle time of the aggregated product at workstation i,
CTy; Cycle time of product p at workstation i.

3.2.2. The QAG formulations for the processing workstations

In general, the products arriving for service in a workstation have to wait in the queue if the workstation
is busy. This waiting process mainly depends on the rate at which the processed products arrive at the
workstation and the rate at which the workstation services the products. Neither the inter-arrival time between
two arrivals nor the service time of the workstation are deterministic but distributed around a mean value.
Accordingly, it is essential to include the variability in time and its distribution while evaluating the performance
indicators of the workstation (i.e., waiting time, queue length, throughput rate). Therefore, each workstation is
modeled as a multi-server GI/G/c queue, wherein the inter-arrival times between flow units of each product p
are given by a random variable with general distribution and mean of 1/4, ,,;. The service times are imposed by
arandom variable with general distribution and mean of 1/u,,;. Before each workstation j, there exists an infinite
buffer and the products are served in a first-come-first-served (FCFS) dispatching rule. Each workstation i has ¢
parallel servers and each server processes only one unit of each product at a time and devotes all of its resources
to complete the transaction. The throughput rate of product p at workstation i is py; = A4/ Citp; (i-€., ppi =
Tspi/ CiTapi)-

Obtaining an exact value for a performance indicator of workstations modeled by GI/G/c queues is
complicated. Therefore, an approximation technique is necessary. The fork-join analysis [45] is adopted to
evaluate the performance of each workstation separately. In this analysis, the arrival products are aggregated
into a single product (called aggregated product IP) and the performance of the workstation is evaluated for the
aggregated product. The arrival, service and departure parameters for the aggregated product are approximated
based on the parameters of the original products at each workstation. Hereafter, the characterization of the
aggregated product and the inter-departure expressions are approximated. Figure 5 illustrates a workstation i
that processes a given set of products R; [53].
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Figure 5. Workstation i and aggregated product

Based on the notations in Section 3.2, Equations (1) to (4) are proposed to estimate the parameters of the
aggregate product [65], [66].
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where 6; = [1+4(1 — pp)*(v; — D]™Y, 62 =3, (;:—‘u‘:) Cipi and vt =3, (%H':) . In Equation (1), the

arrival rate of the aggregated product to a workstation is the sum of the arrival rates of the original products
arriving to that workstation. Equation (2) expresses that the service time of the aggregated product in
workstation i, Tg p;, is equal to the sum of the expected service times of the original products in that workstation.
The ratio 222!

Aapi
arrival time of the aggregated product is a function of the inter-arrival time of the original products. Equation (4)

states that the SCV of the service time of the aggregated product at workstation i, C;Pi, is equal to the deviation

is the probability of processing product p at workstation i. In Equation (3), the SCV of the inter-

A .
of the expected maximum service time at workstation i (i.e., Y e, (ﬁ) (cf‘pi + 1)(15,1,1-)) from the service
,Pi

time of the aggregated product, g p;. This deviation is expressed as a squared value in Equation (4).

Since the workstations are connected via the AMHS, the SCV of the inter-arrival time of product p at
workstation i, cj'pi, depends on the SCV of the inter-departure time of the AMHS, c3,. In such situations, cj,pi is
calculated as Equation (5) ([63] and [64]).

Chpi = Michy + (1 — 1) Vi, p (5)
A .

where 1; = Z§=1% and the SCV of the inter-departure time of the AMHS, c3,, is calculated in Section 3.4.
AT

Based on the estimated input parameters of the aggregated product determined through Equations (1) to (4),
the average departure rate, Ap p;, and the SCV of the inter-departure time, clz,,pi, of the aggregated product at
workstation i can be found in Equations (6) and (7), respectively [45]. Since the throughput rate remains constant
through the production system and no waste is considered at workstations, the departure rate of the aggregated
product is equal to its arrival rate as stated in Equation (6). In Equation (7), the SCV of the inter-departure time
for the aggregated product is a linear combination of two terms: The SCV of the inter-arrival time and the SCV of
the service time.

Appi = Aapi Vi (6)
chpi = (1= pp)cip + Ppicimi Vi (7)

Finally, the average departure rate, A ;, and the SCV of the inter-departure time, cg‘pi, of product p at
processing step i can be written as Equations (8) and (9) respectively [45]. Equation (8) follows the same rule as
Equation (6), where the throughput rate remains constant through the production system and no waste is
considered at workstations for the original products. In Equation (9), the SCV of inter-departure time for each
original product i is a function of three terms: 1) The SCV of the service time of i, Il) The SCV of the inter-arrival
time of i, and Ill) The impact of the other original products that are using the same workstation.

/1D,pi = AA,pi Vi,p , (8)
Aapi AapiPri
Clz),pi = ppizcsg,pi + (1 - pripl]”i + ppiz)cj,pi + </1A ;z) Z /1Aln'” (Cj,ri + CSZ,ri) Vi, D (9)
) 7Zp )
PER;

After calculating the parameters of the aggregated product at workstation i, the waiting time of product
p in the queue at workstation i, Wp,;, the WIP of product p at workstation i, L,;, and the WIP of the aggregated
product at workstation i, Lp;, are estimated as Equations (10) to (12), respectively.

2 2
_ PriTspi  Cipi T Cspi

Wy = Wp; = 1= e, X > X Gp; Vi,p ER; (10)
Lpi = )’A,pini Vl,p € Ri (11)
Lei= ) Ly vi (12

PER;
where ¢p; and Gp; are calculated as Equations (13) and (14):
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= Vi (13)
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(
Gos = 4 3 ppi Chpi T Copi Vi (14)
o (1 - pp) X Chpi ~ 1 >1
exp | —(1 — pp;) X —=——], Capi
t p Ppi Cj,[?’i +C§,]Pi APi

Finally, the cycle time of the aggregated product and product p at workstation i are calculated as Equations
(15) and (16), respectively.

CTIP’i = W]P’i + TS,]P’i Vi (15)
CTpi = Wi + Ts i Yi,p (16)

As a complementary study, we investigate the impact of disruption [67] of the processing workstations
on the overall performance of the production system. In this regard, we consider that each workstation i is
subject to random failures. Once functional, the failures occur at workstation i stochastically with rate of f; and
consequently the time until a failure occurs is exponentially distributed with mean of 1/ f;. Once there is a failure,
workstation i becomes unavailable and it is stochastically retrieved with rate of r;. Accordingly, the time until the
workstation is repaired is generally distributed with mean of 1/r;, standard deviation of g,; and SCV of c,%i (i.e.,

c3; = 1;0,;). Hence, the mean availability of workstation i when failures are considered is AV; = - :if [4]. In this
iTtli

case, the service rate of product p at workstation i (H;z) and the SCV of the service time of product p at
workstation i (cf_;i) are modified as Equations (17) and (18). Equations (1) to (16) are modified accordingly (if

necessary).

. = _ Tikpi ,
Upi = AVipp; = — Vi,p ER; (17)
2% 2 2 Ty ) Hpi .
, = 4 (1 + c2. (1 - _nr )
CS,pl CS,pl ( CRL) _ri + f~l (ri + ﬁ) Vl;p € RL (18)

3.3. AMHS characterization
3.3.1. Notations

Before characterizing the processing workstation and developing the QAG model for the AMHS, the
required notations are provided in this section.

Parameters:
Aapij  Arrival rate of product p at workstation j from workstation i,
Aur Total arrival rate of products in the whole system (A = 3h_1 210 X4 Aa i),

cky SCV of the repair time of vehicles in the AMHS,

d; Distance between workstation i and workstation j,

%4 Speed of vehicles in the AMHS,

tij Transportation time from workstation i to workstation j,
T; Probability of transferring products from workstation i,
fv Failure rate of vehicles in the AMHS,

Ty Retrieval rate of vehicles in the AMHS,

LTy, Loading time of vehicles in the AMHS,
UTy Unloading time of vehicles in the AMHS.

Variables:
ck SCV of the inter-arrival time of transport request for the AMHS,
cé, SCV of the service time of the AMHS,
Toy Expected service time of vehicles in the AMHS,
Uy Service rate of vehicles in the AMHS,
Pv Utilization rate of vehicles in the AMHS,
n Number of vehicles in the AMHS,

Nin  Minimum number of vehicles to keep the AMHS functional,
chy SCV of the inter-departure time of the AMHS,
w, Waiting time for vehicles at the AMHS.



3.3.2. The QAG formulations for AMHS

Similar to processing workstations, in an AMHS, the products processed in workstations have to wait in a
buffer for a free vehicle. This waiting process mainly depends on the rate at which the processed products
(transfer requests) arrive at the vehicles and the rate at which the AMHS services the requests. The AMHS is
modeled as a multi-server queue (GI/G/n), wherein the inter-arrival times between transfer requests are given
by a random variable with general distribution and mean of 1/1,;. The service time is imposed by a random
variable with general distribution and mean of 1/u;,. After each workstation, there is an infinite buffer and the
products wait until the first vehicle becomes available. The AMHS has n vehicles and each vehicle transfers only
one unit of each product at a time and devotes all of its resources to complete the travel. The utilization rate of
AMHS is py = A7 /nuy. The following assumptions are considered for the AMHS:

. Products are transferred using a FCFS rule.

. The product-independent travel time (t;;) between any two workstations i and j is deterministic and is
given by t;; = d;;/V.

. Each vehicle is subject to random failures. Once functional, the failures arrive stochastically with rate of
f,» and consequently the time until a failure occurs is exponentially distributed with mean of 1/f,,.

. Once a failure occurs, the vehicle becomes unavailable and it is stochastically retrieved with rate of 7.

Accordingly, the time until the vehicles is repaired is generally distributed with mean of 1/r,, standard
deviation of a,- and SCV of c3, (i.e., ¢, = 1,0,).

. The mean availability of the AMHS in case of failure is determined as AV = T

Tv+fy

The first step when analyzing the AMHS is to calculate the mean service time (zg;,) of vehicles. The vehicle
service time is the sum of the empty travel time (ETT), the loading time (LT), the loaded travel time (LTT), and
the unloading time (UT). The loading time and unloading time are the average time required for loading and
unloading one unit of product, and they are usually given and are product-independent. Once requesting a
transfer from workstation i to workstation j, the AMHS spends an empty travel time (ETT) from its current
workstation k, which is the location of its last delivery, to workstation i and spends LT to load the product. Next,
it transfers the product from workstation i to workstation j (i.e., LTT) followed by the unloading time (UT) to
unload the product. Although LTT is deterministic as the origin and destination of a request are given based on
the product routing information, the ETT is non deterministic since the AMHS can be located at any workstation.
These time components are illustrated in Figure 6. Another time component that can happen at any moment is
the repair time since the AMHS is subject to failures. This time component is included in the waiting time that
the AMHS imposes to the products.

2 Load Travel Time from i toj /’r@

G =N Empty Travel Time to workstation i
D T,

Unload Port Load Port Unload Port Load Port Unload Port Load Port
Workstation Workstation Workstation
7 o i e j

Figure 6. Time components of a transfer request

The ETT can be defined as the sum of two factors: 1) The probability that the vehicle is located in k and 2)
The travel time from location k to the origin location i [60]. The EET to workstation i is estimated as Equation
(19).

w+1

j=1

The LTT is deterministic as the origin and destination of a request is given. LTT;; is calculated as Equation
(20).



Finally, the mean service time of a vehicle (tgy) is derived from ETT, LTT, LT, and UT, as Equation (21). The

. . Aapij
concept of expected value is also used to estimate tgy. A'p”
AT

is the probability of transferring product p from

workstation i to workstation j.

w w+1 P A
Ty = Z Z Z 22 (ETT, + LT, + LTT;; + UT,) (21)
=0 j=1 p=1 AT

After calculating the mean service time of the AMHS, we determine the minimum number of vehicles
(nmin) that can meet the basic requirements of the system. In order to keep the system functional at steady state,
the throughput of the AMHS (p,,) must be smaller than one. Therefore, the initial capacity of the AMHS should
be the smallest integer that is larger than the arrival rate divided by the service rate, as shown in Equations (22)
and (23).

Aar  AarTsy
=—=—x<1 22

Pv ity n (22)
Tonin = [AarTsy] +1 (23)

Based on Whitt’s approximation for super-positioning the arrival process in general queue systems [65],
the SCV of the inter-arrival time of transport requests for the AMHS (c2,) is determined as Equation (24). The
remaining equations are derived in the same way than the equations in Section 3.2.2 for the products on the
processing workstations.

Civ = 0y67 + (1 - 6y) (24)
where 6y = [14+4(1 — py)*(vy — D], 67 = i mich; and vy, ™! = ¥ m;%. The SCV of the inter-departure

time of the transport requests for the AMHS (c3,,) and the SCV of the service time of AMHS (c2,) are calculated
as Equations (25) and (26).

chy =@ —fg)cjv + picdy (25)
; 2

2 i {(ﬁ) (cépi + 1) (Tspi) } — (tsv)? (26)

v (tsv)?

Finally, c2, can be directly derived as Equation (27).

(1-6y)+6y

ZP AA.p,e Cz,p,e
[ ;: w] + 6y Nim{ 1+ pgi(cip — 1) + m(1 = pE)lpcd, — 11}

(27)

Chy = 1- 6, Y{m2(1 — p2)(1 — p2)}

After calculating the parameters of the AMHS, the waiting time of the AMHS, W;,, and the WIP at the
AMHS, Ly, are estimated as Equations (28) and (29), respectively.

_ Pvtsy  chv tcdy
1—py 2
Ly = Aar Wy (29)

Wy, X Gy (28)
where ¢y and Gy, are calculated as Equations (30) and (31):

-1
(30)
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T nl(1-py) Lk nl 1-py,
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As a complementary study, we consider that the AMHS is subject to random failures. Once functional, the
AMHS stochastically fails with rate of f;, and consequently the time until a failure occurs is exponentially
distributed with mean of 1/f,. Once a failure occurs, the AMHS becomes unavailable and is stochastically
repaired with rate of 1,. Accordingly, the time until the repair is completed is generally distributed with mean of
1/, standard deviation of g, and SCV of c3y (i.e., ci, = 1,0,y). Hence, the mean availability of the AMHS in
this case is AV, = TV:“/fV [4]. Also, the service rate (u};) and the SCV of the service time of the AMHS (cZ;) are
modified as Equations (32) and (33). Equations (1) to (31) are modified accordingly (if necessary).

Ty Uy
v = AVyuy =
My viy —E ) ) (32)
2% _ .2 1 2 (1 _ v ) v
csv = cgy + (1 + ciy) A ) T+ ) (33)

3.3.3. Capacity planning for AMHS

Two major KPIs for any production system are production throughput and product cycle time. Since the
AMHS is an auxiliary system in any production system, the aim of capacity planning for the AMHS is to determine
the right number of vehicles of the AMHS such that the AMHS has no impact on the KPIs [60]. Therefore, the
AMHS should feed all workstations at the right moment and should not let the workstations become idle. Two
important workstations in any production system are the troublesome workstation (TW) and the fastest
workstation (FW). The overall performance of a production system is easily affected by TW and FW.

In manufacturing systems, TW is usually expensive, it is hard to increase its capacity, it has a high failure
rate and a large unavailability, and it is generally hard to plan its production as well as its capacity. Therefore,
managers attempt not to allow the AMHS to decrease the throughput of TW. The throughput of a production
system is usually strongly affected by its TW. Therefore, the best way to achieve the highest throughput is to
prevent TW from being idle, i.e. the AMHS should always be ready to serve TW when necessary.

Delp et al. [68], [69] and Tu et al. [60] propose the concept of X-factor contribution (XFC) to determine
the contribution of each workstation to the overall system performance. The XFC of workstation i and of TW are
defined as Equations (34) and (35).

2 2
. Cip; + CSp;
Tspi <1 . Pp; o Capi T Cpi Gp{)

— Ppi 2 ;
XFC, = ]P;V vj (34)
Zj:l TS,]Pj
™W = {ilXFCl- = max{XFC]-}} (35)
]

FW is the workstation with the highest service rate or the lowest service time, and is determined as (36).
FW = filtspi = min(tss;) | (36)

The main goal of AMHS capacity planning is to determine the number of vehicles that leads to an optimal
performance of the whole production system. Let us define the optimal performance of the whole production
system in two cases: 1) No workstation is idle and 2) The production system operates at its highest throughput.
In order to study these two cases, we adopted two policies: Policy 1, “Preventing FW from being idle” or Policy
2, “Preventing TW from being idle”. Policy 1 aims at ensuring that all workstations are always working, i.e. that
they are never idle, and Policy 2 pushes the production system to operate at its highest throughput. The goal is
to keep the WIP strictly positive in front of FW and TW. In Policy 1, no workstation is idle and the WIP in front of
all workstations is larger than zero because if the AMHS can feed FW on time, then all workstations are also fed
on time. This policy is expensive and may need significant storage space. Consequently, managers may adopt the
second policy by only preventing TW from being idle. This section proposes the minimum number of vehicles to
optimize the throughput for the two policies above.



In Figure 4, consider that workstation j is FW (TW); hence, to avoid the negative impact of the AMHS and
ensure the highest performance of the JS, the WIP in front of FW (TW) should always be strictly positive (L7 > O;
j = FW or TW). By considering the AMHS, FW, and TW as queuing systems, the sum of the product queue time
TQ at the AMHS (W,,) and the mean transportation time TT of the AMHS (g, /n) should be lower than the mean
service time of FW, Té or lower than the mean service time of TW, t{. Conditions (37) and (38) are proposed
to satisfy Policies 1 and 2, respectively.

T

Wy + % <t (37)
T

Wy, + % <t (38)

Since it is hard in practice to strictly satisfy Inequalities (37) and (38), two chance constraints (39) and (40)
are proposed that correspond to the probability that ensures the highest performance of JS under policies 1 and
2 is larger than the target probabilities arw and arw, respectively.

P{wy + TSTV <t} > apy (39)
P{w, + TSTV <t} > any (40)
or we have

P{w, <Y - %"} > apy (a1)
P{Wy <l -2 > apy (42)

Using the waiting time distribution function of Whitt [70], the left-hand-side (LHS) of Inequalities (41) and
(42) can be rewritten as:

Tsy Tsv)

FwW
P{W, <ol -2~ 1 — e (R (43)
T _ T™W_Tsy’
P {WV <tly - %} ~1—wye v (5% ) (44)
Where
wy = Ny X Wy (45)
2nx (1 —py)
ny = Z—ZV (46)
Chv t Cy

Decision makers should set a target probability whereby the highest performance for the production
system is kept. Since proposing a close formulation for the number of vehicles n in (37) to (46) is complicated,
the value of n is found for each policy by trial and error. The minimum number of vehicles that satisfies
Inequalities (41) and (42) is the best capacity of the AMHS under policies 1 and 2, respectively.

Hence, by considering a target probability agy,, a minimal WIP is kept in front of FW. It is then possible to
absorb any fluctuation of the production system such as transportation delays of the AMHS. For optimal
throughput, a normal and acceptable value of the target probability ay, can be defined around 95%. Increasing
too much the target probability asy will increase the number of vehicles; however there is no guarantee that the
throughput of the production system increases as well. Therefore, the AMHS capacity may be overestimated.

On the other hand, setting the target probability arw around 100% and keeping the WIP (>0) in front of
FW results in an unnecessary WIP in front of slower workstations. In addition, considering a target probability
arw around 100% and preventing cycle time losses by the AMHS is not practical from a queuing theory point of
view.

3.4. Proposed QAG model for the AJS system
According to Equation (10), the mean waiting time at workstation i is the same for all products in R;. Since
the processing route of each product is known as E,, the JS system can be aggregated into a single-step



aggregated JS (AJS) system for each product p. The AJS system for each product p is illustrated in Figure 7 with
the corresponding parameters. We model the AJS system as a GI/G/1 queue system. Before proposing the
approximation formulations, the required notations are provided below:

Aﬁ_jps Arrival rate of product p to the AJS system,
Ag{; Departure rate of product p from the AJS system,
;,‘”S Service rate of product p in the AJS system,
p;US Utilization rate of product p in the AJS system,
Cj ;]S SCV of the inter-arrival time of product p at the AJS system,
ng;us SCV of the service time of product p in the AJS system,
ck gjs Coefficient of variation of the inter-departure time of product p from the AJS system,
ﬂf Inter-arrival time of product p to the AJS system,
T;‘{)S Service time of product p in the AJS system,

WpA/S Waiting time of product p in the queue in the AJS system,
L/;]S Queue length of product p in the AJS system,
CTZ;‘US Cycle time of product p in the AJS system.

AJS 2 AJS AJS Z AJS
(Aap.C ) A AJS 2,AJS) (AD 0:Cop )
. ~.
-~ ~.
- i *
AJS - AJS
WP i Tsp >
AJS
- CT, -

Figure 7. AJS system

This section aims at approximating the variables of the AJS system based on the parameters of the original
JS system. Based on its process route, the average cycle time of product p through the entire JS system, CT]S,
can be expressed as Equation (47). CTp]s is the sum of the cycle times at all corresponding workstations of E,

plus the time spent in the AMHS that is the sum of the waiting times in the AMHS (W};) and the mean service
time of the AMHS (tgy).

CTp]S = Z CTpi + |Ep|(WV + TSV) (47)

i€y

where |E | is the number of workstations that serve product p. The idea of aggregation in this paper is that the
average service time of the AJS system for product p, rSp , is the total time that each product spends in the
system after departing the queue of the first workstation (i.e., i=1). This time is equal to the sum of the service
times for all workstations and the in-between waiting times. By “in-between” waiting time, we mean the sum of
the waiting times of workstations i; i = 2, ..., ey,. Accordingly, let us express T;{,S as Equation (48). Note that
unlike the literature, Té{,s in Equation (48) is WIP-dependent. When the WIP increases, the waiting time increases

and the service time of the APS system increases as well for all products.

€Np eNp

T:;];s Z it Z Tsp;i T |E |(WV + Tsy) (48)

An underlying assumption in heavy traffic conditions for serial queue networks is that the waiting time of
the network is dominated by the waiting time at the bottleneck workstation. Knowing that A4 ,; = A, for i =
2, ..., enp, the bottleneck workstation BWis expressed as the workstation with minimum service rate or longest
service time. Because the AMHS is considered in the production system, the service rate of product p in the AJS



system uf,”s is the minimum between the bottleneck’s service rate and the service rate of the AMHS as expressed
in Equation (49).

ygls = min {min 'liv} vp (49)

i€Ep Tg p;

2,4JS
Csp

, as Equation (50), wherein Var(X) is the variance of

To calculate the SCV of the service time of the AJS system for product p, , we first need to calculate

the variance of the service time in the AJS system, a;;ﬁ

variable X.

eNp eNp

O—SZ;]S = Var Z + z TS Pi + |Ep|(WV + TSV) VP (50)

Since the waiting times as well as the service times of the workstations are identical and independent,
Equation (50) can be re-written as Equations (51) and (52).

enp enp
oy = Z var(Wy) + Z Var(tspi) + |Ey| Var(Wy) + Var(zs)] - VP (51)
END eNp
2
a5y = z Var(Wp;) + Z aip; + |Ey| [Var(Wy) + c&,7/] vp (52)

Applying the Kingman-Kollerstrom approximation [71], the cumulative distribution function of the waiting
time of product p at workstation, me., and the cumulative distribution function of the waiting time at the AMHS,

Fy,,, can be well approximated by Equations (53) and (54).

pri(x) =1- wpie(_"l’i") Vp,i € E, (53)
Fy, (%) = 1 — wyeCmvo (54)

where w,; and 7,,; are approximated as (55) and (56).

Wp; = NpiWp; Vp,i €EE, (55)

2¢;(1 — pp;
Mpi = zl—pzpl) (56)
Cipi T Cspi

Accordingly, Var(Wpi) and Var(W,,) can be expressed as:

1)
Var(W,;) = —’” Vp,i € E, (57)
Var(W,) = —2 (58)
v
Finally, cé'{,”s is approximated as (59):

enp | Wpi en;
Z, 5[77 - +Zl fCSPzTSIPl+|E | [ 2+CSVTSV]

(22’5 Wy + Zf’vf Tspi T | |(WV + Tsv))

2,4]S
Al

Sp Vp, i € E, (59)

Other parameters of the AJS system in Figure 7 are provided in Equations (60) to (67).

Ml = Aapi VD, i =ep (60)

stjs = Cipi Vp,i=ep (61)
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where G;]S is calculated as Equation (66).
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l( 2 1—Pp] (1_CA,p ) 0<cMS <1
exp _§X s X Z4js . 245 | =Cp =
GAIS — { Pp Cap T Csp v (65)
p | S _q P
AJS Ap AJS
keXP <_(1 ~Pp ) X A4S n 2,A]S)' Cap > 1
Cap sy

Finally, the cycle time and the WIP of each product in the AJS system are calculated as Equations (67) and
(68), respectively.

CTs = W% + ()¢ vp (66)
AJS _ 41A]S AJS
L, =24, CT, vp (67)

3.5. AJS with priorities on products

In order to stay competitive and to satisfy customers’ demand with high variety and significant variability,
companies often need to handle customers and customer orders differently, and thus products need to have
different priorities. Priorities usually can be divided into three levels: Hot, rush and normal [72]. A product with
a higher priority requires a shorter cycle time and should be processed before the lower priority products,
whereas products with lower priority need to wait until higher priority products are completed and the
workstation becomes available. Because of longer waiting times, the cycle time of lower priority products is
longer.

Accordingly, we consider products with multiple priorities in the AJS system and investigate the effect of
considering priorities on the cycle time of products. This is done by developing a priority queuing system for the
AJS system. All products keep their priority on all their corresponding workstations. In a priority queueing system,
we assume that an arriving product belongs to a priority class r (r =1, 2, ..., R). The next product to be served is
the customer with the highest priority r. Among products with the same priority, the queueing discipline is FCFS.
We consider priority queue without preemption, wherein a product already in service is not preempted by an
arriving product with higher priority. The mean waiting time for an arriving product p with priority level r consists
of three components as in [73]:

I The mean remaining service time Taqjs of the product in service (if any) in the AJS system,

Il The mean service time of products in the queue with the same or higher priority as the tagged product,

Il. The mean service time of products with higher priority that arrive at the queue while the tagged product
is in the queue and are served before the tagged product.

The necessary notations are first defined below and only for the AJS system.

P. Set of products with priority r.

AJS Mean number of products with priority r' found in the AJS queue with the tagged product of priority r

nr and receiving service before it
f’]rs Mean number of products with priority r' who arrive during the waiting time of the tagged product of

priority r and receive service before it
,12‘;)5" Arrival rate of product p with priority r to the AJS system
#;]” Service rate of product p with priority r in the AJS system
2,4]S;r
Cap
2A]S;r

SCV of the inter-arrival time of product p with priority r at the AJS system

SCV of the service time of product p with priority rin the AJS system

AJS,T

Tgy Service time of product p with priority r in the AJS system



WpAJS'T Waiting time of product p with priority r in the queue in the AJS system

L‘I‘JUS'T Queue length of product p with priority r in the AJS system
CTI;‘”S'T Cycle time of product p with priority r in the AJS system

AJS,r

The mean waiting time of products with priority r in the AJS system, W™, can be then calculated as the

sum of three above-mentioned components:

A]S 7AJS
AJSr _ A]S r'r
W, + Z A]Sr, Z 257 vr,p €P. (69)
r'=r p r'=r+1Mp
where
R P Ajsr’ 2,48 2,4]S,r"
LAIS o Z Z M Cap t S
o = 2 AjSr! (70)
s Zﬂp
pEPrr
A]S AA]ST A]ST
vri,r;r' >r (71)
pEP !
A]S /1A]Sr A]Sr
vri,r;r' >r (72)
pEP ’

The cycle time and the WIP of product p with priority r in the AJS system are calculated as Equations (75)
and (76), respectively.

CT;I]S,T — WA]Sr + _L_A{)Sr Vp (75)
1 = e v 79
4. Computational results

This section provides a comprehensive analysis of computational results to validate the correctness and
the performance of the proposed QAG model. Numerous experiments with different parameter settings are first
designed in Section 4.1. Then, Section 4.2 compares a detailed discrete event simulation approach and the
proposed QAG model. A comprehensive sensitivity analysis is performed in Section 4.3 using the QAG model to
provide valuable managerial insights on the production system and the AMHS. Finally, an analysis of the capacity
planning of the AMHS is provided in Section 4.4.

4.1. Design of experiments

In order to compare the performance of a discrete event simulation approach and the proposed QAG
model, the job-shop production system in Figure 8 is considered. Figure 8 illustrates a (part of a) production
system with six workstations to manufacture three products (i.e., P, P2, and Ps). The processing routes E,, of the
products are E; ={123-54-55-6}, E;,={1>2-4- 6}, and E; = {2 - 3 > 5}. Accordingly, the
subsets of products in workstations are R, = {P,, P,}, R, = {P,, P5}, Ry = {P,, P3}, Ry, = {P;,P,}, Rs = {P;, P5}
and Ry, = {P;, P,}. The performance of the proposed QAG model is tested through different instances labeled I1
to 120. Table 1 provides the settings of the production system and of the AMHS for each instance. The processing
times of the workstations and the AMHS are specifically determined to respect the condition p = A/cu < 1.0n
the other hand, cu is considered as close as possible to A in some scenarios to evaluate the accuracy of the QAG
model in case of high congestion. The throughput (utilization) rate is actually calculated as A/Amax for each
scenario, wherein A for each product is generated from Table 1, and Amax is actually the maximum arrival rate of
a product that all workstations in the production system can process, such that values larger than Amax will
saturate the system in terms of WIPs. Accordingly, Amax is considered close to cu (i.e., A4, ~cpt) for each product.



1,500 units were neglected to account for the transient start-up effects.
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Figure 8. Production system with six workstations

The simulation experiments for the smallest instance |1 took at least 4 hours on average. The simulation
results were recorded based on 20 independent simulation runs with a 95% confidence interval. This ensured
that the standard deviation of the throughput value from different replications is within £0.5% of the mean. Each
run corresponds to the production of at least 15,000 units of products. The statistics corresponding to the first

The KPI recorded in all experiments is the total cycle time of each product. To determine the numerical
accuracy of the proposed QAG model, the percentage errors between the QAG model and the simulation (SIM)
in terms of cycle time are computed as in Equation (77).

KPIS™) — gp[QAG)

KPI= KpIGIM x 100 (77)
Table 1. Parameter settings of experimental instances

= Production system AMHS

(%]

§ A (unit/h) c  f#/hn) V(m/s) LT&UT  f(#/h) r

® mean c? mean c3 mean  c3y,
1 [50,150] [2,5] 1 [0.1,0.5] [1.0,2.0] [0.1,0.4] 0.25 [20,30] 1 2 [0.2,0.4]
12 [150,200] [2,5] 1 [0.5,1.0] [2.0,5.0] [0.2,0.6] 0.25 [25,35] 1.5 3 [0.4,0.8]
13 [200,250] [2,5] 1 [1.0,1.5] [6.0,9.0] [0.4,0.8] 0.25 [30,40] 2 5 [1.0,2.0]
14 [250,300] [2,5] 1 [1.5,2.0] [8.0,18] [0.6,1.0] 0.25 [35,50] 3 7 [2.0,3.0]
15 [50,150] [5,10] 2 [0.1,0.5] [1.0,2.0] [0.1,0.4] 0.50 [20,30] 1 2 [0.2,0.4]
16 [150,200] [5,10] 2 [0.5,1.0] [2.0,5.0] [0.2,0.6] 0.50 [25,35] 1.5 3 [0.4,0.8]
17 [200,250] [5,10] 2 [1.0,1.5] [6.0,9.0] [0.4,0.8] 0.50 [30,40] 2 5 [1.0,2.0]
18 [250,300] [5,10] 2 [1.5,2.0] [8.0,18] [0.6,1.0] 0.50 [35,50] 3 7 [2.0,3.0]
19 [50,150] [10,15] 3 [0.1,0.5] [1.0,2.0] [0.1,0.4] 0.75 [20,30] 1 2 [0.2,0.4]
110 [150,200] [10,15] 3 [0.5,1.0] [2.0,5.0] [0.2,0.6] 0.75 [25,35] 1.5 3 [0.4,0.8]
111 [200,250] [10,15] 3 [1.0,1.5] [6.0,9.0] [0.4,0.8] 0.75 [30,40] 2 5 [1.0,2.0]
112 [250,300] [10,15] 3 [1.5,2.0] [8.0,18] [0.6,1.0] 0.75 [35,50] 3 7 [2.0,3.0]
113 [50,150] [15,20] 4 [0.1,0.5] [1.0,2.0] [0.1,0.4] 1.00 [20,30] 1 2 [0.2,0.4]
114  [150,200] [15,20] 4 [0.5,1.0] [2.0,5.0] [0.2,0.6] 1.00 [25,35] 1.5 3 [0.4,0.8]
115  [200,250] [15,20] 4 [1.0,1.5] [6.0,9.0] [0.4,0.8] 1.00 [30,40] 2 5 [1.0,2.0]
116  [250,300] [15,20] 4 [1.5,2.0] [8.0,18] [0.6,1.0] 1.00 [35,50] 3 7 [2.0,3.0]
117 [50,150] [20,25] 5 [0.1,0.5] [1.0,2.0] [0.1,0.4] 1.25 [20,30] 1 2 [0.2,0.4]
118 [150,200] [20,25] 5 [0.5,1.0] [2.0,5.0] [0.2,0.6] 1.25 [25,35] 1.5 3 [0.4,0.8]
119 [200,250] [20,25] 5 [1.0,1.5] [6.0,9.0] [0.4,0.8] 1.25 [30,40] 2 5 [1.0,2.0]
120 [250,300] [20,25] 5 [1.5,2.0] [8.0,18] [0.6,1.0] 1.25 [35,50] 3 7 [2.0,3.0]

4.2. Comparing the QAG model and a simulation model

This section compares the results from the analytical QAG model with those obtained from the discrete
event simulation model built using AnyLogic (www.anylogic.com) on an Intel Pentium IV PC. The QAG model is
implemented in MATLAB 2014 and executed in less than one second for each problem instance on the same PC.




Table 2 shows the corresponding results of the QAG and detailed simulation (SIM) models under the
setting of each instance. The results of Table 2 provide insights regarding the impact of different input parameters
on the cycle time of each product. We observed that the mean gap between the proposed QAG model and the
detailed simulation (SIM) is 2.23%, 2.69% and 1.87% for products P; to Ps, respectively. The proposed QAG model
takes less than one second to execute any instance. These acceptable gaps and low computational times validate
the effectiveness and the high performance of the proposed QAG model. Accordingly, the proposed QAG model
can replace time-consuming simulation methods with the guarantee of providing acceptable results.

Another observation is that the QAG performance degrades when the arrival rates increase. The increase
of arrival rates leads to higher congestion in the system, which degrades the accuracy of the QAG model in
approximating the waiting time (i.e., Equation (65)) and, consequently, the cycle time (i.e., Equation (67)) is
approximated with higher gaps. In order to identify the limit of the proposed QAG model, Figure 9 depicts the
mean gap value in terms of throughput rates (i.e., 1/ qx)-

Figure 9 shows that the proposed QAG model performs quite well for throughput rates lower than 80%,
and that the QAG model can replace simulation models, although the performance degrades for higher values
of A/ Amax (= 80%). Accordingly, the utilization of the proposed QAG model with throughput rates higher than
80% might not be recommended; however, it depends on the tolerance of the experts to the accuracy of the
cycle time approximation. One may agree to sacrifice the accuracy to quickly obtain approximate results.

Table 2. Comparison between QAG and SIM in terms of cycle time

5 QAG 3 < SIM A (%)

z p [ Py 532 [ [ Py P P [

=} —_

8 [¢]

11 20.68 25.76 7.94 2 20.76 25.87 7.96 0.38 0.43 0.32
12 104.25 134.17 40.00 2 106.09 136.57 40.60 1.76 1.79 1.52
13 31.42 46.45 11.39 3 31.60 46.78 11.45 0.58 0.71 0.44
14 106.17 209.74 35.56 4 108.09 214.48 36.07 1.81 2.26 1.43
15 147.46 178.59 57.69 1 151.78 185.07 59.12 293 3.63 2.47
16 24.81 32.94 9.37 2 24.94 33.14 9.41 0.49 0.59 0.39
17 171.86 239.98 63.93 2 179.97 252.91 66.21 4.72 5.39 3.58
18 244.79 434.23 84.48 3 257.89 465.88 88.50 535 7.29 4.76
19 97.93 119.07 38.25 1 99.53 121.10 38.82 1.63 1.70 1.48
110 18.86 25.39 7.08 2 18.91 25.48 7.09 0.29 0.34 0.25
111 81.11 115.93 29.95 2 82.23 117.80 30.43 1.38 1.61 1.59
112 158.43 299.63 53.89 3 164.42 313.90 55.54 3.78 4.76 3.05
113 83.55 101.85 32.61 1 84.79 103.39 33.05 1.48 1.51 1.37
114 16.70 22.70 6.25 2 16.73 22.75 6.26 0.18 0.22 0.15
115 62.62 90.77 23.03 2 63.16 91.74 23.22 0.87 1.06 0.79
116 139.66 270.73 47.26 3 143.27 278.96 48.26 2.58 3.04 2.12
117 76.74 93.74 29.94 1 77.60 94,98 30.20 1.11 1.32 0.87
118 968.11 1247.22 373.34 1 1064.43 1400.01 404.06 9.95 12.25 8.23
119 54.82 80.28 20.12 2 55.29 81.04 20.27 0.86 0.94 0.71
120 131.69 258.87 44.45 3 135.00 266.35 45.30 251 2.89 1.93

Min 0.18 0.22 0.15
Mean 2.23 2.69 1.87
Max 9.95 12.25 8.23
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Figure 9. Gap vs. Throughput rate

In order to validate the performance of the proposed QAG model on larger instances, five new instances
121-125 with more than 10 products and 20 workstations are generated based on the instances 14, 18, 112, 116,
and 120, respectively. The results can be found in Table 3, where the first column shows the instance number,
and the second and third columns show the number of products P and the number of workstations WS. For
example, instance 121 takes the same parameter setting as instance 14 but with P=10 products and WS=15
workstations.

Note that, when the size of the production system is increasing, the accuracy of the proposed method
slightly decreases compared to the detailed simulation model but still with small gaps.

Table 3. Gap between QAG and detailed simulation model on larger instances

Instance  Parameters A (%) Min # of vehicles
P ws Ami‘n Amax

121 10 15 1.98 2.54 5

122 15 25 2.05 2.86 9

123 30 30 2.42 3.31 12

124 50 40 3.12 3.69 17

125 80 100 4.35 6.78 26

4.3. Sensitivity analyses

A remarkable advantage of the proposed QAG model is the possibility of analyzing the sensitivity of the
KPIs to the input parameters. Sensitivity analysis using detailed simulation model is difficult in practice since it is
timely expensive. Performing sensitivity analysis provides knowledge on the behavior of important parameters.
Having this knowledge helps experts to achieve the desired level of KPIs by correctly adjusting these parameters.

4.3.1. Impact of AMHS on the cycle time

The main aim of this section is to do a sensitivity on the input parameters of both production system and
AMHS to finally show the impact of AMHS on the cycle time of the production system.

In this regard, Table 4 shows the impact of changing the value of parameters of both production system
and AMHS on the cycle time. All values are in percentage and, for each analysis, a base case has been defined to
calculate the increase or decrease of the cycle time. In Table 4, the second column shows the base case for each
analysis. The final column reports changes on the number of vehicles for each analysis. Negative values
correspond to decrease of the cycle time; e.g. increasing the number of servers (c;) decreases the cycle time. In
addition, NaN means no feasible analysis possible because of system saturation (i.e., queue length goes to
infinity).

Table 4 shows that the arrival rate (A) has the highest impact on the cycle time increase, since increasing
the arrival rate increases the cycle time polynomially. When analyzing the positive impact, the corresponding
parameters can be ordered as follows: A >> f; > f, >> cZ. From this analysis, it can be understood that the failure
rate of the AMHS highly impact the cycle time as the third impacting parameter. The reason is that any disruption
in the AMHS will interrupt the transport of products through the production system and this interruption
increases the waiting time of products and consequently the cycle time of the products in the production system.
When analyzing the negative impact, the corresponding parameters can be ordered as follows: V > ry > r; > ci..



Therefore, it can be observed that the speed of vehicles has the highest impact on the cycle time decrease. This
shows the importance of the AMHS on the production performance.

Regarding the number of vehicles, it can be seen as well that increasing A, r;, and fy requires a larger
number of vehicles while increasing f;, rv, and V decreases the number of vehicles. When A increases, higher
number of products demand to be handled by AMHS. Consequently, higher number of vehicles are required to
response this demand. In addition, when r;increases, workstations become quickly available in case of disruption;
therefore, higher number of vehicles are necessary to transfer the products between workstations as well as to
avoid the workstations’ idleness. In a special case, when f; increases, workstations become less available;
therefore, fewer products need to be transferred and consequently less vehicles are required. Finally, When ry
and Vincrease, vehicles become more available and faster. Accordingly, lower number of vehicles are required
to handle the products’ transportation through the production system.

Table 4. Sensitivity analysis results

Parameter Base-case Parameter Cycle Time Increase (%) No. of Vehicles
increase (%) Py P, P;
300 1429 1719 1169 1
500 4991 6611 3944 2
Al aer MAno: = 0.1 700 15664 23620 11989 2
880 49409 86813 37357 3
100 0,21 0,39 0,21 2
2 Z=2 300 0,64 1,18 0,65 2
A 4 500 1,07 1,97 1,11 2
700 1,51 2,76 1,58 2
100 -78 -86 -75 2
¢ o=1 200 -82 -89 -79 2
300 -83 -90 -81 2
400 -84 -91 -82 2
100 124 131 112 2
fi fi=0.25 300 473 528 421 2
700 1665 2084 1460 1
150 -50 -52 -48 1
ri ri=1 500 -75 -77 -74 2
700 -80 -82 -79 2
50 50 50 50 2
fv fv=1 100 112 112 112 2
200 291 292 291 3
50 NaN* NaN NaN 4
rv ry=2 150 -74 -71 -69 3
250 -88 -82 -74 2
25 61 61 61 2
LT&UT LT&UT =20 50 153 154 152 2
100 550 551 547 3
100 -28 -33 -27 3
200 -69 -71 -68 3
v V=025 300 77 -79 77 2
400 -81 -82 -81 2

* System saturation with no feasible solution

4.3.2. Joint impact of arrival rate and number of vehicles

In the following, comprehensive sensitivity analyses are done based on instance 120 to investigate the
joint impact of the arrival rate and the number of products on the KPIs of the production system: cycle time and
queue length.

As the first experiment, Figure 10 shows the cycle time of the products for different throughput rates as
well as the impact of the number of vehicles on the cycle times. Figure 10 illustrates that system saturation (i.e.,
infinite cycle time) happens twice for throughput rates around 45% and 85%. This multiple-saturation event
shows the impact of the AMHS on the production system performance. Actually, the system operates with the



minimum number of vehicles and once the saturation happens, an extra vehicle is added to the AMHS.
Consequently, the production system returns to a stable state with lower cycle times. The next saturation
happens when two vehicles are unavailable to respond to the increase of the throughput rate. Similarly, the third
vehicle is injected to the AMHS and so on. Ignoring the cost of vehicles in the AMHS, this addition can be
continued in order to find the minimum number of vehicles so that the AMHS has no impact on the performance
of the production system. This value helps the manufacturers to estimate the capability of their AMHS to support
the production system. However, in real settings, reaching such a minimum value is expensive and there is a
trade-off between the production system and the AMHS. Therefore, the proposed QAG model provides such a
capacity planning opportunity for the manufacturer in a very short computational time (i.e., less than one
second).
Anotherimportant pointin Figure 10 is that the system saturations happen at the same throughput ranges
for all products. This is because all products have the same priority and they are similarly impacted by the

congestion of the production system.
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Figure 10. Impact of the number of vehicles on cycle times under different throughput rates
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Figure 11. Impact of the number of vehicles on queue lengths with different throughput rates

Figure 11 illustrates the queue length of the products for different throughput rates as well as the impact
of the number of vehicles on the queue lengths. The same interpretations than for Figure 10 can be derived for
queue lengths. Figure 11 provides valuable information on capacity planning, and particularly the production
storage. As an example from Figure 11, considering the maximum storage level equal to 30 000 unit of products,



it can be observed that the production system can operate under three scenarios: Low throughput, medium

throughput, and high throughput. These scenarios are created based on the number of vehicles as follows:

. Low throughput scenario. This scenario corresponds to an AMHS with one vehicle. When the production
system operates with only one vehicle and wants to keep the storage below 30,000, the throughput rate
of products 1 to 3 must be lower than 0.41, 0.39, and 0.43, respectively.

. Medium throughput scenario. This scenario corresponds to an AMHS with two vehicles. When the
production system operates with only two vehicles and wants to keep the storage below 30,000, the
throughput rate of products 1 to 3 must be lower than 0.77, 0.70, and 0.84, respectively.

. High throughput scenario. This scenario corresponds to an AMHS with three vehicles. When the
production system operates with three vehicles and wants to keep the storage below 30,000, the
throughput rate of product 2 must be lower than 0.92 and two other products can be processed with the
maximum throughput rate. In the situation with the highest throughput rate for products 1 and 3, the
queue length of these products are 17,417, and 4,168 units, respectively.

Figure 12 shows the cycle time of the products for different throughput rates as well as the impact of the
number of vehicles on the cycle times when products are prioritized as follows: P, > P3 > P4, i.e. P, has the highest
priority and P; has the lowest priority. Figure 10 shows that product 2 has the largest cycle times for all
throughput rates and that product 1 has larger cycle times than product 3. However, when products are
prioritized, their cycle times are significantly impacted. For instance, product 2 now has the lowest cycle times
because it is the most prioritized. In Figure 12, cycle times are ordered based on the products’ priority.
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Figure 12. Impact of the number of vehicles on cycle times with different throughput rates when products have

priorities

Another important result from Figure 12 relates to the saturation states of products for different number
of vehicles. With two vehicles in the AMHS and no priority on products, saturation states are reached at
throughput rates around 0.84, 0.82, and 0.87 for products 1, 2, and 3, respectively. However, when products are
prioritized, saturation states are reached at throughput rates around 0.78, 0.87, and 0.85 for products 1, 2, and
3, respectively. The saturation state of product 1 has decreased from 0.84 to 0.78, i.e. the production system
cannot reach large throughput rates for product 1 and thus assigns less capacity to this product. Consequently,
product 1 must wait for products 2 and 3 with higher priority to be processed. This is the opposite for product 2
since its saturation state increases from 0.82 to 0.87, i.e., the production system assigns the maximum capacity
to product 2. This capacity share significantly decreases the cycle time of product 2 which has the highest priority.
In addition, for the largest throughput rates (i.e., A/Amax> 0.87) and when a third vehicle is added to the AMHS,
the production system is no longer able to process product 1.

Figure 13 depicts the significant impact of prioritizing products on the cycle times. Products 1 and 3 are
negatively impacted since their cycle times increase compared to the case with no priority between products.
On the other hand, the cycle time of product 2, which has the highest priority, significantly decreases. Figure 13
also shows that the production system cannot handle the largest throughput rates of product 1 when products

are prioritized.



4.3.3. Impact of products’ priority on the cycle time

In another analysis, Table 5 reports the impact of imposing the priorities of products on the KPIs. Products
are prioritized as follows: P, > P3 > P1, wherein P, has the highest priority and P, has the lowest priority. Table 5
shows that assigning the highest priority to P, leads to an improvement of its KPls. On the contrary, the KPIs of
P1 and P; degrade since they have to wait whenever a new unit of P, arrives. Therefore, P; and Ps are congested
in the system and their KPIs degrade. NaN values refer to the saturation of the system for P; that has the lowest
priority. This means that the queue length of P; goes to infinity. This happens in instances (i.e., 14, 18, 112, 116,
and 120) with the highest throughput rate (i.e., 98%). Accordingly, prioritizing the products may make the
production system unstable in case of high throughput rates.

Table 5. Impact of imposing the priorities of products

Instance Cycle Time Increase (%) Waiting for time Increase (%) Queue Length Increase (%)
Py P> P3 P1 P> P3 P1 P> P3
11 17 -75 32 18 -77 34 17 -75 32
12 41 -68 57 42 -69 61 41 -68 57
13 181 -59 155 186 -60 164 181 -59 155
14 NaN* -47 640 NaN -48 659 NaN -47 640
15 12 -77 21 12 -78 23 12 -77 21
16 46 -67 65 47 -68 70 46 -67 65
17 165 -59 137 170 -60 145 165 -59 137
18 NaN -47 555 NaN -48 571 NaN -47 555
19 12 -77 22 13 -78 24 12 -77 22
110 48 -67 69 50 -68 74 48 -67 69
111 171 -59 143 175 -60 152 171 -59 143
112 NaN -47 602 NaN -48 620 NaN -47 602
113 12 -77 23 13 -78 24 12 -77 23
114 50 -67 71 51 -68 76 50 -67 71
115 174 -59 146 179 -60 155 174 -59 146
116 NaN -47 621 NaN -48 639 NaN -47 621
117 13 -77 23 13 -78 25 13 -77 23
118 40 -68 55 41 -69 59 40 -68 55
119 177 -59 149 181 -60 158 177 -59 149
120 NaN -47 631 NaN -48 650 NaN -47 631

* System saturation with no feasible solution

In another experiment, Figure 14 illustrates the impact of the number of vehicles on the products’ cycle
time without and with priorities on products. These results are based on instance 120 where the production
system operates at 80% of its capacity (i.e., A/Amax= 0.80). The upper-left part of Figure 14 shows that increasing
the number of vehicles to 4 helps to decrease the cycle time of all the products, and there is no significant change
with more than 4 vehicles. This shows that the proposed QAG model supports manufacturers in determining the
required number of vehicles for the AMHS not to impact the production system's performance. Other figures in
Figure 14 show the impact of the number of vehicles on the cycle time of each product without and with priorities
on products.
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Figure 14. Number of vehicles vs. Product cycle time: Without and with priorities on products

4.4. Capacity planning of the AMHS

This section evaluates the performance of the AMHS to keep the troublesome workstation (TW) and the
fastest workstation (FW) from being idle. Accordingly, two policies are considered: Policy 1: “Preventing FW from
being idle” and Policy 2: “Preventing TW from being idle”. For such a capacity planning, instance 120 is considered
as the base case where the production system operates at 85% of its capacity (i.e., A/Amax = 0.85). The service
level (target probability) a is set to 95%, i.e. in 95% of the time, TW and FW are operating (i.e., they become idle
less than 5% of the time) and at least one unit of product is waiting to be processed.

Table 6 reports the service levels for both TW and FW with the number of vehicles in the AMHS. In the
case study of Figure 8, workstations 6 and 1 become TW and FW, respectively. Table 6 shows that, with Policy 1
and a service level of a = 95%, at least 5 vehicles are required in the AMHS. On the other hand, Policy 2 requires
at least 3 vehicles in the AMHS. The difference between the numbers of vehicles between two policies is due to
the fact that the FW releases the products quickly and more products are waiting to be transported to the next
workstation(s) and consequently higher demand of vehicles. In opposite, the TW is lowest workstation in terms
of service rate and consequently it is busy most of the time. Therefore, no hurry to feed the TW. Accordingly, the
TW can be busy for 95% of the time with lower number of vehicles. Although Policy 1 requires more vehicles
than Policy 2, the proposed QAG model provides analytical information on the capacity planning of the AMHS.

These number of vehicles, 5 vehicles and 3 vehicles, are the minimum number of vehicles to keep the FW
and TW busy, respectively. Obviously, increasing the number of vehicles increases the service level up to a level
that both FW and TW are always busy (i.e., service rate 100%). The 100% of service rate happens when operating
6 and 4 vehicles for the FW and TW, respectively. Increasing the number of vehicles from these values no more
affects the service rate and the vehicles become idle for a percent of time.



Table 6. Capacity planning of the AMHS

# of Vehicles Service Level
Fastest Workstation (FW) Troublesome Workstation (TW)
1 0.38 0.65
2 0.57 0.87
3 0.80 0.97
4 0.92 1.00
5 0.98 1.00
6 1.00 1.00
7 1.00 1.00
8 1.00 1.00
5. Conclusion

Processing a wide range of products to answer dynamic customers’ requirements has become one of the
greatest challenges in almost all manufacturing systems. This makes production planning of such manufacturing
systems more and more important and complex to improve the performance of factories. The main performance
indicators to evaluate a production system are the cycle time and the throughput. Accordingly, an accurate
estimation of the cycle time as a function of the throughput is critical. The material handling system often
significantly impacts the performance of the overall system, in particular the cycle time. Today’s manufacturing
systems are very complex and include many processing and handling operations that make it impossible to
evaluate the components one by one using simple analytical methods. Accordingly, a novel approach is required
to accurately aggregate the production system’s components into a simpler configuration, and then evaluate the
aggregated system.

In this paper, we proposed a novel aggregation model based on a queueing network approach, so-called
gqueue-based aggregation (QAG) model, to estimate the cycle time of a job-shop production system that consists
of several processing workstations and in which products are transferred via an Automated Material Handling
System (AMHS). In this model, the whole job-shop system is aggregated into a single-step workstation. The
parameters of the single-step aggregated workstation are approximated based on the parameters of the original
processing workstations and the AMHS. The proposed model aggregates both production and handling systems
and provides an accurate and fast estimation of the overall cycle time. The performance and superiority of the
proposed model are validated by comparing its results with those of a detailed discrete-event simulation model,
but the utilization of the proposed QAG model with throughput rates higher than 80% is not recommended.
However, it depends on the tolerance of the experts to the accuracy of the cycle time approximation.

Through a comprehensive sensitivity analysis, it is observed that, among various parameters, increasing
the arrival rates as well as the failure rates of the processing workstation and the AMHS significantly increases
the cycle time. On the other hand, increasing the speed of the vehicles in the AMHS, as well as the retrieving
rates of the processing workstation and of the AMHS, helps to significantly decrease the cycle time. In another
experiment, it is verified that the AMHS with a limited number of vehicles has a noticeable impact on the cycle
time. This confirms that it is essential to consider the MHS when evaluating the performance of a production
system. In addition, an experiment is conducted to analyze the capacity of the AMHS system by defining a service
level for the fastest and the troublesome workstations.

The performance of the production system is also analyzed when the products are prioritized. In this case,
a product must wait when a product with higher priority arrives and needs to be processed in the corresponding
workstation. It is observed that the product's priority has a significant impact on the cycle time and the capacity
of the production system to handle the products with lower priorities. In an extreme case with high throughput
rates, the product with the lowest priority could no longer be processed.

We believe the following future research directions are relevant to investigate:

. In this paper, the storage capacity at the workstations is limited. An interesting future research direction
could be to model the processing workstations with a finite buffer by using GI/G/c/K queuing models. In
this case, a product arriving in the full buffer is ignored and leaves the system. What happens to the
departing products should be defined.

° Another research direction consists in considering production systems with re-entrant/re-work
operations. In this case, at each workstation, a given percentage of products should re-do some of their
operations at already visited workstations. The proposed QAG model can be easily adapted for this case
by accumulating the arrival rate of products at each workstation that is the sum of: 1) The arrival rate of



products that arrive for the first time to the workstation and 2) The arrival rate of products from
downstream workstations that require re-working.

Considering the lead time of jobs to account for the number of tardy jobs in the production system, and
analyzing how the AMHS and the throughput rate impact this number, also constitutes an interesting
research avenue.

The proposed QAG model does not actually schedule the arriving jobs on the workstation, but only
analyzes and evaluates the congestion at workstations. The dispatching rule in the QAG model (without
priority) is FIFO. However, many production systems also require setup times and even sequence-
dependent setup times. The setup times of different jobs can be integrated in the QAG model as an
expected value depending on the arrival rate of each product to workstations. If we consider the setup
time of product p on workstation i as st,, the expected setup time of the aggregated product at
workstation i, stp;, would be stp; = X, T,St,,;. This value can be added to the processing time of the
products at workstations. Studying this new property is also relevant.
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