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Abstract

This work introduces a natural variant of the online machine scheduling problem on
unrelated machines, which we refer to as the favorite machine model. In this model,
each job has a minimum processing time on a certain set of machines, called favorite
machines, and some longer processing times on other machines. This type of costs
(processing times) arise quite naturally in many practical problems. In the online
version, jobs arrive one by one and must be allocated irrevocably upon each arrival
without knowing the future jobs. We consider online algorithms for allocating jobs in
order to minimize the makespan.

We obtain tight bounds on the competitive ratio of the greedy algorithm and char-
acterize the optimal competitive ratio for the favorite machine model. Our bounds
generalize the previous results of the greedy algorithm and the optimal algorithm for
the unrelated machines and the identical machines. We also study a further restriction
of the model, called the symmetric favorite machine model, where the machines are
partitioned equally into two groups and each job has one of the groups as favorite
machines. We obtain a 2.675-competitive algorithm for this case, and the best possible
algorithm for the two machines case.

1 Introduction

Online scheduling on the unrelated machines is a classical and well-studied problem. In this
problem, there are n jobs that need to be processed by one of m different machines. The jobs
arrive one by one and must be assigned to one machine upon their arrival, without knowing
the future jobs. The time to process a job changes from machine to machine, and the goal
is to allocate all jobs so as to minimize the makespan, that is, the maximum load over the
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machines. The load of a machine is the sum of the processing times of the jobs allocated to
that machine.

Online algorithms are designed to solve the problems when the input is not known from
the very beginning but released “piece-by-piece” as aforementioned. Since it is generally
impossible to guarantee an optimal allocation, online algorithms are evaluated through the
competitive ratio. An online algorithm whose competitive ratio is ρ ≥ 1 guarantees an
allocation whose makespan is at most ρ times the optimal makespan.

For scheduling on unrelated machines, online algorithms have a rather “bad” performance
in terms of the competitive ratio. For example, the simple greedy algorithm has a competitive
ratio of m, the number of machines; the best possible online algorithm achieves a competitive
ratio of Θ(logm). However, some well-known restrictions (e.g., the identical machines and
related machines) admit a much better performance, that is, a constant competitive ratio.

In fact, many practical problems are neither as simple as the identical (or related) ma-
chines cases, nor so complicated as the general unrelated machines. In a sense, practical
problems are somewhat “intermediate” as the following examples suggest.

Example 1 (Two types of jobs (Vakhania et al., 2014)). This restriction of unrelated ma-
chines arises naturally when there are two types of products. For instance, consider the
production of spare parts for cars. The manufacturer may decide to use the machines for the
production of spare part 1 to produce spare part 2, and vice versa. The machine for spare
part 1 (spare part 2, respectively) takes time p for part 1 (part 2, respectively), but it can
also manage to produce part 2 (part 1, respectively) in time q > p.

Example 2 (CPU-GPU cluster (Chen et al., 2014)). A graphics processing unit (GPU) has
the ability to handle various tasks more efficiently than the central processing unit (CPU).
These tasks include video processing, image analysis, and signal processing. Nevertheless, the
CPU is still more suitable for a wide range of other tasks. A heterogeneous CPU-GPU system
consists of a set M1 of GPU processors and a set M2 of CPU processors. The processing
time of job j is pj1 on a GPU processor and pj2 on a CPU processor. Therefore, some jobs
are more suitable for GPU and others for CPU.

Inspired by these examples, we consider the general unrelated machines case by observing
that each job in the system has a certain set of favorite machines which correspond to the
shortest processing time for this particular job. In Example 1, the machines for spare parts
1 are the favorite machines for these parts (processing time p < q), and similarly for spare
parts 2. In Example 2, we also have two type of machines (GPU and CPU) and some jobs
(tasks) have GPUs as favorite machines and others have CPUs as favorite machines.

1.1 Our contributions and connections with prior work

We study the online scheduling problem on what we call the favorite machine model. Denote
the processing time of job j on machine i by pji and the minimum processing time of job j
by pj = mini pji. Thus the set of favorite machines of job j is defined as Fj = {i| pji = pj}
and the favorite machine model is as follows:
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(f -favorite machines) This model is simply the unrelated machine setting when
every job j has at least f favorite machines (|Fj| ≥ f). The processing time of
job j on any favorite machine i ∈ Fj is pj, and on any non-favorite machine
i /∈ Fj is an arbitrary value pji > pj.

This model is motivated by several practical scheduling problems. Besides the two types
of jobs/machines problems mentioned in Examples 1 and 2, the model also captures the
features of some real life problems. For example, workers with different levels of proficiency
for different jobs in manufacturing; tasks/data transfer cost in cloud computing and so on.

It is worth noting that this model interpolates between the unrelated machines where
possibly only one machine has minimal processing time for the job (f = 1) and the identical
machines case (f = m). The f -favorite machines setting can also be seen as a “relaxed”
version of restricted assignment problem where each job j can be allocated only to a subset
Fj of machines: the restricted assignment problem is essentially the case where the processing
time of a job on a non-favorite machine is always ∞.

We obtain tight bounds on the Greedy algorithm1 and the well-known Assign-U algo-
rithm (designed for unrelated machines by Aspnes et al. (1997)) for the f -favorite machines
case, and show the optimality of the Assign-U algorithm by providing a matching lower
bound. For the Greedy algorithm, the competitive ratio is m+f−1

f
, which generalizes the

well-known bounds on the competitive ratio of Greedy for unrelated machines (f = 1) and
identical machines (f = m), that is, m and 2 − 1

m
, respectively. The Assign-U algorithm

has the optimal competitive ratio Θ(log m
f

), while it is Θ(logm) for unrelated machines.

Easier instances and the impact of “speed ratio”. Note that whenever f = Θ(m),
the competitive ratio is constant. In particular, for f = m

2
, Greedy has a competitive ratio

of 3− 2
m

. We consider the following restriction of the model above such that a finer analysis
is possible.

(symmetric m
2

-favorite machines) All machines are partitioned into two groups of
equal size m

2
, and each job has favorite machines as exactly one of the two groups

(therefore f = m
2

and m is even). Moreover, the processing time on non-favorite
machines is s times that on favorite machines, where s ≥ 1 is the scaling factor
(the “speed ratio” between favorite and non-favorite machines).

We show that the competitive ratio of Greedy is at most min{1 + (2− 2
m

) s2

s+1
, s+ (2−

2
m

) s
s+1

, 3− 2
m
} (< 3). A modified greedy algorithm, called GreedyFavorite, which assigns

each job greedily but only among its favorite machines, has a competitive ratio of 2− 1
f

+ 1
s

(<

3). As one can see, the Greedy is better than GreedyFavorite for smaller s, and
GreedyFavorite is better for larger s. Thus we can combine the two algorithms to obtain a
better algorithm (GGF) with a competitive ratio of at most min{2+ s2+s−2

s+1
, 2+ 1

s
} (≤ 2.675).

Indeed, we characterize the optimal competitive ratio for the two machines case. That is,

1This algorithm assigns each job to a machine whose load after this job assignment is minimized.
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for symmetric 1-favorite machines, we show that the GGF algorithm is min{1 + s2

s+1
, 1 + 1

s
}-

competitive and there is a matching lower bound.
For this problem, our results show the impact of the speed ratio s on the competitive ratio.

This is interesting because this problem generalizes the case of two related machines (Epstein
et al., 2001), for which s is the speed ratio between the two machines. The two machines
case has also been studied earlier from a game theoretic point of view and compared to the
two related machines (Chen et al., 2017; Epstein, 2010).

Relations with prior work. As mentioned above, the f -favorite machines is a special
case of the unrelated machines and a general case of the identical machines. The symmetric
1-favorite machines is a generalization of the 2 related machines.

Besides, there are several other “intermediate” problems that have connections with our
models and results in the literature (see Figure 1 for an overview). Specifically, in the two
types of machines case (Imreh, 2003; Chen et al., 2014), they have two sets of machines, M1

and M2, and the machines in each set are identical. Each job j has processing time pj1 for any
machine in M1, and pj2 for any machine in M2. The so-called balanced case is the restriction
in which the number of machines in the two sets are equal. Note that our m

2
-favorite machines

is a generalization of the balanced case, because each job has either M1 or M2 as favorite
machines, and thus f = |M1| = |M2| = m

2
. The symmetric m

2
-favorite machines case is the

restriction of the balance case in which the processing time on non-favorite machines is s
times that of favorite ones, i.e., either pj1 = s · pj2 or pj2 = s · pj1.

1.2 Related work

The Greedy algorithm (also known as List algorithm) is a natural and simple algorithm,
often with a provable good performance. Because of its simplicity, it is widely used in many
scheduling problems. In some cases, however, better algorithms exist and Greedy is not
optimal.

Identical machines. For m identical machines, the Greedy algorithm has a competitive ratio
exactly 2− 1/m (Graham, 1966), and this is optimal for m = 2, 3 (Faigle et al., 1989). For
arbitrary larger m, better online algorithms exist and the bound is still improving (Karger
et al., 1996; Bartal et al., 1995; Albers, 1999). Till now the best-known upper bound is
1.9201 (Fleischer and Wahl, 2000) and the lower bound is 1.88 (Rudin III, 2001).

Related machines (uniform processors). The competitive ratio of Greedy is (1 +
√

5)/2 ≈
1.618 for two machines (m = 2), and it is at most 1 +

√
2m− 2/2 for m ≥ 3. The bounds

are tight for m ≤ 6 (Cho and Sahni, 1980).
When the number of machines m becomes larger, the Greedy algorithm is far from

optimal, as its competitive ratio is Θ(logm) for arbitrary m (Aspnes et al., 1997). Aspnes
et al. (1997) also devise the Assign-R algorithm with the first constant competitive ratio
of 8 for related machines. The constant is improved to 5.828 by Berman et al. (2000).

Some research focuses on the dependence of the competitive ratio on speed s when m
is rather small. For the 2 related machines case, Greedy has a competitive ratio of 1 +
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two related machines

1 + min{ s
s+1

, 1
s
}, 1 + min{ s

s+1
, 1
s
} (∗)

symmetric 1-favorite

1 + min{ s2

s+1
, 1}, 1 + min{ s2

s+1
, 1
s
} (∗)

symmetric m
2

-favorite

min{1 + (2− 2
m

) s2

s+1
, s+ (2− 2

m
) s
s+1

, 3− 2
m
}, 2.675

balanced two types

3− 2
m

, 1 +
√

3 ≈ 2.732

m
2

-favorite machines

3− 2
m

, −

two types of machines

1 + m−1
f

(for f ≤ m
2

), 3.85

f -favorite machines

1 + m−1
f

, Θ(log m
f

) (∗)

unrelated machines

m, Θ(logm) (∗)

Figure 1: Comparison between prior problems and results (in red) and our problems and
results (in blue). The two bounds below each problem are the competitive ratios for Greedy
and best-known algorithm, respectively, and the “(∗)” mark represent the optimality of the
best-known algorithm. Arrows go from a problem to a more general one, and therefore the
upper bounds for the general problem apply to the special one as well.
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min{ s
s+1

, 1
s
} and there is a matching lower bound (Epstein et al., 2001).

Unrelated machines. As to the unrelated machines, Aspnes et al. (1997) show that the
competitive ratio of Greedy is rather large, namely m. In the same work, they present the
algorithm Assign-U with a competitive ratio of O(logm). A matching lower bound is given
by Azar et al. (1992) in the problem of online restricted assignment.

Restricted assignment. The online restricted assignment problem is also known as online
scheduling subject to arbitrary machine eligibility constraints. Azar et al. (1992) show that
Greedy has a competitive ratio less than dlog2me+1, and there is a matching lower bound
dlog2(m + 1)e. For other results of online scheduling with machine eligibility we refer the
reader to the survey by Lee et al. (2013) and references therein.

Two types of machines (CPU-GPU cluster, hybrid systems). Imreh (2003) proves that
Greedy algorithm is (2 + m1−1

m2
)-competitive for this case, where m1 and m2 (≤ m1) are the

number of two sets of machines, respectively. In our terminology, f = m2 and m1 = m− f ,
meaning that Greedy is (1 + m−1

f
)-competitive for f ≤ m

2
. The same work also improves

the bound to 4 − 2
m1

with a modified Greedy algorithm. Chen et al. (2014) gives a 3.85-
competitive algorithm for the problem, and a simple 3-competitive algorithm and a more
involved 1 +

√
3 ≈ 2.732-competitive algorithm for the balanced case, that is, the case

m1 = m2.

Further models and results. Some work consider restrictions on the processing times in the
offline version of scheduling problems. Specifically, Vakhania et al. (2014) consider the case
of two processing times, where each processing time pji ∈ {q, p} for all i and j. Kedad-
Sidhoum et al. (2018) consider the two types of machines (CPU-GPU cluster) problem, and
Gehrke et al. (2018) consider a generalization, the few types of machines problem. Some
work also study similar models in a game-theoretic setting (Lavi and Swamy, 2009; Auletta
et al., 2015). Regarding online algorithms, several works consider restricted assignment with
additional assumptions on the problem structure like hierarchical server topologies (Bar-
Noy et al., 2001) (see also Crescenzi et al. (2007)). For other results of processing time
restrictions, we refer the reader to the survey by Leung and Li (2008). Finally, the f -favorite
machine model in our paper has been recently analyzed in a follow-up paper in the offline
game-theoretic setting (Chen and Xu, 2018).

2 Model and preliminary definitions

The favorite machines setting. There are m machines, M := {1, 2, . . . ,m}, to process
n jobs, J := {1, 2, . . . , n}. Denote the processing time of job j on machine i by pji, and the
minimum processing time of job j by pj = mini∈M pji. We define the favorite machines of
a job as the machines with the minimum processing time for the job. Let Fj ⊆ M be the
set of favorite machines of job j. Assume that each job has at least f favorite machines, i.e.,
|Fj| ≥ f for j ∈ J . Thus, the processing time of job j on its favorite machines equals to
the minimum processing time pj (i.e., pji = pj for i ∈ Fj), while the processing time on its
non-favorite machines can be any value that greater than pj (i.e., pji > pj for i /∈ Fj).
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The symmetric favorite machines setting. This setting is the following restriction of
the favorite machines. There are m = 2f machines partitioned into two subsets of f machines
each, that is, M = M1 ∪M2, where M1 = {1, 2, . . . , f} and M2 = {f + 1, f + 2, . . . , 2f}.
Each job j has either M1 or M2 as its favorite machines, i.e., Fj ∈ {M1,M2}. The processing
time of job j is pj on its favorite machines and s · pj on non-favorite machines, where s ≥ 1.

Further notation. We say that job j is a good job if it is allocated to one of its favorite
machines, and it is a bad job otherwise.

Let li(j) denote the load on machine i after jobs 1 through j are allocated by online
algorithm:

li(j) =

{
li(j − 1) + pji , if job j is assigned to machine i ,

li(j − 1) , otherwise.

In the analysis, we shall sometimes considered the machines in non-increasing order of
their loads. For a sequence jobs, we denote by `i(j) the ith highest load over all machines
after the first j jobs are allocated, i.e.,

`1(j) ≥ `2(j) ≥ · · · ≥ `m(j) , for any j ∈ J .

The jobs arrive one by one (over a list) and must be allocated irrevocably upon each
arrival without knowing the future jobs. the goal is to minimize the makespan, the maxi-
mum load over all machines. The competitive ratio of an algorithm A is defined as ρA :=
supI

CA(I)
Copt(I)

, where I is taken over all possible sequences of jobs, CA(I) is the cost (makespan)

of algorithm A on sequence I, and Copt(I) is the optimal cost on the same sequence. We
write CA and Copt for simplicity whenever the job sequence is clear from the context.

3 The favorite machine model

In this section, we first analyze the performance of the Greedy algorithm and show its
competitive ratio is precisely m+f−1

f
. We then show that no online algorithm can be better

than Ω(log m
f

) and that algorithm Assign-U (Aspnes et al., 1997) has an optimal competitive

ratio of O(log m
f

) for our problem.

3.1 Greedy Algorithm

Algorithm Greedy: Every job is assigned to a machine that minimizes the completion
time of this job (the completion time of job j if allocated to machine i is the load li(j)
of machine i after the job is allocated).

Theorem 3. The competitive ratio of Greedy is at most m+f−1
f

.

The key part in the proof of Theorem 3 is the following lemma which says that Greedy
maintains the following invariant: the sum of the f largest machines loads never exceeds the
sum of all jobs’ minimal processing times.
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Lemma 4. For f -favorite machines, and for every sequence of n jobs, the allocation of
Greedy satisfies the following condition:

`1(n) + `2(n) + · · ·+ `f (n) ≤ p1 + p2 + · · ·+ pn . (1)

Proof. The proof is by induction on the number n of jobs released so far. The base case is
n = 1. Since Greedy allocates the first job to one of its favorite machines, and the other
machines are empty, we have

∑f
i=1 `i(1) = `i(1) = p1, and thus (1) holds for n = 1.

As for the inductive step, we assume that (1) holds for n− 1, i.e.,

`1(n− 1) + `2(n− 1) + · · ·+ `f (n− 1) ≤ p1 + p2 + · · ·+ pn−1 , (2)

and show that the same condition holds for n, i.e., after job n is allocated.
If job n is allocated as a good job, then the left-hand side of (2) will increase by at most

pn, while the right-hand side will increase by exactly pn. Thus, equation (1) follows from the
inductive hypothesis (2).

If job n is allocated as a bad job on some machine b, then the following observation allows
to prove the statement: before job n is allocated, the load of each favorite machine for job
n must be higher than lb(n− 1) (otherwise Greedy would allocate n as a good job). Since
there are at least f favorite machines for job n, there must be a favorite machine a with

lb(n− 1) < la(n− 1) ≤ `f (n− 1) . (3)

Thus, lb(n− 1) is not one of the f largest loads before job n is allocated. After allocating
job n, the load of machine b increases to lb(n) = lb(n− 1) + pnb. We then have two cases
depending on whether lb(n) is one of the f largest loads after job n is allocated:

Case 1 (lb(n) ≤ `f (n− 1)). In this case, the f largest loads remain the same after job n is
allocated, meaning that the left-hand side of (2) does not change, while the right-hand side
increases (when adding job n). In other words, (1) follows from the inductive hypothesis (2).

Case 2 (lb(n) > `f (n− 1)). In this case, `f (n− 1) will be no longer included in the first f
largest loads, after job n is allocated, while lb(n) will enter the set of f largest loads:

f∑
i=1

`i(n) =

f∑
i=1

`i(n− 1)− `f (n− 1) + lb(n) . (4)

Since Greedy allocates job n to machine b, it must be the case

lb(n) = lb(n− 1) + pnb ≤ la(n− 1) + pn ≤ `f (n− 1) + pn , (5)

where a is the favorite machine satisfying (3). Substituting (5) into (4) and by inductive
hypothesis (2), we obtain

∑f
i=1 `i(n) ≤

∑f
i=1 `i(n− 1) + pn ≤

∑n−1
i=1 pi + pn, and thus (1)

holds. This completes the proof of the lemma.
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Proof of Theorem 3. Without loss of generality we, assume that the makespan of the allo-
cation of Greedy is determined by the last job n (otherwise, we can consider the last job
n′ which determines the makespan, and ignore all jobs after n′ since they do not increase
CGreedy nor decrease Copt).

After allocating the last job n, the cost of Greedy becomes

CGreedy ≤ min

{
min
i∈Fn

li(n− 1) + pn, min
i∈M\Fn

li(n− 1) + pni

}
≤ min

i∈Fn
li(n− 1) + pn

≤ `f (n− 1) + pn , (6)

where the last inequality holds because job n has at least f favorite machines, and thus the
least loaded among them must have load at most `f (n− 1).

Since the optimum must allocate all jobs on m machines, and job n itself requires pn on
a single machine, we have

Copt ≥ max

{∑n
j=1 pj

m
, pn

}
≥ max

{
f · `f (n− 1) + pn

m
, pn

}
. (7)

where the second inequality is due to Lemma 4 applied to the first n−1 jobs only (specifically,
we have

∑n−1
j=1 pj ≥

∑f
i=1 `i(n− 1) ≥ f · `f (n− 1)). By combining (6) and (7), we obtain

CGreedy

Copt

≤ `f (n− 1) + pn

max
{
f ·`f (n−1)+pn

m
, pn

}
= min

m
(
`f (n−1)
pn

+ 1
)

f
`f (n−1)
pn

+ 1
,
`f (n− 1)

pn
+ 1


≤ m+ f − 1

f
,

where the last inequality holds because the first term decreases in `f (n− 1)/pn and the
second term increases in `f (n− 1)/pn.

Theorem 5. The competitive ratio of Greedy is at least m+f−1
f

.

Proof. We will provide a sequence of jobs whose schedule by Greedy has a makespan
m+f−1

f
, and the optimal makespan is 1. For simplicity, we assume that in case of a tie,

the Greedy algorithm will allocate the job as a bad job to a machine with the smallest
index. Without loss of generality, suppose m is divisible by f . We partition the m machines
into m′ := m

f
groups, M1,M2, . . . ,Mm′ , each of them containing f machines, i.e., Mi =

{(i− 1)f + 1, (i− 1)f + 2, . . . , (i− 1)f + f} for i = 1, . . . ,m′.
The jobs are released in two phases (described in detail below): In the first phase, we

force Greedy to allocate each machine in Mi a load of bad jobs equal to i−1, and a load of
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s
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Figure 2: Proof of Theorem 5 (bad jobs in white).

good jobs equal to 1− i
s

for a suitable s > 1 (except for Mm′); In the second phase, several
jobs with favorite machines in Mm′ are released and contribute an additional 2 − 1

f
to the

load of one machine in Mm′ , and thus the makespan is m+f−1
f

.

We use the notation r × (p, F ) to represent a sequence of r identical jobs whose favorite
machines are F , the processing time on favorite machines is p, and on non-favorite machines
is s · p with s ≥ 1.

Phase 1. For each i from 1 to m′ − 1, release a sequence of jobs f × (1 − i
s
,Mi) followed

by a sequence f × ( i
s
,Mi). In this phase, we take s > m′ − 1 +

√
(m′ − 1)(m′ − 2), so that,

for each i, the jobs f × (1 − i
s
,Mi) will be assigned as good jobs to the f machines in Mi,

one per machine, and the jobs f × ( i
s
,Mi) will be assigned as bad jobs to the f machines in

Mi+1, one per machine (as shown in Figure 2).
At the end of Phase 1, each machine in Mi (i ∈ [1,m′−1]) will have load i−1

s
· s+ 1− i

s
=

i(1 − 1
s
), and each machine in Mm′ will have load m′ − 1. The optimal schedule assigns

every job to some favorite machine evenly so that all machines have load 1, except for the
machines in the last group Mm′ which are left empty.

Phase 2. In this phase, all jobs released have Mm′ as their favorite machines, specifically
f(f − 1) × ( 1

f
,Mm′) followed by a single job (1,Mm′). By taking s > m, no jobs will be

allocated as bad jobs by Greedy. Thus, this phase can be seen as scheduling on f identical
machines. Consequently, all jobs will be allocated as in Figure 2 increasing the maximum
load of machines in Mm′ by 2− 1

f
, while the optimal schedule can have a makespan 1.

At the end of Phase 2, the maximum load of machines in Mm′ is m′− 1 + 2− 1
f

= m+f−1
f

,
while the optimal makespan is 1.

3.2 A general lower bound

In this section, we provide a general lower bound for the f -favorite machines problem. The
bound borrows the basic idea of the lower bound for the restricted assignment (Azar et al.,
1992). The trick of our proof is that we always partition the selected machines into arbitrary
groups of f machines each, and apply the idea to each of the group respectively.
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Theorem 6. Every deterministic online algorithm must have a competitive ratio at least
1
2
blog2

m
f
c+ 1.

Proof. Suppose first that m
f

is a power of 2, i.e., m
f

= 2u−1. We provide a sequence of m
jobs having optimal makespan equal to 1, while any online algorithm will have a makespan
at least u+1

2
= 1

2
log2

m
f

+ 1.

We denote by r× (1, F ) a sequence of r identical jobs whose favorite machines are F , the
processing time on favorite machines is 1, and the processing time on non-favorite machines
is greater than u+1

2
= 1

2
log2

m
f

+ 1, so that all jobs must be allocated to favorite machines.
We consider subsets of machines M1,M2, . . . ,Mu, where the first subset is M1 = M

and the others satisfy Mi ⊂ Mi−1 and |Mi| = 1
2
|Mi−1| = m

2i−1 for i = 2, . . . u. We then
release u sets of jobs iteratively. At each iteration i (i = 1, 2, . . . , u), a set of jobs J i with
favorite machinesMu are released for allocation, and after the allocation, half of the “highly
loaded” machines inMi are chosen for the next setMi+1. More in detail, for each iteration
i (i = 1, 2, . . . , u) we proceed as follows:

• Partition the current set Mi of machines into arbitrary groups of f machines each, that
is, into groups Mi,1,Mi,2, . . . ,Mi,m′i

where m′i = |Mi|
f

= m
f ·2i−1 = 2u−i. Then, release a set

of jobs J i:

J i :=

{
Ji,1 ∪ Ji,2 ∪ . . . ∪ Ji,m′i , if 1 ≤ i ≤ u− 1 ;

{f × (1,Mu)} , if i = u ;

where Ji,l :=
{
f
2
× (1,Mi,l)

}
.

• The next setMi+1 of machines consists of the f/2 most loaded machines in each subgroup
after jobs J i have been allocated. Specifically, we let Mi+1 := M ′

i,1 ∪M ′
i,2 ∪ · · · ∪M ′

i,m′i
,

for M ′
i,l ⊂ M i,l being the subset of f/2 most loaded machines in group Mi,l after jobs J i

have been allocated.

We then show that the following invariant holds at every iteration. Note that the following
lemma shows a separation of our method and the one of Azar et al. (1992). Specifically, the
maximum load increases by 1/2 at each iteration in our lower bound, but increases by 1 in
Azar et al. (1992).

Lemma 7. The average load of machines in Mi is at least i−1
2

before the jobs in J i are
assigned for 1 ≤ i ≤ u.

Proof. The proof is done by induction on i. For the base case i = 1, the lemma is trivial.
As for the inductive step, suppose the lemma holds for i.

Denote the average load of Mi,l before the allocation of jobs J i by Avg(i, l), and the
average load of M ′

i,j after the allocation of jobs J i by Avg′(i, l). We claim that Avg′(i, l) ≥
Avg(i, l) + 1/2 after the allocation of jobs J i. Note that Mi and Mi+1 are the union of all
groups Mi,l and M ′

i,l, respectively. Thus, we have that the average load of Mi+1 is at least
i−1
2

+ 1
2

= i
2
, since the average load of Mi is i−1

2
(the inductive hypothesis). This concludes

11



the proof of the inductive step, and thus the lemma follows. Next, we prove that the claim
Avg′(i, l) ≥ Avg(i, l) + 1/2 holds:

Case 1. There is a machine in Mi,l\M ′
i,l that has load at least Avg(i, l) + 1/2. Since M ′

i,l

consists of the f/2 most loaded machines in Mi,l, each machine in M ′
i,l will also have load at

least Avg(i, l) + 1/2. Thus, we obtain that Avg′(i, l) ≥ Avg(i, l) + 1/2.

Case 2. Each machine in Mi,l\M ′
i,l has load no greater than Avg(i, l) + 1/2. Observe that

the total load of Mi,l is k ·Ave(i, l) + k/2 after the allocation of J i. Since Mi,l\M ′
i,l has load

at most k/2 · (Avg(i, l) + 1/2), the average load of the f/2 machines in M ′
i,l must be at least

Avg′(i, l) ≥
k · Avg(i, l) + k

2
− k

2
(Avg(i, l) + 1

2
)

k/2
= Avg(i, l) +

1

2
.

By applying Lemma 7 with i = u, we have that the average load of Mu is at least u−1
2

before the allocation of jobs J u. Thus, after jobs in J u are allocated, the average load of
Mu is at least u−1

2
+ 1 = u+1

2
, i.e., the online cost is at least u+1

2
.

An optimal cost of 1 can be achieved by using the machines in Mi,l\M ′
i,l for J i (for

1 ≤ i ≤ u−1 and 1 ≤ l ≤ m′i) and using machines inMu for J u. Therefore, the competitive
ratio is at least u+1

2
= 1

2
log2

m
f

+ 1. Finally, if m
f

is not a power of 2, we simply apply the

previous construction to a subset of m∗ machines, for m∗

f
= 2buc−1 and u = 1 + log2

m
f

. This

gives the desired lower bound buc+1
2

= 1
2
blog2

m
f
c+ 1.

3.3 General upper bound (Algorithm Assign-U is optimal)

In this section, we prove a matching upper bound for f -favorite machines. Specifically, we
show that the optimal online algorithm for unrelated machines (algorithm Assign-U by
Aspnes et al. (1997) described below) yields an optimal upper bound:

Theorem 8. Algorithm Assign-U can be used to achieve O(log m
f

) competitive ratio.

Following Aspnes et al. (1997), we show that the algorithm has an optimal competitive
ratio ρ (Lemma 9) for the case the optimal cost Copt(J ) is known, and then apply a standard
doubling approach to get an algorithm with competitive ratio 4ρ for the case the optimum
is not known in advance (Theorem 8). In the following, we use a “tilde” notation to denote
a normalization by the optimal cost Copt(J ), i.e., x̃ = x/Copt(J ).

Algorithm Assign-U (Aspnes et al., 1997): Each job j is assigned to machine i∗, where

i∗ is the index minimizing ∆i = al̃i(j−1)+p̃ji − al̃i(j−1), where a > 1 is a suitable constant.

Lemma 9. If the optimal cost is known, Assign-U has a competitive ratio of O(log m
f

).

Proof. Without loss of generality, we assume that the makespan of the allocation of Assign-
U is determined by the last job n (this is the same as the proof of Theorem 3 above). Let

12



l∗i (j) be the load of machine i in the optimal schedule after the first j jobs are assigned.
Define the potential function:

Φ(j) =
m∑
i=1

al̃i(j)
(
γ − l̃∗i (j)

)
, (8)

where a, γ > 1 are constants. Similarly to the proof in Aspnes et al. (1997), we have that
the potential function (8) is non-increasing for a = 1 + 1/γ (see Appendix A.1 for details).
Since Φ(0) ≥ Φ(n− 1) and l̃∗i (n− 1) ≤ 1, we have

γ ·m ≥
m∑
i=1

al̃i(n−1)
(
γ − l̃∗i (n− 1)

)
≥

m∑
i=1

al̃i(n−1)(γ − 1) ≥ f · a˜̀f (n−1)(γ − 1) .

Thus, it follows that

`f (n− 1) ≤ loga

(
γ

γ − 1
· m
f

)
· Copt . (9)

Claim 10. CAssign-U ≤ `f (n− 1) + pn .

Proof. Suppose Assign-U assigns the last job n to machine i′, it holds that

CAssign-U = li′(n− 1) + pni′ ,

since we suppose job n is the last completed job.

Case 1. Job n is allocated as a good job, i.e., pni′ = pn. According to the rule of Assign-U,
machine i′ must be one of the machines in Fn that has the minimum load. Since there
are at least f favorite machines, it holds that li′(n− 1) ≤ `f (n− 1). Thus, CAssign-U ≤
`f (n− 1) + pn.

Case 2. Job n is allocated as a bad job, i.e., pni′ > pn. Let i′′ be the machine who has the
minimum load in Fn. Note that li′′(n− 1) ≤ `f (n− 1). According to the rule of Assign-U,
it holds that li′(n− 1) ≤ li′′(n− 1); otherwise, we have ∆i′ ≥ ∆i′′ , which is contradictory to
that Assign-U assigns job n to machine i′.

Since ∆i′ ≤ ∆i′′ and li′(n− 1) ≤ li′′(n− 1) ≤ `f (n− 1), we have

a
li′ (n−1)+pni′

Copt − a
li′ (n−1)

Copt ≤ a
li′′ (n−1)+pni′′

Copt − a
li′′ (n−1)

Copt ,

so that
li′ (n−1)+pni′

Copt
≤ li′′ (n−1)+pni′′

Copt
≤ `f (n−1)+pni′′

Copt
, implying

CAssign-U = li′(n− 1) + pni′ ≤ `f (n− 1) + pni′′ = `f (n− 1) + pn .

According to Claim 10 and (9), we have

CAssign-U

Copt

≤ `f (n− 1) + pn
Copt

≤ loga

( γ

γ − 1
· m
f

)
+

pn
Copt

≤ loga

( γ

γ − 1
· m
f

)
+ 1 .

Since the latter quantity is O(log m
f

), this proves Lemma 9.

By using the standard doubling approach, Lemma 9 implies Theorem 8 (see Appendix A.2).
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4 The symmetric favorite machine model

This section focuses on the symmetric favorite machines problem, where M = {M1,M2}
(|M1| = |M2| = f), Fj ∈ {M1,M2} for each job j, and the processing time of job j on a non-
favorite machine is s (≥ 1) times that on a favorite machine. We analyze the competitive ratio
of Greedy as a function of the parameter s. Though Greedy has a constant competitive
ratio for this problem, another natural algorithm called GreedyFavorite performs better
for larger s. At last, a combination of the two algorithms, GreedyOrGreedyFavorite,
obtains a better competitive ratio, and the algorithm is optimal for the two machines case.

4.1 Greedy Algorithm

The next two theorems regard the competitive ratio of the Greedy algorithm for the sym-
metric favorite machines case.

Theorem 11. For the symmetric m
2

-favorite machines case, the Greedy algorithm has a
competitive ratio at most

ρ̂Greedy := min

{
1 +

(
2− 1

f

)
s2

s+ 1
, s+

(
2− 1

f

)
s

s+ 1
, 3− 1

f

}
,

where f = m
2

and m is the number of machines.

Since this upper bound increases in s (s ≥ 1), we have the following inequalities:

2− 1

m
≤ ρ̂Greedy ≤ 3− 2

m
,

and both bounds can be achieved by the actual competitive ratio ρGreedy of algorithm
Greedy. Note that for s = 1, the lower bound is indeed tight as it corresponds to the
analysis of Greedy on m identical machines (Graham, 1966). More generally, we have the
following result (whose proof is deferred to Appendix A.3 for readability sake):

Theorem 12. The upper bound in Theorem 11 is tight (ρGreedy = ρ̂Greedy) in each of the
following cases:

1. For f = 1, ρGreedy = min{1 + s2

s+1
, 2};

2. For f = 2 and 1 ≤ s ≤ 1.605, ρGreedy = 1 + 3s2

2(s+1)
;

3. For 3 ≤ f ≤ s
s−1 (implying 1 ≤ s ≤ 1.5), ρGreedy = 1 + (2− 1

f
) s2

s+1
;

4. For f > s
s−1 and 1 ≤ s ≤ 1+

√
5

2
, ρGreedy = s+ (2− 1

f
) s
s+1

;

5. For 2 ≤ f < s, ρGreedy = 3− 1
f

.
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4.1.1 Proof of Theorem 11

Because this is a special case of the general model, we have ρ̂Greedy ≤ 3− 1
f

from Theorem 3

(by recalling that m = 2f). Thus, we just need to prove

CGreedy

Copt

≤ min
{

1 +
(
2− 1

f

) s2

s+ 1
, s+

(
2− 1

f

) s

s+ 1

}
.

Without loss of generality, we assume that the makespan of the allocation of Greedy is
determined by the last job n. Suppose that the first n− 1 jobs have been already allocated
by Greedy, and denote lα = mini∈M1 l

(n−1)
i , Lα =

∑
i∈M1

l
(n−1)
i , lβ = mini∈M2 l

(n−1)
i , Lβ =∑

i∈M2
l
(n−1)
i . Also let Lgood

α and Lgood
β be the total load of good jobs of Lα and Lβ, re-

spectively. Observe that lα ≤ Lα
f

and lβ ≤ Lβ
f

. Without loss of generality, we assume that
machines in M1 are the favorite machines of the last job n.

We first give a lower bound of the optimal cost Copt:

Claim 13. Copt ≥ max
{
f ·s·lα+f ·lβ+s·pn

f ·s2+f ·s ,
f ·lα+f ·s·lβ+s2·pn

f ·s2+f ·s , pn

}
Proof. Denote by Pα and Pβ the total minimum processing time of the jobs which have M1

and M2 as their favorite machines, respectively, i.e.,

Pα =
∑

j: Fj=M1

pj = Lgood
α +

1

s
(Lβ − Lgood

β ) + pn , (10)

Pβ =
∑

j: Fj=M2

pj = Lgood
β +

1

s
(Lα − Lgood

α ) . (11)

A lower bound on the optimal cost can be obtained by considering the following fractional
assignment. First, allocate all jobs as good jobs, i.e., assign Pα to M1 and Pβ to M2. Then,
reassign a fraction of them to make all machines to have the same load. We next distinguish
two cases:

Case 1 (Pα ≥ Pβ). In this case, the reassignment is to move 1
s+1

(Pα−Pβ) of Pα to machines
in M2 so that

Pα −
1

s+ 1
(Pα − Pβ) = Pβ +

s

s+ 1
(Pα − Pβ).

Therefore, along with (10) and (11), the optimal cost is at least:

Copt ≥
s · Pα + Pβ
f(s+ 1)

=
Lα + s · Lβ + s2 · pn + (s2 − 1)Lgood

α

f · s2 + f · s
. (12)

Furthermore, substituting (10) and (11) into Pα ≥ Pβ we have

Lgood
α − Lgood

β ≥ 1

s+ 1
(Lα − Lβ)− s

s+ 1
pn .
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Therefore,

Lgood
α ≥ max

{
1

s+ 1
(Lα − Lβ)− s

s+ 1
pn, 0

}
. (13)

Substituting (13) into (12), we have

Copt ≥ max

{
s · Lα + Lβ + s · pn

f · s2 + f · s
,
Lα + s · Lβ + s2 · pn

f · s2 + f · s

}
.

Along with Copt ≥ pn, Lα ≥ f · lα and Lβ ≥ f · lβ, we obtain the inequation of this claim.

Case 2 (Pα < Pβ). Similarly to the previous case, we have

Copt ≥
Pα + s · Pβ
f(s+ 1)

=
s · Lα + Lβ + s · pn + (s2 − 1)Lgood

β

f · s2 + f · s
(14)

In this case, (10) and (11) imply

Lgood
β ≥ max

{
− 1

s+ 1
(Lα − Lβ) +

s

s+ 1
pn, 0

}
, (15)

Substituting (15) into(14), we have

Copt ≥ max

{
Lα + s · Lβ + s2 · pn

f · s2 + f · s
,
s · Lα + Lβ + s · pn

f · s2 + f · s

}
.

Along with Copt ≥ pn, Lα ≥ f · lα and Lβ ≥ f · lβ, we obtain the inequation of this claim
and complete the proof.

We next consider the cost of the Greedy algorithm. Recall that job n has M1 as favorite
machines. After job n is allocated, we have

CGreedy ≤ min{lα + pn, lβ + s · pn} . (16)

Two cases arise depending on the largest between the two quantities in (16):

Case 1 (lα + pn ≤ lβ + s · pn). This case implies

lβ ≥ lα − (s− 1) · pn , (17)

CGreedy ≤ lα + pn . (18)

Therefore, we have

CGreedy

Copt

≤ lα + pn

max
{
f ·s·lα+f ·lβ+s·pn

f ·s2+f ·s ,
f ·lα+f ·s·lβ+s2·pn

f ·s2+f ·s , pn

}
≤ lα + pn

max
{
f(s+1)lα+(f+s−fs)pn

fs2+fs
, f(s+1)lα+(fs+s2−fs2)pn

fs2+fs
, pn

}
= min

{
(fs2 + fs)(x+ 1)

f(s+ 1)x+ f + s− fs
,

(fs2 + fs)(x+ 1)

f(s+ 1)x+ fs+ s2 − fs2
, x+ 1

}
≤ min

{
1 +

(
2− 1

f

) s2

s+ 1
, s+

(
2− 1

f

) s

s+ 1

}
,
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where the first inequality is by (18) and Claim 13; the second inequality is by (17); the third
equation is obtained by defining x := lα/pn; the first term of the last inequality is obtained
by the second and third terms of the third equation (one decreases in x and one increases in
x); similarly, the second term of the last inequality is obtained by the first and third terms
of the third equation.

Case 2 (lα + pn ≥ lβ + s · pn). This case implies

lα ≥ lβ + (s− 1) · pn and CGreedy ≤ lβ + s · pn .

Similarly to the previous case, we can obtain

CGreedy

Copt

≤ min

{
1 +

(
2− 1

f

) s2

s+ 1
, s+

(
2− 1

f

) s

s+ 1

}
.

The above two cases conclude the proof of the theorem.

4.2 GreedyFavorite Algorithm

We next consider another algorithm called GreedyFavorite which simply assigns each job
j to one of its favorite machines in Fj.

Algorithm GreedyFavorite: Assign each job to one of its favorite machines, chosen
in a greedy fashion (minimum load).

It turns out that this natural variant of Greedy performs better for large s.

Theorem 14. For symmetric m
2

-favorite machines, the GreedyFavorite algorithm has a
competitive ratio of 2− 1

f
+ 1

s
, where f = m

2
and m is the number of machines.

Proof. Note that in GreedyFavorite all jobs are assigned as good jobs. Suppose the
overall maximum load occurred on machine 1 in M1. Moreover, if there is any job executed
on machines in M2, we can remove all of it, which will not decrease CGreedyFavorite

Copt
. Therefore,

all jobs have the same favorite machines M1, and GreedyFavorite assigns all of them to
M1.

We also use lα to represent the minimum load over M1 before job n is allocated. Denote
by Pα the total minimum processing time of the jobs who have M1 as their favorite machines,
which is also the total minimum processing time of all the jobs here. Obviously,

Pα ≥ f · lα + pn (19)

CGreedyFavorite ≤ lα + pn . (20)

The optimal schedule can allocate some of the jobs to M2 to balance the load over all
machines. Thus, the optimal cost will be at least

Copt ≥ max

{
(Pα − x) · 1

f
, x · s

f

}
≥ s

s+ 1
Pα ·

1

f
≥ s

s+ 1

(
lα +

pn
f

)
, (21)
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where x is the load of jobs that are assigned to M2 to balance the load over all machines.
According to (20), (21) and Copt ≥ pn, we have

CGreedyFavorite

Copt

≤ min

{
lα + pn

s
s+1

(lα + pn
f

)
,
lα + pn
pn

}
≤ 2− 1

f
+

1

s
. (22)

Thus the upper bound on the competitive ratio is proved.
To see that this bound is tight for any f and s, consider the following sequence of jobs:

f(f − 1)× ( 1
f
,M1), f × (1

s
,M1), (1,M1) .

According to algorithm GreedyFavorite, all these jobs are assigned to M1 in a greedy
fashion, and thus CGreedyFavorite = 1

f
(f − 1) + 1

s
+ 1 = 2− 1

f
+ 1

s
. The optimal solution will

instead assign the f jobs (1
s
,M1) to M2, thus implying Copt = 1.

4.3 A better algorithm

As one can see, the Greedy is better than GreedyFavorite for smaller s, and Greedy-
Favorite is better for larger s. Thus we can combine the two algorithms to obtain a better
algorithm.

Algorithm GreedyOrGreedyFavorite (GGF): If s ≤ s∗, run Greedy; otherwise
run GreedyFavorite.

Corollary 15. For symmetric m
2

-favorite machines, if s∗ ' 1.481 then ρGGF ≤ min{2 +
s2+s−2
s+1

, 2 + 1
s
} ≤ 2.675.

Proof. By Theorem 11, we have

ρGreedy ≤ s+

(
2− 1

f

)
s

s+ 1
≤ s+

2s

s+ 1
= 2 +

s2 + s− 2

s+ 1
.

By Theorem 14, we have

ρGreedyFavorite ≤ 2− 1

f
+

1

s
≤ 2 +

1

s
.

Note that if s ≤ 1.481, 2 + s2+s−2
s+1

≤ 2 + 1
s
, otherwise 2 + s2+s−2

s+1
> 2 + 1

s
, thus

ρGGF ≤ min

{
2 +

s2 + s− 2

s+ 1
, 2 +

1

s

}
≤ 2.675 .
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4.4 Tight bounds for two machines (symmetric 1-favorite ma-
chines)

In this section, we show that the GGF algorithm is optimal for the symmetric case with two
machines, i.e., the symmetric 1-favorite machines.

Theorem 16. For symmetric 1-favorite machines, any deterministic online algorithm has

competitive ratio ρ ≥ min
{

1 + s2

s+1
, 1 + 1

s

}
.

Proof. Consider a generic algorithm Alg. Note that we have two machines, M1 contains
machine 1 and M2 contains machine 2 only. Without loss of generality, assume the first
job is assigned to machine 1 and this machine then has load 1, that is, job 1 is either
(1,M1) or (1/s,M2).

Job 2 is (s,M1). If Alg assigns job 2 to machine 1, then CAlg = 1 + s while Copt = s,
thus implying ρAlg ≥ 1 + 1

s
. Otherwise, if job 2 is assigned to machine 2, then a third

job (s + 1,M2) arrives. No matter where Alg assigns job 3, the cost for Alg will be
CAlg = s2 + s + 1. As the optimum is Copt = s + 1, we have ρAlg ≥ 1 + s2

s+1
in the latter

case.

By combining Theorem 11, Theorem 14, and Theorem 16, we obtain the following:

Corollary 17. For symmetric 1-favorite machines, if s∗ ' 1.481 then ρGGF = min{1 +
s2

s+1
, 1 + 1

s
} ≤ 1.7549. Therefore, the GGF algorithm is optimal.

5 An extension of our model

In this section, we discuss a simple extension, which explains why the instances, where f is
small, still have a good competitive ratio. The main idea is to consider favorite machines
as the machines which have “approximately” the minimal processing time for the job. For
example, a job with processing times (0.99, 1, 1, 1, 2) might be considered to have approximate
processing times (1, 1, 1, 1, 2). In the latter case, the job has 4 favorite machines, instead of
1.

More formally, we consider the following modified algorithm Â of a generic online algo-
rithm A. For a set of jobs J , fix a parameter c ≥ 1 and denote F̂j := {i : pji ≤ c · pj}. Run
algorithm A assuming processing times are

p̂ji :=

{
pj if i ∈ F̂j ,
pji otherwise.

Note that in the rescaled processing times above the number f̂ of favorite machines per job
satisfies f̂ ≥ f and pji ≤ c · p̂ji. Ideally, we would like f̂ as big as possible and c as small as
possible, as the following observation indicates.

Observation 18. If algorithm A is ρ(f)-competitive for a certain class of instances, where
f denotes the minimum number of favorite machines per job in the input instance, then the
modified algorithm Â is at most c · ρ(f̂)-competitive on the same class of instances.
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6 Conclusion and open questions

This work studies online scheduling for the favorite machine model. Our results are sup-
plements to several classical problems and reveal the relations among them (as indicated
in Figure 1). For the general f -favorite machines case, we provide tight bounds on both
Greedy and Assign-U algorithms and show that the latter is the best-possible online al-
gorithm. To some extent, the key factor f in our model captures some of the main features
that make the model perform well or badly: low or high competitive ratio. In particular,
when f = 1, the model is exactly the unrelated machines; when f = m, the model is exactly
the identical machines. Finally, the analysis of symmetric favorite machines allows a direct
comparison with the two related machines.
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A Postponed proofs

A.1 The potential function is non-increasing (for proof of Lemma 9)

Recall that the potential function is defined as Φ(j) =
∑m

i=1 a
l̃i(j)(γ − l̃∗i (j)). Assume that

job j is assigned to machine i′ by algorithm Assign-U and to machine i by the optimal
schedule, i.e., l̃i′(j) = l̃i′(j − 1) + p̃ji′ and l̃∗i (j) = l̃∗i (j − 1) + p̃ji. Then we have

Φ(j)− Φ(j − 1) = (γ − l̃∗i′(j − 1))(al̃i′ (j) − al̃i′ (j−1))− al̃i(j−1)p̃ji
≤ γ(al̃i′ (j−1)+p̃ji′ − al̃i′ (j−1))− al̃i(j−1)p̃ji
≤ γ(al̃i(j−1)+p̃ji − al̃i(j−1))− al̃i(j−1)p̃ji (by ∆i′ ≤ ∆i)

= al̃i(j−1)(γ(ap̃ji − 1)− p̃ji) .

By taking a = 1 + 1/γ, we get γ(ap̃ji − 1)− p̃ji ≤ 0 since 0 ≤ p̃ji ≤ 1, so that the potential
function is non-increasing.

A.2 Doubling approach (proof of Theorem 8)

Let ρ be the competitive ratio of Assign-U when the optimal cost Copt is known. By using
doubling approach one can easily get a 4ρ-competitive algorithm for the case optimal cost
is not known. This approach has been used in Aspnes et al. (1997). We report the details
below for completeness.

We run Assign-U in phases, and let Λi be the estimation of Copt at the beginning of phase
i. Initially (beginning of phase 1) when the first job arrives, let Λ1 be the minimum processing
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time of the first job. Whenever the makespan exceeds ρ times the current estimation, ρΛi,
the current phase i ends and the next phase i+1 begins with doubled estimation Λi+1 = 2Λi

as the new estimation of the Copt to run Assign-U. During a single phase, jobs are assigned
independently of the jobs assigned in the previous phases. It is easy to see that this approach
increases the competitive ratio ρ by at most a multiplicative factor 4 (a factor of 2 due to the
load in all but the last phase, and another factor of 2 due to imprecise estimation of Copt).

More in detail, each phase i can increase the load of every machine by at most ρΛi. If
u denotes the number of phases, then the final makespan will be no more than ρ

∑u
i=1 Λi.

Note that
∑u

i=1 Λi = (1 + 1
2

+ · · ·+ 1
2u−1 )Λu = (2− 1

2u−1 )Λu, since Λi+1 = 2Λi. We also have
Λu = 2Λu−1 < 2Copt, because Λu−1 < Copt (otherwise in phase u− 1 the makespan will not
exceeds ρΛu−1 according to Lemma 9). Thus we have ρ

∑u
i=1 Λi = (2− 1

2u−1 )ρΛu < 4ρCopt.

A.3 Proof of Theorem 12

In some of the proofs we shall make use of the following initial set of “small” jobs:

f × (ε,M1), f × (
2ε

s
,M1), f × (

2ε

s
,M2), f × (

2ε

s
,M1), f × (

2ε

s
,M2) . . .︸ ︷︷ ︸

t/ε blocks

(23)

where the total number of jobs is f · t/ε, and ε is chosen so that t/ε is integer.
According to the algorithm Greedy, only the first first f jobs of length ε are assigned

as good jobs, while all other jobs are assigned as bad jobs. Moreover, all machines in each
class will have the same load t and t − ε. These jobs can be redistributed to the machines
in order to built arbitrary load (up to some arbitrarily small additive ε). Taking ε→ 0, we
can obtain the following result.

Lemma 19. At the beginning of a schedule by algorithm Greedy, if s < 2, each machine
can have a load of t so that all jobs executed during [0, t] are bad jobs, and each bad job
is extremely “small” so that they can be redistributed to create an arbitrary load on any
machine.

Proof of Theorem 12. We give five instances each of them resulting in a lower bound for the
corresponding case.

Case 1 (f = 1). If 1 ≤ s ≤ 1+
√
5

2
, the jobs sequence is ( 1

s+1
,M2), ( s

s+1
,M2) and (1,M1).

The Greedy algorithm assigns the first job to machine 2, and the last two jobs to machine
1, which leads to CGreedy = 1 + s2

s+1
. In optimal schedule all jobs are allocated as good jobs,

i.e., Copt = 1.
If s > 1+

√
5

2
, the jobs sequence is ( s−1

s
,M2), (1

s
,M2) and (1,M1). The Greedy assigns

the first job to machine 2, and the last two jobs to machine in 1, which leads to CGreedy = 2.
Again, in optimal schedule all jobs are allocated as good jobs, i.e., Copt = 1.

Therefore, ρGreedy = min{1 + s2

s+1
, 2} is tight for any s ≥ 1.

Case 2 (f = 2 and 1 ≤ s ≤ 1.605). Let lα = 3s2

2(s+1)
, S6 =

∑6
i=1(s− 1)i = s−1

2−s(1− (s− 1)6)

and lgoodβ = 2−s
2(s+1)

. The sequence of jobs corresponds to the following three steps:
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Step 1: We use Lemma 19 to let each machine have and initial load lα−S6− lgoodβ + (s− 1)6

of bad jobs, where lα − S6 − lgoodβ + (s− 1)6 ≥ 0 due to 1 ≤ s ≤ 1.605.

Step 2: Four jobs arrive: 2 × (lgoodβ − (s − 1)6,M2) and 2 × (
lgoodβ −(s−1)6

s
,M2). According to

Greedy, the first two jobs will be assigned to machine 3 and 4 respectively as good jobs.
But the last two jobs will be assigned to machine 1 and 2 as bad jobs. At this point, all the
four machines have the same load lα − S6.

Step 3: This sequence of jobs arrive: 2× ((s− 1)6,M2), 2× ((s− 1)5,M2), 2× ((s− 1)4,M1),
2× ((s− 1)3,M2), 2× ((s− 1)2,M1), 2× (s− 1,M2). According to Greedy, the first two
jobs are allocated as good jobs, while the others are allocated as bad jobs. At this point,
the load of machine 1 and 2 is lα, while machine 3 and 4 have load lα − (s− 1).

Step 4: Job (1,M1) arrives, which will be assigned to machine 3 as a bad job. Therefore,
CGreedy = lα + 1 = 1 + 3s2

2(s+1)
. The optimal schedule is to assign all jobs as good jobs. By

calculation we have Copt = 1. Thus, ρGreedy = 1 + 3s2

2(s+1)
is tight for 1 ≤ s ≤ 1.605.

Case 3 (3 ≤ f ≤ s
s−1). Let lα = (2 − 1/f) s2

s+1
, ai = (s − 1)i, Su =

∑u
i=1 ai = s−1

2−s(1 − au)
and lgoodβ = f+s−f ·s

f(s+1)
, where u is even number. Suppose 3 ≤ f ≤ s

s−1+(s+1)au
and 1 ≤ s ≤ 1.5.

Note that when u→∞, we have au → 0, i.e. 3 ≤ f ≤ s
s−1 .

Step 1: We use Lemma 19 to let each machine have an initial load lα − Su − lgoodβ + au of

bad jobs, where lα − Su − lgoodβ + au ≥ 0 due to 3 ≤ f ≤ s
s−1+(s+1)au

and 1 ≤ s ≤ 1.5.

Step 2: These 2f jobs arrive: f × (lgoodβ − au,M2) and f × (
lgoodβ −au

s
,M2). According to

Greedy, the first f jobs will be assigned to M2 as good jobs with one machine each, while
the last f jobs will be assigned to M1 as bad jobs with one machine each. At this point, all
the 2f machines has the same load of lα − Su.
Step 3: This sequence of jobs arrives: f × (au,M2), f × (au−1,M2), f × (au−2,M1), f ×
(au−3,M2), f × (au−4,M1),. . . , f × (a2,M1), f × (a1,M2). According to Greedy, the first f
jobs will be allocated as good jobs while the others as bad jobs. At this point, each machine
in M1 has load lα, and each machine in M2 has load lα − (s− 1).

Step 4: Job (1,M1) arrives, which is assigned to one machine in M2 as a bad job. Therefore,
CGreedy = lα + 1 = 1 + (2− 1/f) s2

s+1
.

The optimal schedule will allocate all jobs as good jobs. We next give such an optimal
schedule to show that Copt = 1 is achievable:
(Step 1 jobs.) All the jobs in Step 1 will be allocated as good jobs in optimal schedule,

meaning f × lα−Su−lgoodβ +au

s
for each of M1 and M2;

(Step 2 jobs.) All the jobs in Step 2 will be assigned to M2;
(Step 3 jobs.) All the jobs in Step 3 will be allocate as good jobs, meaning f × (a2 + a4 +
· · ·+ au−2) will be assigned to M1, while the rest of them to M2;
(Step 4 jobs.) The last job in Step 4 will be assigned to M1.

For the jobs allocated to M1, notice that every 2 jobs of f×(a2+a4+· · ·+au−2) should be
assigned to one machine, i.e., the load of some bf

2
c machines are all 2× (a2 +a4 + · · ·+au−2),
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where 2× (a2 + a4 + · · ·+ au−2) = 2au−2(s−1)2
s(s−2) < 1 since 3 ≤ f ≤ s

s−1+(s+1)au
and 1 ≤ s ≤ 1.5.

Then the other jobs can be easily arranged within time 1, since the jobs in Step 1 are all
“small” jobs.

For the jobs allocated to M2, the jobs can be equally divided into f parts with each part

has
lα−Su−lgoodβ +au

s
+ (lgoodβ − au) +

lgoodβ −au
s

+ (a1 + a3 + · · ·+ au−1 + au)= 1. Thus all machines
in M2 also have the same load of 1. Therefore, Copt = 1.

Thus, ρGreedy = 1+(2−1/f) s2

s+1
is tight for 3 ≤ f ≤ s

s−1+(s+1)au
and 1 ≤ s ≤ 1.5. Taking

u→∞, we have au → 0, i.e. 3 ≤ f ≤ s
s−1 .

Case 4 (f > s
s−1 and 1 ≤ s ≤ 1+

√
5

2
). Let lα = s + f ·s−f−s

f(s+1)
, ai = (s − 1)i, Su =

∑u
i=1 ai =

s−1
2−s(1 − au) and lgoodα = f ·s−f−s

f(s+1)
, where u is odd number. Suppose f > s

s−1−(s+1)au
and

1 ≤ s ≤ 1+
√
5

2
. When u→∞, we have au → 0, i.e. f > s

s−1−(s+1)au
.

Step 1: We use Lemma 19 to let each machine have an initial load lα−Su of bad jobs, where
lα − Su > 0 due to f > s

s−1−(s+1)au
and 1 ≤ s ≤ 1+

√
5

2
.

Step 2: This sequence of jobs arrives: f × (au,M1), f × (au−1,M1), f × (au−2,M2), f ×
(au−3,M1), f × (au−4,M2),. . . , f × (a2,M1), f × (a1,M2). According to Greedy, the first
f jobs will be allocated as good jobs while the others as bad jobs. Up to now each machine
in M1 has load of lα, and each machine in M2 has load of lα − (s− 1).

Step 3: Job (1,M1) arrives, which will be assigned to one machine in M2 as a bad job.
Therefore, CGreedy = lα + 1 = s+ (2− 1/f) s

s+1
.

For the optimal cost, we will show a schedule so that Copt = 1. Part of the jobs in
Step 1 will be allocated as bad jobs in optimal schedule, specifically some jobs with total

minimum processing time f× lgoodα −au
s

having M2 as their favorite machine set will be allocated
to M1 as bad jobs, i.e., M1 will have jobs with total load f × lα−Su

s
+ f × (lgoodα − au)

while M2 will have jobs with total load f × ( lα−Su
s
− lgoodα −au

s
); all the jobs in Step 2 and

3 will be allocate as good jobs, meaning f × (au + au−1 + au−3 + · · · + a2) + 1 will be
assigned to M1, while the rest of them to M2. To sum up, M1 have jobs with total load
f × lα−Su

s
+ f × (lgoodα − au) + f × (au + au−1 + au−3 + · · · + a2) + 1 = f , while M2 have

f × ( lα−Su
s
− lgoodα −au

s
) + f × (au−2 + au−4 + · · ·+ a1) = f .

Then we give a schedule so that each machine has the same load 1. For the jobs allocated
to M1, we first arrange the f × (au+au−1 +au−3 + · · ·+a2) and 1. The job with length 1 will
be assigned to machine 1, and jobs (f − 1)× (au + au−1 + au−3 + · · ·+ a2) will be assigned
to the remaining f − 1 machines with (au + au−1 + au−3 + · · · + a2) each. The remaining
(au + au−1 + au−3 + · · · + a2) will be divided into 2 parts, a2 assigned to machine 2 and
(au + au−1 + au−3 + · · ·+ a4) to machine 3. Note that (au + au−1 + au−3 + · · ·+ a2) + a2 < 1

and 2(au + au−1 + au−3 + · · · + a2) − a2 < 1, due to f > s
s−1−(s+1)au

, 1 ≤ s ≤ 1+
√
5

2
and

au ≤ s − 1. Till now, no machine has load more than 1, and the remaining jobs are all
“small” jobs which can be arbitrary divided and assigned to make every machine with load
1. For the jobs allocate to M2, they can be equally divided into f parts with each size 1.
Therefore, all machines have the same load 1.
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Thus, ρGreedy = s + (2− 1/f) s
s+1

is tight for f > s
s−1−(s+1)au

and 1 ≤ s ≤ 1+
√
5

2
. Taking

u→∞, we have au → 0, i.e. f > s
s−1 .

Case 5 (2 ≤ f < s). Consider this jobs sequence: f × (1 − 1/s,M2), f × (1/s,M2),
f(f − 1)× (1/f,M1) and (1,M1).

According to algorithm Greedy, the first f jobs will be assigned to f machines in M2

respectively, so that each machine in M2 has load 1 − 1/s. Then the next f jobs will be
assigned to f machines in M1 respectively, so that each machine in M1 has load 1. In terms
of the f(f−1) jobs with length 1/f , all of them will be assigned to machines in M1 with f−1
job each machine. Note that none of the f(f−1) jobs will go to M2, since 1− 1

s
+ s

f
> 1+ f−1

f
.

Now all machines in M1 have the same load 2 − 1
f
. At last, the final job with length 1 will

be assigned to one machine in M1, since 2− 1
f

+ 1 < 1− 1
s

+ s. Therefore, CGreedy = 3− 1
f
.

For the optimal cost, it is easy to have Copt = 1 by assigning each job to its favorite class
of machines.

Therefore, ρGreedy = 3− 1/f is tight for 2 ≤ f < s.
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