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Abstract

The location–routing problem (LRP) unites two important challenges in the design of
distribution systems: planning the delivery of goods to customers (i.e., the routing of
the delivery vehicles) and determining the locations of the depots from where these
deliveries are executed.

In this paper, we design an efficient and effective heuristic for the LRP based on
an existing heuristic to solve the capacitated vehicle routing problem. Our heuristic
reduces the solution space to a manageable size by the estimation of an upper bound
for the number of open depots and then iteratively applies the routing heuristic on each
remaining depot configuration. A progressive filtering framework, in which the vehicle
routing problem is solved to a larger precision at each iteration, is employed to quickly
detect unpromising configurations.

Extensive experimentation reveals that the estimated upper bound effectively re-
duces the search space on different types of instances and that a good filtering design
combines coarse and fine filters. Benchmarking shows that, despite its simple design,
the final heuristic outperforms existing heuristics on the largest LRP benchmark set,
on very-large-scale LRPs, and on 2-echelon LRPs.

Keywords: vehicle routing problem, heuristics, location routing problem, large-scale
problem, local search

1. Introduction

The location–routing problem (LRP) is a well-known combinatorial optimization
problem that combines two important supply chain decisions: where to open distribu-
tion facilities or depots (location) and how to organize the distribution of goods from
those depots to customers (routing). In practice, both decisions are often taken on
different time horizons: while the opening of facilities is a long-term, strategic decision,
vehicle routes are planned on an operational, day-by-day basis.
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Despite the different planning horizons, however, the LRP is not devoid of practical
applications. Salhi and Rand (1989) have shown that the incorporation of distribution
planning into a facility location decision can significantly improve the overall quality
of the solution to the location subproblem, resulting in a considerable decrease in the
total supply chain cost.

Moreover, in some situations, the planning horizons do not differ that much, if
at all. Schittekat and Sörensen (2009), e.g., describe an LRP in which the facilities
are owned by third-party logistics (3PL) providers, which means that the selection
of facilities can change in a manner of weeks, and routes can remain the same for
several weeks. Additionally, in cases where “depots” are inexpensive and/or mobile,
the location decisions are made, like the routing decision, on an operational level. An
example can be found in the context of waste collection (Del Pia and Filippi 2006)
where smaller vehicles need to synchronize with larger ones to dump their collected
waste. As argued by Vidal et al. (2020), LRPs might also be extended with multiple
routing scenarios to achieve a more realistic representation of many tactical location
routing models.

Informally, the LRP can be summarized as follows. Given a set of customers with
known demand and a set of candidate facility locations (we will use the term “depot”
in the remainder of this paper) with a fixed opening cost, determine which depots to
open as well as the delivery routes from the open depots to the customers to minimize
the sum of depot opening costs and routing costs. Travel costs between customer
pairs and between customers and depots, as well as fixed vehicle costs, are known, and
each customer should be visited once on a route starting and terminating at an open
depot. The total demand in each route cannot exceed the (homogenous) capacity of
the vehicles.

The LRP is a generalization of the capacitated vehicle routing problem (VRP) and
more specifically the multi-depot vehicle routing problem (MDVRP). While the set of
depots is fixed in MDVRPs, in LRPs a subset of depots can be selected from a set
of candidate depots, thus adding elements of the facility location problem (FLP) and
increasing complexity. After a subset of depots has been selected (we will refer to this
subset as depot configuration in the remainder of this paper), the LRP reduces to an
MDVRP.

A straightforward idea to solve an LRP is to enumerate all possible depot configu-
rations, to compute a routing solution for each of them, and finally to select the best
configuration together with the solution of the respective MDVRP as the solution of
the LRP. In this context, we call the computation of a routing solution the evaluation

of the respective depot configuration. The obvious bottleneck of this approach is the
computation time required, equal to the time to evaluate a single depot configuration
multiplied by the (exponential) number of depot configurations.

In this paper, we present two key ideas to circumvent this complexity and examine
all promising depot configurations. These ideas are embedded in an algorithm coined
progressive filtering (PF). First, and before any routing solution is calculated, the algo-
rithm eliminates all depot configurations with more depots than a certain upper bound.
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This upper bound is derived as a function of the properties of the particular instance.
For smaller problem instances, this restriction of the set of depot configurations suf-
fices, and it becomes tractable to enumerate them all. For larger instances, in which
the number of depot configurations is still large after setting a bound on the number
of open depots, the algorithm uses a heuristic procedure to limit the number of depot
configurations to examine. In the second step, the algorithm progressively filters the
remaining depot configurations using an increasingly accurate version of the MDVRP
heuristic knowledge-guided local search (KGLS, Arnold and Sörensen (2019)). In this
way, the worst depot configurations are eliminated using a low-accuracy, fast routing
algorithm, leaving more computing time to evaluate the better depot configurations
using a more accurate (and therefore slower) routing algorithm.

We demonstrate that the resulting algorithm is competitive with the most effective
LRP heuristics in literature by applying it to a wide range of benchmark instances.
Moreover, the heuristic can be readily adjusted to solve very-large-scale LRP instances
with thousands of customers and hundreds of depots, the 2-echelon-LRP (2E-LRP, see,
e.g., Drexl and Schneider (2015)) and the single truck and trailer routing problem with
satellite depots (STTRPSD, see, e.g., Villegas et al. (2010)). On all problem classes,
the heuristic either outperforms or matches the performance of all previously published
heuristics in the literature. In summary, this work makes the following contributions
to the field of heuristics and location–routing problems.

• The introduction of a flexible and extensible heuristic framework for hierarchical
decomposable problems called progressive filtering.

• An empirical estimate for an upper bound of open depots in LRPs and a heuris-
tic construction procedure that both significantly limit the number of promising
configurations.

• A heuristic for LRPs and LRP variants that matches or improves the performance
of state-of-the-art heuristics on several problem sets.

The remainder of this paper is organized as follows. In Section 2 and Section 3
we present effective heuristics and ideas from the literature and formally introduce the
location–routing problem and its variants. Section 4 introduces the progressive filtering
framework together with the MDVRP heuristic KGLS. Section 5 investigates how the
number of depot configurations examined by the heuristic can be restricted. Different
setups of the filtering framework are thoroughly analyzed in Section 6 to arrive at a
final setup which is compared with effective heuristics on various benchmark sets. We
conclude with a summary of our findings as well as an outlook for future research in
Section 7.

2. Literature Review

In recent years, several effective heuristics have been proposed to solve the LRP.
Albareda-Sambola and Rodŕıguez-Pereira (2019) and Schneider and Drexl (2017) give a
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concise overview about the recent progress on heuristics for the LRP. Prodhon and Prins
(2014) also review heuristics for LRP variants. The most successful heuristics identified
by Schneider and Drexl (2017) consist of different stages and combine (meta)heuristic
components with integer linear program formulations (ILPs).

Escobar and Linfati (2013) and Escobar et al. (2014) successfully use ILP to deter-
mine a depot configuration. Initially, the customers are divided into clusters and an
ILP model assigns customer clusters to depots such that the routing cost from the open
depots is minimized. Afterward, the routing cost is improved with various heuristic
techniques.

Contardo et al. (2014) suggest a heuristic design which solves the location and
routing subproblems simultaneously. A pool of candidate solutions is constructed with
a randomized version of the extended algorithm by Clarke and Wright (1964), which
are subsequently improved by iteratively removing and re-inserting customers (destroy-
and-repair) and improving the assignment between routes and depots by solving an
ILP. Notably, the depot configuration is also improved with local search moves that
can open and close depots.

This idea is also incorporated in the state-of-the-art heuristic by Schneider and
Löffler (2017). The authors utilize a wide range of granular local search moves to
improve the solution for the routing subproblem of an initially generated solution.
Alternative depot configurations are then investigated in a tree-like fashion by either
swapping an open and a closed depot, closing an open depot or opening one extra
depot. The created depot configurations are then evaluated by improving the routing
solution with the granular local search.

Despite the success of heuristics in the domain of LRPs, little attention has been
devoted to a systematical identification of promising depot configurations. Prins et al.
(2006a) assign customers to their closest depot with sufficient capacity and close the
depots with no assigned customers. In this way, several depots are eliminated from the
subsequent search. Chan and Baker (2005) determine a lower and an upper bound of
open depots and open a random number of depots between those bounds. The bounds
are computed by opening depots near the minimal spanning tree (MST) formed by all
customer nodes. An MST is also used by Harks et al. (2013) to approximate a solution
for very-large-scale LRP instances. In comparison, the ant colony optimization of Ting
and Chen (2013) initially opens a random number of depots, where depots with a high
ratio between depot capacity and opening cost are favored.

From this overview, we can conclude that the MDVRP subproblem is generally
solved with heuristics, whereas the location subproblem is more often solved by (exact)
integer programming methods, although local search approaches are also used. Both
approaches have been shown to work well on instances of smaller and moderate size in
which the depots are relatively homogeneous in terms of capacity and costs, and few
depots have to be opened.

However, ILP formulations and exact methods might face difficulties if the problem
grows beyond a certain size and the location subproblem becomes the computational
bottleneck. On the other hand, local search based approaches might struggle on in-
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stances in which promising depot configurations are diverse (e.g., there are good solu-
tions with a single open depot and with 20 open depots). While exact methods can
handle such instances with structurally different local optima because — by their very
nature — they examine the entire solution space, such instances present difficulties for
local search, as improving paths between high-quality solutions do not exist.

Drawing on this insight, we develop an alternative framework to solve the LRP that
attempts to examine as many potentially optimal depot configurations as possible while
making sure to discard unpromising depot configurations as early as possible. To do
this intelligently, we first investigate the properties of promising depot configurations
to initially reduce the search space as much as possible.

3. Problem definition

The LRP combines the problem of determining a set of open depots from a set of
candidate depots, with the problem of routing a fleet of vehicles from the open depots
to the set of customers. Let G be a complete, weighted, and undirected graph with
nodes V = I ∪ J . Each edge (i, j) ∈ V × V of G is annotated with a cost c(i, j).
Nodes J = {1, 2, . . . ,n} represent customers, while nodes I = {n+1,n+2, . . . ,n+m}
represent candidate depots. Each depot i ∈ I has a fixed opening cost Oi and a capacity
Wi. Among all candidate depots, a depot configuration, i.e., a subset of open depots
D ⊆ I needs to be determined.

From the set of open depots D, each customer j ∈ J with demand dj has to be
visited on one delivery route. The delivery routes R are planned with a homogeneous
fleet of vehicles where each vehicle has a maximum capacity Q and a fixed cost F .
Overall, the following constraints have to be considered when planning the delivery
routes: (1) each customer is visited exactly once, (2) each route returns to the same
depot it started from, (3) the sum of demand of all customers on a route does not
exceed the vehicle capacity Q, and (4) the sum of demand of all customers allocated to
routes of depot i does not exceed this depot’s capacity Wi. A distinction can be made
between capacitated instances, in which some depots are not able to serve all demand
(∃i|Wi <

∑

j dj), and uncapacitated instances, in which the capacity of each depot is
assumed to be infinite.

The objective is to find a depot configuration D ⊆ I and a corresponding routing
solution with minimal total cost cLRP(D) = cO(D) + cR(D). The opening costs of a
specific depot configuration are given by cO(D) =

∑

i∈D Oi and its routing costs can be
calculated as cR(D) = F ·

∑

(i,j)∈R|i∈I 1 +
∑

(i,j)∈R cij.
In the last decade, many variants to this standard version have been introduced to

tackle a variety of real-world problems (Drexl and Schneider 2015). A taxomy of these
problems is presented by Lopes et al. (2013). In this paper, we consider the 2-echelon
LRP (2E-LRP) and the single truck and trailer routing problem with satellite depots
(STTRPSD) as variants.

The 2E-LRP is a generalization of the LRP with a two-level distribution structure
(see, e.g., Drexl and Schneider (2015)). On the first level, the transportation from
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a single main depot (also called platform) to various subsidiary depots (also called
satellites) has to be planned, while on the second level, the subsequent distribution
from satellites to customers is planned. The satellites have opening costs and a subset
among all possible satellites has to be determined such that the sum of opening costs,
routing costs on the first level, and routing costs on the second level is minimized.
Once a subset of satellites has been determined, the first level presents a VRP, and
the second level presents an MDVRP. More formally and analogously to the definition
of an LRP, the set of candidate satellites of the 2E-LRP corresponds to the set of
candidate depots I, a depot configuration is defined by D ⊂ I and the set of customers
by J . Let P denote the platform, R1 the routing solution on the first level and F1 the
fixed cost per route on the first level, then the costs of a configuration D on the first
level are expressed as cF (D) = F1 ·

∑

(i,P )∈R1
1 +

∑

(i,j)∈R1
cij and the overall costs as

cLRP(D) + cF (D). Note that the vehicle capacity on the first level can differ from that
of the second level (it is usually assumed to be higher). Similarly, the fixed cost per
route is usually higher on the first level.

The STTRPSD constitutes a special case of the 2E-LRP in which satellite depots
have opening costs Oi = 0 and infinite capacity Wi (Villegas et al. 2010). A set of
customers is delivered from a platform by a single truck with an attached trailer. As
an additional constraint, the trailer cannot be attached to the truck when visiting a
customer (e.g., because there is a lack of parking space). Thus, before visiting a subset
of customers, the truck has to be detached and parked at one of several possible parking
locations (without extra costs). After the subset of customers has been delivered, the
truck returns to the parking location to re-attach the trailer.

4. Progressive filtering

In this paper, we propose a heuristic for the LRP which we call progressive filtering.
PF combines existing heuristics for the MDVRP with an iterative filtering strategy to
discard unpromising depot configurations as early in the search as possible.

4.1. Efficiently solving capacitated MDVRPs

PF uses two different heuristics to compute routing solutions for MDVRPs. The
first heuristic (Regret Clarke-Wright - RCW) is a simple construction heuristic that
allocates each customer to its closest open depot and solves the corresponding VRP
with the heuristic by Clarke and Wright (1964) for each depot separately. The second
heuristic is a slightly modified configuration of the Knowledge-Guided Local Search
(KGLS) heuristic that we have proposed in Arnold and Sörensen (2019). Both heuristics
were adapted to deal with capacitated depots in LRP instances.

RCW allocates each customer to its nearest depot with sufficient capacity. The
order of this allocation is determined by minimizing the opportunity costs that are
incurred when the closest depot does not have sufficient capacity to serve the customer
(i.e., the regret). For each customer, the difference between the distance to the closest
and the second-closest depot is computed, and the customer with the largest difference
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is allocated to its closest depot first. If the closest depot has insufficient capacity left
to serve the considered customer, the regret is updated by computing the difference
between the distance to the two nearest depots with sufficient capacity. After each
customer has been allocated to a depot, the initial routing solution is constructed by
applying the Clarke and Wright heuristic to each depot separately. The result is either
used as a routing solution if computation time is limited, or serves as an initial solution
for KGLS to achieve further improvement.

KGLS is a local search based and deterministic metaheuristic with a single solu-
tion trajectory that combines the guided-local search framework (Voudouris and Tsang
2003) with sophisticated and complementary local search operators. Multiple routes
are improved with the CROSS-exchange operator and a relocation chain. Whenever an
improving local search move has been found, the involved routes are re-optimized with
the heuristic by Lin and Kernighan (1973). When no more improving moves can be
found and a local minimum is reached, a subset of undesirable edges is identified with
problem-knowledge from a preceding data-mining study. These edges are penalized and
the heuristic then attempts to remove them with the previously mentioned local search
operators. The local search uses pruning techniques and sequential search to find im-
proving moves as fast as possible and to scale effectively to very-large-scale instances
(Arnold et al. 2019). As a consequence, KGLS consistently produces high-quality solu-
tions for routing problems in short computation times. On MDVRP instances with 50
to 360 customers, KGLS requires less than a minute of computation time to find solu-
tions with an average gap of 0.08% to the best-known solutions (Arnold and Sörensen
2019).

The capacity constraint on the depots is embedded by keeping track of the remaining
inventory at each depot and only allowing local search moves that do not violate these
constraints. Note that these constraint checks are only relevant if a local search move
attempts to exchange customers from routes that are assigned to different depots. As
a result, the heuristic keeps solutions feasible at all times. Algorithm 1 provides a
high-level outline of the KGLS heuristic and its adaption to MDVRPs with capacitated
depots.

Algorithm 1 Knowlege-guided local search heuristic (KGLS), adapted for MDVRPs
with capacitated depots.

1: Construct an initial solution S with RCW.
2: Apply Local Search on S with capacity checks
3: iter = 1
4: while iter< Imax do

5: Penalize undesirable edges in S until 30 moves have been made
6: Apply Local Search on S with capacity checks
7: iter++
8: end while
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4.2. Solving LRPs through progressive filtering

Even with a fast routing heuristic like KGLS, calculating an accurate solution for
a moderately-sized MDVRP requires at least some seconds of computation time. This
time magnitude might be too large if there are many candidate depots (an LRP with
m candidate depots has 2m − 1 depot configurations). This dilemma can be solved by
evaluating each configuration only as long as necessary.

Many configurations can be ignored by the search without even computing any rout-
ing solutions. More precisely, we hypothesize that only a limited number of depots have
to be opened, beyond which the sum of opening costs exceed any potential benefit in
terms of decreasing routing costs. The estimation of such an upper bound U would
sharply reduce the number of promising depot configurations to

∑U

i=1

(

m

i

)

. However, U
or m (or both) might still be too large. In the case of the STTDR, such a value cannot
be estimated because depots can be opened for free. In these cases, the number of re-
maining configurations is still larger than an acceptable limit M and further elimination
is necessary. We suggest an elimination based on a divide and conquer approach, which
takes the individual qualities of each depot into account. These ideas are elaborated in
Section 5.

The evaluation of the remaining configurations requires the computation of routing
solutions. However, the computation should only be carried out as long as necessary.
The key idea is that a depot configuration D1 is only evaluated until there is sufficient

confidence that there is a better configuration D2. If there is sufficient confidence that
such a better configuration exists, we can stop the evaluation and remove D1 from the
search. The level of confidence depends on the difference in solution quality to the best
configuration so far (the larger the gap between the quality of both configurations, the
more confidence) and the expected accuracy of the solution method (the higher the
expected accuracy, the more confidence). Even with a very fast but rather inaccurate
evaluation of the routing solutions for different depot configurations (e.g., with RCW),
some configurations will be clearly outperformed by others. These configurations can
be “filtered” out at this stage. In a next stage, a slightly more accurate heuristic can
be used, which takes more time, but can confidently filter out more configurations.
This process can be repeated until just a few configurations remain, which are then
evaluated with the most powerful routing heuristic available. The overall goal is to
iteratively reduce the number of configurations, while not filtering out the best or one
of the best configurations. We call this process progressive filtering.

In this context, a filter F is defined as a selection process, which selects a subset
of size b of output configurations CO from all given input configurations CI , using
algorithm a as evaluation criterium. This is formalized as Fa,b(CI) = CO with |CO| =
min(b, |CI |). In the following, the b configurations with the lowest objective value are
selected, and algorithms RCW and KGLS are used as evaluation algorithm a. A filter is
thus a tuple formed by the used algorithm a and its abortion criterium and the maximal
number b of configurations that are passed on to the next filter (also called granularity
in the following). Then a set of filters P = {(a1, b1), (a2, b2), . . . } defines a setup for
PF. The entire framework is outlined in Algorithm 2.
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In summary, PF is a flexible algorithmic framework for the LRP and other problems
that are decomposable into two or more hierarchical subproblems. Algorithm a can be
treated as a black box that solves the subproblem with given accuracy and returns a
problem-specific objective value. PF can thus also be readily extended to other LRP
problem variants.

Algorithm 2 The progressive filtering framework (PF).

Input: Set C of all possible depot configurations

1: Estimate an upper bound for the number of open depots U and remove all config-
urations D with |D| > U from C

2: if |C| > M then

3: Heuristically select promising configurations from C

4: end if

5: for (a, b) ∈ P do

6: C ← Fa,b(C)
7: end for

8: Select the best configuration Cbest from C and compute a routing solution with a.

4.3. Multi-Threading

PF can be readily parallelized by distributing the evaluation effort at each filtering
stage between different threads. This can lead to significant performance gains when
larger servers or cloud computing are available, and makes the heuristic framework
appealing from a practical perspective when times matters and computational resources
are unrestricted.

Let PFt be an implementation of PF that uses t worker threads for the evaluation
of configurations, and one master thread that organizes the distribution of the config-
urations and collection of results. At each filtering stage i, each worker thread receives
⌈ bi−1

t
⌉ depot configurations for evaluation. After all threads have finished their eval-

uation, the results are collected by the master thread, and the best bi configurations
are re-distributed among the worker threads. If t ≥ bi for some stage i, all remaining
filtering stages in PFt can be skipped and the final stage (line 8 in Algorithm 2) can
be executed immediately with all bi remaining configurations.

Note that the maximal performance gain with multi-threading is limited by the
run-time of the final stage. KGLS in its current form is single-threaded and, thus, the
time required for a single run with a maximum number of iterations cannot be reduced
by using multiple threads. The runtime of all other stages decreases proportionally to
t in the best case, however, usually the runtime of different threads usually varies since
the evaluation time of each configurations varies.

4.4. Solving LRP variants and very-large-scale LRPs

With minor adaptations, PF can solve 2E-LRPs and STTRPSDs. It can also solve
LRPs on very-large-scale instances.

9



2E-LRP. Given a depot (satellite) configuration D, the routing cost on the first
level cF (D) can be computed by, e.g., applying the CW heuristic on the respective VRP.
Since the number of candidate satellites is generally small (and magnitudes smaller than
the number of customers on the second level), such a simple evaluation should already
be sufficient to obtain a good estimate for cF (D). Thus, the only adaptation necessary
is the computation of routing solutions for the first level with CW to obtain cF (D)
whenever a routing evaluation is performed. With this design, solving an 2E-LRP does
not require much more computational effort and no additional implementation effort
in comparison to solving the corresponding LRP that arises from the decisions which
satellite to open and how to distribute goods from the satellites to the customers. We
want to remark that this decomposition simplifies the problem and does not consider
the interdependency between the first and the second level. The allocation of customers
to satellites on the second level determines the demand of the satellites and, thus, the
routing solution on the second level determines the routing problem on the first level
and vice versa.

STTRPSD. The STTRPSD can be solved analogously to a 2E-LRP. Since opening
costs are nonexistent, no upper bound for the number of open depots U can be derived,
which makes STTRPSD a challenging problem variant to validate the effectiveness of
the heuristic construction of depot configurations.

Very-large-scale LRPs. The progressive filtering framework implicitly relies on
the two assumptions that the number of depot configurations can be reduced effectively
and that the associated MDVRPs can be evaluated efficiently. For LRPs in which the
number of candidate depots or the number of customers is large, e.g, m ≥ 100 or
n ≥ 1000 (or both), these assumptions no longer hold, and the initial number of depot
configurations, as well as the time spent on the subsequent routing evaluation, have to
be limited even more drastically to be computationally tractable. We propose three
minor adaptations to solve such instances. First, the evaluation of MDVRPs with
n ≥ 1000 is costly and only a small number of configurations can be evaluated in a
reasonable amount of time. Thus, each of these configurations is evaluated with the
fast version of CW described in Arnold et al. (2019), called CW100, in which the savings
list only contains the savings between a customer and its 100 nearest neighbors. In case
that the number of depots is not overly large but the number of customers exceeds a
certain threshold, i.e., m < 100 and n ≥ 400, CW100 is also utilized to speed up the
construction process. Secondly, the area division of the heuristic construction outlined
in Section 4.2 is simplified by only opening the depot with the lowest gross costs in
each area. This simplification limits the number of considered configurations to U .
Finally, no filters are used (P = {}) and the most promising configuration determined
by heuristic construction is immediately evaluated with KGLS.

5. Identifying promising depot configurations

In the following, we present two ideas to drastically reduce the number of depot
configurations that appear promising. First, we experimentally derive an approximate
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upper bound U for the number of open depots in order to limit the search space to
∑U

i=1

(

m

i

)

configurations. Second, for those instances in which the number of remaining
depot configurations is still too large, we present a simple heuristic procedure to further
reduce the number of options.

5.1. Estimation of an upper bound for the number of open depots

While the opening of depots usually comes at a cost, it can be expected that more
open depots allow for a more efficient routing, as the average distance between customers
and their nearest depot decreases. In the following experiments, we investigate this
trade-off to arrive at an estimation for the value of opening more depots.

For each experiment, we sample 100 sets of MDVRP instances. Each set contains
10 instances with identical customer characteristics (location and demand), but dif-
ferent number and locations of the depots. The instances have an increasing number
m = {1, 2, . . . , 10} of depots, and the location of the depots is computed with the
k-means algorithm of the SciKit-learn library (Pedregosa et al. 2011). We use the k-
means algorithm to open the available depots at good locations to answer the following
research question as accurately as possible: Given n customer locations with certain
characteristics, what is the reduction in routing costs when opening m + 1 depots in
comparison to opening m depots, assuming that the depots can be opened at any
location.

We then compute the routing costs for each instance with KGLS allowing 0.1 · n
seconds of runtime. Let Rm be the average routing costs of the 100 instances with m

depots, then the target metric r(m) = R1−Rm

R1

denotes the average cost reduction for
the same instance with a single depot.

We perform four experiments and vary one of the relevant instance characteristics
outlined by Uchoa et al. (2017) in each of them: (1) the number of customers n ∈
{100, 300, 900}, (2) the degree to which customers are clustered (random, random-
clustered, clustered), (3) the variance in customer demand d ∈ {[1, 1], [1, 10], [1, 100]}
and (4) the average number of customers per route (the route length) l ∈ {3, 10, 30}.
Clusters are generated in the same fashion as in Uchoa et al. (2017) where k ∈ [3, 8]
customers serve as cluster seeds in whose vicinity the other customers are placed with
an exponentially decaying likelihood. The route length is varied by adjusting the vehicle

capacity Q = ⌈
∑

i di

l
⌉.

Fig. 1 plots the observed cost reductions r(m) for each of the four experiments.
The results confirm the hypothesis that more open depots generally result in larger
cost reductions. However, the marginal benefit r(m) − r(m − 1) of having one more
open depot decreases with growing m, resulting in a relationship that resembles the
logarithmic function r(m) = α · log(m)β. The parameters α and β are fitted with
the software R (R Core Team 2014) for each experiment. For the baseline scenario
n = 100, random customer distribution, d ∈ [1, 10] and l = 10 we obtain rbase(m) =
0.27 · log(m)0.59.

Especially the number of customers n and the route length l appear to significantly
determine the estimated savings r(m). Given that both these parameters influence the
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Figure 1: Observed reduction in routing costs r(m) when delivering from an increasing number of
depots m compared to delivering from a single central depot for various instance properties. The
plotted lines correspond to the fitted functions.

number of routes in a solution, we conclude that a larger number of routes (caused by a
larger n or a smaller l) results in larger values for r(m). To obtain an instance-specific

estimate, we therefore include the minimal number of routes t = ⌈
∑

i di

Q
⌉ as a parameter

in the fitted function with respect to our baseline tbase = 10:

r(m) = 0.27

√

t

10
· log(m)0.59. (1)

We observed that this factor accurately captures the savings for t > 10 and slightly
overestimates the savings for t < 10.

Similarly, a higher degree of customer clustering appears to increase the benefit of
more depots. However, the effect of clustering on savings is difficult to generalize. In the
experiment, the k-means algorithm performs best (measured by the savings r(m)), if
m = k depots are placed as centroids in the k clusters and, thus, the number of clusters
strongly impacts the savings curve r(m). In LRP instances, however, it can generally
not be assumed that candidate depots can be opened inside or close to customer clusters
so that this effect vanishes. Therefore, we choose not to generalize the observed effect.
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In contrast, the variance in demand has only a marginal effect.
Even though these functions have been derived based on empirical observations on a

specific instance setup and thus present an approximation, rather than an analytically-
proven relationship, they can be beneficial to estimate an upper bound for the number
of open depots. The values r(m) were derived under the assumption that the m depots
are well-placed in a continuous space (with k-means). In an LRP instance with a limited
number of given candidate depots, such good configurations might not be possible and
r(m) is likely to overestimate the possible cost reductions. Thus, R1 · r(m) represents
an estimate for the maximal cost reductions when opening m depots and R1 · (r(m +
1) − r(m)) is an estimate for the maximal benefit of having a configuration with one
additional open depot. If these benefits are outweighed by the opening cost of the
additional depot, then it is not worthwhile to consider configurations with m + 1 or
more open depots. This idea is manifested in the estimated upper bound

mC = argmin{m ∈ N | R1 · (r(m)− r(m− 1)) < Oσ(m)}, (2)

where σ(i) denotes the depot with the ith lowest opening costs and Oσ(m) thus
presents a lower bound for the opening costs of the most expensive depot in a depot
configuration with m open depots.

In capacitated instances of the LRPs a minimal number of open depots might be
required to serve all customers. Let σW (i) denote the depot with the ith lowest capacity,
then the upper bound for the minimal number of open depots required to serve all
customers amounts to

mW = argmin{m ∈ N |
m
∑

j=1

WσW (j) ≥
∑

i∈N

di}. (3)

The estimated upper bound for capacitated instances is then derived as

U = max(mC ,mW ). (4)

All depot configurations with more open depots are eliminated from the search,
reducing the number of candidates to

∑U

i=1

(

m

i

)

.

5.2. Heuristic construction of depot configurations

If U is large or cannot be estimated because opening costs are negligible, the number
of considered depot configurations need to be restricted even more. We propose a
construction process which iteratively constructs depot configurations by combining
promising depots in a spatially dispersed manner. In this process, the characteristics
of individual depots are considered, and thus we shift the focus from the quantitative
perspective above to a qualitative perspective, determining which depots should be
opened with a higher priority. Individual depots should have (1) low opening costs,
and (2) a proximity to customers. The depot configuration should be (3) in general
distributed across the relevant area that is populated with customers, rather than being
clustered in one spot (there might be exceptional cases).
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We consider properties (1) and (2) by defining the gross cost Gj for each depot
j. The gross costs are composed of the opening cost as well as the estimated routing
costs from this depot. Let L = ⌈ Q∑

i∈N di
⌉ denote the minimal number of routes in the

routing solution, and assume that U depots are open, then each depot has ⌈L
U
⌉ outgoing

routes on average. Under the assumption that the depots are likely to be connected
with spatially close customers, the sum of the cost to the 2⌈L

U
⌉ closest customers thus

present a rough approximation of the costs of incident edges. Let σj(i) denote the i-th
nearest customers to depot j, then the gross costs are defined by

Gj =

∑2⌈L
U
⌉

i=1 cσj(i)j +Oj

Wj

. (5)

The costs are weighted by capacity Wj to express the costs per available capacity
unit.

For property (3), the spatial dependencies between open depots have to be con-
sidered. We propose a divide and conquer approach in which the considered plane is
iteratively split into smaller areas, for which depot sub-configurations are determined.
For each r ∈ {1, 2, . . . , min(U , 16)} the plane is split in a grid-like pattern into r iso-
metric rectangular areas. The entire plane is divided into rows =

⌈

r
cols

⌉

equidistant
rows (where cols =

⌈√
r
⌉

), and each row is split into either cols or cols− 1 areas, such
that the number of all areas sum up to r.

In each area, the depots with the lowest gross costs are selected for sub-configurations:
The first sub-configuration is the empty set, the next one contains the depot with the
lowest gross costs, the next one contains the depot with the lowest and the second
lowest gross costs, and so forth. A depot configuration is then constructed as the com-
bination of sub-configurations from the r areas. Each such combination constitutes one
candidate depot configuration. An example for r = 4 is given in Fig. 2. With increasing
r, the areas become more granular and the number of sub-configuration combinations
grows exponentially. Thus, the construction process is stopped prematurely once the
upper limit of depot configurations M has been reached.

6. Computational experiments

In this section, we thoroughly analyse each component of PF. In particular, we
experimentally compare different methods to arrive at an upper bound, investigate
the impact of the heuristic construction method, and perform a detailed study on the
number and granularity of filters. We arrive at an efficient PF configuration which is
compared to several effective heuristics in the literature, both for the LRP, as for the
variants and very-large-scale instances discussed in Section 4.4.

PF has been implemented in Java and all experiments are performed on an AMD
Ryzen 3 1300X CPU working at 3.5GHz on Windows 10, using a single thread. It is
available as an executable Java package at http://antor.uantwerpen.be/LRP
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Figure 2: Promising depot configurations are constructed by iteratively dividing the plane into an
increasing number r of isometric regions (in this case r = 4). First, the gross costs Gi for each
candidate depot i are computed, and a set of depot sub-configurations Sj is built for each region j by
iteratively adding the depot with the next lowest gross costs to the previous configurations, starting
with the empty set. Depot configurations Dk are then constructed by combining one sub-configuration
from each region.

6.1. Sensitivity analysis

The crucial parameters for PF are the number and the granularity of the utilized fil-
ters. While more filters are expected to sift through the configurations more thoroughly
and thereby increase the likelihood that the best configuration(s) survive, the overall
computational time increases with each additional filter. Likewise, the granularity of a
filter determines how many configurations are passed to the next filter, so that a higher
granularity increases the likelihood that the best configuration(s) is passed on while
more computational effort is required to eliminate the remaining configurations.

In the following experiments we investigate this trade-off to identify a computa-
tionally efficient filtering setup. We systematically test different combinations of the
filters (KGLS, 100), (KGLS, 30), (KGLS, 10) and (KGLS, 3), denoted 1) – 15). Each
combination obtains a time budget of 60·n

100
seconds, which is equally divided among the

involved filters. Thus, with more filters there is less time available for each of them. The
best found depot configuration Cbest is evaluated with KGLS for 30·n

100
seconds, since in

Arnold and Sörensen (2019) we found that KGLS requires about 60 seconds to almost
optimally solve MDVRPs with n = 200. For filters with many input configurations,
very short computation times are allocated to each configuration and, thus, minor de-
viations in actual processing time between two configurations within the same filter can
already significantly impact the computed result. Thus, we map the allocated time to
a fixed number of executed iterations in KGLS. As the basis for this mapping, we use
the fact that KGLS performs about 100 iterations per second for n = 100, while scaling
approximately linear in the problem size. Therefore, in a filter with 50 input config-
urations and a time budget of 30 seconds, each configuration is run for 30

50
· 100 = 60

iterations. As a result, PF becomes a deterministic heuristic.
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Likewise, we experimentally decided to set M = 20, 000 to avoid that the first stage
of PF (evaluation of each promising configuration with RCW) takes significantly more
time than each of the subsequent stages.

Additionally, we validate the effectiveness of the initial reduction of configurations
with the upper bound of open depots U and the subsequent heuristic construction.
In alternative setups, U is replaced with previous methods from the literature. As
suggested by Prins et al. (2006a) we compute the number of depots that are the nearest
depot for at least one customer (denoted as NC). As second method, related to Chan
and Baker (2005), we compute the minimal spanning tree out of all customer nodes and
count the number of depots for which the distance to at least one customer is shorter
than that customer’s distances in the minimal tree (denoted as MST ).

A sensitivity analysis is performed by testing the setups with U − 1 and U + 1,
respectively. The effectiveness of the heuristic construction is tested by applying it on
all possible configurations (denoted as ELIM). The necessity of plane division is tested
by a setup in which the depots with the highest gross costs are opened, without any
successive divisions (denoted as GRO). These last two alternatives are compared to
the baseline in which M = 20, 000 configurations are selected at random (denoted as
RAN).

All setups are tested on the diverse instance set by Tuzun and Burke (1999). The 36
instances have 100–200 customers which are either clustered or randomly distributed,
and 10–20 candidate depots, resulting in up to 1,048,575 possible depot configurations.
The average gap to the best-known solutions over all instances is taken as the perfor-
mance metric.

The results of this analysis are visualized in Fig. 3. We observe that most filter setups
yield a similar performance. This finding suggests that PF performance is relatively
insensitive with respect to the specific filter setup. The best results are achieved with
either two or three filters which suggests that there is a fine balance between choosing
too few and too many filtering stages. It is noticeable that the best setups have a
mixture of fine-grained and coarse filters. The reason for this phenomenon can be
explained by looking at setups 1) – 4). The more granular the filter (i.e., a small b),
the larger is the bias towards configurations which show a fast convergence rate during
evaluation. As a consequence, configurations that would have yielded excellent solutions
(but only after some computational effort) are potentially removed too early, as seen
in setup 4). It thus seems beneficial to start with more coarse filters which keep some
configurations that do not yet yield excellent solutions (given the limited runtime of
the respective stage), but might do so after a more accurate evaluation in subsequent
stages. Overall, many setups perform similarly well, and we decided to use setup 13)
with P = {(KGLS, 100), (KGLS, 10), (KGLS, 3)} for all remaining experiments in
this work since it performs slightly better than most others. Very-large-scale instances
present an exception for which no filters P = {} are used to limit runtime.

With U − 1 as upper bound the performance drops significantly and, thus, we can
conclude that some of the best depot configurations have U open depots. On the other
hand, U+1 increases runtime without improving performance, which means that most,
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if not all, good depot configurations have at most U open depots. The use of NC

and MST increases the upper bounds further, and computational effort increases by
almost 10 folds without achieving any performance gains. The heuristic construction
procedure (without an upper bound) appears to find reasonably good configurations by
itself and find solutions that are almost 6% better than if simply the depots with the
highest gross costs are opened and 2% better than creating the same number of random
configurations. This highlights the need for a procedure that diversifies the generation
of configurations (in our case with an iterative plane division).

Instances with m = 20 require more time in the initial elimination stage, however,
the particular good performance on those instances highlights the ability of PF to
effectively filter among a vast number of possible configurations. The performance on
instances with n = 200 is slightly worse than on instances with less customers, while
the performance on clustered instances is almost identical to that on non-clustered
instances.

6.2. Performance analysis

We start by discussing the instances used (Section 6.2.1), then discuss the bench-
mark algorithms in the literature (Section 6.2.2), and finally, compare these to the PF
heuristic (Section 6.2.3). We restrict ourselves to a broad overview of the results of
our heuristic, and refer to Tables 5 to 9 in Appendix for more detailed results. To
demonstrate the effect of multi-threading, all experiments for the capacitated instances
of the LRP have been run singe-threaded (PF1) and on three threads (PF3) on three
physical cores on the same machine.

6.2.1. Instances

The PF heuristic is tested on a wide range of instance sets from the literature. Its
performance on capacitated and uncapacitated instances is tested on three extensively
used benchmark sets by Tuzun and Burke (1999), Prins et al. (2006b) and Barreto et al.
(2007). These sets involve small and moderately-sized benchmark instances, some with
clusters of customers and depots. These instances are complemented with the recently
introduced set by Schneider and Löffler (2017), a rich and diverse instance set with
a plethora of different instance characteristics and sizes. The scaling of PF is tested
on the very-large-scale instances provided by Harks et al. (2013), containing instances
with a large number of uniformly distributed customers and depots. The performance
on 2E-LRPs is analyzed by using the instances by Nguyen et al. (2012), which are an
extension of the P-instances with an additional platform at a corner. Finally, the set by
Villegas et al. (2010) is used to investigate PF’s application on STTRPSD instances.
A brief summary of all instance sets is provided in Table 1, and more details are given
in Appendix.

6.2.2. Benchmarks

The performance of PF is compared to the performance of the most effective heuris-
tics for each problem type. For the LRP sets, Schneider and Drexl (2017) find that
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Figure 3: Sensitivity analysis of different setups for PF. The colored bars indicate the average com-
putational time of the respective stage within the given setup while the dots indicate the average gap
to the best-known solutions. INITIAL represents the initial stage in which depot configurations are
eliminated by means of the upper bound or heuristic construction.
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Table 1: Overview of the different instance sets

Set Reference Type Size n m capacitated

T Tuzun and Burke (1999) LRP 36 100-200 5-10 No
P Prins et al. (2006b) LRP 30 20-200 5-10 Yes
B Barreto et al. (2007) LRP 13 21-150 5-14 Partly
S Schneider and Löffler (2017) LRP 220 100-600 5-30 Yes
H Harks et al. (2013) LRP 27 1000-10,000 100-1000 No
P2E Nguyen et al. (2012) 2E-LRP 30 20-200 5-10 Yes
N2E Nguyen et al. (2012) 2E-LRP 24 25-200 5-10 Yes
VTT Villegas et al. (2010) STTRPSD 32 25-200 5-20 No

Table 2: Test details about the benchmark heuristics.

Heuristic Reference Type Stochastic Runs CPU Score

GRASP+ILP Contardo et al. (2014) LRP Yes 10 1219
GVTNS Escobar et al. (2014) LRP No 1 776
TBSA Schneider and Löffler (2017) LRP Yes 5 1652
Approx+TSP Harks et al. (2013) LRP (large) No 1 592
2-SH Guemri et al. (2016) LRP (large) Yes 5 1248
LNS-2e Breunig et al. (2016) 2E-LRP Yes 10 1597
VNS-2e Schwengerer et al. (2012) 2E-LRP Yes 20 1132
ALNS-2e Contardo et al. (2012) 2E-LRP Yes 20 1244
MS-ELS Villegas et al. (2010) STTRPSD Yes 10 801
MS-ILS Villegas et al. (2010) STTRPSD Yes 10 801
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these are the GRASP+ILP heuristic by Contardo et al. (2014), the granular variable
neighborhood search (GVTNS) by Escobar et al. (2014), and the tree-based search al-
gorithm (TBSA) by Schneider and Löffler (2017). TBSA outperforms all other LRP
heuristics on the classical benchmark sets, and we also compare it with PF on the
more recent S-instances. The T-instances have only been tackled by Harks et al. (2013)
(Approx+TSP) and the two-stage heuristic by Guemri et al. (2016) (2-SH). We use
the performance of both methods as a benchmark. On the 2E-LRP-instances the large
neighbourhood search by Breunig et al. (2016) (LNS-2e), the variable neighbourhood
search by Schwengerer et al. (2012) (VNS-2e), and the adaptive large neighborhood
search by Contardo et al. (2012) (ALNS-2e) are the most effective heuristics. The
VTT-set was successfully solved with the multi-start evolutionary local search (MS-
ELS), and the multi-start iterated local search (MS-ILS) by Villegas et al. (2010). An
overview about these heuristics is given in Table 2.

For each heuristic with stochastic components we report the average performance
over all executed runs, since the average appears to be a fairer metric than the best ob-
served values over several runs (Birattari and Dorigo 2007), especially when comparing
stochastic and deterministic algorithms.

To allow a fairer comparison of computation times, all CPU times are normalized
as suggested in Schneider and Drexl (2017). The reported times are multiplied by the
single thread speed score of the used CPU (PassMark Software 2018) and divided by
the score of an i7-4790 processor running at 3.60GHz (a score of 2290). We want to
remark that the CPU is not the only component that determines the execution speed
of a system, it nonetheless represents the best available measure to normalize times
across systems.

6.2.3. Results on LRP instances

Table 3 summarizes the performance of PF on LRP benchmark sets in comparison
to the most effective heuristics in literature. Detailed results per instance can be found
in Tables 5 to 9 in Appendix.

On the smaller LRP benchmark sets, PF computes high-quality solutions close to
the best-known solutions for almost all instances. On average, PF achieves a better
accuracy than GVTNS and GRASP+ILP and a similar performance than the current
state-of-the-art heuristic TBSA on all three benchmark sets. All of these solutions
are computed in short computation times. Multi-threading can further improve per-
formance, three physical cores reduces computational time by about 43%. Note that
solutions are for some instances sightly better when using three cores, since three con-
figurations are evaluated final stage (compared to one when using a single thread).

On the largest and diverse S-set, PF outperforms the state-of-the-art LRP heuristic
in the literature. This is especially true on larger instances with n ≥ 400 customers,
on which PF performs significantly better. The shorter computation times can be
attributed to a good scaling of computation time as a function of the instance size, which
is largely due to the drastic elimination of depot configurations. The improvements in
terms of solution quality can be tied to the significant improvement of PF on many
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Table 3: Benchmark results of different heuristics for LRP instance sets. The gap is reported as
the average difference to the BKS in % across all executed runs, and the times express the average
execution time of a single run in seconds.

LRP GRASP+ILP GVTNS TBSAspeed TBSAquality PF1 PF3

Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

T(36) 0.66 1379 0.86 68 0.57 48 0.15 725 0.34 132 0.34 75
P(30) 0.38 619 0.43 31 0.20 23 0.02 452 0.14 85 0.14 49
B(13) 0.59 141 0.63 135 0.08 10 0.05 171 0.04 71 0.04 56

0.54 886 0.66 46 0.35 32 0.08 522 0.21 104 0.21 62

S(102) n ≤ 300 0.16 845 0.02 265 0.00 137
(100) n > 300 0.39 4700 -0.34 779 -0.35 411

0.27 1979 -0.15 519 -0.17 272

All(281) 0.22 2121 -0.05 401 -0.06 213

Large-scale LRP Approx+TSP 2-SH PF1

Gap Time Gap Time Gap Time

H(27) 4.89 57 3.68 36 -6.38 187

instances of subtype ‘e’ as shown in Table 6 and Table 7 in Appendix. These instances
have the characteristic that “[. . . ] a large number of interesting configurations with both
a lower number of high-capacity depots and a higher number of low-capacity depots
exists.” (Schneider and Löffler 2017). A good performance on these instances types
thus requires the consideration of a wide range of diverse depot configurations. While
this task might pose a hindrance to local search based approaches (since promising
configurations might be structurally far apart), and ILP-based approaches (since a
large number of configurations has to be considered), PF appears to consistently detect
good configurations. In total PF improved the BKSs of 63 instances, and since PF is
completely deterministic, these BKS are computed in every run.

PF can also tackle very-large-scale problems successfully, as demonstrated by the
results on the H-instances. It significantly improves the best-known results on almost
all instances in slightly larger computation times. On instances of which the optimal
solution only has a few open depots, PF does not perform as well, see e.g., rowM2−3 in
Table 9 in Appendix. On those instances it is preferable to open depots in the center of
the created regions during heuristic construction of configurations, rather than choosing
depots with low gross costs.

6.2.4. Results on LRP variants

As summarized in Table 4, PF outperforms previous heuristics on 2E-LRP instances,
computing on average better solutions in shorter times. On both the P2E-instances and
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Table 4: Benchmark results of different heuristics for 2E-LRPs and STTRPSDs. The gap is reported
as the average difference to the BKS in % across all executed runs, and the times express the average
execution time of a single run in seconds.

2E-LRP LNS-2e VNS-2e ALNS-2e PF

P2E 1.13 385 0.49 150 0.82 253 0.11 69
N2E 1.15 335 0.90 136 0.48 104 0.20 59

1.14 307 0.67 144 0.67 187 0.15 64

STTRPSD MS-ELS MS-ILS PF

VTT 0.31 113 0.25 139 0.27 106

the N2E-instances almost all but three computed solutions (on which the gap is larger
than 0.5%) correspond to the BKS or have a very small gap. These results indicate
that the transformation of a 2E-LRP into a combination of LRP and VRP constitutes
a promising simplification for the considered instances.

STTRPSD instances can also be solved effectively with PF, obtaining a similar per-
formance than a dedicated heuristic. This performance highlights the ability of PF to
cope with situations in which no upper bound for the number of open depots can be esti-
mated, and thus a huge number of configurations has to be evaluated. This observation
validates the effectiveness of the heuristic construction of depot configurations.

In summary, PF is a generic heuristic framework that can be successfully applied to
various problem variants of the LRP. Combined with an effective routing heuristic, it is
competitive with the most effective heuristics in the literature on traditional instance
sets and STTRPSD instances, while for larger LRP instances, very-large-scale LRP
instances, and 2E-LRP instances it outperforms existing heuristics. This performance
can also be seen as an empirical validation of the estimated upper bound and the
effectiveness of the subsequent filtering stages. It also confirms that high-quality depot
configurations are quickly identified as such.

7. Conclusions and future work

In this paper, we have designed a solution approach for the location–routing prob-
lem (LRP) and variants thereof. Our framework uses an efficient heuristic to solve
the routing subproblem, in combination with a progressive filtering strategy to remove
unpromising depot configurations as early as possible. At each iteration of the filtering
stage, the accuracy of the computed routing solutions increases at the expense of an
increase in computation time. An upper bound is estimated on the number of open
depots to reduce the number of depot configurations that need to be evaluated. We
observe experimentally that a finer filtering with more stages can improve the perfor-
mance, while sufficient time should be granted to each filter. The same heuristic, with
some minor modifications, can also be used to solve very-large-scale LRPs, 2E-LRPs
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and STTRPSDs.
Computational tests on many benchmark sets show that the resulting heuristic can

effectively solve a wide range of instances within short computation times and either
matches or improves upon the performances of the most effective heuristics in the
literature. The framework performs especially well on instances of large or very large
size, and instances with a wide range of good depot configurations, on which previous
solutions are improved by several percent.

The heuristic design is flexible and scalable, and therefore useful in practical cases
where implementation time is limited. A straightforward Clarke-Wright implementa-
tion is sufficient to obtain satisfactory results in seconds, while the use of the effective
routing heuristic KGLS renders our approach competitive with the best results in the
literature. This algorithmic design allows developers and researchers to re-use their
routing implementations for the tested problem variants, and possibly even more. Two
conditions imposed by such a framework are that feasible MDVRP solutions can be
computed quickly, and that the number of initial configurations can be reduced suc-
cessfully, for instance by defining an upper bound. Even though we observed that the
second condition can be circumvented in the case that no upper bound can be esti-
mated, the enumeration of the entire space of configurations should be avoided, and
more research in this direction appears promising.
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Appendix: Detailed results of performance analysis

The following tables contain the detailed results of the performance analysis on the
LRP instances by Tuzun and Burke (1999), Prins et al. (2006b), Barreto et al. (2007)
and Schneider and Löffler (2017), the large-scale instances by Harks et al. (2013), the
2E-LRP instances by Nguyen et al. (2012) and the STTRPSD instances by Villegas
et al. (2010). The values for the best-known solutions (BKS) for the LRP instances are
taken from Schneider and Drexl (2017), from Guemri et al. (2016) for the H-set, from
Breunig et al. (2016) for the P2E- and N2E-set, and from Villegas et al. (2010) for the
VTT-set.
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The distances in all instances are calculated with a Euclidean norm. The distances
for the P, S, P2E, N2E, and VTT-set are multiplied by 100 and rounded up to the next
integer. On the 2E-LRP instances the distance costs on the first level are multiplied
by two. The T, P, B, P2E, N2E and VTT-set are available at http://prodhonc.free.
fr/Instances, the S-set is attached to the paper of Schneider and Löffler (2017), and
the H-set can be found at http://www.coga.tu-berlin.de/clrlib.

During testing we found two inconsistencies. On some H-instances some values for
di exceed Q, and to obtain feasible solutions we set di = Q in these cases. Instance
200-10-3b of the P2E-set does not include a fixed costs for routes on the first level
as discussed by Breunig et al. (2016). We set the fixed cost to 5000 as done by the
aforementioned authors and do not include the instance in the computation of the
average gap to avoid inconsistencies with other results.

Each instance is solved once with PF since its behavior is deterministic. We re-
port the objective value of this single run together with the computational time, the
estimated upper bound U and number of open depots mbest in the best found solution.
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Table 5: Results on the classical instance sets T, P and B. Gap to the BKS in %, time in seconds,
estimated upper bounds of open depots U and the number of open depots mbest in the best found
solution.

Instance (P and B) BKS PF Instance (T) BKS PF

Value Gap Time mbest U Value Gap Time mbest U

20-5-1 54793 54793 0.00 20 3 3 P111112 1467.68 1468.29 0.04 92 3 4
20-5-1b 39104 39104 0.00 26 2 2 P111122 1448.37 1448.37 0.00 95 2 4
20-5-2 48908 48908 0.00 16 3 4 P111212 1394.80 1394.80 0.00 88 2 3
20-5-2b 37542 37542 0.00 26 2 3 P111222 1432.29 1432.29 0.00 83 2 4
50-5-1 90111 90111 0.00 43 3 3 P112112 1167.16 1167.16 0.00 117 2 3
50-5-1b 63242 63242 0.00 62 2 3 P112122 1102.24 1102.24 0.00 119 2 3
50-5-2 88293 88298 0.01 46 3 3 P112212 791.66 791.66 0.00 103 2 3
50-5-2b 67308 67308 0.00 58 3 3 P112222 728.30 728.30 0.00 105 2 3
50-5-2bBIS 51822 51822 0.00 56 3 3 P113112 1238.24 1238.67 0.03 105 3 3
50-5-2BIS 84055 84055 0.00 70 3 3 P113122 1245.30 1245.31 0.00 93 3 3
50-5-3 86203 86203 0.00 49 2 3 P113212 902.26 902.34 0.01 110 3 3
50-5-3b 61830 61830 0.00 62 2 3 P113222 1018.29 1018.29 0.00 99 3 3
200-10-1 474850 474937 0.02 228 3 4 P121112 2237.73 2245.07 0.33 213 3 5
200-10-1b 375177 376485 0.35 225 3 4 P121122 2137.45 2174.72 1.74 206 4 5
200-10-2 448077 448850 0.17 223 3 4 P121212 2195.17 2204.52 0.43 193 4 6
200-10-2b 373696 374266 0.15 217 3 4 P121222 2214.86 2224.02 0.41 211 4 6
200-10-3 469433 470978 0.33 261 3 4 P122112 2070.43 2074.28 0.19 312 3 5
200-10-3b 362320 362841 0.14 269 3 4 P122122 1685.52 1693.53 0.47 309 3 5
100-10-1 287661 288395 0.26 138 3 4 P122212 1449.93 1449.91 0.00 284 2 4
100-10-1b 230989 232342 0.59 109 3 4 P122222 1082.46 1083.16 0.06 203 3 5
100-10-2 243590 243590 0.00 89 3 4 P123112 1942.23 1961.49 0.99 215 4 5
100-10-2b 203988 203988 0.00 91 3 4 P123122 1910.08 1921.03 0.57 220 4 5
100-10-3 250882 252918 0.81 122 3 4 P123212 1761.11 1800.08 2.21 242 3 5
100-10-3b 203114 204567 0.72 109 3 4 P123222 1390.86 1391.99 0.08 184 5 5
100-5-1 274814 275505 0.25 106 3 3 P131112 1892.17 1897.92 0.30 124 3 5
100-5-1b 213568 213971 0.19 95 3 3 P131122 1819.68 1820.32 0.04 126 4 4
100-5-2 193671 193671 0.00 92 2 3 P131212 1960.02 1960.02 0.00 132 3 4
100-5-2b 157095 157110 0.01 82 2 3 P131222 1792.77 1792.77 0.00 120 3 5
100-5-3 200079 200237 0.08 73 2 3 P132112 1443.32 1448.81 0.38 172 2 4
100-5-3b 152441 152441 0.00 75 2 3 P132122 1429.30 1444.77 1.08 209 2 4

P132212 1204.42 1204.64 0.02 166 3 4
50x5 565.6 565.6 0.00 52 2 3 P132222 924.68 931.55 0.74 140 3 3
75x10 848.9 848.9 0.00 69 3 4 P133112 1694.18 1709.34 0.89 157 3 4
100x10 833.4 836.7 0.39 107 2 4 P133122 1392.01 1400.50 0.61 159 3 4
Daskin95-88x8 355.8 355.8 0.00 158 2 2 P133212 1197.95 1200.14 0.18 121 3 4
Daskin95-150x10 43919.9 43919.9 0.00 274 3 3 P133222 1151.37 1156.61 0.46 164 3 4
Gaskell67-21x5 424.9 424.9 0.00 19 2 3
Gaskell67-22x5 585.1 585.1 0.00 40 1 3
Gaskell67-29x5 512.1 512.1 0.00 41 2 3
Gaskell67-32x5 562.2 562.2 0.00 55 1 3
Gaskell67-32x5 504.3 504.3 0.01 40 1 3
Gaskell67-36x5 460.4 460.4 0.00 51 1 3
Min92-27x5 3062 3062.0 0.00 40 2 3
Min92-134x8 5709 5713.0 0.07 175 3 5
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Table 6: Results on the LRP instance set S. Gap to the BKS in %. time in seconds. estimated upper
bounds of open depots U and the number of open depots mbest in the best found solution.

Instance BKS PF Instance BKS PF

Value Gap Time mbest U Value Gap Time mbest U

100-5-1c 134,516 134,687 0.13 112 5 5 200-15-2e 712,524 737081 3.45 1242 8 12
100-5-1d 275,749 276,154 0.15 122 3 3 200-15-3a 455,676 456081 0.09 258 3 4
100-5-1e 292,311 292,565 0.09 159 2 5 200-15-3b 357,086 357233 0.04 249 3 4
100-5-2c 83,989 85,051 1.26 81 4 5 200-15-3c 141,129 141703 0.41 223 12 15
100-5-2d 242,266 242,739 0.20 101 3 3 200-15-3d 877,638 878358 0.08 242 8 8
100-5-2e 253,888 254,085 0.08 169 1 5 200-15-3e 816,377 816579 0.02 295 9 13
100-5-3c 87,555 87,555 0.00 66 5 5 200-15-4a 433,268 434165 0.21 362 3 4
100-5-3d 226,783 226,920 0.06 74 3 3 200-15-4b 349,269 350509 0.36 339 3 4
100-5-3e 252,603 252,677 0.03 119 1 5 200-15-4c 143,772 144536 0.53 256 10 15
100-5-4a 255,853 255,869 0.01 142 3 4 200-15-4d 828,144 828711 0.07 296 8 8
100-5-4b 214,425 214,531 0.05 107 3 4 200-15-4e 700,202 701825 0.23 394 5 13
100-5-4c 98,129 98,199 0.07 137 3 5 300-15-1a 856,267 856306 0.00 379 3 4
100-5-4d 250,315 251,380 0.43 131 3 3 300-15-1b 622,412 623644 0.20 399 3 4
100-5-4e 211,159 211,444 0.13 205 4 4 300-15-1c 366,770 366675 -0.03 455 15 15
100-10-1c 92,629 92,979 0.38 77 10 10 300-15-1d 1,339,010 1341270 0.17 381 8 8
100-10-1d 363,930 363,930 0.00 102 5 5 300-15-1e 1,217,690 1219197 0.12 553 6 13
100-10-1e 344,322 344,897 0.17 115 4 9 300-15-2a 759,999 762089 0.28 367 3 4
100-10-2c 84,717 84,817 0.12 86 8 10 300-15-2b 557,912 557525 -0.07 366 3 4
100-10-2d 343,252 343,252 0.00 97 5 5 300-15-2c 311,558 312374 0.26 457 10 15
100-10-2e 332,900 333,778 0.26 123 4 9 300-15-2d 1,301,863 1305933 0.31 352 8 8
100-10-3c 85,618 85,369 -0.29 79 10 10 300-15-2e 1,272,700 1276145 0.27 575 9 13
100-10-3d 329,990 329,990 0.00 118 5 5 300-15-3a 778,023 778590 0.07 354 3 4
100-10-3e 318,156 318,226 0.02 137 4 9 300-15-3b 594,073 593892 -0.03 348 3 4
100-10-4a 253,892 253,471 -0.17 142 3 4 300-15-3c 341,712 342206 0.14 360 12 15
100-10-4b 211,354 211,361 0.00 125 3 4 300-15-3d 1,358,223 1355955 -0.17 359 8 8
100-10-4c 86,215 87,277 1.23 104 9 10 300-15-3e 1,286,877 1289607 0.21 604 8 13
100-10-4d 328,251 328,420 0.05 131 5 5 300-15-4a 747,730 750135 0.32 439 3 4
100-10-4e 308,866 310,134 0.41 169 4 9 300-15-4b 559,877 560352 0.08 472 3 4
200-10-1c 156,087 157,428 0.86 199 10 10 300-15-4c 304,254 303984 -0.09 543 14 15
200-10-1d 638,452 638,372 -0.01 249 5 5 300-15-4d 1,288,091 1289757 0.13 458 8 8
200-10-1e 599,463 600,954 0.25 330 4 9 300-15-4e 1,173,516 1174438 0.08 621 5 13
200-10-2c 144,337 144,666 0.23 185 8 10 300-20-1a 1,009,840 945545 -6.37 513 4 5
200-10-2d 663,814 664,234 0.06 220 5 5 300-20-1b 739,604 740915 0.18 514 4 5
200-10-2e 619,037 619,262 0.04 249 4 9 300-20-1c 364,096 364303 0.06 514 20 20
200-10-3c 184,885 186,112 0.66 247 8 10 300-20-1d 1,575,390 1579766 0.28 401 10 10
200-10-3d 640,357 641,424 0.17 248 5 5 300-20-1e 1,391,567 1320924 -5.08 575 5 18
200-10-3e 604,617 606,919 0.38 252 4 9 300-20-2a 909,306 909376 0.01 553 4 5
200-10-4a 452,870 453,435 0.12 297 3 4 300-20-2b 695,524 695155 -0.05 558 4 5
200-10-4b 369,951 369,821 -0.04 271 3 4 300-20-2c 299,425 309529 3.37 470 14 20
200-10-4c 144,407 144,940 0.37 231 10 10 300-20-2d 1,569,139 1571166 0.13 369 10 10
200-10-4d 618,590 618,795 0.03 279 5 5 300-20-2e 1,386,386 1284831 -7.33 655 3 18
200-10-4e 562,854 564,383 0.27 318 4 9 300-20-3a 929,901 930992 0.12 469 4 5
200-15-1a 461,203 462,359 0.25 236 3 4 300-20-3b 751,307 750844 -0.06 489 4 5
200-15-1b 367,397 367,330 -0.02 232 3 4 300-20-3c 305,771 307684 0.63 488 18 20
200-15-1c 148,218 150,091 1.26 215 14 15 300-20-3d 1,539,008 1541385 0.15 373 10 10
200-15-1d 813,941 814,072 0.02 248 8 8 300-20-3e 1,289,734 1265041 -1.91 649 7 18
200-15-1e 708,837 709,259 0.06 326 6 13 300-20-4a 859,474 859446 0.00 574 4 5
200-15-2a 513,893 514,199 0.06 265 3 4 300-20-4b 687,930 688604 0.10 559 4 5
200-15-2b 406,843 407,449 0.15 265 3 4 300-20-4c 300,285 301424 0.38 642 17 20
200-15-2c 135,051 135,633 0.43 230 14 15 300-20-4d 1,540,194 1542127 0.13 653 10 10
200-15-2d 811,722 813,280 0.19 249 8 8 300-20-4e 1,344,056 1330488 -1.01 805 7 18

0.02 322
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Table 7: Results on the LRP instance set S. Gap to the BKS in %. time in seconds. estimated upper
bounds of open depots U and the number of open depots mbest in the best found solution.

Instance BKS PF Instance BKS PF

Value Gap Time mbest U Value Gap Time mbest U

400-20-1a 1,140,605 1,140,975 0.03 733 4 5 500-25-3a 1,725,918 1756884 1.79 723 4 5
400-20-1b 880,393 876,157 -0.48 725 4 5 500-25-3b 1,305,521 1314903 0.72 693 4 5
400-20-1c 467,755 471,031 0.70 813 18 20 500-25-3c 581,425 580688 -0.13 817 20 25
400-20-1d 1,956,824 1,957,929 0.06 805 10 10 500-25-3d 3,248,557 3249805 0.04 760 13 13
400-20-1e 1,748,962 1,645,475 -5.92 701 7 18 500-25-3e 2,768,174 2697267 -2.56 1056 7 22
400-20-2a 1,053,445 1,055,570 0.20 671 4 5 500-25-4a 1,655,514 1655310 -0.01 714 4 5
400-20-2b 829,494 828,932 -0.07 636 4 5 500-25-4b 1,263,496 1260960 -0.20 720 4 5
400-20-2c 394,712 395,668 0.24 647 17 20 500-25-4c 664,089 669088 0.75 1229 22 25
400-20-2d 1,875,072 1,878,113 0.16 546 10 10 500-25-4d 3,362,588 3370668 0.24 967 13 13
400-20-2e 1,608,600 1,562,339 -2.88 776 7 18 500-25-4e 2,630,867 2647733 0.64 1164 7 22
400-20-3a 1,098,989 1,100,714 0.16 828 4 5 500-30-1a 1,984,150 1999892 0.79 924 5 6
400-20-3b 849,555 847,618 -0.23 640 4 5 500-30-1b 1,538,027 1537821 -0.01 881 5 6
400-20-3c 391,928 393,648 0.44 647 17 20 500-30-1c 614,433 630143 2.56 841 29 30
400-20-3d 1,929,284 1,936,927 0.40 517 10 10 500-30-1d 3,742,922 3762156 0.51 1061 15 15
400-20-3e 1,778,315 1,679,271 -5.57 714 7 18 500-30-1e 3,485,608 3246339 -6.86 986 8 26
400-20-4a 1,081,452 1,083,252 0.17 706 4 5 500-30-2a 1,820,346 1820556 0.01 899 5 7
400-20-4b 842,078 843,238 0.14 717 4 5 500-30-2b 1,452,171 1452028 -0.01 971 5 7
400-20-4c 351,715 357,250 1.57 776 17 20 500-30-2c 649,471 650913 0.22 1009 20 30
400-20-4d 1,834,809 1,845,315 0.57 544 10 10 500-30-2d 3,815,306 3819650 0.11 1234 15 15
400-20-4e 1,620,575 1,558,411 -3.84 818 7 18 500-30-2e 3,293,153 3249618 -1.32 1086 8 26
400-25-1a 1,156,187 1,156,802 0.05 507 4 5 500-30-3a 1,782,554 1788808 0.35 876 5 6
400-25-1b 890,566 889,828 -0.08 501 4 5 500-30-3b 1,422,148 1424533 0.17 802 5 6
400-25-1c 395,268 412,212 4.29 609 23 25 500-30-3c 570,866 571418 0.10 1036 23 30
400-25-1d 2,341,499 2,350,173 0.37 650 13 13 500-30-3d 3,690,995 3710414 0.53 1382 15 15
400-25-1e 2,053,366 1,890,676 -7.92 730 7 22 500-30-3e 3,171,977 3059470 -3.55 1111 8 26
400-25-2a 1,091,595 1,102,122 0.96 490 4 5 500-30-4a 1,716,476 1725178 0.51 1214 5 7
400-25-2b 869,254 875,593 0.73 508 4 5 500-30-4b 1,398,401 1402136 0.27 1155 5 7
400-25-2c 360,923 362,684 0.49 644 19 25 500-30-4c 562,731 562542 -0.03 1071 23 30
400-25-2d 2,351,903 2,356,224 0.18 699 13 13 500-30-4d 3,708,479 3710414 0.05 1382 15 15
400-25-2e 1,954,300 1,910,645 -2.23 870 9 22 500-30-4e 3,194,234 3059470 -4.22 1111 8 26
400-25-3a 1,105,783 1,122,031 1.47 454 4 5 600-30-1a 2,198,674 2208578 0.45 1381 5 6
400-25-3b 862,180 871,206 1.05 477 4 5 600-30-1b 1,691,805 1697630 0.34 1346 5 6
400-25-3c 393,783 399,436 1.44 706 20 25 600-30-1c 748,714 746485 -0.30 1140 30 30
400-25-3d 2,321,358 2,340,658 0.83 527 13 13 600-30-1d 4,213,337 4214905 0.04 1564 15 15
400-25-3e 1,946,952 1,901,148 -2.35 878 9 22 600-30-1e 3,737,075 3570518 -4.46 1380 8 26
400-25-4a 1,015,654 1,016,670 0.10 546 4 5 600-30-2a 2,017,760 2023484 0.28 1105 5 6
400-25-4b 801,722 803,237 0.19 532 4 5 600-30-2b 1,602,833 1601675 -0.07 1019 5 6
400-25-4c 380,824 382,491 0.44 736 21 25 600-30-2c 634,787 646907 1.91 1368 21 30
400-25-4d 2,362,571 2,367,103 0.19 719 13 13 600-30-2d 4,163,772 4201095 0.90 1493 15 15
400-25-4e 1,992,633 1,942,603 -2.51 913 9 22 600-30-2e 3,682,117 3572959 -2.96 1672 8 26
500-25-1a 1,773,409 1,798,898 1.44 705 4 5 600-30-3a 2,082,824 2103960 1.01 1168 5 6
500-25-1b 1,331,827 1,349,058 1.29 709 4 5 600-30-3b 1,615,623 1623113 0.46 1247 5 6
500-25-1c 673,495 671,756 -0.26 1193 25 25 600-30-3c 662,569 683582 3.17 1311 24 30
500-25-1d 3,325,312 3,322,248 -0.09 833 13 13 600-30-3d 4,068,474 4126907 1.44 1724 15 15
500-25-1e 2,971,616 2,692,197 -9.40 1322 7 22 600-30-3e 3,496,852 3488544 -0.24 1526 11 26
500-25-2a 1,619,689 1,620,927 0.08 713 4 5 600-30-4a 1,940,218 1942190 0.10 1325 5 6
500-25-2b 1,252,748 1,251,667 -0.09 681 4 5 600-30-4b 1,560,237 1555080 -0.33 1366 5 6
500-25-2c 574,794 576,080 0.22 856 20 25 600-30-4c 707,288 714196 0.98 1808 26 30
500-25-2d 3,338,585 3,345,184 0.20 834 13 13 600-30-4d 4,150,775 4164022 0.32 2391 15 15
500-25-2e 2,802,823 2,729,944 -2.60 1337 7 22 600-30-4e 3,622,885 3543712 -2.19 1890 8 26

-0.34 949
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Table 8: Results on the 2-LRP instance sets P2E and N2E. Gap to the BKS in %, time in seconds,
estimated upper bounds of open depots U and the number of open depots mbest in the best found
solution.

Instance (P2E) BKS PF Instance (N2E) BKS PF

Value Gap Time mbest U Value Gap Time mbest U

20-5-1 89075 89075 0.00 24 3 3 25-5N 80370 80370 0.00 31 2 3
20-5-1b 61863 61863 0.00 26 2 2 25-5Nb 64562 64562 0.00 55 1 3
20-5-2 84478 84478 0.00 20 3 4 25-5MN 78947 78947 0.00 31 1 3
20-5-2b 60838 60838 0.00 28 2 3 25-5MNb 64438 64438 0.00 42 1 3
50-5-1 130843 130843 0.00 46 2 3 50-5N 137815 137815 0.00 45 3 3
50-5-1b 101530 101530 0.00 58 2 3 50-5Nb 110094 110094 0.00 75 2 3
50-5-2 131825 131825 0.00 43 3 3 50-5MN 123484 123484 0.00 41 3 4
50-5-2b 110332 110332 0.00 51 3 3 50-5MNb 105401 105401 0.00 52 3 3
50-5-2BIS 122599 122599 0.00 63 3 3 50-10N 115725 115725 0.00 55 3 3
50-5-2bBIS 105696 107310 1.53 69 3 3 50-10Nb 87315 87315 0.00 75 2 3
50-5-3 128379 128379 0.00 45 2 3 50-10MN 135519 135519 0.00 41 3 4
50-5-3b 104006 104006 0.00 54 2 3 50-10MNb 110613 110613 0.00 61 3 3
100-5-1 318134 318842 0.22 103 3 3 100-5N 193228 194255 0.53 64 4 4
100-5-1b 256878 256888 0.00 95 3 3 100-5Nb 158927 158927 0.00 91 4 5
100-5-2 231305 231305 0.00 91 2 3 100-5MN 204682 204848 0.08 58 4 5
100-5-2b 194728 194778 0.03 81 2 3 100-5MNb 165744 166087 0.21 81 4 5
100-5-3 244071 244958 0.36 77 2 3 100-10N 209952 210538 0.28 79 5 5
100-5-3b 194110 194110 0.00 86 2 3 100-10Nb 155489 155489 0.00 101 4 5
100-10-1 351243 351468 0.06 121 3 4 100-10MN 201275 201275 0.00 73 4 5
100-10-1b 297167 297513 0.12 111 3 4 100-10MNb 170625 170625 0.00 81 4 4
100-10-2 304438 304438 0.00 95 3 4 200-10N 345267 343232 -0.59 165 8 8
100-10-2b 263873 263876 0.00 97 3 4 200-10Nb 256171 256403 0.09 206 7 7
100-10-3 310200 310148 -0.02 140 3 4 200-10MN 323801 330259 1.99 165 6 8
100-10-3b 260328 260671 0.13 120 3 4 200-10MNb 287076 293246 2.15 202 7 7
200-10-1 548703 549194 0.09 208 3 4
200-10-1b 445301 445658 0.08 211 3 4
200-10-2 497451 498530 0.22 191 3 4
200-10-2b 422668 422987 0.08 185 3 4
200-10-3 527162 529202 0.39 242 3 4
200-10-3b 401672 416355 3.66 228 3 4

0.11 96 0.20 82
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Table 9: Results on the very-large-scale LRP instance set H and the STTRPSD instance set VTT.
Gap to the BKS in %, time in seconds, estimated upper bounds of open depots U and the number of
open depots mbest in the best found solution.

Instance BKS PF Instance BKS PF

(H) Value Gap Time mbest U (VTT) Value Gap Time mbest U

M 1-1 12014.2 11026.4 -8.22 33 40 100 25-5-1-c 405.46 405.46 0.00 40 4 5
M 1-2 3470.3 3157.3 -9.01 32 12 32 25-5-2-c 374.79 374.79 0.00 168 1 5
M 1-3 2478.9 2431.8 -1.86 31 6 18 25-5-1-rd 584.03 584.03 0.00 171 4 5
M 2-1 15760.5 14718.6 -6.61 33 28 85 25-5-2-rd 508.48 508.48 0.00 184 1 5
M 2-2 4468.7 4019.5 -10.04 31 6 11 25-10-1-c 386.45 386.45 0.00 89 4 10
M 2-3 2620.8 2701.1 3.10 31 2 4 25-10-2-c 380.86 380.86 0.00 93 1 10
M 3-1 19839.5 17986.3 -9.34 32 18 49 25-10-1-rd 573.96 573.96 0.00 44 4 10
M 3-2 5207.4 4673.3 -10.25 30 6 7 25-10-2-rd 506.37 506.48 0.02 66 1 10
M 3-3 2779.3 2854.8 2.73 31 1 3 50-5-1-c 583.07 583.07 0.00 52 5 5
L 1-1 29538.1 27813.0 -5.84 222 177 200 50-5-2-c 516.98 516.98 0.00 217 1 5
L 1-2 8106.1 7577.7 -6.52 192 55 162 50-5-1-rd 870.51 870.51 0.00 50 3 5
L 1-3 5463.7 5392.5 -1.29 167 12 60 50-5-2-rd 766.03 766.03 0.00 97 3 5
L 2-1 50229.7 40305.4 -19.76 275 96 200 50-10-1-c 387.83 389.07 0.32 59 7 10
L 2-2 11551.8 10751.2 -6.92 164 23 54 50-10-2-c 367.01 367.01 0.00 107 3 10
L 2-3 6624.5 6016.0 -9.18 160 4 11 50-10-1-rd 811.28 811.28 0.00 55 5 10
L 3-1 54976.6 51245.7 -6.79 326 55 200 50-10-2-rd 731.53 731.53 0.00 114 1 10
L 3-2 13426.2 12658.2 -5.72 161 14 30 100-10-1-c 614.02 614.02 0.00 71 6 10
L 3-3 6966.5 6423.9 -7.78 160 4 7 100-10-2-c 547.44 547.44 0.00 139 5 10
XL 1-1 43939.8 45009.0 2.44 859 193 200 100-10-1-rd 1275.76 1271.78 -0.31 86 6 10
XL 1-2 11867.3 10826.0 -8.77 613 108 200 100-10-2-rd 1097.28 1097.28 0.00 135 4 10
XL 1-3 7754.7 7632.6 -1.57 459 25 130 100-20-1-c 642.61 644.95 0.36 82 6 20
XL 2-1 68118.7 62947.9 -7.59 849 168 200 100-20-2-c 581.56 594.70 2.26 136 3 20
XL 2-2 17638.8 16300.2 -7.58 422 30 121 100-20-1-rd 1143.10 1147.60 0.39 95 12 20
XL 2-3 9296.1 8809.8 -5.23 342 8 20 100-20-2-rd 1060.75 1067.14 0.60 145 4 20
XL 3-1 85509.5 78600.4 -8.08 630 95 200 200-10-1-c 822.52 821.59 -0.11 150 9 10
XL 3-2 20659.7 18885.4 -8.59 354 22 65 200-10-2-c 714.33 712.29 -0.29 196 7 10
XL 3-3 10389.9 9543.6 -8.15 349 4 11 200-10-1-rd 1761.10 1759.07 -0.12 189 8 10

200-10-2-rd 1445.94 1445.94 0.00 451 5 10
200-20-1-c 909.46 925.76 1.79 253 6 20
200-20-2-c 815.51 815.87 0.04 403 6 20
200-20-1-rd 1614.18 1652.19 2.35 206 12 20
200-20-2-rd 1413.32 1433.78 1.45 366 7 20

-6.39 259 0.27 147
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