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Abstract. We consider a vehicle routing problem which seeks to minimize cost subject

to time window and synchronization constraints. In this problem, the fleet of vehicles

is categorized into regular and special vehicles. Some customers require both vehicles’

services, whose starting service times at the customer are synchronized. Despite its im-

portant real-world application, this problem has rarely been studied in the literature. To

solve the problem, we propose a Constraint Programming (CP) model and an Adaptive

Large Neighborhood Search (ALNS) in which the design of insertion operators is based

on solving linear programming (LP) models to check the insertion feasibility. A number

of acceleration techniques is also proposed to significantly reduce the computational time.

The computational experiments show that our new CP model finds better solutions than

an existing CP-based ANLS, when used on small instances with 25 customers and with

a much shorter running time. Our LP-based ALNS dominates the cp-ALNS, in terms of

solution quality, when it provides solutions with better objective values, on average, for

all instance classes. This demonstrates the advantage of using linear programming instead

of constraint programming when dealing with a variant of vehicle routing problems with

relatively tight constraints, which is often considered to be more favorable for CP-based

methods.

Keywords. Vehicle routing problem, time window, synchronization constraint, constraint

programming, adaptive large neighborhood search.

1 Introduction

Most of the requirements related to our daily routines are made by a service provider

coming to our premises. These types of services can be home care delivery, maintenance

operations, public utilities, etc. In such services, efficient delivery and timely service
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play important roles. This is why the class of the Vehicle Routing Problem, coupled

with the Scheduling Problem, comprises a large class of problems with many variations

and applications. The main focus of this research is to study the Vehicle Routing Problem

with Synchronization Constraints (VRPSC), where both time window and synchronization

constraints are present. In the latter constraint, some customers may require the service

of two vehicles whose starting service times at the customer must be synchronized.

In a recent industrial project with an Internet Service Provider (ISP) in Vietnam,

the authors witnessed several contexts where synchronization constraints arose. The ISP

company has to perform installation services for new subscribers and maintenance ser-

vices for subscribed clients. Both services are performed by technicians who mainly use

motorbikes for travelling. In many cases, a customer asks for services by two technicians

belonging to two different teams: one being the ”physical” team, which takes charge of

the hardware (cable wire, modem, etc.); while the other team manages the signal. To

further illustrate the problem, when a customer requires a service from the physical team,

two technicians must be mobilized as one helps the other with equipment set-up, such as

installing a ladder and other protective gear. In addition, an intern technician, who is in

a probationary period, needs to be coupled with an experienced technician at customer

locations. When servicing a customer, the company requires that the starting server time

of both technicians be as close as possible in order to reduce their waiting time and to limit

the disruption to the customer. In the case of our ISP partner, a delay of no more than

15 minutes is permitted. The problem was initially introduced in [8] and can be used to

model other real world applications such as home care delivery, aircraft fleet assignment,

ground handling, and forest operations (see [3] for more information).

Hojabri et al. [8] proposed a constraint programming-based Adaptive Large Neigh-

borhood Search (cp-ALNS) with insertion operators exploiting constraint propagation

capabilities to guarantee the feasibility of a new generated solution. Different from the

popular ALNS proposed in [14] to solve VRPs, the cp-ALNS does not try to add all un-

served requests one by one but, rather, adds all of them at once to create a new complete

solution. Several removal operators were specifically designed for the problem. Numerical

results are reported on instances derived from Vehicle Routing Problem with Time Win-

dow (VRPTW) benchmark instances, with up to 200 customers and 100 synchronizations.

A dynamic version of the problem was introduced in [3] where customer requests were

not foreseen, but arrived one-by-one in real time. The problem was modeled as a CP

program from which a metaheuristic was designed. We note that the methods proposed in

[3, 8] were based on the same CP model which uses variables representing the successor of

a node, AllDifferent and subtour elimination constraints introduced in [18]. However,

no result of the pure CP model has been reported.

Apart from the paper of [8], a problem quite similar to the VRPSC is studied in [4]
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in the context of home care crew scheduling. The problem is first formulated as a mixed

integer programming (MIP) model that constitutes pairwise synchronization and pairwise

temporal precedence between customer visits. It is then solved through an optimization-

based heuristic. Rasmussen et al. [2] solves a similar problem with an exact branch-and-

price algorithm. Due to the application context, there is no capacity constraint and specific

issues about home care crews are taken into account, in addition to the synchronization

requirements, like care giver preferences, customer priority and the ability of a particular

care giver to serve a given customer. Also, not all customers must be serviced because

visits can be rescheduled or canceled.

Afifi et al. [5] propose a simulated annealing algorithm with dedicated local searches

(SA-ILS) for the VRPTW with synchronized visits. Their problem differs from the con-

sidered problem in this work in two ways; first, the synchronized nodes must be serviced

at the same time, i.e., the delay is zero and the fleet of vehicles is not categorized. Second,

three objective functions have been considered: minimizing the total travel time; minimiz-

ing the sum of negative preferences; and minimizing the maximum difference in service

times of the vehicles. Recently, Parragh et al. [7] evaluate several different ways to deal

with pairwise synchronization constraints in the context of two problems: the VRPTW

with pairwise synchronization, and the service technician routing and scheduling prob-

lem. They propose three ways to address the synchronization requirement: individual

synchronized timing optimization; global synchronized timing optimization; and adaptive

time window. The idea of the first two approaches is to keep the ALNS untouched, while

the last one makes some modifications to the insertion scheme in order to identify good

starting service times for synchronized visits.

Pillac et al. [6] introduce a Dynamic Technician Routing and Scheduling Problem

(D-TRSP) which deals with a limited crew of technicians serving a set of requests. In the

D-TRSP, each technician has a set of skills, tools and spare parts required by each request.

In addition to designing a route at the beginning of each day, two types of decisions must

be managed in real time. First, whenever a new request appears, we must decide whether

it is accepted or not. And second, whenever a technician finishes serving a request, we

need to find the next request to serve. For a survey on further synchronization issues in

the context of vehicle routing problems, we refer the readers to [1].

Our main contributions are as follows: we propose a new CP model and a metaheuristic

based on ALNS to address the VRP with time windows and synchronization constraints.

Different from the CP model in the literature, our CP uses sequence and interval variables

of IBM ILOG CP Optimizier [9] to formulate the problem. The most notable feature of

our metaheuristic is we use linear programming and a number of acceleration techniques

to quickly check the feasibility of insertion operations integrated in the popular ALNS [14].

This is the first time LP models are used instead of CP to design the ALNS algorithm
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for the VRP with synchronization constraints. The computational experiments carried

on the benchmark data show the performance of our methods. More precisely, our CP

model can provide better solutions on small-size instances than the cp-ALNS of [8] in a

much shorter running time. Our lp-ALNS dominates the cp-ALNS in terms of solution

quality, as it improves 620 over 681 best known solutions. The remainder of the paper is

organized as follows: Section 2 introduces the problem definition and our new CP model;

the detailed description of the lp-ALNS is provided in Section 3; experimental results are

reported in Section 4; and finally, we conclude our work in Section 5.

2 Problem definition and a new constraint programming

model

The problem may be formally defined as follows: given G = (V,E), an undirected graph,

where V = {v0} ∪ Vs ∪ Vr is the set of nodes representing customer locations and E is the

set of edges. v0 is the depot where a set of vehicles M is located. Vehicles in set M are

again divided into two sub-sets: regular vehicles (set M1) and special vehicles (set M2).

All regular vehicles have a capacity of Q. Vr is the set of regular customers which are

visited by regular vehicles only while Vs is the set of special customers, each requires the

visits of both types of vehicle. Let V c
s be the set of vertices which are the copies of special

customers Vs. Let V1 be defined as V1 = Vr ∪ V c
s . It is considered as the set of customer

vertices that must be visited by regular vehicles. Each vertex i in V1 is associated with a

demand qi. Define vsj and vej (j = {1, 2}) be the vertices at which the vehicle of type j

starts from and comes back to, respectively. Here, j = 1 represents regular vehicles and

j = 2 is the index for special vehicles. Note that, the vertices vsj and vej (i = {1, 2}) share

the same location as v0. Additionally, we define V +
1 = V1 ∪ {vs1} ∪ {ve1} be the set of

vertices appearing on routes of regular vehicles; and V +
2 = Vs ∪ {vs2} ∪ {ve2} be the set of

vertices visited by special vehicles. A service time s1i is associated with a vertex V +
1 , and

a service time s2i is with a vertex i ∈ V +
2 . Note that the service times at the depot and

its copies are set to null. A time window (li, ui) is imposed on each vertex i ∈ V +
1 \ {vs1}.

Finally, each edge (i, j) ∈ E is associated with non-negative values ckij and tkij representing

the travel cost and travel time between vertices i and j of vehicle type k.

The problem then consists in constructing routes for the fleet of vehicles such that the

total travel cost incurred by the fleet of vehicles is minimized and the following constraints

are satisfied:

• Each vehicle must begin the route at the depot, deliver services to customers and

finally return to the depot.

• Each regular customer is served by exactly one regular vehicle.
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• Each special customer is served by exactly one regular vehicle and one special vehicle.

• The total demand serviced by a regular vehicle must not exceed its capacity Q.

• A regular vehicle must start its service at a vertex i ∈ V +
1 \ {vs1} within the time

window (li, ui).

• Starting service time at a special customer i ∈ Vs visited by a special vehicle must

be within a time window [tri − αi, tri + βi]. Here, αi and βi are given parameters

representing a possible delay between regular and special services at vertex i. And,

tri is the starting service time at vertex ri (the copy of i in regular vehicle route).

We now present the new CP model for the problem. First, it is worth mentioning

that unlike MIP formulations, there is no standard in CP formulation because it strongly

depends on each CP package. In this study, we formulate the model using generic keywords

and syntaxes of IBM ILOG CP Optimizier [9] adapted from the CP formulations proposed

by [10, 11, 12, 13]. Our model uses the following variables:

Variables

Itvri interval variable that represents the time interval of size s1i vertex i ∈ V +
1

is visited

ItvAltrij optional interval variable that represents the time interval vehicle j ∈M1

visits vertex i ∈ V +
1 ;

Seqrj sequence variable that represents all working time intervals of vehicle j ∈
M1;

Itvsi interval variable that represents the time interval of size s2i vertex i ∈ V +
2

is visited;

ItvAltsij optional interval variable that represents the time interval vehicle j ∈M2

visits customer i ∈ V +
2 ;

Seqsj sequence variable that represents all working time intervals of vehicle j ∈
M2;

An interval variable represents the interval of time during which a task can occur. It

contains a starting point, an end point, a size, and it can be optional. A decision variable

is used to represent whether or not an interval is present. If an interval is marked as

optional, it may be absent in the solution. Sequence is a type of variable in IBM ILOG

OPL which can be empty or can contain a subset of variables. A sequence represents all

intervals that are present in the solution. The constraints in our model are as follows:

5



Constraints

1. Function to link each interval to a location.

type function θ(Seqrj , ItvAlt
r
ij) = i ∀i ∈ V +

1 , j ∈M1 (1)

type function θ(Seqsj , ItvAlt
s
ij) = i ∀i ∈ V +

2 , j ∈M2 (2)

A θ value is defined for each pair of (Seqrj , ItvAltrij) and (Seqsj , ItvAltsij). The type

θ of the interval variable is its last known location.

2. Each customer must be served by one vehicle of the corresponding type.

alternative (Itvri , ItvAlt
r
ij : j ∈M1) ∀i ∈ V +

1 (3)

alternative (Itvsi , ItvAlt
s
ij : j ∈M2) ∀i ∈ V +

2 (4)

alternative function ensures that exactly one set of intervals ItvAltrij (or ItvAltsij)

is present in the solution; and interval variable starts and ends together with the

interval variable Itvri (or Itvsi ).

3. Travel time between two customers must be taken into account. In the following,

Tk = {tkij} is the matrix representing travel times between two vertices i and j in

the set V +
k .

noOverlap (Seqrj , T1) ∀j ∈M1 (5)

noOverlap (Seqsj , T2) ∀j ∈M2 (6)

noOverlap constraint on sequence variables Seqrj and Seqsj states that the sequence

defines a chain of non-overlapping intervals, and any interval in the chain is con-

strained to end before the start of the next interval in the chain.

4. All vehicles start their route at the starting depot.

first (Seqrj , ItvAlt
r
vs1j

) ∀j ∈M1 (7)

first (Seqsj, ItvAltsvs2j) ∀j ∈M2 (8)

first(p, j) function states that if interval j is present, it will be the first interval in

the sequence p. These two constraints force all regular vehicles to start their routes

at vs1 and all special vehicles to start at vs2.

5. All vehicles finish their routes at the corresponding ending depot.

last (Seqrj , ItvAlt
r
ve1j

) ∀j ∈M1 (9)

last (Seqsj , ItvAlt
s
ve2j

) ∀j ∈M2 (10)
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Similar to first(p, j) function, last(p, j) function states that if interval j is present,

it will be the last interval in the sequence p. These two constraints are to force

all regular vehicles finishing their routes at ending depot ve1 and all special vehicles

finishing their routes at ending depot ve2.

6. Time window constraints.

li ≤ startOf(Itvri ) ≤ ui ∀i ∈ V1 ∪ {ve1} (11)

startOf (j) represents the start of interval j whenever the interval variable j is

present.

7. Capacity constraints.∑
i∈V1

qi.presenceOf (ItvAltrij) ≤ Q ∀j ∈M1 (12)

presenceOf (j) is equal to 1 if interval variable j is present in the solution, 0 oth-

erwise.

8. Synchronization constraints.

startOf (Itvrri)− αi ≤ startOf (Itvsi ) ∀i ∈ Vs (13)

startOf (Itvsi ) ≤ startOf (Itvrri) + βi ∀i ∈ Vs (14)

Objective function

We compute the total cost traveled by regular and special vehicles as follows:

Costrj =
∑

i∈V +
1
c1ik ∀j ∈M1 where

k = typeOfNext (Seqrj , ItvAlt
r
ij , i, i).

Costsj =
∑

i∈V +
2
c2ik ∀j ∈M2 where

k = typeOfNext (Seqsj , ItvAlt
s
ij , i, i).

Then the objective function can be written as:

Minimize
∑
i∈M1

Costri +
∑
i∈M2

Costsi (15)

3 Linear programming-based adaptive large neighborhood

search algorithm

To tackle the VRPSC problem, we design an Adaptive Large Neighborhood Search (ALNS)

heuristic, which is based on a Large Neighborhood Search (LNS) introduced by [19]. At
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each iteration, LNS explores a large neighborhood, which can rearrange a large part of the

current solution, therefore allowing the search to move to other promising search spaces.

More precisely, LNS decomposes the original problem by unfixing some decision vari-

ables, leading to a partial solution. The unfixed decision variables define a neighborhood

of solutions that can be explored by a specific procedure via, possibly, a heuristic or a

Mixed Integer Programming (MIP) solver. If the procedure finds an improved solution,

it becomes the new current solution and a new large neighborhood is defined around it.

This process is repeated until a stopping criterion is reached.

A first key point is the selection of fixed variables to create a partial solution. In

fact, the number of fixed variables impacts the size of the neighborhood (the more fixed

variables, the narrower the neighborhood). A common strategy is to dynamically vary the

number of removed variables. A second key point lies in the selection of fixed/removed

variables which can use a random choice or a more sophisticated strategy to guide the

search. Finally, the procedure that explores the neighborhood should provide good quality

solutions in a short amount of time. Adaptive Large Neighborhood Search is an extension

of LNS with a number of different insertion and removal operators. In comparison with

LNS, a component that adaptively chooses among a set of removal and insertion heuristics

is added to the algorithm. The pseudo-code of a ALNS to solve problems with minimizing

objective function is shown in Algorithm 1. At each iteration, a randomly selected pair of

operators (with procedures SelectDestruction and SelectRepair, lines 5 and 6) is applied to

the current solution (line 7), with probabilities (respectively, sets premove, pinsert ) updated

by a learning process (line 12). The more an operator i has contributed to the solution

process, the larger probability pi it has of being chosen.

3.1 Insertion operators

3.1.1 Cheapest insertion heuristic

The purpose of the insertion operation is to reinsert unserviced requests into solution.

For this task, one can use the cheapest insertion heuristic which inserts the customer

into a route at a feasible position making the objective value increase the least. The

process is repeated until all customers are serviced or no more customers can be inserted.

The insertion cost of a regular customer k into a regular route positioned between two

consecutive vertices i and i+ 1 (denoted by IC1
k) is computed as:

IC1
k = c1ik + c1k(i+1) − c

1
i(i+1) (16)

Whenever a special customer is considered for insertion, it will be added to two po-

sitions: one on regular routes and another on special routes. This must be incorporated

when computing the insertion cost of special customers. The average value is used to
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Algorithm 1: General ALNS

1 Create an initial solution s

2 sbest := s

3 Initialize premove and pinsert

4 while the stop-criterion is not met do

5 re := SelectRemoval(premove)

6 in := SelectInsertion(pinsert)

7 solution s′ = GenerateNewSolution(s, re, in)

8 if cost(s′) < cost(sbest) then

9 sbest := s′

10 if accept(s’, s) then

11 s := s′

12 update premove and pinsert

13 return sbest

compute the insertion cost of a special customer k at positions between vertices i and i+1

on regular routes and between vertices i′ and i′ + 1 on special routes as follows:

IC2
k =

(c1ik + c1k(i+1) − c
1
i(i+1)) + (c2i′k + c2k(i′+1) − c

2
i′(i′+1))

2
(17)

3.1.2 Regret heuristics

As in [14], we also use regret-k heuristics as repair operators. Instead of selecting the

customer with the least insertion cost in each construction step, the regret heuristics

select the customer with the highest regret-k value, computed as follows: we denote fi,j

is the insertion cost when inserting customer i into the best position of route j. If this

insertion is infeasible w.r.t time window and synchronization constraints, the insertion

cost is set to infinity, i.e. fi,j = ∞. Let rik be the route on which vertex i has the k-th

lowest insertion cost. The regret-k value RVi of customer i is then calculated as:

RVi =

k∑
j=1

(f(i,rij) − f(i,ri1)) (18)

The regret-k heuristics choose the unvisited customer i with the highest regret-k value

RVi and insert it into the feasible position leading the least insertion cost. Ties are broken

by selecting customers with the lowest insertion cost f(i,ri1). Informally speaking, we

choose the insertion that leads to the most regret, if it is not done at present. In some

situations, if a vertex can be inserted somewhere in the current solution, but cannot be
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inserted in at least k routes, then the vertex that can be inserted in the fewest number

of routes is selected. This ensures that the vertex which does not have many insertion

options in the current solution will be considered first.

It can be observed that the cheapest insertion heuristic, which we mentioned earlier,

is the special case of the regret heuristic with k = 1 due to the tie-breaking rule. For

any k > 1, the regret heuristic looks further into future solutions to decide the choice of

insertion. In this research, we use regret heuristics with k = {2, 3} to design insertion

operators of our ANLS.

3.1.3 Checking insertion feasibility of regular customers

When inserting a vertex into a position of the current partial solution, it is required to ver-

ify if the insertion satisfies the capacity, time window and synchronization constraints. As

the insertion operation is repeated multiple times during the search, designing a quick ver-

ification procedure is critical to speed up the overall algorithm. As the capacity constraint

is easily checked in O(1), we focus on the time window and synchronization constraints

only. Verifying the feasibility of an insertion operation w.r.t these constraints are more

complex because they delay subsequent visits leading to other violations. As proposed in

[15], the time window constraint can be checked in O(1) by pre-computing the maximum

delay (push forward) that is allowed at each arc of the current solution, without violating

time windows. In this research, we also reuse this idea to handle both time window and

synchronization constraints when inserting regular vertices.

Given a partial solution, in order to consider all possible positions to insert an unserved

regular customer i into the routes, we calculate the maximum duration of time (also called

maximum delay) that can be spared after a vehicle finishes serving vertex p−1 and before

it starts to serve next vertex p without violating any constraints of other nodes. This value

is denoted as δa, where a represents the arc from p− 1 to p. We calculate the maximum

delays at all the arcs of the current solution using the following linear programming model:

Let V1 and V2 be the set of all vertices visited by regular and special vehicles in current

solution s, respectively. Denote A = A1 ∪ A2 is the set of arcs forming the routes in s;

A1 and A2 are the sets of arcs on regular and special routes, respectively. We use two

types of variables: τi implying starting service time at customer i and δa representing the

maximum delay on arc a = (p− 1, p).
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(F1) Maximize δa (19)

Subject to li ≤ τi ≤ ui ∀i ∈ V1 (20)

−αi ≤ τi − τri ≤ βi ∀i ∈ V2 (21)

τi−1 + ski−1 + tk(i−1,i) ≤ τi ∀(i− 1, i) ∈ Ak \ {a}, k ∈ {1, 2} (22)

τp−1 + s1p−1 + t1(p−1,p) + δ(p−1,p) ≤ τp (23)

τi ≥ 0 ∀i ∈ V1 ∪ V2 (24)

δa ≥ 0 (25)

Objective (19) is to maximize the maximum delay on arc a. Constraints (20) and

(21) respectively ensure time window and synchronization constraints at all vertices of the

current solution. Constraints (22) represent the relationship between the starting times

at vertices (i− 1) and i when a vehicle travels from (i− 1) to i. Constraint (23) has the

same meaning as constraints (22) but is written for arc a. Finally, constraints (24) and

(25) define the domain of variables.

After all the maximum delays are available, we check if an unserved regular node i

can be inserted at the position between node p− 1 and node p by computing the earliest

arrival time (arrivalT ime) and the waiting time (waitT ime) at i as follows:

arrivalT imei = τp−1 + s1p−1 + t1(p−1)i

waitT imei = max(li − arrivalT imei, 0)

Finally, we check if feasibility of the insertion satisfies the following constraints:

t1(p−1)i + t1ip − t1(p−1)p + waitT imei + s1i ≤ δ(p−1,p) (26)

arrivalT imei ≤ ui (27)

Constraint (26) ensures that the insertion does not lead to a violation of time window

and synchronization constraints at all the customers in the current solution. Constraint

(27) verifies the time window constraint of vertex i.

Although it is fast to solve a LP model of type (F1), the running time of the insertion

operators is still expensive due to the large quantity of LP models solved during the

search. Through observation, we note that constructing the model to find maximum delay

on each arc takes more computational time than solving it. As such, we propose the

following model to reduce the running time of the insertion operators:
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(F2) Maximize
∑
i∈A

$iδi (28)

Subject to (20), (21), (24)

τi−1 + ski−1 + tk(i−1,i) + δ(i−1,i) ≤ τi ∀(i− 1, i) ∈ Ak, k ∈ {1, 2} (29)

δi ≥ 0 ∀i ∈ A (30)

Objective (28) is to maximize the weighted maximum delay at all arcs of the solution.

Here, $i is a given binary coefficient representing the weight of arc i ∈ A. Constraints

(29) indicate the relationship between the variables δ and τ . To find the maximum delay

on an arc i, we just need to set its weight $i to 1 and weights of other arcs to null. The

proposed model (F2) allows us to save a lot of time by constructing a model once and then

creating a new one by changing two coefficients in the objective function only. As a result,

we can avoid constructing multiple models from scratch. A preliminary experiment shows

that using this method helps reduce at least 30% running time of the overall algorithm.

After each model calculating the maximum delay at an arc with two extremities p − 1

to p is solved, the value of the variables τp−1, τp, and δ(p−1,p) are also saved for checking

insertion feasibility of special customers described in the following section.

3.1.4 Checking insertion feasibility of special customers

Whenever a special customer is selected to be added into the current solution, it will be

inserted into two positions: one on regular routes and the other on special routes. Multi-

ple insertion operations make it impossible to use the maximum delay for the feasibility

verification purpose. The following LP model, without objective function (F3), is used to

check if a special vertex j can be added in arc a1 = (p1− 1, p1) on a regular route and arc

a2 = (p2 − 1, p2) on a special route:

(F3) Subject to li ≤ τi ≤ ui ∀i ∈ V1 ∪ {rj} (31)

−αi ≤ τi − τri ≤ βi ∀i ∈ V2 ∪ {j} (32)

τi−1 + ski−1 + tk(i−1,i) ≤ τi ∀(i− 1, i) ∈ Ak \ {ak}, k ∈ {1, 2} (33)

τp1−1 + s1p1−1 + t1(p1−1,rj) ≤ τrj (34)

τrj + s1rj + t1(rj ,p1) ≤ τp1 (35)

τp2−1 + s2p2−1 + t2(p2−1,j) ≤ τj (36)

τj + s2j + t2(j,p2) ≤ τp2 (37)

τi ≥ 0 ∀i ∈ V1 ∪ V2 ∪ {j, rj} (38)
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The meaning of variables τ , other parameters, and constraints (31)-(33) can be derived

from (F1) and (F2). Constraints (34)-(37) are similar to (33), but written for 4 new arcs

created by the insertion of vertices j and its mirror rj : (p1 − 1, rj), (rj , p1), (p2 − 1, j),

and (j, p2).

As mentioned above, after solving each model computing the maximum delay on an

arc (p−1, p), the starting service times of nodes p−1 and p, or in other words, the values of

τp−1 and τp are saved. τp−1 can be seen as the earliest time the vertex p−1 can be serviced

while τp can be seen as the latest time vertex p can be serviced. To avoid misunderstanding

these notations, we denote τp−1 as etp−1 and τp as ltp. Using these saved values, we can

efficiently check if special node i and its copy ri can be inserted on arc a2 = (p2 − 1, p2)

of a special route and arc a1 = (p1 − 1, p1) of a regular route, respectively. First, lower

bound (denoted by lb) and upper bound (denoted by ub) of arrival times at ri when being

inserted on arc a1 and i when being inserted on arc a2 are computed as follows:

lbri= etp1−1 + s1p1−1 + t1p1−1,ri
ubri= ltp1 − s1ri − t

1
ri,p1

lbi= eti + s2p2−1 + t2p2−1,i

ubi= ltp2 − s2i − t2i,p2 .

It can be seen that the synchronization constraints will be violated in the following

two cases:

lbi − ubri > βi or ubi − lbri < −αi (39)

The insertions of i and ri also need to satisfy the time window constraint at node ri

and the maximum delays computed from the model F2. Thus, we can utilize this property

to rapidly verify the feasibility of the insertions. Unlike regular vertices, possible waiting

times at i and ri are created by not only time window constraints, but also synchronization

constraints. The lower bounds of waiting times created by time window (waitT imetwj ) and

synchronization (waitT imesyncj ) at a node j can be computed as follows:

waitT imetwri = max(0, lri − lbri)
waitT imetwi = 0

waitT imesyncri = max(0, lbi − βi − lbri)
waitT imesynci = max(0, lbri − αi − lbi)

Figure 1 illustrates the computation of waiting times in case of α = 0 and β = 10.

In Figure 1a, the vehicle arrives at the customer location before the time window and

has to wait 30 minutes before starting delivery. In Figure 1b, the special vehicle arrives

before the regular vehicle, but it has to wait until the regular vehicle starts to service the

customer because the value of α is zero. Thus, the waiting time due to the synchronization

constraint, in this case, is 45 minutes.
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Figure 1: Computing waiting times due to time window and synchronization constraints

Hence, we can calculate the lower bounds of waiting times at node j by taking the

maximum value between waitT imetwj and waitT imesyncj :

waitT imeri = max(waitT imetwri , waitT imesyncri )

waitT imei = max(waitT imetwi , waitT imesynci )

After all the values above are calculated, we can skip the insertions which violate one

of the following constraints:

t1(p1−1)ri + t1rip1 − t
1
(p1−1)p1 + waitT imeri + s1ri ≤ δ(p1−1,p1) (40)

t2(p2−1)i + t2ip2 − t
2
(p2−1)p2 + waitT imei + s2i ≤ δ(p2−1,p2) (41)

lbri ≤ uri (42)

The constraints (40) and (41) verify if the insertions satisfy the maximum delays while

constraint (42) checks the time window at the regular vertex ri. In addition, based on the

characteristic of the k-regret heuristics, we can only consider the insertions if their cost is

smaller than the current k-th best insertion cost.

It is worth mentioning that validation procedures (39)-(42), which run in O(1) if the

values of the variables of each program F2 are available, can detect plenty of infeasible

insertions, thus saving a lot of run time of the algorithm. A preliminary experiment

on instances with 50 customers and 25 synchronizations shows that our fast validation

procedures help to increase the algorithm’s speed by up to 20 times. This ratio increases
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on larger instances with more synchronizations. However, if the insertion passes all the

validations, we cannot ensure that the insertion is indeed feasible w.r.t the time window

and synchronization constraints. As a consequence, whenever an insertion of a special

request passes the checks above, we will continue to examine if that insertion is feasible

by solving a program of type (F3). If that model returns a solution, then the insertion is

feasible, and infeasible otherwise.

3.2 Removal operators

The destroy operators remove a fraction of vertices from a complete solution based on

different criteria, each guiding the algorithm to another search space. The input of the

operators is a complete solution s and their outputs are nbrm vertices that have been

removed from the s. We use three destroy operators originally proposed by [14]: random

removal, related removal and worst removal.

3.2.1 Random Removal

This is the simplest removal operator. It randomly selects nbrm vertices in the solution

and removes them. Other vertices remain unchanged. This obviously helps the algorithm

diversify the search.

3.2.2 Related Removal

The idea of the related removal, as its name indicates, is to remove similar vertices with the

expectation that they could interchange their positions to create a better solution. More

specifically, to measure the similarity between two vertices i and j, we use the relatedness

Rij which is calculated as follows:

Rij = λ1
|τi − τj |
maxTime

+ λ2
dij

maxDis
+ λ3

|qi − qj |
maxDem

+ λ4|typei − typej | (43)

To calculate the relatedness of two vertices, we take into account the differences of

four characteristics: their starting service times (τ); the distance between them (dij);

their demand size; and their type. Note that the value of τ is obtained from solving a

program of type F3 whenever a new complete solution is found; and typei is set to 1 if

vertex i is special, and to 0 if it is regular. The difference is normalized such that it only

takes values from the interval [0, 1]. In this formula, maxTime, maxDis, and maxDem

indicate the largest starting service time, the largest distance, and the largest demand of

all vertices in the solution, respectively. In addition, each characteristic i is associated

with a weight λi to measure its importance.
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3.2.3 Worst Removal

The worst removal operator removes the vertices that are very expensive, with the expec-

tation that these vertices might be located in wrong places. Given a request i served by

some vehicle in a solution s, we define the cost of the vertex ∆i as the difference between

the cost of s and the cost of the new solution where vertex i is removed completely from

s. The worst removal heuristic repeatedly chooses a vertex i with the largest cost ∆i until

nbrm vertices have been removed.

To add more diversification to our algorithm, the related and worst removal operators

are randomized by removing the bypr |R|c-th most related (or expensive) request where

R is the set of vertices in solution and y is a random number in [0, 1], and parameter

pr is used to control the randomization. If pr is small, the most related (in the case of

related removal) or expensive (in the case of worst removal) vertex is selected, while less

related (or expensive) vertices may be chosen for larger values of pr with a probability

that decreases with the cost ∆i. The values of pr are taken from [14].

Finally, our lp-ALNS also uses acceptance criteria embedded in a simulated annealing

framework, adaptive score adjustment to select operators in a dynamic fashion, and adding

noise to insertion cost to increase the diversification. All these components and their

parameter settings are taken from [14] without any change.

4 Computational results

In this section, the effectiveness of the proposed algorithms is examined. We test our

algorithms on the instances proposed in [8] with the number of customer |V | = 25, 50,

100, and 200. These instances are generated from the VRPTW instances of [16, 17]

containing three types, depending on the customers’ distribution. The customers are

randomly located in the instances of type R, clustered in type C, and mixed between

randomly located and clustered in type RC. The instances are also categorized into two

classes based on the capacity of vehicles. The first class (including C1, R1, RC1) consists

of instances with a relatively small capacity Q compared to the total customer demand,

while in the second class (C2, R2, RC2), the capacity is relatively large. Note that in the

instances of types R and RC, the vertices are identically distributed in class 1 and 2, while

this is not true for type C. And finally, in these VRPTW instances, the travel time and

travel cost between two vertices are set to their Euclidean distance.

The original VRPTW instances are transformed into VRPSC instances as follows:

the number of special customers |Vs| is set to dns.|V |e where ns is the percentage of

special customers. There are three values for ns: 5%, 25%, and 50%. More precisely,

the first customer in the VRPTW instances is considered a special customer and the next

special customers are selected using a constant interval defined by 1
ns

. In the case of the
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synchronization constraint, the values of αi and βi are set to 0 and 10 for every special

customer i ∈ Vs, respectively. And finally, by private contact, it turns out that the authors

in [8] report inexact results for three instances C101, C105 and C106 with 25 customers

and 2 synchronizations, so we removed these instances from our experiments.

The CP model is coded in IBM OPL 12.8.0 while the lp-ANLS is implemented in C++

using CPLEX 12.8.0 for the resolution of the linear programs. Both methods are run on

a 3.20GHz Xeon(R) E5-2667. Note that our reference algorithm (the cp-ALNS of [8]) was

run on a 3.07GHz Xeon(R) X5675, which is a similar generation to our processor. Since

different CPU speed conversion techniques can provide very different results, we decided

to present the raw running time, letting the readers choose their preferred approach. The

parameter setting of the lp-ALNS is chosen empirically. We have tested many settings

and the following setting gives the best performance, in terms of both quality and compu-

tational time for our algorithm. The number of removed vertices in the removal operators

nbrm is a random integer between 4 and min(40, b0.4 ∗ |V |c). In related removal operator,

the values of λ1-λ4 are set to 4, 2, 1, and 4, respectively. The lp-ALNS stops after 25000

iterations. All the detailed results can be found in http://www.orlab.vn/home/download.

In the first experiment, we compare the results obtained by our CP model and lp-ALNS

with those of cp-ALNS proposed by [8]. Because our CP model cannot handle the large

instances, we chose the small instances with 25 customers for the experiment. The limited

running time of the CP approach for each instance is set to 5 minutes and 3 hours. Table 1

shows the number of times each of our methods finds better solutions (Columns “Better”),

equal solutions (Columns “Equal”), and worse solutions (Columns “Worse”) compared to

cp-ALNS. The columns “Gap” report the average gaps (in percentage) between solution

costs of our methods and those of cp-ALNS. The negative values in these columns indicate

that our methods provide better solutions in terms of objective function values. The results

obtained show that although our CP model-based algorithms cannot solve any instance to

optimality in 3 hours, they do provide quite good solutions. Remarkably, the CP model

performs better than cp-ALNS on 56 instances in a much shorter running time (5 minutes

vs a couple of hours of cp-ALNS). It can be observed that CP models work better on the

instances of the first class (C1, R1, and RC1) and worse on the instances of second class.

The instances with shorter routes tend to be easier for our CP model. The results clearly

show the performance of our lp-ALNS. It is the most efficient method in terms of solution

quality, as it provides 128 better solutions compared to cp-ALNS and is worse on only 7

over 165 instances. Moreover, the gaps, on average, are negative on all instance classes

(except RC12). Our lp-ALNS can averagely improve the objective values up to 4.59%

(instance class R1).

17



Data Sync
lp-ALNS CP (5 min) CP (3h)

Better Equal Worse Gap Better Equal Worse Gap Better Equal Worse Gap

R1

2

12 0 0 -3.22 9 0 3 -0.82 11 0 1 -2.30

R2 11 0 0 -2.49 1 0 10 10.18 1 0 10 9.69

C1 6 0 0 -2.16 6 0 0 -1.45 5 0 1 -1.33

C2 2 6 0 -0.83 1 3 4 2.72 1 3 4 2.72

RC1 7 1 0 -0.79 3 0 5 5.24 5 0 3 1.05

RC2 4 3 1 0.12 0 0 8 9.77 0 0 8 10.92

R1

7

12 0 0 -4.59 7 0 5 6.36 11 0 1 -2.37

R2 8 0 3 -1.98 0 0 11 13.41 0 0 11 9.57

C1 6 3 0 -2.25 5 0 4 -1.68 5 0 4 -1.95

C2 3 5 0 -0.49 2 3 3 4.00 2 3 3 4.00

RC1 8 0 0 -2.80 5 0 3 3.53 6 0 2 -0.95

RC2 7 0 1 -2.93 1 0 7 9.93 0 0 8 8.95

R1

13

12 0 0 -3.82 6 0 6 7.10 8 0 4 -1.02

R2 9 1 1 -2.74 0 0 11 12.14 0 0 11 8.60

C1 5 3 1 -1.78 3 0 6 1.42 4 0 5 -0.48

C2 2 6 0 -1.84 4 0 4 3.23 4 0 4 2.84

RC1 8 0 0 -1.72 3 0 5 4.58 4 0 4 3.35

RC2 6 2 0 -2.25 0 0 8 15.03 0 0 8 14.60

Table 1: CP and lp-ALNS vs cp-ALNS on 25-customer instances

The second experiment is to investigate the performance of the lp-ALNS on all the

instances. The computational results are summarized in Figures 2 and 3, and Table 2 in

Appendix. Figure 2 shows that our algorithm clearly dominates the cp-ALNS in terms of

solution quality. It provides better than average results on all instance classes. Figure 3

reports the number of new best-known solutions found by the lp-ALNS for each class of

instances. In total, 620 best-known solutions have been improved by our lp-ALNS.

Moreover, Table 2 in the Appendix shows that the improvement on the value of the

objective function created by the lp-ALNS is significant, especially on large instances (up

to 16.75 %). The relatively high gap between final solutions and initial solutions shows

the efficiency of construction and deconstruction operators. However, similar to cp-ALNS,

the computation time of our algorithm is still high. It depends heavily on the number

of customers |V | and that of special customers |Vs|. More specifically, in these cases, the

number of variables and constraints in the LP models increase rapidly, leading to larger

programs which are harder to solve.
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Figure 2: Comparison between lp-ALNS and cp-ALNS in terms of objective values on

average

Figure 3: Number of new best-known solutions found by the lp-ALNS
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5 Conclusion

In this research, we study an important variant of the vehicle routing problem with syn-

chronization constraints, which has numerous real-world applications. We propose a new

CP model and an ALNS algorithm. The most remarkable feature of our ALNS is that

we use linear programming to check the feasibility of insertions. A number of accelera-

tion techniques have been proposed to significantly reduce the computation time of the

algorithm. The obtained results on the benchmark instances from the literature show the

performance of our method. Our CP model can even provide better solutions than the

CP-based metaheuristic for small instances in much shorter running time. Our lp-ALNS

dominates the cp-ALNS, in terms of solution quality, when it improves 620 best known

solutions over 681 instances, and the improvement gap is relatively high.

The research perspectives are numerous. First, although our CP model provides very

good solutions on small instances, it cannot prove any of them optimal. This, combined

with the fact that there is no efficient exact method so far to solve the VRP with synchro-

nization constraint, proves the hardness of this class of problem. An efficient and exact

method is still an open question. Second, we believe that our lp-ALNS can be a used as

a general framework, as it is easy to incorporate other constraints into the LP models.

Thus, applying our method to solve other hard variants of VRPs could be an interesting

research direction. Finally, our lp-ALNS is still quite time-consuming. Other acceleration

techniques exploiting special structures of the LP programs which validate the insertion

feasibility are required to make the algorithm become an efficient general solver for VRPs

with rich attributes.
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Appendix

Table 2 reports the comparison between lp-ALNS and cp-ALNS in terms of objective values

on average. The three first columns represent the size, class name, and the number of

special customers of each instance class. Columns 4 and 5 report the objective of solutions

(Column “FinalObj”) and running time in seconds (Column “RunTime”) on average of the

cp-ALNS. Next columns show the results on average for each instance class of our lp-ALNS.

More precisely, “InitialObj” is the objective value of the initial solution constructed by

regret-2 heuristic. “FinalObj” is the objective value of the final solution after the search

is stopped. “RunTime” reports the computational time in seconds. Column “Imp%”

shows the improvement of final solutions compared with initial ones. The final column

“gap%” presents the gap between lp-ANLS and cp-ALNS solutions. A negative value

means lp-ALNS provides a better solution.
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Data cp-ALNS lp-ALNS
gap (%)

Size Class Sync FinalObj RunTime InitialObj FinalObj RunTime Imp%

25

R1

2

544.2487 8406.7 667.7745 526.9739 1347.8 20.86% -3.22%
R2 458.2109 9978.2 594.1048 446.6154 1319.3 24.42% -2.49%
C1 246.9088 9255.3 371.2795 241.5390 1292.7 32.26% -2.16%
C2 286.4098 7643.6 342.2520 283.9314 1415.9 16.63% -0.83%

RC1 520.1329 6805.4 584.4385 515.7725 1480.5 11.23% -0.79%
RC2 485.1764 7672.3 624.6635 485.7430 1650.5 21.82% 0.12%

25

R1

7

692.9658 7846.3 888.4291 661.7204 2697.3 25.68% -4.59%
R2 587.3948 10289.6 753.2626 575.4996 3011.7 22.83% -1.98%
C1 318.3507 8304.2 485.0793 311.0783 2489.7 34.81% -2.25%
C2 325.0070 7308.5 411.1374 323.3936 2090.1 20.95% -0.49%

RC1 623.5873 6388.2 900.0518 605.3236 2707.9 31.69% -2.80%
RC2 573.4323 8828.2 796.9595 556.5850 2987.9 29.59% -2.93%

25

R1

13

821.1631 7683.6 1113.333 790.7901 3989.3 28.71% -3.82%
R2 701.3905 10194.9 930.8132 681.8161 4523.5 26.21% -2.74%
C1 356.2599 6594.2 585.0626 349.7486 3481.7 39.33% -1.78%
C2 384.0774 6977.4 461.5924 376.7076 3511.1 17.86% -1.84%

RC1 657.5279 5892.3 1009.331 644.6960 3844.1 35.93% -1.72%
RC2 600.0163 8504.3 905.7041 586.7275 4460.4 33.84% -2.25%

50

R1

3

909.5803 19518.2 1143.763 860.4969 4508.1 24.75% -5.69%
R2 747.6849 23888.9 999.7746 710.4967 4496.9 28.77% -5.03%
C1 460.1213 39268.2 554.8499 445.4759 4532.7 19.14% -3.13%
C2 476.6964 35246.2 633.3015 466.1748 4804.5 25.20% -2.02%

RC1 959.1396 17810.0 1165.249 932.1801 4539.8 19.44% -2.98%
RC2 788.3569 20046.5 1201.248 775.9619 4857.4 35.07% -1.65%

50

R1

13

1178.034 19893.2 1508.424 1103.480 10834.1 26.81% -6.57%
R2 991.7101 23972.1 1352.777 931.9242 13253.3 30.88% -6.03%
C1 625.0501 18575.3 951.2536 607.6679 9646.9 35.13% -2.70%
C2 610.4964 22449.2 907.3918 603.0134 13477.1 31.94% -1.20%

RC1 1231.836 17850.4 1664.564 1167.640 11213.3 29.66% -5.15%
RC2 1014.296 22600.4 1629.658 975.5894 12489.1 39.79% -3.96%

50

R1

25

1354.380 19456.9 1786.241 1259.770 18880.4 29.63% -7.15%
R2 1134.506 24311.6 1580.263 1057.765 26470.6 32.82% -6.96%
C1 689.7339 16392.7 1100.512 674.8498 18270.7 38.23% -2.09%
C2 697.0899 20694.2 1069.437 668.8730 23789.4 35.90% -3.85%

RC1 1331.455 17536.3 2064.870 1270.645 18259.1 38.31% -4.30%
RC2 1087.594 23088.4 1858.651 1041.364 21808.5 43.37% -4.50%

100

R1

5

1429.048 82716.3 1847.463 1349.893 18128.8 26.94% -5.87%
R2 1114.927 107910.0 1587.720 1038.766 19082.2 34.41% -6.98%
C1 1017.524 41401.6 1493.110 1005.144 21153.7 32.45% -1.20%
C2 841.6708 75868.3 1156.707 792.8305 20527.3 30.57% -5.74%

RC1 1637.621 73411.3 2187.973 1575.960 19985.8 27.97% -3.86%
RC2 1286.366 97137.4 1983.771 1219.061 20101.6 38.63% -5.47%

100

R1

25

1789.477 80930.0 2353.730 1667.065 39167.0 29.28% -7.01%
R2 1407.660 106302.7 2108.117 1303.016 55645.6 37.91% -7.66%
C1 1441.884 74134.6 2335.434 1396.531 38251.0 39.86% -3.13%
C2 1087.373 70059.3 1670.794 1004.834 39562.4 38.45% -7.24%

RC1 2146.339 71074.1 2985.869 2045.495 40795.9 31.44% -4.73%
RC2 1709.736 99529.7 2594.230 1610.915 51314.6 37.95% -6.06%

100

R1

50

2092.569 72804.5 2831.534 1931.541 59256.5 32.07% -7.91%
R2 1693.735 104309.4 2526.176 1513.136 89195.5 40.16% -10.91%
C1 1609.269 72829.5 2911.811 1545.038 57106.8 46.57% -3.91%
C2 1180.336 54500.8 1927.523 1078.205 69467.0 41.82% -8.42%

RC1 2522.189 67991.7 3650.564 2361.475 60008.8 35.39% -6.45%
RC2 1945.313 95459.4 3173.071 1817.931 63274.9 42.44% -6.83%

200

R1

10

4144.381 126805.8 5674.585 3893.875 37843.3 31.74% -6.55%
R2 3713.917 161933.9 5317.305 3320.119 37547.4 37.72% -11.05%
C1 3391.796 100174.6 5108.380 3299.623 39677.3 34.62% -2.67%
C2 2578.896 145855.5 3861.907 2364.314 36008.3 38.13% -8.26%

RC1 4088.110 138911.3 5642.754 3884.939 38358.8 31.03% -4.95%
RC2 3303.763 149639.7 4898.392 2917.336 39697.6 40.55% -11.91%

200

R1

50

5074.646 136440.0 7240.237 4724.183 74670.6 35.08% -7.46%
R2 4769.591 163572.0 6608.872 4074.128 93781.0 38.47% -14.99%
C1 4238.077 120709.5 7290.512 4126.756 74785.5 43.11% -2.65%
C2 3254.876 161222.8 5851.064 3008.252 81829.4 48.25% -7.49%

RC1 4944.824 144934.9 7017.894 4573.909 78424.0 34.65% -7.50%
RC2 4039.977 155597.6 6108.987 3539.513 92402.6 41.75% -12.49%

200

R1

100

6139.267 137336.0 8718.394 5704.425 116804.2 34.72% -7.55%
R2 5616.638 157111.4 7993.287 4699.330 154303.7 41.40% -16.75%
C1 4964.759 111991.6 9117.560 4757.915 112905.5 47.57% -4.16%
C2 3646.121 132923.9 6969.890 3374.519 146172.7 50.71% -7.31%

RC1 5836.127 148733.9 8265.386 5395.134 122680.9 34.72% -7.58%
RC2 4882.749 159016.6 7138.363 4204.200 153580.6 41.12% -13.99%

Table 2: Comparison between lp-ALNS and cp-ALNS
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