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Abstract

Quantifying extra functions, herein referred to as outcome functions, over optimal solutions of an opti-

mization problem can provide decision makers with additional information on a system. This bears more

importance when the optimization problem is subject to uncertainty in input parameters. In this paper, we

consider linear programming problems in which input parameters are described by real-valued intervals, and

we address the outcome range problem which is the problem of finding the range of an outcome function

over all possible optimal solutions of a linear program with interval data. We give a general definition of

the problem and then focus on a special class of it where uncertainty occurs only in the right-hand side of

the underlying linear program. We show that our problem is computationally hard to solve and also study

some of its theoretical properties. We then develop two approximation methods to solve it: a local search

algorithm and a super-set based method. We test the methods on a set of randomly generated instances. We

also provide a real case study on healthcare access measurement to show the relevance of our problem for

reliable decision making.

Keywords: interval linear programming, interval analysis, linear programming, heuristics, healthcare,

inexact data.

1. Introduction

In real life problems, we are sometimes interested in evaluating additional functions of interest over

the results of an optimization model, that is, we are interested in evaluating functions of optimal decisions.

Let us consider, for instance, an optimization model developed to design a new transportation network. A

possible function of interest, in addition to a cost function which would be optimized, could be an environ-
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mental cost function, useful to evaluate how the optimal transportation network impacts surrounding areas.

As another example, decisions regarding the optimal location of clinics in a given region, while they can

improve public health in a community, might in turn lead to undesirable consequences on a larger scale,

such as disparities in access to healthcare among different communities. We refer to the additional functions

of interest as outcome functions, which are used to evaluate unintended consequences of optimal decision

making.

Outcome functions do not have a direct role in the decision process. They are not, in other words, the

main objective function of the optimization model, whereas they might have a significant role in providing

important information for future decisions or actions. This is particularly relevant for government agencies,

public health decision makers, policy makers, city managers and other stakeholders who make decisions

that have differential impacts on different communities and sub-populations. For example, Nobles et al.

[32] and Gentili et al. [11, 12, 13] used outcome functions to evaluate spatial access to pediatric and adult

primary care. They developed an optimization model for matching patients and providers, and defined two

linear outcome functions to quantify spatial access to healthcare services. In another study, Zheng et al. [44]

presented an application in telecommunication networks, where one is interested in designing the network

such that enough band-width is allocated between two nodes in order to minimize the total demand lost. An

outcome function of interest, in this context, is the local performance of each node defined as the volume of

unmet requests from the node.

Quantifying the impact of decisions using outcome functions becomes even more relevant when deci-

sions are made in an uncertain environment, which is the focus of this paper. Uncertainty in optimization

problems usually derives from uncertainty in input parameters, occurring due to measurement errors, miss-

ing data, rounding errors, statistical estimations, etc. Solutions to optimization problems can exhibit con-

siderable sensitivity to perturbations in the input parameters, thus often returning a solution which is highly

infeasible and/or suboptimal [3].

Throughout the years, several approaches to treat uncertainty in input data have emerged such as robust

optimization, stochastic optimization, parametric programming, fuzzy programming, and interval optimiza-

tion, depending on the source of uncertainty and the requirements on the returned solution. In this paper,

we adopt the approach of interval linear programming (ILP) where we assume that input parameters can

vary within a-priori known intervals. Several topics have been subject of research in this area (see [15] for

a comprehensive survey on the topics): (i) Oettli and Prager [34] and Rohn [37] addressed the problem of
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characterizing the set of all possible feasible solutions; (ii) Novotná et al. [33] studied the duality gap prob-

lem in interval linear programming; (iii) the problem of describing the set of all possible optimal solutions

was studied by Allahdadi and Nehi [1] and later by Garajová and Hladı́k [9] and also its approximation was

discussed by [16, 21, 23]; (iv) the problem of determining a satisficing solution space was subject of study in

[42, 45]. A problem of particular interest, because of its relevance from an application perspective, is that of

finding the range of optimal values of an interval linear program, known in the literature as the optimal value

range problem. The exact formulation and characterization of the problem was discussed in [5, 14, 31, 36],

while [19, 30] developed some approximation algorithms for the intractable cases. A different approach to

get a satisficing optimal value range was investigated by [22]. The optimal value range problem has been

applied in several application problems, such as transportation problems with interval supply and demand

[4, 6, 24], matrix games with interval-valued payoffs [27, 28], and portfolio selection problems with interval

approximations of expected returns [25, 26].

In this context, our focus is on studying a problem close to the optimal value range problem where we

are interested in determining the range of an outcome function (other than the objective function) associated

with an interval linear program. To this aim, we introduce the Outcome Range Problem which consists

of determining the minimum and the maximum values of a given (additional) linear function over the set

of all possible optimal solutions of an interval-valued linear program. We formally define our problem,

analyze its relation to and differences with the optimal value range problem, and study a specific case where

uncertainty occurs only in the right-hand side of the underlying linear program. We show that solving the

outcome range problem to optimality is not an easy task; we then study some theoretical properties of the

problem and develop two solution approaches to approximate the optimal values. We evaluate our solution

techniques on a set of randomly generated instances, and finally, to outline the relevance of our problem for

reliable decision making, we present a case study where we apply our approach to quantify spatial access to

healthcare services.

The remainder of the paper is structured as follows. We first present an introductory example to motivate

our problem. We then introduce some basic notations, and formally define the outcome range problem in

Section 3. We assess the computational complexity of the problem in Section 4. In Section 5, we explore

theoretical properties of our problem. We describe our solution techniques in Section 6. In Section 7,

we discuss results of our experimental study. Section 8 presents an healthcare application of our problem.

Finally, we summarize our findings in Section 9.
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2. Quantifying an Outcome Function Under Uncertainty: An Introductory Example

Let us consider the classical transportation problem [43] where the main goal is to decide how to transfer

goods from a set of m origins to a set of n destinations with minimal cost such that the capacity at each

origin is not exceeded, and the demand at each destination is satisfied. The transportation problem can be

formulated as follows

min
n

∑
i=1

m

∑
j=1

ci jxi j (1)

subject to
m

∑
j=1

xi j ≤ si, ∀i = 1, ...,n, (2)

n

∑
i=1

xi j ≥ d j, ∀ j = 1, ...,m, (3)

xi j ≥ 0, ∀i = 1, ...,n, j = 1, ...,m, (4)

where xi j is a decision variable which determines the size of the shipment from origin i to destination j, ci j

is the unit shipping cost from origin i to destination j, si is the total supply of origin i, and d j is the total

demand of destination j. The objective function of the model minimizes the total transportation cost. The

two sets of constraints ensure that the resulting transportation plan respects the capacity at each origin (Eq.

(2)), and meets the demand of each destination (Eq. (3)). Let us consider a specific instance of the problem

where there are three origins and three destinations (see Table 1 for shipping costs, supply and demand

levels).

Table 1: Shipping costs, supply and demand levels.

to
supply (ton)

from destination 1 destination 2 destination 3

origin 1 $40 $21 $23 70
origin 2 $24 $43 $19 75
origin 3 $31 $35 $21 81

demand (ton) 85 64 71

The optimal shipping cost, considering the input data in Table 1, is $4,945 and the optimal solution to the

problem is shown in Figure 1, where labels on each arc denote the total quantity shipped on the arc. We can

associate with the transportation problem an outcome function to evaluate, for example, the environmental

impact [35, 46] of the optimal transportation plan, as total pounds of CO2 emissions. The CO2 emissions
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Figure 1: The optimal transportation plan for model (1-4) with input data as described in Table 1.

depend on the amount of fuel consumed to transport the products to destinations, and consequently varies

with the travel distance and with the amount of products. Let ri j denote the total pounds of CO2 emitted

in the atmosphere per unit of the product shipped from origin i to destination j (the specific values of these

parameters for our example are reported in Table 2), and let f (x) = ∑i, j ri jxi j be an outcome function associ-

ated with a given transportation problem. The value of this outcome function on the optimal transportation

plan for our example is equal to 3,940 lb.

Table 2: The CO2 emission associated with the arcs of the transportation network.

to

from destination 1 destination 2 destination 3

origin 1 30 lb 17 lb 18 lb
origin 2 19 lb 32 lb 14 lb
origin 3 22 lb 25 lb 17 lb

Now let us assume that the demands are not known with certainty, but rather they vary in given intervals.

Then the mathematical formulation reads

min
n

∑
i=1

m

∑
j=1

ci jxi j

subject to
m

∑
j=1

xi j ≤ si, ∀i = 1, ...,n,

n

∑
i=1

xi j ≥ [d j,d j], ∀ j = 1, ...,m,

xi j ≥ 0, ∀i = 1, ...,n, j = 1, ...,m,

where [d j,d j] is the range of values which can be assumed by the demand at destination j, for all j. The

question we would like to address is: how does uncertainty in the parameters affect the environmental cost?
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That is, how does the environmental cost (the total CO2 emission) change when the parameters change?

If we apply one of the most commonly used approaches to address uncertainty in optimization models

such as, for example, robust optimization, we would only be able to evaluate the outcome function on a

single robust solution [40] or a number of solutions with some level of protection against uncertainty in the

data [3]. However, such an evaluation would not answer our question of quantifying the variation of the

outcome function in response to uncertainty in the parameters. A much more useful information would be,

for example, the range of variation of the outcome function, that is, the best and worst values of the outcome

function over the set of all the optimal solutions corresponding to all realizations of the uncertain data.

Table 3: All the possible realizations of the uncertain demand with the corresponding optimal solutions and values of f (x) for our
transportation problem example.

optimal solutions

data
realization demand values x11 x12 x13 x21 x22 x23 x31 x32 x33 f (x)

1 {d1 = 85,d2 = 64,d3 = 71} 0 64 0 75 0 0 10 0 71 3,940 lb
2 {d1 = 85,d2 = 64,d3 = 72} 0 64 1 75 0 0 10 0 71 3,958 lb
3 {d1 = 85,d2 = 64,d3 = 73} 0 64 2 75 0 0 10 0 71 3,976 lb
4 {d1 = 85,d2 = 65,d3 = 71} 0 65 0 75 0 0 10 0 71 3,957 lb
5 {d1 = 85,d2 = 65,d3 = 72} 0 65 1 75 0 0 10 0 71 3,975lb
6 {d1 = 85,d2 = 65,d3 = 73} 0 65 2 75 0 0 10 0 71 3,993 lb
7 {d1 = 85,d2 = 66,d3 = 71} 0 66 0 75 0 0 10 0 71 3,974 lb
8 {d1 = 85,d2 = 66,d3 = 72} 0 66 1 75 0 0 10 0 71 3,992 lb
9 {d1 = 85,d2 = 66,d3 = 73} 0 66 2 75 0 0 10 0 71 4,010 lb

10 {d1 = 86,d2 = 64,d3 = 71} 0 64 1 75 0 0 11 0 70 3,963 lb
11 {d1 = 86,d2 = 64,d3 = 72} 0 64 2 75 0 0 11 0 70 3,981 lb
12 {d1 = 86,d2 = 64,d3 = 73} 0 64 3 75 0 0 11 0 70 3,999 lb
13 {d1 = 86,d2 = 65,d3 = 71} 0 65 1 75 0 0 11 0 70 3,980 lb
14 {d1 = 86,d2 = 65,d3 = 72} 0 65 2 75 0 0 11 0 70 3,998 lb
15 {d1 = 86,d2 = 65,d3 = 73} 0 65 3 75 0 0 11 0 70 4,016 lb
16 {d1 = 86,d2 = 66,d3 = 71} 0 66 1 75 0 0 11 0 70 3,997 lb
17 {d1 = 86,d2 = 66,d3 = 72} 0 66 2 75 0 0 11 0 70 4,015 lb
18 {d1 = 86,d2 = 66,d3 = 73} 0 66 3 75 0 0 11 0 70 4,033 lb
19 {d1 = 87,d2 = 64,d3 = 71} 0 64 2 75 0 0 12 0 69 3,986 lb
20 {d1 = 87,d2 = 64,d3 = 72} 0 64 3 75 0 0 12 0 69 4,004 lb
21 {d1 = 87,d2 = 64,d3 = 73} 0 64 4 75 0 0 12 0 69 4,022 lb
22 {d1 = 87,d2 = 65,d3 = 71} 0 65 2 75 0 0 12 0 69 4,003 lb
23 {d1 = 87,d2 = 65,d3 = 72} 0 65 3 75 0 0 12 0 69 4,021 lb
24 {d1 = 87,d2 = 65,d3 = 73} 0 65 4 75 0 0 12 0 69 4,039 lb
25 {d1 = 87,d2 = 66,d3 = 71} 0 66 2 75 0 0 12 0 69 4,020 lb
26 {d1 = 87,d2 = 66,d3 = 72} 0 66 3 75 0 0 12 0 69 4,038 lb
27 {d1 = 87,d2 = 66,d3 = 73} 0 66 4 75 0 0 12 0 69 4,056 lb

Going back to our example, let us assume the demand level intervals are d1 ∈ [85,87], d2 ∈ [64,66], and

d3 ∈ [71,73]. For the sake of clarity in the exposition, let us also assume that the demand at the destinations

can only take integer values in the given intervals. By applying a conservative robust approach, we would

look for a shipment plan which is feasible under all the possible data perturbations, and would then evaluate
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the outcome function on the returned robust solution. In this case for example, by applying the worst case

robust approach [7], we would choose to ship 87 units to destination 1, 66 units to destination 2, and 73

units to destination 3 for a total cost of $ 5,099, and with an environmental impact equal to 4,056 lb.

Let us list, for this simple example, all the realizations of the uncertain data. They are shown in the

first two columns of Table 3. For each realization of the data, we solved the corresponding transportation

problem, and evaluated the outcome function on the corresponding optimal solution. Columns 3-11 in

the table report the optimal solutions, and the last column in the table reports the corresponding value of

the outcome function. In this simple example, the best value of the outcome function is equal to 3,940 lb

(corresponding to scenario 1) and the worst value is equal to 4,056 lb (corresponding to scenario 27). Hence,

in this case, we can say that given all the possible realizations of the interval data, the total CO2 emission

of the transportation plan would range between 3,940 lb and 4,056 lb. As can be seen from the results, the

optimal solutions are very sensitive to the demand perturbations. This makes the problem of finding the best

and the worst values of f (x) a nontrivial one.

In this simple example, given a linear program with interval parameters and an associated linear outcome

function, we determined the best and the worst values of the latter among all the possible optimal solutions

obtained from all the realizations of the interval data. We refer to this problem as the outcome range problem.

Its formal definition is given in the next section.

3. The Outcome Range Problem

Let us introduce some needed notation which is commonly used in the interval linear programming

literature [15, 38]. Given two matrices A,A ∈ Rm×n, we define an interval matrix as the set

A = [A,A] := {A ∈ Rm×n : A≤ A≤ A},

where matrices A,A are called the lower and the upper bounds of A, respectively, and comparing matrices

is understood componentwise. The set of all m-by-n real interval matrices is denoted by IRm×n. We define

an interval vector analogously. For the sake of simplicity, we write IRm instead of IRm×1 to denote the set

of all real interval vectors of order m. Throughout this paper, we use bold symbols for interval vectors and

matrices. Let us consider the following interval linear programming (ILP) problem in the form of

min cT x subject to x ∈M (A,b), (5)

where we are given c ∈ IRn, b ∈ IRm, and A ∈ IRm×n. M (A,b) denotes the feasible set described by linear

constraints with the interval coefficient matrix A and the interval right-hand side vector b. Interval linear
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programming has been extensively studied with three main types of M (A,b), which are shown in Table 4.

The type of constraints and restriction on variables in an interval linear program can considerably impact its

properties. Thus, each type of interval linear programs is usually treated separately in the literature.1

Table 4: Different types of interval linear constraints [15]

type interval linear system

(I) M (A,b) = {x ∈ Rn; Ax = b, x≥ 0}
(II) M (A,b) = {x ∈ Rn; Ax≤ b}
(III) M (A,b) = {x ∈ Rn; Ax≤ b, x≥ 0}

We refer to any triple (A,b,c), where A∈A, b∈ b, and c∈ c, as a scenario. With each scenario (A,b,c),

we can associate a linear program, namely LP(A,b,c), whose feasible set and optimal value are denoted by

M (A,b) and z(A,b,c), respectively, i.e.,

z(A,b,c) := {min cT x subject to x ∈M (A,b)}.

Hence, an interval linear program is a family of linear programs associated with all A ∈ A, b ∈ b and c ∈ c.

For a particular scenario (A,b,c), the corresponding LP(A,b,c) can be infeasible, unbounded or admit a

finite optimal value. We denote by s(A,b,c) an optimal solution (or the set of all optimal solutions) of a

linear program LP(A,b,c), if any, admitting a finite optimal value. We denote by Ω the set of all the optimal

solutions of an interval linear program, referred to as the optimal set, that is,

Ω :=
⋃

A∈A,b∈b,c∈c
s(A,b,c).

We are now ready to formally define our problem. Given the ILP (5) and an additional linear function

f : Rn→R, where f (x) = rT x with r ∈Rn, the outcome range problem consists in solving the two following

optimization problems

f := {min f (x) subject to x ∈Ω},

f := {max f (x) subject to x ∈Ω}.

We define the pair of optimal values { f , f} to be the optimal solution of the outcome range problem.

Example 1. Consider the following two-dimensional linear program with interval right-hand sides

1 References [5, 17] address the general form.

8



min (2,−5)T x subject to


1 −1

−1 −1

0 1

x≤


[4,7]

[−6,8]

[4,9]

 , x≥ 0,

and consider the following outcome function

f (x) = 8x1 +9x2.

Let us consider Figure 2 where the optimal solution { f , f} of the problem is shown. In the figure, the

intersection and the union of all the feasible sets of the linear programs associated with all the scenarios are

shown in dark and light gray, respectively. Specifically, the intersection of all the feasible sets is obtained

by setting the right-hand sides at their lower bound, while the union of all the feasible sets is obtained by

setting all the right-hand sides at their upper bound. The black area represents the set Ω, that is, the set

of all optimal solutions obtained from all the realizations of the interval data. Both the minimum and the

maximum values of f (x) occur at the endpoints of the bold line and are shown in the figure. Their values are

f = 36 and f = 81, respectively. In particular, f is obtained on the point x1∗ = (0,9) which is the optimal

point of several linear programs one of which is associated, for example, with scenario bT = (4,−6,9),

while f is obtained on the point x2∗ = (0,4) which is the optimal point of a linear program associated, for

example, with scenario bT = (7,8,4).

Figure 2: (Example 1) Intersection of all feasible sets in dark gray; union in light gray; set of all optimal solutions in black.

3.1. Our Focus

As can be observed from Example 1, the difficulty in solving the outcome range problem relies on the

fact that its feasible set, that is, the set Ω, is not explicitly known; nor a convenient implicit description of it
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(e.g., polyhedral description) is available in general [9, 16] (with some exceptions as outlined in Section 4).

This is true even if we consider a simplified version of the underlying ILP where we only deal with interval

right-hand sides. As we mentioned earlier, the three types of interval linear programs are analyzed separately

in the literature because the feasible region and the optimal set might change when applying standard linear

transformations. In the discussion to follow, we will focus on solving the outcome range problem when the

underlying interval linear program is of Type III, that is, it contains inequality and non-negativity constraints,

and uncertainty occurs only in the right-hand side of the program. Formally, the interval linear program we

will be considering is the following (a special case of Type III)

[ILPb] min cT x subject to Ax≤ b, x≥ 0, (6)

where c ∈ Rn, b ∈ IRm, and A ∈ Rm×n are given. The linear program and an optimal solution (or the set of

all optimal solutions), if one exists, associated with a given scenario b ∈ b are denoted by LP(b) and s(b),

respectively. We also denote by z(b) the optimal value corresponding to LP(b) (infinity and infeasiblity are

also allowed). We focus on solving the two following optimization problems

f = {min f (x) subject to x ∈Ωb}, (7)

f = {max f (x) subject to x ∈Ωb}, (8)

where Ωb is the optimal set of ILPb. In the rest of the paper, we will refer to this special case of the outcome

range problem as ORPb.

Remark 1. From an application perspective, solving ORPb is meaningful when the set Ωb is not empty and

the two values f and f are finite, i.e., the set Ωb is bounded (see [8, 9] for conditions for emptiness and

boundedness of Ωb ). In what follows, we will assume this is the case.

4. Computational Complexity of the Outcome Range Problem (ORPb)

We here address the computational complexity of ORPb. Some additional notation is needed at this

point. Let us recall the linear program associated with a given b ∈ b (i.e., LP(b))

min cT x subject to Ax≤ b, x≥ 0.

The standard form reads

min cT x+0T d subject to Ax+ Id = b, x≥ 0, d ≥ 0, (9)
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where d ∈ Rm is the vector of slack variables and I ∈ Rm×m is the identity matrix. Let us define Ã := [A|I],

c̃T := [cT |0T ], and x̃T := [xT |dT ]. We rewrite (9) as

min c̃T x̃ subject to Ãx̃ = b, x̃≥ 0. (10)

We similarly define r̃T := [rT |0T ].

Definition 1. By a basis B we mean an index set B ⊆ {1, . . . ,n+m} such that ÃB is nonsingular, where

a subscript B on a matrix (row vector) denotes the submatrix (subvector) composed of columns indexed

by B. That is, set B is the set of indices associated with basic variables. Analogously, an index set N :=

{1, . . . ,n + m} \ B indicates indices for nonbasic variables and as a subscript it represents restriction to

nonbasic indices.

If the linear program (10) admits a finite optimal value, there exists an optimal basic solution which

corresponds to an optimal basis. A basis B is an optimal basis of LP (10) if and only if it satisfies the

following conditions

Ã−1
B b≥ 0, (11a)

c̃T
N− c̃T

B Ã−1
B ÃN ≥ 0T . (11b)

Now let us recall the assumptions under which the optimal set Ωb of ILPb can be explicitly defined.

Definition 2. Let a basis B be given. An ILPb problem is said to be B-stable, if B is an optimal basis of

LP(b) for all b ∈ b. Furthermore, it is called unique B-stable if it is B-stable and the optimal basis of LP(b)

is unique for all b ∈ b.

B-stability is a very important property in interval linear programming because it can simplify the description

of the optimal set. In the case of unique B-stability of ILPb, the optimal set (Ωb) can be described by a

polyhedral set.

Lemma 1. [2] If (6) is unique B-stable with the optimal basis B, the optimal set (Ωb) is described by the

following linear system 2

ÃBx̃B ≤ b, −ÃBx̃B ≤−b, x̃B ≥ 0, x̃N = 0.

Another relevant topic in interval linear programming is determining the optimal value range, that is, the

problem of finding the best and the worst optimal values among all the optimal values obtained over all data

2We adopt Lemma 1 from the results discussed in [18] (see [18] for more details).
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perturbations. We define the optimal value range of ILPb (6) as

z := inf {z(b) : b ∈ b}, (12)

z := sup {z(b) : b ∈ b}. (13)

Note that (12) and (13) can assume any value, including infinity and infeasibility. The interval [z,z] then

gives the optimal value range. By [5, 41], we know that for ILPb (6)

z = {min cT x subject to Ax≤ b, x≥ 0}, (14)

z = {min cT x subject to Ax≤ b, x≥ 0}. (15)

Now we analyze the computational complexity of the outcome range problem. Specifically, Theorem

1 assesses the computational complexity of ORPb. Proposition 1 considers a special case of ORPb which

is polynomially solvable. Finally, Proposition 2 and Corollary 1 investigate another polynomially solvable

case by exploiting a relation between ORPb and the optimal value range problem.

Theorem 1. Problem ORPb is NP-hard.

Proof. We proceed by a different interval-related problem which is known to be NP-hard. Let us consider

an ILP problem of Type I with a fixed coefficient matrix and a fixed objective vector (i.e., fixed A and c),

i.e.,

min cT x subject to Ax = b, x≥ 0. (16)

Let Ξ be the optimal set of (16). By Theorem 7 in [9] (p. 282), we know that computing the exact interval

hull of Ξ is NP-hard. Now let us reformulate problem (16) as follows

min cT x subject to Ax≤ b, −Ax≤−b, x≥ 0. (17)

We know by Theorem 2 in [10] (p. 606) that the optimal set of (17) is equal to the optimal set of (16). For

the sake of simplicity, let us introduce the following notation

A′ :=

 A

−A

 , b′ :=

 b

−b

 .
We then can rewrite the problem (17) as an ILPb, that is,

min cT x subject to A′x≤ b′, x≥ 0.

Therefore, we can conclude that Ξ = Ωb. As a result, we can say that computing the exact interval hull of

Ωb is also NP-hard. Now if we consider f (x) = xi, for any i ∈ {1, . . . ,n}, we can conclude that ORPb is
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NP-hard.

Proposition 1. If ILPb is unique B-stable, then ORPb is polynomially solvable.

Proof. Let the basis B be the unique optimal basis for all the data realizations, then based on Lemma 1,

ORPb is equivalent to solving the two following linear programs

f = {min r̃T
B x̃B subject to ÃBx̃B ≤ b, −ÃBx̃B ≤−b, x̃B ≥ 0, x̃N = 0}, (18)

f = {max r̃T
B x̃B subject to ÃBx̃B ≤ b, −ÃBx̃B ≤−b, x̃B ≥ 0, x̃N = 0}. (19)

Let B be the set of all optimal bases of ILPb (if any). Let us consider a given B ∈B. We can associate

with it, by (11b), a cone containing all the cost vectors that are optimal for B, that is, HB := {ψ ∈ Rm+n :

ψT
N −ψT

B Ã−1
B ÃN ≥ 0T}. We define C as the intersection of all the cones containing all the cost vectors that

are optimal for all the optimal bases, i.e.,

C =
⋂

B∈B
HB.

The following proposition states another polynomially solvable case of ORPb by leveraging a relation with

the optimal value range problem.

Proposition 2. Suppose that z and z are finite values. If r is such that r ∈ C , then ORPb is polynomially

solvable.

Proof. Let us recall that the optimal value range of ILPb is polynomially solvable, that is,

[P1] : z = {min cT x subject to Ax≤ b, x≥ 0}, [P2] : z = {min cT x subject to Ax≤ b, x≥ 0},

and that ORPb consists in solving the following two optimization problems

[P3] : f = {min rT x subject to x ∈Ωb}, [P4] : f = {max rT x subject to x ∈Ωb}.

From the hypothesis, we know that z is a finite value. Let x∗ be an optimal solution of P1, i.e., z = cT x∗. By

definition, we know that x∗ ∈Ωb. Since r ∈ C , we can write

rT x∗ = {min rT x subject to Ax≤ b, x≥ 0}.

Let us now consider a generic x̂ ∈ Ωb in P3, which is an optimal solution of the linear program associated

with a scenario b̂ ∈ b. Again, given r ∈ C , we have

rT x̂ = {min rT x subject to Ax≤ b̂, x≥ 0}.

Since b̂ ≤ b and Ax̂ ≤ b, we can say rT x̂ ≥ rT x∗. This is true for any vector x̂ ∈ Ωb, and thus x∗ is also an
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optimal solution to P3. Therefore, we can compute f by

f = {min rT x subject to Ax≤ b, x≥ 0},

which is polynomially solvable. We can use a similar argument for P2 and P4.

Now it is easy to see that the following special case of Proposition 2 holds.

Corollary 1. Suppose that f (x) = cT x. If z and z are finite values, then we have [ f , f ] = [z,z].

Note that even if we assume that f (x) = cT x, the outcome range problem is not equivalent to the optimal

value range problem in general. Below, we illustrate this by an example.

Example 2. Consider the following ILPb problem

min −4x2 subject to x1 + x2 ≤ [−1,5], x1,x2 ≥ 0,

and let f (x) = −4x2 also be an outcome function. By (15), it is easy to see that z is infeasible, and by

applying (14) we get z = −20. Therefore, [−20,∞] gives the optimal value range.3 However, from Figure

Figure 3: (Example 2) Union of all feasible sets in light gray; set of all optimal solutions in bold.

3, it is not hard to observe that f = −20 (scenario b = 5) and f = 0 (scenario b = 0). Hence, the outcome

function f (x) ranges in the interval [−20,0], which is different from the optimal value range.

Corollary 1 and Example 2 indeed imply that the outcome range problem can be seen as a generalized

form of a special case of the optimal value range problem [20].

3We denote infeasibility by the convention min /0 = ∞.
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5. Properties of the Outcome Range Problem (ORPb)

In this section, we study some theoretical properties of ORPb aimed at characterizing the scenarios

corresponding to the optimal values of (7) and (8). Throughout this section we only report results related to

the computation of f . All the results are applicable to the computation of f as well. Let us introduce some

definitions first.

Definition 3. A given scenario b ∈ b is referred to as

(i) a middle scenario if

bi < bi < bi, ∀i ∈ {1, . . . ,m}.

(ii) a weakly extremal scenario if

bi = bi ∨ bi = bi, for some i ∈ {1, . . . ,m}.

(iii) a strongly extremal scenario if

bi = bi ∨ bi = bi, ∀i ∈ {1, . . . ,m}.

Note that, according to the above definition, a strongly extremal scenario is also a weakly extremal scenario,

but the opposite does not hold true. From the geometrical standpoint, given a hypercube b, a middle scenario

is in the interior of the hypercube, a weakly extremal scenario is on the boundary of the hypercube, and a

strongly extremal scenario is a vertex of the hypercube.

Definition 4. b∗ ∈ b is an optimal scenario of (7) if f = f (x∗), where x∗ ∈ s(b∗).

Definition 5. Given an optimal scenario b∗ for (7), an optimal basis B∗ of the linear program LP(b∗) is a

global optimal basis of (7).

Remark 2. Note that, given a global optimal basis B∗ of (7), the optimal value f and the optimal scenario

b∗ are the optimal value and an optimal solution, respectively, of the following linear program

min r̃T
B∗Ã
−1
B∗ b subject to Ã−1

B∗ b≥ 0, b ∈ b,

in variables b.

The results to follow identify conditions to characterize the optimal scenario b∗ either as a middle or a

weakly (strongly) extremal scenario.

Proposition 3. If (0, . . . ,0)T /∈ b, then there exists a weakly extremal scenario b̂ such that b∗ = b̂.
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Proof. Let the basis B∗ be a global optimal basis of (7). By Remark 2, the optimal scenario b∗ is an optimal

solution of the following linear program

min r̃T
B∗Ã
−1
B∗ b subject to Ã−1

B∗ b≥ 0, b ∈ b. (20)

Let us refer to the feasible set of (20) as PB∗ . It is known that there exists an optimal solution of (20) which

is an extreme point of PB∗ .

We know that each vertex of PB∗ is a vector satisfying all the constraints such that at least m of the

constraints are binding and are linearly independent. We also know that matrix Ã−1
B∗ is a full rank square

matrix of order m. Note that since (0, . . . ,0)T /∈ b, then Ã−1
B∗ b 6= 0 for each b ∈ b. Therefore, any extreme

point of PB∗ corresponds to a vector for which at least one of the constraints in b ∈ b is binding. We can then

conclude that there exists i ∈ {1, . . . ,m} such that b∗i = bi or b∗i = bi. This completes the proof.

Note that b∗ can still be a weakly extremal scenario even in the case of (0, . . . ,0)T ∈ b, but this requires the

vector (0, . . . ,0)T not to be a middle scenario.

Corollary 2. Suppose that vector (0, . . . ,0)T is such that it is a weakly extremal scenario of of the interval

vector b. Then there exists a weakly extremal scenario b̂ such that b∗ = b̂.

Proposition 3 also reveals an interesting observation related to middle scenarios.

Corollary 3. If the optimal scenario b∗ is unique and it is a middle scenario, then we have b∗ = (0, . . . ,0)T .

Proof. Similar to the proof of Proposition 3, let the basis B∗ be a global optimal basis of (7). Consequently,

the optimal scenario b∗ is an optimal solution of (20). Suppose for the sake of contradiction that b∗ is unique

and it is a middle scenario, i.e., bi < b∗i < bi for all i ∈ {1, . . . ,m}, but b∗ 6= (0, . . . ,0)T . Since b∗ is the

unique optimal solution of (20), then m linearly independent constraints needs to be binding on b∗ to form

an extreme point. Ã−1
B∗ is a full rank square matrix of order m; thus, we need to have Ã−1

B∗ b = 0. This system

possesses one unique solution which is (0, . . . ,0)T . Therefore, b∗ = (0, . . . ,0)T . We derive a contradiction

here, and this completes the proof.

Note that the opposite of Corollary 3 is not valid. That is, if the optimal scenario is b∗ = (0, . . . ,0)T ,

then this does not necessarily imply neither that b∗ is unique, nor that it is a middle scenario. The following

provides a counterexample.

Example 3. Consider the following interval linear program

min 5x1 +6x2 subject to 4x1 +5x2 ≤ [0,5], x1,x2 ≥ 0,
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Figure 4: (Example 3) Union of all feasible sets in light gray; the only optimal solution is red circled.

and let f (x) = 10x1 +3x2 be an outcome function. From Figure 4, we observe that x∗ = (0,0) is the unique

optimal solution for all the linear programs LP(b), for all b ∈ b, that is, Ωb = {(0,0)}. Hence, we have

f = 0. It is not hard to see that any scenario in the interval [0,5] is an optimal scenario for ORPb. Therefore,

b∗ = 0 is an optimal scenario, but it is neither unique nor a middle scenario.

We now present a condition under which b∗ is a strongly extremal scenario.

Proposition 4. If B∗ is non-degenerate for LP(b∗), then b∗ is a strongly extremal scenario.

Proof. Let us recall that, given a global optimal basis B∗, the following linear program returns f and b∗.

min r̃T
B∗Ã
−1
B∗ b subject to Ã−1

B∗ b≥ 0, b ∈ b

We know that B∗ is a non-degenerate optimal basis of LP(b∗), and thus b∗ is such that Ã−1
B∗ b∗ > 0. Therefore,

to have an extreme point, m linearly independent constraints in b ∈ b need to binding on b∗, that is, b∗i = bi

or b∗i = bi for all i ∈ {1, . . . ,m}. The proof is now concluded.

Finally, the following observation states another case under which an optimal scenario b∗ is strongly ex-

tremal. It follows directly from Proposition 2 in Section 4.

Observation 1. Assume that z is a finite value. If r is such that r ∈ C , then we have b∗ = b, which is a

strongly extremal scenario.

6. Solution Methods

In Section 4, we show that ORPb is an NP-hard problem in general; however, when the underlying ILPb

is unique B-stable, we can solve ORPb to optimality in polynomial time. B-stability is unlikely to occur
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when we are dealing with wide intervals and large problems. Therefore, unless P=NP, there is no hope

for any polynomial-time solvable characterization of the problem in general. As such, we here describe

two different approaches to approximate the optimal solution of ORPb. Specifically, we present a super-set

based method and a local search algorithm to approximate (7) and (8).

6.1. Super-set based Method

As stated in the previous sections, an explicit description of the optimal set Ωb is not always available.

However, if we are able to find a super-set E(Ωb) containing it, i.e., such that Ω ⊆ E(Ωb), we could then

approximate the optimal values f and f by solving the two following optimization problems

f L = {min rT x subject to x ∈ E(Ωb)}, (21)

f U
= {max rT x subject to x ∈ E(Ωb)}, (22)

where f L and f U denote a lower bound of f and an upper bound of f , respectively.

To define a super-set E(Ωb), we can apply some duality properties in linear programming. More specif-

ically, let us recall the dual of ILPb for a particular b ∈ b (i.e., LP (b)),

max bT y subject to AT y≤ c, y≤ 0,

where y ∈Rm is the vector of decision variables. By the strong duality condition in linear programming, we

can describe the optimal solution set of LP(b) by means of the following linear system

Ax≤ b, x≥ 0, AT y≤ c, y≤ 0, cT x = bT y.

Let us assume, without loss of generality, that b is a vector of decision variables varying within the interval

vector b. We can then characterize the optimal set Ωb as

Ax≤ b, x≥ 0, AT y≤ c, y≤ 0, cT x = bT y, b ∈ b, (23)

in variables x,y,b. This leads to a nonlinear programming problem, due to the nonlinear term bT y, which is

very difficult to solve. Therefore, we linearize it by using McCormick envelope techniques [29]. Let [y,y]

be an interval enclosure for y. We then apply overestimator and underestimator constraints to linearize the
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nonlinear constraint cT x = bT y. The resulting system reads

Ax≤ b, x≥ 0, AT y≤ c, y≤ 0, b ∈ b, (24a)

cT x≤ yT b+b
T

y−b
T

y, (24b)

cT x≤ yT b+bT y−bT y, (24c)

cT x≥ yT b+b
T

y−b
T

y, (24d)

cT x≥ yT b+bT y−bT y, (24e)

where (24b)-(24c) are called overestimators, while (24d)-(24e) are called underestimators.

System (24) is a super-set containing Ωb. Therefore, we can use it to solve problems (21) and (22).

To compute an interval enclosure [y,y] for y, we can apply the contractor algorithm in [16]. Briefly, the

contractor algorithm is an iterative refinement algorithm. It starts with an enclosure of an optimal set and

contracts such an enclosure at each iteration until improvement is insignificant. It runs in polynomial time,

and it returns a sufficiently tight interval enclosure for y. We use this algorithm in our experiment in Section

7 to get the interval enclosure [y,y].

6.2. Local Search Algorithm

In this section, we describe a local search algorithm to approximate f and f . Local search is a heuristic

method which, given a current feasible solution, tries to improve it by exploring feasible solutions in its

neighborhood [39]. Since the returned solution will be a member of Ωb, the local search algorithm gives a

lower bound for f (denoted as f L) and an upper bound for f (denoted as f U ). Our algorithm starts with an

initial solution associated with a given scenario b ∈ b, then it explores two neighborhoods of the solution,

obtained by perturbing b, to find a new solution. If the new solution is better than the current one, then it

stores the solution and starts a new iteration. The algorithm proceeds in this way until a stopping condition

is met. We discuss our neighborhood structure and details of our algorithm next.

6.2.1. Neighborhood Structure

We define our neighborhood structure in the scenario space, that is, given an optimal solution of a linear

program associated with a particular scenario b ∈ b, we define two neighborhood structures, namely plus

and minus neighborhoods, obtained by perturbing b. Specifically, a plus neighbor (minus neighbor) of

a scenario b ∈ b is obtained by increasing (decreasing) some components of b by a given quantity. The

number of components of b to be perturbed and the amount of perturbation (increment or decrement) are
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adjustable values. We formally define our neighborhood structures as

N+
k,h(b) := {b̃ ∈ b : b̃i = bi + kφ

+
i , b̃ j = b j, i ∈ P, j 6= i, P ∈ P(h)}, (25)

N−k,h(b) := {b̃ ∈ b : b̃i = bi− kφ
−
i , b̃ j = b j, i ∈ P, j 6= i, P ∈ P(h)}, (26)

where φ
+
i and φ

−
i represent the maximum allowable perturbation of bi, and they are computed, respectively,

as φ
+
i = bi− bi and φ

−
i = bi− bi. Both the plus and the minus neighborhoods of a given scenario are

defined depending on two parameters: parameter k ∈ (0,1] which is a fraction of φ
±
i by which we perturb

bi, and parameter h ∈ (0,1] which is a fraction of the total number of components in vector b which we

perturb simultaneously. Let us consider the set {1, . . . ,m} as the index set of components in vector b. With

each value of the parameter h, we denote by P(h) the collection of all the possible subsets of {1, . . . ,m} of

cardinality bh×mc 4, that is, P(h) := {P ⊆ {1, . . . ,m} : |P| = bh×mc}. Basically, each subset P in P(h)

represents a choice of bh×mc components of a current scenario b ∈ b, which are simultaneously perturbed.

Given a scenario b ∈ b and a value of h, the number of neighbors in either N+
k,h(b) or N−k,h(b) is equal

to
( m
bh×mc

)
. Finally, for a particular b ∈ b, a fixed value of k, a fixed value of h, and a set P ∈ P(h), we

determine a neighbor b̃ in either N+
k,h(b) or N−k,h(b) , and denote by f+b,k,h,P ( f+ for short when no confusion

arises) or f−b,k,h,P ( f− for short when no confusion arises) the value of the outcome function computed on an

optimal solution of the linear program associated with b̃.

6.2.2. The Algorithm

The pseudo-code Algorithm 1 shows details of our algorithm to compute f U ; we can apply a similar

scheme to compute f L. Line 1 contains input of the algorithm: A, b, c are parameters of the ILPb, r is the

coefficient vector of an outcome function, Q is an ordered set of all the selected values k, V is the ordered

set of all the selected values h, max-shakes indicates the stopping condition, and threshold represents the

minimum acceptable improvement during execution of the algorithm. We denote by Q(q) and V (v) the q-th

and v-th elements in the two ordered sets, respectively.

Line 2 computes an initial solution f U
int

, and stores the associated scenario b̂int . An initial solution can be

computed by solving ORPb for a randomly generated scenario. The algorithm repeatedly refines an initial

solution by using the neighborhood structures defined earlier. Lines 4-5 set the initial values of parameters

k and h. Line 6 generates a set P in the collection P(h). Line 7 initiates counter variables. Line 8 checks

4b.c denotes the floor function.
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Algorithm 1: Local search algorithm to compute f U

1 Input: A, b, c, r, Q, V , max-shakes, threshold
Result: the best approximation among all approximations

2 Compute f U
int

.
3 Set f U ← f U

int
and b← b̂int .

4 Put q← 1 and v← 1.
5 Set k← Q(q) and h←V (v).
6 Randomly select a set P in P(h).
7 Put u← 0 and o← 1.
8 while u≤ max-shakes do
9 Compute f+ and f−.

10 Set f̂ ←min{ f+, f−} and let b̂ be the corresponding right-hand side.
11 Determine improvement← f U − f̂ .
12 if improvement ≥ threshold then
13 Set f U ← f̂ and b← b̂.
14 Set k← Q(1).
15 else if q < |Q| then
16 Set q← q+1.
17 Put k← Q(q).
18 else if v < |V | then
19 if o≤ b 1

hc then
20 Set o← o+1.
21 Let Γ be the set of all indices chosen so far for the current h.
22 Randomly generate a set P in P(h) such that P∩Γ = /0.
23 Set k← Q(1).
24 else
25 Update v← v+1 and o← 1.
26 Put h←V (v).
27 Randomly generate a set P in P(h).
28 Set k← Q(1).
29 end
30 else
31 Update u← u+1.
32 Set k, h to their initial values and set o,q, and v to 1.
33 Randomly generate a scenario b ∈ b.
34 Randomly generate a set P in P(h).
35 end
36 end
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whether the stopping condition is met. At each iteration, using the neighborhood structures (25) and (26),

lines 9-11 determine a potential incumbent solution, and compute the improvement. If the improvement is

acceptable (line 12), lines 13-14 update f U and b , and reset k to its initial value. Otherwise, the algorithm

tries the next value of k in Q (lines 15-17). After trying all k ∈Q, the algorithm chooses a different set P for

the current value of h, or it tries different values of h (lines 18-29). Specifically, it first randomly selects a

new set P in P(h). Note that lines 19-23 generate different sets P so that they are mutually exclusive. After

trying a maximum number b1
hc of different sets P in P(h) for a given h, if still no improvement is achieved,

then lines 24-29 choose a new value of h in V . The algorithm continues in this way until all h in V have been

selected. Lines 30-35 apply a shaking step. The aim of this step is to move the search to a different area of

the search space. After trying all values of h and k without getting any improvement, a shaking phase starts.

In this phase, the input parameters k and h are set to their initial values, counters are re-initialized, a random

scenario in b is generated, and a set P in P(h) is randomly generated. The algorithm proceeds in this way

until the stopping condition is met. Finally, it returns the best approximation among all.

7. Experimentation

Here, we present our computational experiments and related results to evaluate the performance of

our approaches. Since there exists no algorithm in the literature to compare our approaches with, then,

in addition to our super-set based method and our local search (LS) algorithm, we also use FMINCON,

a nonlinear programming solver in MATLAB, to solve the nonlinear formulation of the ORPb, that is,

minimizing (maximizing) f (x) subject to system (23). We compare all the methods on two sets of randomly

generated instances. The first set, referred to as class 1, is a collection of unique B-stable instances so that

the output of our approaches can be compared to the optimal values of the problem (see Proposition 1). The

second set of instances, referred to as class 2, is a series of general instances for which the unique B-stability

property is not guarantied. Thus, for this set of instances, the optimal values are not known.

7.1. Description of Instances

We generated class 1 instances using the following procedure. First, for a given problem size (m,n)

and uncertainty parameter (i.e., interval width) (δ ), entries of matrix A ∈ Zm×n were randomly generated in

[−10,10] using uniformly distributed pseudorandom integers. Similarly, vectors c∈Zn,b∈Zm,r ∈Zn were

randomly taken in [−20,−1], [10,20], and [−20,20], respectively. Vector b was constructed as b = b+δe,
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where e = (1, ...,1)T is a vector of ones with the convenient dimension. To ensure boundedness of the

optimal set, we kept entries of the last row of matrix A positive. To have a unique B-stable instance, we

found an optimal basis by solving the linear program associated with a randomly chosen scenario, and

checked whether the optimal basis is unique and common to all scenarios, i.e., we checked the following

conditions5

c̃T
N− c̃T

B Ã−1
B ÃN > 0T ,

Ã−1
B bc−|Ã−1

B |b∆ ≥ 0,

where bc := 1
2(b+b) and b∆ := 1

2(b−b) denote the center and the radius of the interval b. If both conditions

held true, we saved the instance. Otherwise, we started over the process to generate a new instance. In

our experimental study, for class 1 instances, we considered the following problem sizes and values for the

uncertainty parameter: m= {10,30,50,80,100}, n= {15,45,75,120,150} and δ = {0.1,0.25,0.5,0.75,1}.

We studied 25 different combinations of m,n,δ , and generated 30 instances for each combination, for a total

of 750 instances.

We used a similar procedure to generate class 2 instances, except that the unique B-stability was not

required for these instances. For class 2 instances, we considered the following problem sizes and values for

the uncertainty parameter: m = {10,30,50,80,100,200,300,400,500}, n = {15,45,75,120,150,300,400,

500,600} and δ = {0.1,0.25,0.5,0.75,1}. We examined 45 different combinations of m,n,δ , and again we

generated 30 instances for each combination, for a total of 1,350 instances.

7.2. Implementation of Algorithms

The input parameters for the local search algorithm were chosen as follows. The two ordered sets Q

and V were such that Q = {0.1,0.25,0.5,0.75,1} and V = {0.05,0.1,0.15,0.2,0.25,0.3,0.5,1}. The max-

shake parameter was set equal to one, and the threshold parameter was set equal to 0.001. FMINCON has

five stopping criteria namely maximum iterations, maximum function evaluations, step tolerance, function

tolerance, and constraint tolerance. We set the maximum iterations and the maximum function evaluations

to 300,000, step tolerance to (1.000E − 10), and function and constraints tolerances to (1.000E − 6). For

each problem, we first solved a linear program associated with a randomly generated scenario, and we then

took an optimal solution of the linear program as the starting point for the FMINCON. We imposed a time

5Here, we adopt the unique B-stability conditions for our problem. See [18] for a thorough investigation of B-stability in interval
linear programming.
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Table 5: Results related to the computation of f on class 1 instances (average gap and average running time)

input average gap average time (sec)

m n δ
LS
f U1

FMINCON
f U2

super-set
f L

LS
f U1

FMINCON
f U2

super-set
f L

10 15 0.1 0.0001 0.0035 0.0122 0.3214 0.4921 0.0016
10 15 0.25 0.0001 0.0016 0.1530 0.3212 0.2684 0.0007
10 15 0.5 0.0001 0.0186 0.1618 0.3411 0.3133 0.0007
10 15 0.75 0.0001 0.0052 0.1411 0.3385 0.3034 0.0007
10 15 1 0.0003 0.0190 0.9195 0.3437 0.3516 0.0007
30 45 0.1 0.0004 0.0057 0.1594 0.7657 1.6774 0.0020
30 45 0.25 0.0029 0.0063 1.0221 0.8666 1.6139 0.0020
30 45 0.5 0.0003 0.0094 0.5711 0.9188 1.5557 0.0020
30 45 0.75 0.0004 0.0085 1.5103 0.9019 1.5185 0.0019
30 45 1 0.0043 0.0175 1.4701 0.9346 1.6153 0.0020
50 75 0.1 0.0013 0.0045 0.3009 1.4564 3.2491 0.0042
50 75 0.25 0.0018 0.0148 1.0008 1.5302 3.8956 0.0041
50 75 0.5 0.0017 0.0084 0.9686 1.6549 4.3446 0.0040
50 75 0.75 0.0066 0.0688 2.4971 1.6501 3.3910 0.0040
50 75 1 0.0010 0.0640 4.3327 1.6596 3.6361 0.0040
80 120 0.1 0.0020 0.0381 1.0832 2.9608 12.1033 0.0106
80 120 0.25 0.0142 0.0618 2.3559 3.1187 12.3475 0.0102
80 120 0.5 0.0030 0.0227 1.4559 3.2310 12.5632 0.0102
80 120 0.75 0.0018 0.0514 2.2257 3.2231 13.2636 0.0100
80 120 1 0.0039 0.0510 2.3866 3.3486 11.3097 0.0099

100 150 0.1 0.0030 0.0646 1.5206 4.2595 26.5560 0.0163
100 150 0.25 0.0034 0.0222 1.6112 4.5020 22.6072 0.0158
100 150 0.5 0.0117 0.0504 2.6134 4.7064 23.4783 0.0154
100 150 0.75 0.0153 0.0811 2.4725 4.7758 22.0584 0.0148
100 150 1 0.0063 0.0563 3.6750 4.5380 23.5457 0.0151

limit of 30 minutes on the solver for each instance such that if the solver cannot normally converge to a

solution within 30 minutes, it is terminated and its current solution is returned (if it lies within the feasibility

tolerance). For the cases the solver reached one of its internal stopping criteria before reaching the time

limit, it started over from a different starting point and continued in this way until either it converged to

a solution or it reached the time limit. For the cases for which the solver did not normally converge to a

solution within the time limit even after trying multiple starting points, we report the best feasible solution

found among all (if any).

Lastly, the experiments were carried out on a workstation with an Intel(R) Core (TM) i7-4790 CPU

processor at 3.60 GHz with 32.00 GB of RAM. All the methods were coded in MATLAB(R2019b), using

IBM ILOG CPLEX 12.9 for solving linear programs.

7.3. Analysis of the Results

In this section, we only discuss the results related to f . The analysis of the results for f led to similar

conclusions, so we do not report them in the paper. Table 5 shows the results related to the computation

of f on class 1 instances, for which the optimal value can be computed by solving a linear program (see

Proposition 1). Each number in the table is an average of the results obtained on 30 instances. In the table,
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the first three columns show the input parameters, and the following six columns report the results of the

solution approaches. We recall that the super-set based method returns a lower bound for f (columns f L),

while the local search algorithm and FMINCON return an upper bound (columns f U1 and f U2 , respectively).

The gap of an approximate value f̂ from the optimal value is computed by | f̂− f
f |. Hence, lower values

correspond to better performance of the approach. For each method, the table reports the average gap and

the average running time (in seconds).

The local search algorithm converges fast to a very tight upper bound (with a maximum average gap of

1.53% and a maximum average running time of 4.78 seconds) for all the problem sizes and all the values of

the uncertainty parameter δ . FMINCON returns a reasonable upper bound (with a maximum average gap

of 8.11), but it takes significantly longer time than the local search algorithm to converge (with the average

running time ranges between 0.27 of a second and 26.56 seconds). Although calculating f L is fast, its gap

from the the optimal value, with the exception of small size instances and low uncertainty, is significant.

For class 2 instances, given the poor performance of the super-set based method, we only focus on the

results obtained from the local search and the solver. As noted earlier, the unique B-stability property is not

guarantied in class 2 instances, and as a result we are not able to solve ORPb to optimality using existing

methods. We here compare the local search and FMINCON against each other. For instances where the

local search outperforms the solver, i.e. f U1 < f U2 , we calculate the gap as | fU1− fU2

fU2
|, while for instances

where the solver returns a better solution than the local search, namely f U2 < f U1 , the gap is determined

by | fU2− fU1

fU1
|. Additionally, the following measure gives a weighted average gap (WAG) for each method.

Specifically, it applies both the average gap and the number of times an algorithm outperforms the other,

and reads

WAG =
(number of instances on which an algorithm performs better)∗ (average gap)

total number of instances
. (27)

Thus, the higher the WAG value, the better the performance. Table 6 reports the results corresponding to the

computation of f for class 2 instances. The first three columns show the input data. Columns 4 and 5 give

the frequency of times the local search outperforms FMINCON and the weighted average gap, respectively.

Similarly, the following two columns represent the same attributes for when FMINCON outperforms the

local search. The last two columns indicate the average running times for each method.

Our results in Table 6 suggest that the local search outperformed FMINCON on 683 instances out of

1,350 instances. Moreover, the weighted average gap of the local search is larger than that of FMINCON for

28 combinations of m,n,δ out of a total of 45 combinations. FMINCON tends to return a better weighted
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Table 6: Results related to the computation of f on class 2 instances.

input f U1 < f U2 f U2 < f U1 average time (sec)

m n δ freq. WAG freq. WAG LS FMINCON

10 15 0.1 22 0.0024 8 0.0000 0.3130 0.4605
10 15 0.25 21 0.0074 9 0.0000 0.3190 0.4511
10 15 0.5 21 0.0045 9 0.0084 0.3301 0.5361
10 15 0.75 19 0.0138 11 0.0002 0.3356 0.3225
10 15 1 21 0.0526 9 0.0081 0.3536 0.3164

30 45 0.1 19 0.0107 11 0.0003 0.8241 1.3156
30 45 0.25 19 0.0085 11 0.0010 0.8808 1.3838
30 45 0.5 20 0.0397 10 0.0028 0.8978 1.4990
30 45 0.75 17 0.0514 13 0.0084 0.9450 2.4027
30 45 1 19 0.0390 11 0.0059 0.9791 1.8116

50 75 0.1 17 0.0031 13 0.0003 1.4768 4.8394
50 75 0.25 15 0.0061 15 0.0089 1.5200 4.4078
50 75 0.5 16 0.3897 14 0.0028 1.7290 4.0354
50 75 0.75 16 0.0360 14 0.0067 1.7371 4.2858
50 75 1 14 0.0585 16 0.1042 1.8498 4.9498

80 120 0.1 23 0.0141 7 0.0013 3.0263 13.7443
80 120 0.25 17 0.0112 13 0.0364 3.4131 14.9026
80 120 0.5 19 0.1273 11 0.0750 3.6254 13.2121
80 120 0.75 16 0.0658 14 0.1080 3.5492 15.0886
80 120 1 15 0.0841 15 0.0504 3.6229 19.0471

100 150 0.1 25 0.0143 5 0.0022 4.6070 30.4261
100 150 0.25 23 0.1741 7 0.0109 4.9523 27.6289
100 150 0.5 18 0.0413 12 0.0147 5.3517 31.3020
100 150 0.75 18 0.0816 12 0.0337 5.6269 44.5924
100 150 1 10 0.0904 20 0.0583 5.2683 38.2789

200 300 0.1 26 0.1033 4 0.0078 18.8387 226.2555
200 300 0.25 15 0.2028 15 0.0120 20.0275 242.7648
200 300 0.5 14 0.0415 16 0.1506 21.6897 298.3727
200 300 0.75 9 0.0318 21 0.5077 20.1736 231.7975
200 300 1 11 0.0254 19 0.2233 20.3656 203.9699

300 400 0.1 18 0.0655 12 0.0150 43.7986 1,400.9399
300 400 0.25 18 0.1182 12 0.0424 46.3638 1,601.2650
300 400 0.5 4 0.0539 26 0.2600 48.3374 1,536.8595
300 400 0.75 6 0.0462 24 0.1886 39.8791 1,413.8520
300 400 1 5 0.0434 25 1.0230 40.4988 1,351.4880

400 500 0.1 22 0.1410 8 0.0196 76.7331 1,740.2052
400 500 0.25 17 3.3220 13 0.0188 76.2029 1,800
400 500 0.5 9 0.0247 21 0.4430 76.8172 1,760.1362
400 500 0.75 3 0.0063 27 0.8576 74.1061 1,784.4656
400 500 1 2 0.0027 28 1.3027 70.8703 1,722.2246

500 600 0.1 22 0.0889 8 0.0274 124.1661 1,768.2018
500 600 0.25 12 0.1292 18 0.0410 123.9820 1,800
500 600 0.5 4 0.0224 26 0.3193 110.2257 1,770.3525
500 600 0.75 4 0.0211 26 1.6025 112.0062 1,800
500 600 1 2 0.0048 28 0.9238 108.6081 1,800
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average gap for instances with larger sizes and uncertainty parameters, but it also takes a much longer time

to converge to a solution, see, for example, the instances with m = 300, n = 400, and δ = 1. For this partic-

ular case, FMINCON took 1,351.49 seconds on average to converge, while our local search converged, on

average, in 40.5 seconds. From the table, we can observe that the WAG measure ranges between 0.0024 and

3.3220 for the local search and between 0.0000 and 1.6025 for FMINCON. We also see that the computation

time of FMINCON grows faster compared to that of the local search, with a maximum average running time

of 1,800 seconds against that of 124.17 seconds for the local search.

8. Case Study: Healthcare Access Measurement

Here, we show an application of ORPb when an outcome function is used to measure spatial access to

healthcare services. We first introduce a linear program which has been recently proposed in the literature to

derive a matching between patients and providers. We then use our approach to evaluate how uncertainty in

input data influences spatial access to healthcare services, and discuss how the results of our approach can

be used for more reliable decision making.

8.1. Optimization Model and Outcome Function

Optimization models used to quantify potential spatial access to healthcare mimic the interactions be-

tween two sets of actors in the system: the target population in need of service within each geographical

area or community (e.g., census tract level), namely ei with i ∈ T , and the network of provider locations

j ∈W . Model 1 is a simplified version of the mathematical formulation proposed in the literature [13, 32] to

determine a matching between the population in need of healthcare services and providers providing them.

The matching is determined to minimize the total distance traveled at the system level under a set of con-

straints: (i) coverage constraints match as many people in need as possible; (ii) accessibility constraints

ensure the matching takes into account modes of transportation and Health Resources Services Adminis-

tration recommendations on the maximum allowed distance for matching; (iii) capacity constraints account

for the maximum and minimum providers’ caseload to stay in practice.

The decision variables xi j in the model determine the number of patients in a census tract i ∈ T assigned

to a specific provider location j ∈W . Parameters of the model include:

• g: number of yearly visits required by a patient,
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Model 1. Modeling access to primary care.
min∑i∈T, j∈W gdi jxi j → Total distance is minimized.
subject to
Coverage constraints:
∑ j∈W xi j ≤ ei ∀i ∈ T, (C1) → The assignment does not exceed population in need

in census tract i.
∑i∈T, j∈W xi j ≥ αE, (C2) → The assignment covers as much population as possible

within the national access policy.
Accessibility constraints:
∑ j∈W :di j≥dmax xi j = 0 ∀i ∈ T, (C3) → Patients are not assigned to too far providers.
∑ j∈W :di j≥dmob

max
xi j ≤ miei ∀i ∈ T, (C4) → Patients that own a vehicle can travel further than

patients without a vehicle.
Availability constraints:
∑i∈T gxi j ≤ cmax

j ∀ j ∈W, (C5) → Providers’ maximum caseload is not exceeded.

∑i∈T gxi j ≥ cmin
j ∀ j ∈W, (C6) → Providers are assigned a minimum caseload

to stay in practice.
Non-negativity constraints:
xi j ≥ 0 ∀i ∈ T, j ∈W.

• ei: population size in census tract i in need of healthcare services,

• di j: travel distance between the centroid of census tract i and provider location j,

• E: total population in the system in need of healthcare services,

• α: percentage of the population which should be assigned to a provider,

• dmax: maximum allowed distance between a patient and the assigned provider according to the Health

Resources Services Administration recommendations,

• dmob
max : maximum distance we assume that people without a vehicle are willing to travel to reach the

assigned provider,

• mi: percentage of population in census tract i that owns a vehicle,

• cmax
j (cmin

j ): maximum (minimum) provider’s caseload in location j.

For our analysis, we consider an interval version of Model 1 obtained by allowing parameters cmax
j to

vary within a given interval. Specifically, we assume that the availability constraints (C5) in the model are

of the form

∑
i∈T

gxi j ≤ [λcmax
j ,βcmax

j ] ∀ j ∈W,
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where λ and β are the maximum and the minimum perturbations from the nominal values cmax
j for j ∈

W , respectively. Note that the resulting intervals vary independently. Such uncertainty in the capacity of

a provider can be due to increasing and/or decreasing personnel, overtime or days-off of providers, and

inaccurate estimations of the capacity, among others.

Access measures are outcome functions defined as linear functions of an optimal assignment derived

from an optimization model [32]. For this illustrative example, we consider the access measure fi(x) defined

as the average distance traveled by patients in a given census tract i to reach the assigned provider, which is

formally defined as

fi(x) = dmax +
1
ei

∑
j∈W

(di j−dmax)xi j ∀i ∈ T.

The above measure gives the weighted average of the distance traveled by patients in each census tract. We

assume that for those patients who are not assigned to a provider, fi(x) is equal to dmax. Thus, the access

measure ranges from 0 to dmax.

The resulting estimates can be used by policy makers to identify where the communities with the greatest

need for improvement are, so that they can be targeted with additional resources, including new providers

or facilities, transportation services improvement, tele-health service development, etc.

8.2. Case Study

We illustrate our analysis to quantify access to the primary care service for children in the State of

Mississippi in the United States, for a total of 637 census tracts and 897 provider locations. Providers’

practice location addresses are obtained from the 2013 National Plan and Provider Enumeration System

(NPPES). The patient population is aggregated at the census tract level. We used the 2010 SF2 100% census

data and the 2012 American Community Survey data to compute the number of children in each census tract

along with information on ownership of cars, to estimate the access to private transportation means. We set

dmax = 25 miles, dmob
max = 10 miles, α = 0.85, and g = 2 (see [12] for further details on the input parameters).

The resulting model contains 63,573 variables and 3,706 constraints. For the interval version of the model,

we set λ = 0.8 and β = 1.2.

8.3. Importance of Quantifying Sensitivity to Data Perturbations

Failing to consider uncertainty in the input parameters may significantly affect the decision making on

the choice of which census tracts to target for possible interventions. To elaborate further, we compared the
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(a) Realizations 1 & 2 (b) Realizations 3 & 4

Figure 5: Difference in the access measures considering four random realizations of the input parameters.

results of Model 1 on two different realizations of interval data, referred to as realizations 1 & 2. Figure 5a

shows the difference in the access measures obtained in the two optimization runs (corresponding to real-

izations 1 & 2) . Darker regions represent higher differences, that is, census tracts where the estimate of the

access measure is more unstable. The circled census tracts are those for which the resulting access measure

changes more than 5 miles between the two runs, implying that some census tracts may be considered hav-

ing high or low level access depending on which realization of the data is considered. Consider now Figure

5b where the difference in the access measures, obtained for two different additional realizations (referred

to as realizations 3 & 4) of the parameter cmax
j , is shown. The comparison between Figures 5a and 5b tells

two different stories, showing completely different sets of census tracts for which the access measure seems

more unstable.

In this sense, quantifying sensitivity of the access measure to data perturbations would be crucial for

reliable decision making. Such an analysis would indeed reveal: (i) census tracts that are certainly in need

of a targeted intervention (e.g., those census tracts for which the access measure is high and not sensitive to

data perturbations), and (ii) census tracts that are certainly not in need of any intervention (e.g., those census

tracts for which the access measure is low and not sensitive to data perturbations). It would also help to

determine census tracts that may fall, due uncertainty in the data, in either one of the two categories, and for

which, therefore, a deeper investigation might be needed. By solving ORPb in this context, we can assess

such a quantification. Additionally, we are able to answer questions relevant for policy making, including:

• Q1: Given the current primary care resources, what are the minimum and maximum access levels for
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each census tract?

• Q2: What are the census tracts with the highest (lowest) variability in the access measures?

• Q3: What is the percentage of the census tracts where the access level is higher (lower) than a given

threshold for all the possible realizations of the data?

We applied our local search algorithm to solve ORPb in this context, and addressed the above questions.

8.4. Implementation of Algorithms

The outcome function (i.e., the access measure) is associated with each census tract. Hence, we applied

our local search algorithm once for each outcome function (total of 637 functions). Zheng et al. [44] used

the Monte Carlo approach to evaluate sensitivity of the access measure to uncertainty in the input data.

Therefore, we compare the results of our approach with those returned by the Monte Carlo approach.

For the local search algorithm, we defined Q = {0.25,0.5,0.75,1}. Due to the large size of the problem

and the structural dependencies among the decision variables [44], defining an ordered set V and randomly

choosing constraints, whose right-hand sides are perturbed simultaneously, would not be very efficient.

Thus, we defined a set V (i) for each given census tract i as V (i) = {H1(i),H2(i),H3(i)} for all i ∈ T , where

Hl(i), l = 1,2,3, are predefined sets of constraints associated with census tract i. Note that for this specific

application, each constraint to be perturbed corresponds to a provider j whose max capacity parameter (cmax
j )

is perturbed from its nominal value. The first set of constraints to be explored corresponds to providers

who are not too far from the analyzed census tract, that is, H1(i) := { j ∈W : di j ≤ 50}. The second set

of constraints to be explored are those constraints corresponding to providers who do not correspond to

constraints in H1(i) and who are not too far from census tracts which are neighbors of the census tract under

study. Specifically, we defined two census tracts to be neighbors if the distance between their centroids is less

than 50 miles. Given a census tract i, let us denote the set of neighboring census tracts as the set A(i) = {a ∈

T : dia ≤ 50}. The second set of constraints is then defined as H2(i) := { j ∈W : da j ≤ 50,∀a ∈ A(i)}\H1(i).

Finally, the last set H3(i) consists of the remaining providers, that is, H3(i) :=W\{H1(i)∪H2(i)}.

We set the maximum number of shakes to 1 and the minimum acceptable improvement to 0.1. The

number of iterations for the Monte Carlo approach was set equal to 100, which is the maximum number of

linear programs solved by the local search algorithm among all the runs.
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8.5. Analysis of the Results

Monte Carlo simulation is a simple approach to compute the maximum and the minimum values of the

access measure for each census tract; however, in this context, it might lead to a severe underestimation of

the overall quantification. To show this, we computed the range of the resulting access measure for each

census tract using both the local search algorithm and the Monte Carlo approach. The range is computed

as the difference between the maximum and the minimum of the access measure for each census tract. The

difference in the results is shown in Figures 6 and 7. Specifically, Figure 6 shows the number of census

tracts for which the range of the access measures is within 2 and 20 miles for the two approaches. Results

obtained from the Monte Carlo approach show that the access range in 28 census tracts out of 635 census

tracts varies between 4 and 20 miles, where in 12 of them the access range varies between 8 and 20 miles.

However, the local search algorithm reveals that the access range in 89 census tracts varies between 4 and

20 miles, where in 47 of them the access range varies between 8 and 20 miles. It is noteworthy that Figure

6 does not represent census tracts with the access range of less than 2 miles.

Figure 6: Distribution of the census tracts for which the access range varies between 2 and 20 miles for the two approaches (i.e.,
Monte Carlo approach and the local search algorithm).

Figure 7 depicts the map of the difference in the ranges obtained comparing the two approaches. Darker

census tracts are those for which the Monte Carlo approach severely underestimates sensitivity of the access

measures, that is, those census tracts for which the difference between the range estimated by the Monte

Carlo approach and the range estimated by the local search algorithm is greater than 15 miles. From Figures

6 and 7, it is evident that the Monte Carlo approach is not a right tool to quantify sensitivity of the access

measure to uncertainty in the data. Its use to answer the questions Q1-Q3 would lead to a severe underesti-

mation. Hence, in what follows, we only focus on the results obtained from our local search algorithm.

Figures 8a and 8b show the lower and the upper limits of the access measure for each census tract (Q1),
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Figure 7: Difference between the access ranges estimated by the Monte Carlo approach and those estimated by the local search
algorithm.

and Figure 9 shows the range of the access measure for each census tract (Q2). Darker areas in Figure 9

are those census tracts where the range of the access measure is greater than 10 miles, which corresponds

to 39 census tracts out of 635 (i.e., 6% of the total). Table 7 and Figure 10 can be used to address question

Q3. The table shows the distribution of the minimum and maximum of access within the state among all the

census tracts. Figure 10a divides the census tracts in two groups according to the value of their minimum

access level: dark (light) tracts have a minimum access which is greater (less than or equal to) 10 miles.

Figure 10b divides the census tracts in two groups according to the value of their maximum access level:

dark (light) tracts have a maximum access which is greater than (less than or equal to) 5 miles. According

to Table 7, 13% of the census tracts have a minimum level of access which is greater than 10 miles. In other

words, the population in these census tracts always travel on average at least 10 miles to reach the assigned

provider. These census tracts are the dark regions in Figure 10a. On the other hand, 64% of the census

tracts (the column maximum level of access in Table 7) are such that the corresponding population never

travel more than 5 miles to reach the assigned provider. These census tracts are the light regions in Figure

10b. These findings are important for decision makers to prioritize interventions. Indeed, for example, dark

census tracts in Figure 10a depict those census tracts which are surely in need for targeted actions to improve

their access to healthcare services because they were identified by accounting for all the possible realizations

of the uncertain data, while the light census tracts in Figure 10b have a good access to healthcare services

among all the possible realizations of the uncertain data; hence, they are unlikely to be the object of targeted

interventions.
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(a) Minimum access level (b) Maximum access level

Figure 8: Minimum and maximum of the access measures.

Figure 9: Range of the access measure for each census tract.

Table 7: Distribution of census tracts corresponding to the minimum and maximum access levels (for different access ranges).

access (mile) minimum access level maximum access level

0-5 69% 64%
5-10 18% 14%

10-15 2% 2%
15-20 3% 4%
20-25 8% 15%
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(a) Minimum access level (b) Maximum access level

Figure 10: Classification of the census tracts according to their minimum and maximum access levels.

9. Conclusions

We formulated and studied the outcome range problem in the field of interval linear programming. Our

problem aims at quantifying unintended consequences of an optimal decision in an uncertain environment.

The problem is particularly relevant for government agencies, public health decision makers, policy mak-

ers, city managers and other stakeholders who make decisions that have differential impacts on different

communities and sub-populations, and we showed this on a real case study related to healthcare access mea-

surement. In this paper, we gave a very general definition of the outcome range problem, and addressed a

specific version of it for which we assessed the computational complexity and studied some theoretical prop-

erties. We then offered two approximation methods. Our proposed local search algorithm seems promising

in computing a cheap but tight approximation of the problem. In contrast, the proposed super-set based

method does not return a tight approximation; thus, there is room for improvement. We tested the meth-

ods on two sets of randomly generated instances, and on a real case instance. We plan to further explore

theoretical properties and solution methods for a more general version of the problem.
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