A new upper bound for the multiple knapsack problem

Paolo Detti *

October 12, 2020

Abstract

In this paper, a new upper bound for the Multiple Knapsack Problem (MKP) is proposed, based on the idea of relaxing MKP to a Bounded Sequential Multiple Knapsack Problem, i.e., a multiple knapsack problem in which item sizes are divisible. Such a relaxation, called sequential relaxation, is obtained by suitably replacing the items of a MKP instance with items with divisible sizes. Experimental results on benchmark instances show that the upper bound is effective when the ratio between the number of items and the number of knapsacks is small.

Keywords: multiple knapsack problem, sequential relaxation, upper bound, divisible sizes.

1 Introduction

Given a set of n items with weigths w_{1}, \ldots, w_{n} and profits p_{1}, \ldots, p_{n}, and a set of m knapsacks with capacities c_{1}, \ldots, c_{m}, the 0-1 Multiple Knapsack Problem (MKP) problem consists in packing items into the knapsacks, in such way that the total weight of the items assigned to a knapsack does not exceed its capacity. The objective is to maximize the total profit of the assigned items. Let $x_{i j}$ be equal to 1 if item j is assigned to knapsack i, an ILP formulation for MKP reads as

$$
\begin{align*}
& \max \sum_{i=1}^{m} \sum_{j=1}^{n} p_{j} x_{i j} \tag{1}\\
& \sum_{j=1}^{n} w_{j} x_{i j} \leq c_{i} \text { for } i=1, \ldots, m \tag{2}\\
& \sum_{i=1}^{m} x_{i j} \leq 1 \text { for } j=1, \ldots, n \tag{3}\\
& x_{i j} \in\{0,1\} \text { for } i=1, \ldots, m \quad j=1, \ldots, n \tag{4}
\end{align*}
$$

[^0]The objective function (11) accounts for the maximization of the total profit. Constraints (2) limit the total weight of items assigned to each knapsack. Constraints (3) state that an item can be assigned at most to one knapsack.

In this paper, a new upper bound for MKP is proposed, based on the idea of relaxing the problem to a Bounded Sequential Multiple Knapsack Problem (BSMKP) [2], i.e., a multiple knapsack problem in which item sizes are divisible. Such a relaxation, called sequential relaxation in what follows, is obtained by suitably replacing the items of an MKP instance with items with divisible sizes. In BSMKP, multiple copies may exist of each item. Hence, items can be partitioned into classes, each class containing items with the same profit and weight. BSMKP can be polynomially solved in $O\left(\bar{n}^{2}+\bar{n} m\right)$ time [2], where \bar{n} is the number of item classes (the complexity reduces to $O(\bar{n} \log \bar{n}+\bar{n} m)$ when a single copy of each item exists). We prove that the upper bound provided by the sequential relaxation is always not worse than the linear relaxation of model (1) (4). Computational results on benchmark instances from the literature show that, in comparison with a classical upper bound for MKP [14, 16], the sequential upper bound is particularly effective when the ratio n / m is small, i.e., $n / m \leq 3$.

The paper is organized as follows. Section 2 reports results from the literature. In Section 3, the sequential relaxation is formally defined and described. In Section 4, a procedure for generating a series of different sequential relaxations is proposed. In Section 5. computational experiments on benchmark instances are presented. Finally, conclusions follow.

2 Literature results

MKP is a strongly NP-hard problem intensively studied in the literature. For reviews on MKP and its variants, we refer the reader to the books by Martello and Toth [15] and Kellerer et al. [10]. Effective exact algorithms for MKP include the bound and bound method proposed in [14], called MTM, turned out to be computationally much faster than the previous approaches proposed in the literature. Pisinger in [16] derived from MTM a more efficient exact procedure, called MULKNAP, capable of solving to optimality largesize instances with up to 100,000 items and 5 or 10 knapsacks. However, none of the algorithms were able to solve instances with small values of n / m. MTM and MULKNAP employ upper bound computations obtained through the surrogate relaxation [14] of the capacity constraints.

Recent contributions to MKP have been presented by Chekuri and Khanna 4], Fukunaga and Korf [7, Fukunaga [6], Jansen [11], Lalami et al. [12], and Balbal et al. [1]. In [7], a branch-and-bound algorithm is proposed, based on a bin-oriented branching structure and a dominance criterion. The algorithm turned out to be effective for relatively small n / m ratios (i.e., $n / m \sim 4$). More recently, Fukunaga [6] proposes a solution approach for MKP, (extending the one proposed in [7], based on the integration of pathsymmetry and path-dominance criteria and bound-and-bound techniques [14, 16]. The solver appears to be effective on instances with high n / m ratios. Dell'Amico et al. [5] propose two new pseudo-polynomial formulations, and an exact effective method based on the hybrid combination of several techniques, called Hy-MKP. On benchmark instances,

Hy-MKP attains very good performances, failing on some instances with $n / m=3$ and on few instances with ratios 4 and 5 .

As the computational experiments show, the sequential relaxation proposed in this paper, based on solving a BSMKP problem, turns out to be effective when n / m is small, i.e., $n / m \leq 3$.

BSMKP has been addressed in the literature in [2, 3]. The single knapsack version of BSMKP is known in the literature as sequential knapsack problem (SKP). For the unbounded SKP (i.e., the problem in which an infinite number of copies exists for each item), Marcotte proposes a linear time algorithm [13], and Pochet and Wolsey [18] provide an explicit polytope description. For the bounded SKP, Verhaegh and Aarts present an $O\left(n^{2} \log n\right)$ algorithm [19], Hartmann and Olmstead [8] propose an $O\left(n \log n+\sum_{j=1}^{n} \log b_{j}\right)$ algorithm, where b_{j} is the number of copies of item j, and Pochet and Weismantel [17] provide a polytope description.
In [2], Detti proposed a polynomial $O\left(n^{2}+n m\right)$ algorithm for BSMKP. The complexity of the algorithm reduces to $O(n \log n+n m)$ when a single copy exists for each item. Hence, for SKP, the algorithm presented in [2] requires $O\left(n^{2}\right)$ steps for the bounded case and $O(n \log n)$ steps, when a single copy exists of each item (the same complexity of the algorithm proposed in [8]). A complete description of the BSMKP polytope is presented in [3].

3 The Sequential relaxation

The new proposed upper bound is based on relaxing MKP to a Bounded Sequential Multiple Knapsack Problem. BSMKP can be formally stated as follows. There are a set of items partitioned into \bar{n} different classes and a set of \bar{m} knapsacks. Each item of class t has a size $s_{t} \in \mathcal{Z}^{+}$, a profit $v_{t} \in \mathcal{Z}^{+}$and an upper bound $b_{t} \in \mathcal{Z}^{+}$, for $t=1, \ldots, \bar{n}$. Item sizes are divisible, i.e., s_{t+1} is divisible by s_{t}, for $t=1, \ldots, \bar{n}-1$. Each knapsack i has a capacity $\bar{c}_{i} \in \mathcal{Z}^{+}$. The problem is to find the number $y_{i t}$ of items of class t, to be assigned to each knapsack i, in such a way that the total profit is maximized. A formulation of BSMKP reads as follows:

$$
\begin{align*}
& \max \sum_{i=1}^{\bar{m}} \sum_{t=1}^{\bar{n}} v_{t} y_{i t} \tag{5}\\
& \sum_{t=1}^{\bar{n}} s_{t} y_{i t} \leq \bar{c}_{i} \text { for } i=1, \ldots, m \tag{6}\\
& \sum_{i=1}^{\bar{m}} y_{i t} \leq b_{t} \text { for } t=1, \ldots, \bar{n} \tag{7}\\
& y_{i, t} \in \mathcal{Z}^{+} \tag{8}
\end{align*}
$$

The objective function (5) accounts for the maximization of the total profit. Constraints (6) state that the total size of items assigned to a knapsack does not exceed its capacity. Constraints (7) impose that the total number of the assigned items of class t does not exceed the upper bound.

Given an instance of MKP, we call sequential relaxation the transformation of the MKP instance into an instance of BSMKP. The sequential relaxation is formally defined in the following.

Definition 1 The sequential relaxation of an instance I of $M K P$ is an instance I_{s} of $B S M K P$ obtained by replacing each item j in I with a set of items $S_{j}=\left\{j_{1}, \ldots, j_{K_{j}}\right\}$ with positive sizes $s_{j_{1}} \leq s_{j_{2}} \leq \ldots \leq s_{j_{K_{j}}}$ and profits $v_{j_{1}}, v_{j_{2}} \ldots v_{j_{K_{j}}}$, respectively, such that:

$$
\begin{align*}
& \sum_{k \in S_{j}} s_{j_{k}}=w_{j} \text { for } k=1, \ldots, K_{j} \tag{9}\\
& v_{j_{k}}=\frac{p_{j}}{w_{j}} s_{j_{k}} \text { for } j=1, \ldots, n, k=1, \ldots, K_{j} \tag{10}\\
& \text { the sizes } s_{j_{k}} \text { are divisible, for } j=1, \ldots, n, k=1, \ldots, K_{j}-1 . \tag{11}
\end{align*}
$$

All items in I_{s} with the same size and profit belong to the same class. The knapsacks in I_{s} are the same of I, i.e., $\bar{m}=m$ and $\bar{c}_{i}=c_{i}$, for $i=1, \ldots, m$.

Note that, Conditions (9) and (10) imply that

$$
\sum_{k \in S_{j}} v_{j_{k}}=p_{j} \text { for } k=1, \ldots, K_{j} .
$$

As shown in [2], I_{s} can be optimally solved in $O\left(\bar{n}^{2}+\bar{n} m\right)$ time. Many different sequential relaxations may exist, depending on the set of divisible sizes $s_{j_{k}}$, for $j=1, \ldots, n$ and $k=1, \ldots, K_{j}$, used for generating I_{s}. In fact, if weights w_{j} and capacities c_{i} are integers, the sequential relaxation is equivalent to the linear relaxation of model model (11)-(4) when $s_{j_{k}}=1$, for $j=1, \ldots, n$ and $k=1, \ldots, K_{j}$ is set (i.e., each item in I is split into smaller items of size 1).

As an example, let I be a MKP instance with two knapsacks of capacities $c_{1}=47$ and $c_{2}=64$, and five items, with weights and profits reported in Columns $2-3$ of Table 1 .

Let I_{s} be an instance of BSMKP produced by partitioning each item of I into items of divisible sizes $s_{1}=1, s_{2}=3$ and $s_{3}=33$. Hence, since $w_{1}=s_{3}$, item 1 is not partitioned and is included in I_{s}. Item 2 can be partitioned into two items of size 1 and profit 2 , and one item of size 33 and profit 66. From item 3 the following items are generated: one item of size 1 and profit 2, one item of size 3 and profit 6 , and one item of size 33 and profit 66. Item 4 is partitioned into two items of size 1 and profit 1 , four items of size 3 and profit 3, and one item of size 33 and profit 33. Finally, item 5 can be partitioned into one item of size 1 and profit 1 , ten items of size 3 and profit 3 , and one item of size 33 and profit 33. Columns 4-9 of Table 1 report all the items of I_{s}. More precisely, for each item of MKP, Columns 4, 6 and 8 respectively report the number of items of size s_{1}, s_{2} and s_{3} generated in I_{s}, denoted as $\# s_{1}, \# s_{2}$ and $\# s_{3}$. Columns 5, 7 and 9 show the profits, v_{1}, v_{2} and v_{3}, of the generated items of size s_{1}, s_{2} and s_{3}, respectively. Note that, $\# s_{j}=b_{j}$ for $j=1,2,3$.

Let $z_{M K P}$ and $z_{\text {seq }}$ be the optimal solution values of a MKP instance and of any sequential relaxation, respectively. The following lemma holds.

j	w_{j}	p_{j}	$\# s_{1}$	v_{1}	$\# s_{2}$	v_{2}	$\# s_{3}$	v_{3}
1	33	99	-	-	-	-	1	99
2	35	70	2	2	-	-	1	66
3	37	74	1	2	1	6	1	66
4	47	47	2	1	4	3	1	33
5	64	64	1	1	10	3	1	33

Table 1: Instances I of MKP and I_{s} of BSMKP.

Lemma 2 Given an instance I of MKP, the optimal solution value $z_{\text {seq }}$ of any sequential relaxation I_{s} is an upper bound to the optimal solution value $z_{M K P}$ of I, i.e.,

$$
z_{M K P} \leq z_{\text {seq }} .
$$

Proof. Given a feasible solution, x, for I, let y be a solution for I_{s} obtained by x replacing each item j in I with items in S_{j}. By Equation (9), y is feasible for I_{s}, and by Equation (10), x and y have the same objective function value. This holds even if x is optimal and the thesis follows.

Let $z_{L P M K P}$ be the optimal solution of the linear relaxation of the model (11)-(4) for an instance I of MKP. Then, Lemma 3 holds.

Lemma 3 Given an instance I of $M K P$, the upper bound $z_{\text {seq }}$ derived from instance I_{s} obtained by any sequential relaxation of I is not bigger than the upper bound $z_{L P M K P}$ obtained by the linear relaxation of model (1) -(4), i.e.,

$$
z_{L P M K P} \geq z_{\text {seq }} .
$$

Proof. The Lemma is proved by showing that any feasible solution of I_{s} is also feasible for the linear relaxation of model (11)-(4). Given a feasible solution, y, for I_{s}, let $q_{i t j}$ be the number of items of class t (i.e., of size s_{t} and profit v_{t}) belonging to S_{j} and assigned to knapsack i in y. Then, we have $y_{i t}=\sum_{j=1}^{n} q_{i t j}$. Note that, by (9) and by the definition of $q_{i t j}$, we have $\sum_{i=1}^{m} \sum_{t=1}^{\bar{n}} s_{t} q_{i t j} \leq w_{j}$. Let x be the solution of the linear relaxation of model (11)-(4) in which $x_{i j}=\sum_{t=1}^{\bar{n}} s_{t} q_{i t j} / w_{j}$ is set, for $j=1, \ldots, n$ and $i=1, \ldots, m$. Then, $\sum_{i=1}^{m} x_{i j}=\sum_{i=1}^{m} \sum_{t=1}^{\bar{n}} s_{t} q_{i t j} / w_{j} \leq 1$ (i.e., x satisfies Constraints (3)). Furthermore, by (6) we have

$$
\sum_{j=1}^{n} w_{j} x_{i j}=\sum_{j=1}^{n} w_{j} \sum_{t=1}^{\bar{n}} s_{t} q_{i t j} / w_{j}=\sum_{t=1}^{\bar{n}} s_{t} y_{i t} \leq \bar{c}_{i}=c_{i}
$$

i.e., x satisfies Constraints (21). Hence, x is a feasible solution for the linear relaxation of model (1)-(4). By formulas (1) and (5) and by conditions (10), the objective functions (1) and (5) (computed in x and in y, respectively) have the same objective function value. This holds even if x is optimal and the thesis follows.

Hence, the sequential relaxation provides an upper bound that is not worse than the one provided by the linear relaxation of model (1)-(4).

The exact algorithms MTM and MULKNAP [14, 16] employ upper bounds computed by the surrogate relaxation of the capacity Constraints (2), obtained by replacing them by the single knapsack constraint $\sum_{i=1}^{m} \sum_{j=1}^{n} \pi_{i} w_{j} x_{i j} \leq c_{i}$, where π_{1}, \ldots, π_{m} are non-negative multipliers. Martello and Toth [14] proved that for any instance of MKP, the optimal choice of multipliers is $\pi_{i}=k$ for all i, where k is a positive constant. Hence, the surrogate relaxation can be found by solving an ordinary $0-1$ Knapsack Problem. In the following, we denote the upper bound obtained by the surrogate relaxation as $z_{\text {surr }}$.

As also shown by the computational analysis in Section 5, it is not possible to establish a theoretical relationship between the bounds provide by sequential and surrogate relaxations.

In the following, as an example, we derive upper bounds from the sequential, surrogate and linear relaxations for the MKP instance reported in Table 1. As shown below, we have that $z_{\text {seq }}$ is smaller than $z_{L P M K P}$ and $z_{\text {surr }}$. In Pisinger [16], a procedure is used to tighten the capacity constraints of a MKP instance I. In practice, m Subset-sum problems are solved, one for each knapsack, for detecting the maximum knapsack capacities that can be filled by the items in I. Then, knapsack capacities are reduced to such maximum values. Note that, for the MKP instance of Table 1 capacity constraints can not be tightened by this approach. The optimal solution of the instance consists in assigning items 1 and 3. Hence, $z_{M K P}=173$. The surrogate bound is found by solving a single knapsack problem with knapsack capacity $c_{1}+c_{2}=111$. It is easy to see that $z_{\text {surr }}=243$, obtained by assigning items 1,2 and 3 with a total weight of 105 . The optimal solution of the sequential relaxation (reported in Columns 4-11 of Table (1), is obtained by assigning the new items as follows. Items assigned to Knapsack 1: the item of size 33 and profit 99, the item of size 3 and profit 6 , three items of size 1 and profit 2, two items of size 3 and profit 4, two items of size 1 and profit 1. Items assigned to Knapsack 2: 1 item of size 33 and profit 66 , ten items of size 3 and profit 3,1 item of size 1 and profit 1. Hence, $z_{s e q}=119+97=216$. Finally, the optimal solution value of the linear relaxation of model (1)-(4) is $z_{L P M K P}=249$.

4 Generating and solving sequential relaxations

In this section, we address the problem of generating different sequential relaxations from a MKP instance I, in order to get small $z_{\text {seq }}$ values. In fact, many possible sequential relaxations may exist, depending on the divisible sizes s_{t} used to generate items in I_{s}. In what follows, we denote sequential sequence the set S containing the divisible sizes of the items of I_{s}. The procedure described below can be used for finding a series of different sequential sequences.

Let j be an item in I, let Q be an integer smaller than w_{j}, and let $q \geq 2$ be the biggest integer smaller than or equal to Q such that $\left(w_{j} \bmod q\right)$ is minimum. In I_{s}, we denote as reference size the value $\bar{s}=w_{j}-\left(w_{j} \bmod q\right)$. In other words, q is the biggest integer not bigger than Q such that \bar{s} is "closest" to w_{j}.

Note that, \bar{s} and q are divisible. At the beginning, $S=\{1, \bar{s}\}$ is set. Then, the procedure sequentially scans the numbers in the ordered set $T=\{\bar{s}-q, \bar{s}-2 q, \ldots, q, q-$
$1, q-2, \ldots, 2\}$: Whenever an element of the set T is detected that divides all values in S, it is included in S (and the search continues considering the next elements of T). The procedure ends either when S contains $l_{\max }$ elements or when all elements of T are scanned.

Note that, the above procedure is not polynomial in the input size of the instance I, since it depends on the weight w_{j} and Q. However, it can be made faster by suitably choosing small values for Q and $l_{\max }$.

Let $S=\left\{1, s_{1}, s_{2}, \ldots, \bar{s}=s_{\bar{n}}\right\}$ be the sequential sequence obtained so far, with $1 \leq$ $s_{1} \leq s_{2} \leq \ldots s_{\bar{n}}$. The items in I_{s} are generated as follows. Firstly the biggest size $s_{\bar{n}}$ in S is considered, and, for each item j of $I,\left\lfloor w_{j} / s_{\bar{n}}\right\rfloor$ items are generated with profit $\left(p_{j} / w_{j}\right) s_{\bar{n}}$ and size $s_{\bar{n}}$ and included in I_{s}. Then, $w_{j}=w_{j}-\left\lfloor w_{j} / s_{\bar{n}}\right\rfloor s_{\bar{n}}$ is set for all items j of I, and the above argument is applied by considering the second biggest size $s_{\bar{n}-1}$. And so on, until the last size 1 is considered. Hence, the instance I_{s} generated so far will contain at most $n \times \bar{n}$ item classes.

The overall procedure can be executed more than one time, by selecting at the beginning a different item j in I (possibly leading to new q and \bar{s} values). In this way, we get different instances I_{s}, each of them solvable in $O\left(\bar{n}^{2}+\bar{n} m\right)$ by the algorithm proposed in [2]. At the end, the smallest $z_{\text {seq }}$ value is returned. The overall algorithm is reported in Figure 1. In the algorithm, $Q_{\max }$ is an input parameter used to limit Q.

As an example, let us consider the MKP instance of Columns 1-3 of Table 1 and let $Q_{\max }=10$ and $l_{\max }=5$. Let us suppose that the item $j=5$ is selected. Then, $Q=\min \left\{Q_{\max }, w_{5}\right\}=\min \{10,64\}=10$ and $q=8$. Hence, $\bar{s}=w_{5}-\left(w_{5} \bmod q\right)=$ 64 , and $S=\{1,64\}$ is initially set. Then, the algorithm scans the ordered sequence $T=\{\bar{s}-q=56, \bar{s}-2 q=48, \bar{s}-3 q=40, \ldots, q=8,7,6, \ldots, 2\}$ and includes in S all numbers dividing all the elements of the current set S (until $|S| \leq l_{\max }$). Hence, the sequential sequence $S=\left\{\bar{s}=s_{\bar{n}}, \ldots, s_{1}\right\}=\{64,32,16,8,1\}$ is get. By solving the BSMKP instance generated from S we get $z_{\text {seq }}=249$, equal to the optimal solution of the linear relaxation of model (1)-(4). On the the other hand, let us suppose that the algorithm selects item $j=1$. Then, $Q=\min \left\{Q_{\max }, w_{1}\right\}=\min \{10,33\}=10$ and $q=3$. Hence, $\bar{s}=33$, and $S=\{1,33\}$ is set. Then, the algorithm scans the ordered sequence $T=\{\bar{s}-q=30, \bar{s}-2 q=27, \bar{s}-3 q=24, \ldots, 6, q=3,2\}$, and produces the final sequential sequence $S=\{33,3,1\}$. From S, we get the BSMKP instance of Table 1 with optimal solution value $z_{\text {seq }}=216$.

5 Computational results

In this section, computational results are presented on different sets of benchmark instances, in order to compare the sequential and the surrogate relaxations, and the linear relaxation of model (1)-(4). More precisely, six sets of instances have been used: the first five sets are from the literature, while the sixth set contains new instances with n / m ratios smaller than 2. All the instances were obtained through Pisinger's instance generator. In all the instances, knapsack capacities have been tightened as proposed in [16] (by solving a series of Subset-sum Problems), and the surrogate upper bound is computed by the C code developed by Pisinger [16]. The instance generator and the code to solve the sur-

```
Algorithm 1 Algorithm for generating and solving sequential relaxations of MKP.
Algorithm Sequential Relaxations
Input: An instance \(I\) of MKP, an integer \(Q_{\max }\), a maximum number of elements \(l_{\max }\), a maximum iteration number \(I t_{\max } \leq n\);
Output: The best upper bound \(z_{s e q}\);
\(h=0\); mark all items in \(I\) as not visited
while \(\left(h \leq I t_{\max }\right)\)
begin
    Select a not already visited item \(j\) in \(I\), and set \(Q=\min \left\{Q_{\max }, w_{j}\right\}\).
    Let \(q \leq Q\) be the biggest integer such that \(\left(w_{j} \bmod q\right)\) is minimum. Set \(\bar{s}=w_{j}-\left(w_{j} \bmod q\right), S=\{\bar{s}, 1\}\).
    Sequentially scan the ordered set \(T=\{\bar{s}-q, \bar{s}-2 q, \ldots, q, q-1, q-2, \ldots, 2\}\) and include in \(S\)
    all numbers of \(T\) dividing all elements in \(S\) until \(|S| \leq l_{\text {max }}\).
    while \((S \neq \emptyset)\)
    begin
        Let \(s_{\bar{n}}\) be the biggest element in \(S\).
        For all items \(l\) in \(I\), generate \(\left\lfloor w_{l} / s_{\bar{n}}\right\rfloor\) items with profit \(\left(p_{l} / w_{l}\right) s_{\bar{n}}\) and size \(s_{\bar{n}}\).
        Set \(S=S \backslash\left\{s_{\bar{n}}\right\}\).
    end
    \(h=h+1\); mark \(j\) as visited.
    Get \(z_{\text {seq }}\) by solving \(I_{s}\) by the algorithm proposed in [2].
end
Return the smallest \(z_{\text {seq }}\) obtained so far.
```

rogate relaxation are available at http://hjemmesider.diku.dk/~pisinger/codes.html. The Algorithm 1 for computing the sequential upper bound has been also coded in C. In the algorithm, parameters have been set as follows: $Q_{\max }=10, l_{\max }=5$ and $I t_{\max }=10$.

All the experiments have been performed on a machine equipped with Intel i7, 2.5 GHz Quad-core processor and 16 Gb of RAM. Gurobi solver has been used to compute the linear relaxations of the Integer Linear Programming formulation (1)-(4).

The first five sets of instances contain instances generated in Dell'amico et al. [5], and firstly proposed by Kataoka and Yamada [9] and Fukunaga [6], denoted as $S M A L L, F k_{1}$, $F k_{2}, F k_{3}$ and $F k_{4}$ (available at http://or.dei.unibo.it/library). The sixth set, denoted as $S e t_{6}$, contains large randomly generated instances with $n / m<2$ and is available at https : //www3.diism.unisi.it/ ~detti/SequentialBound.html. As in Pisinger 16, four classes of correlation are considered: uncorrelated, weakly correlated, strongly correlated, subset-sum. In the following, the instances are described into detail.

SMALL is a set of 180 instances proposed by Kataoka and Yamada 9 for a variant of the MKP with assignment restrictions, and adapted to MKP by Dell'Amico et al. [5] by simply disregarding the additional constraints. This set contains uncorrelated, weakly correlated and strongly correlated instances with $m \in\{10,20\}$ and $n \in\{20,40,60\}$, for a total of 18 settings (10 instances exist for each setting). Weights w_{j} are uniformly distributed in $[1,1000]$ in all the $S M A L L$ instances. In uncorrelated instances, profits p_{j} are uniformly distributed in $[1,1000]$. In weakly correlated instances, profits are set as $p_{j}=0.6 w_{j}+\theta_{j}$, with θ_{j} uniformly random in $[1,400]$. In strongly correlated instances, $p_{j}=w_{j}+200$ is set. The knapsack capacities were generated as $c_{i}=\left\lfloor\sigma \lambda_{i} \sum_{j=1}^{n} w_{j}\right\rfloor$, with λ uniformly distributed in $[0,1]$ such that $\sum_{i=1}^{m} \lambda_{i}=1$, and $\sigma \in\{0.25,0.5,0.75\}$. The values of n and m and the correlation classes of the instances in this set are reported in the second row of Table 2.

The other set of instances, i.e., $F k_{1}-F k_{4}$ and $S e t_{6}$, have been generated as in [16]. In $S e t_{6}$, data are generated according to different ranges $R=100,1000,10000$, while
$R=1000$ has been used in all the instances of Sets $F k_{1}-F k_{4}$. In uncorrelated instances: p_{j} and w_{j} are randomly distributed in $[10, R]$. In weakly correlated instances, w_{j} is randomly distributed in $[10, R]$ and p_{j} is randomly distributed in $\left[w_{j}-R / 10, w_{j}+R / 10\right]$ such that $p_{j} \geq 1$. In strongly correlated instances, w_{j} is randomly distributed in $[10, R]$ and p_{j} is set to $w_{j}+10$. In subset-sum instances, w_{j} is randomly distributed in $[10, R]$ and p_{j} equals w_{j}. The first $m-1$ knapsack capacities c_{i} are randomly distributed in $\left[0.4 \sum_{j=1}^{n} w_{j} / m, 0.6 \sum_{j=1}^{n} w_{j} / m\right]$ and $c_{m}=0.5 \sum_{j=1}^{n} w_{j}-\sum_{i=1}^{m-1} c_{i}$.

The sets $F k_{1}, F k_{2}, F k_{3}$ and $F k_{4}$ contain 480 instances each. They have been generated in [5] and reproduce those used in [6]. The values of n and m and the correlation classes of the instances in sets $F k_{1}-F k_{4}$ are reported in Rows 3-5 of Table 2. Twenty instances exist for each setting. Set $_{6}$ contains 1620 large instances (n / m ranges from 150/80 to $45000 / 30000$), weights and profits are generated for all values of $R=100,1000,10000$ as in [16]. The values of n and m and the correlation classes of the instances in set Set_{6} are reported in Rows 6-7 of Table 2. (For each setting, 20 instances exist).

Tables $3-10$ report the computational results on the six sets. In the tables, $z_{\text {seq }}$, $z_{\text {surr }}$ and $z_{L P}$ are the average values of the sequential, surrogate and linear relaxations, respectively, and $t_{\text {seq }}, t_{\text {surr }}$ and $t_{L P}$ are the related average computational times. Tables 3 37 report the results for the sets SMALL and $F k_{1}-F k_{4}$, respectively. In Tables 3-7, "opt" is the optimal average solution values on each setting, kindly provided by the authors of [5]. A "-" in this column means that the optimum is not known for at least one instance of the setting. In Columns 12-14 of the tables, gap $_{s e}$, $g^{2 a p} p_{s u}$ and $g a p_{L P}$ are the percentage optimal gaps of sequential, surrogate and linear relaxations computed as $\left(z_{\text {seq }}-o p t\right) / o p t \times 100,\left(z_{\text {surr }}-o p t\right) / o p t \times 100$ and $\left(z_{L P}-o p t\right) / o p t \times 100$, respectively.

Table 3 reports the results on the SMALL set. The results in each row of the table are average values on 10 instances. The last row of the table reports the average results over all the instances. Observe that, in general, all gaps are big for instances with small ratios n / m and decrease as the ratios increase. In fact, when $n / m=1$, we have $g a p_{s e}, g a p_{s u}$ and $g a p_{L P}$ equal to about $45 \%, 74 \%$ and 87% on average, respectively, with the sequential bound attaining the best performance (especially on uncorrelated and weakly instances). On instances with $n / m=2$, the sequential and surrogate relaxations produce the best results, with $g a p_{s e}=5.48, g a p_{s u}=5.63$ and $g a p_{L P}=7.66$ on average. In instances with bigger ratios (i.e., $n / m=3,4,6$), $g a p_{s u}$ is always smaller than $g a p_{s e}$ (and obviously than $\left.g a p_{L P}\right)$. In fact, we have $g a p_{s u}=0.15, g a p_{s e}=0.59$ and $g a p_{s e}=0.65$ on average.

The computational results on $F K_{1}-F K_{4}$ instances are shown in Tables 447, respectively, where each row report average values on the 20 instances of each setting (with the same n, m and correlation class). The trends on these instances are similar to those highlighted on SMALL instances. In fact, the biggest optimality gaps are attained on instances with the smallest ratio $n / m=2$. On these instances, $g a p_{s e}$ is definitely smaller than $g a p_{s u}$ and $g a p_{L P}$ on uncorrelated and weakly correlated instances, and slightly smaller or equal on strongly correlated instances. When $n / m=3, z_{\text {seq }}$ is smaller than $z_{\text {surr }}$ on uncorrelated and weakly correlated instances, while $z_{\text {surr }}$ is smaller on strongly correlated instances. On instances with biggest ratios, $z_{\text {surr }}$ is generally smaller for uncorrelated, weakly and strongly correlated instances. In all subset-sum instances of sets $F K_{1}-F K_{4}$, the sequen-

Set	n / m	w_{j} in	Correlation
SMALL	$\{20 / 10,40 / 10,60 / 10,20 / 20,40 / 20,60 / 20\}$	$[1-1000]$	\{uncorr., weekly, strongly\}
$F K_{1}$	$\{60 / 30,45 / 15,48 / 12,75 / 15,60 / 10,100 / 10\}$	$[10-1000]$	\{uncorr., weakly, strongly, subset-sum $\}$
$F K_{2}$	$\{120 / 60,90 / 30,96 / 24,150 / 30,120 / 20,200 / 20\}$	$[10-1000]$	\{uncorr., weakly, strongly, subset-sum\}
$F K_{3}$	$\{180 / 90,135 / 45,144 / 36,225 / 45,180 / 30,300 / 30\}$	$[10-1000]$	\{uncorr., weakly, strongly, subset-sum\}
$F K_{4}$	$\{300 / 150,225 / 75,240 / 60,375 / 75,300 / 50,500 / 50\}$	$[10-1000]$	\{uncorr., weakly, strongly, subset-sum\}
Set $_{6}$	$\{150 / 80,300 / 160,600 / 350,1200 / 700,2500 / 1400$,		
	$5000 / 2800,10000 / 5600,2000 / 13000,45000 / 30000\}$	$\{[10-100],[10-1000]$,	
		$[10-10000]\}$	\{uncorr., weakly, strongly\}

Table 2: Description of the instances.
tial and surrogate relaxations produce the same bounds, that are equal or very close to the bounds provided by the linear relaxation.

As Tables $5 \cdot 7$ show, the optimality gaps can not be computed for some instances of sets $F K_{2}, F K_{3}$ and $F K_{4}$ with ratios $n / m=3,4,5$, since, a the the best of our knowledge, the optimal solutions are not available for some of these instances in the literature. In fact, as shown in the detailed analysis reported in Tables 5 and 6 of [5], it turns out that the effective Hy-MKP approach (proposed in [5]) fails to find optimal solutions especially on instances with $n / m=3$, and on some instances with ratios 4 and 5 .

For a clearer comparison, Table 8 reports the gaps between sequential and surrogate bounds for the instances with ratios $n / m=3,4,5$ belonging to the sets $F K_{2}, F K_{3}$ and $F K_{4}$. In the table, $g_{s e-L P}$ is the percentage gap between $z_{s e q}$ and $z_{L P}$, and $g_{s u-L P}$ is the percentage gap between $z_{\text {surr }}$ and $z_{L P}$, computed as $\left(z_{L P}-z_{\text {seq }}\right) / z_{\text {seq }} \times 100$ and $\left(z_{L P}-z_{\text {surr }}\right) / z_{\text {surr }} \times 100$, respectively. Hence, the bigger $g_{s e-L P}$ and $g_{s u-L P}$ are the better the sequential and surrogate bounds are. As shown in Table 8, $z_{\text {seq }}$ is better than $z_{\text {surr }}$ on uncorrelated and weakly correlated instances with ratio 3. In fact, $g_{s e-L P}$ and $g_{s u-L P}$ respectively are equal to 0.53 and 0.06 on average. On the remaining instances, $z_{\text {seq }}$ is essentially equal to $z_{L P}$ while $z_{s u r r}$ is slightly better with $g_{s u-L P}=0.02$ on average.

The computational times on SMALL and $F K_{1}-F K_{4}$ instances are very small for the sequential (1 millisecond or less on average) and surrogate (from 1 to 3 milliseconds) relaxations, while the linear relaxation requires about 0.39 seconds on average.

Tables 9 and 10 report the computational results on instances of $S e t_{6}$. Observe that, on this set, the ratio n / m is very small, ranging from about 1.5 to 1.9. In each table, for each n, m, R, and correlation class, the average over the 20 instances is reported. In Table 9, the results on the smallest instances of $S_{6} t_{6}$ are reported. More precisely, in the last two columns of the table, $g_{s e-L P}$ is the percentage gap between $z_{s e q}$ and $z_{L P}$, and $g_{s u-L P}$ is the percentage gap between $z_{s u r r}$ and $z_{L P}$, computed as in Table 8 i.e., $\left(z_{L P}-z_{\text {seq }}\right) / z_{\text {seq }} \times 100$ and $\left(z_{L P}-z_{\text {surr }}\right) / z_{\text {surr }} \times 100$, respectively. First observe that, in Table 9, the linear relaxation requires about 15 seconds on average, but more than 130 seconds on instances with $m=1400$ and $n=2500$. On the other hand, the computational times of the sequential and surrogate relaxations are negligible, about 3 ms and 5 ms on average, respectively. The sequential relaxation always attains the best performances, with $g_{s e-L P}=8 \%$ and $g_{s u-L P}=0.01 \%$ on average. The sequential bounds are smaller than $z_{\text {surr }}$ especially on uncorrelated and weakly correlated instances.

Table 10 reports the results on the biggest instances of Set $_{6}$. On these instances, due to the high computational times to compute the linear relaxations, only the sequential and surrogate bounds are compared. Note that, $z_{\text {seq }}$ is always better than $z_{\text {surr }}$. In

m	n	n / m	Corr.	$z_{\text {seq }}$	$t_{\text {seq }}$	$z_{\text {surr }}$	$t_{\text {surr }}$	$z_{L P}$	$t_{L P}$	opt	gap se	gap ${ }_{\text {su }}$	gap ${ }_{L P}$
20	20	1	unc.	5963.31	<0.001	7659.5	<0.001	8071.08	0.57	4685.8	27.26	63.46	72.25
20	20	1	wea.	4633.687	<0.001	5696.6	<0.001	6158.33	0.42	2957	56.70	92.65	108.26
20	20	1	str.	9015.2	<0.001	9973.7	0.002	10758.88	0.38	6010.3	50	65.94	79.01
10	20	2	unc.	7869.777	<0.001	7863	0.001	8075.55	0.54	7483.5	5.16	5.07	7.91
10	20	2	wea.	6001.897	<0.001	5986.3	<0.001	6162.66	0.58	5594.4	7.28	7.01	10.16
10	20	2	str.	10560.6	<0.001	10444.1	<0.001	10766.88	0.43	9740.9	8.42	7.22	10.53
20	40	2	unc.	16078.99	<0.001	16368.9	<0.001	16484.34	0.57	15462.6	3.99	5.86	6.61
20	40	2	wea.	12178.64	<0.001	12351.4	<0.001	12454.56	0.42	11638.8	4.64	6.12	7.01
20	40	2	str.	21178.92	<0.001	20993.2	0.002	21248.26	0.37	20478.5	3.42	2.51	3.76
20	60	3	unc.	24783.75	<0.001	24717.7	<0.001	24800.72	0.57	24632	0.62	0.35	0.68
20	60	3	wea.	18777.19	<0.001	18739.1	<0.001	18788.38	0.42	18661.4	0.62	0.42	0.68
20	60	3	str.	31800.32	<0.001	31608.3	0.002	31816.56	0.37	31535.6	0.84	0.23	0.89
10	40	4	unc.	16464.61	<0.001	16395.4	<0.001	16488.41	0.57	16366.7	0.60	0.18	0.74
10	40	4	wea.	12446.41	<0.001	12397.3	<0.001	12459.13	0.48	12379.1	0.54	0.15	0.65
10	40	4	str.	21235.54	<0.001	21024.1	0.003	21256.26	0.42	21011.2	1.07	0.06	1.17
10	60	6	unc.	24797.61	<0.001	24728.6	0.001	24804.74	0.57	24728.6	0.28	0	0.31
10	60	6	wea.	18790.28	<0.001	18746.1	<0.001	18793.29	0.42	18746.1	0.24	0	0.25
10	60	6	str.	31819.13	<0.001	31660.2	0.001	31825.56	0.41	31660.2	0.50	0	0.52
Av				16355.33	<0.001	16519.64	0.001	16734.09	0.47	15765.15	9.56	14.29	17.30

Table 3: Results on SMALL instances.
fact, $z_{\text {seq }}$ is about $20 \%, 9 \%$ and 2.5% lower than $z_{\text {surr }}$ on uncorrelated, weakly correlated and strongly correlated instances, respectively. Regarding the computational times for instances of $S e t_{6}$, the computation of the surrogate and sequential bounds require about 0.036 and 0.08 seconds on average. However, the surrogate relaxation is always faster than the sequential relaxation on uncorrelated and weakly correlated instances.

Summarizing, from a quality point of view, the sequential relaxation attains good performances for uncorrelated and weakly correlated instances with n / m ratios smaller than or equal to 3 . The surrogate relaxation produces the best results on strongly correlated instances and on instances with $n / m>3$. On subset-sum instances with $n / m \geq 2$ the sequential, the surrogate and the linear relaxation attain the same results. On instances with $n / m<2$ the sequential relaxation always produces the best results. Regarding the computational times, in general, the sequential upper bound can be computed with a small computational effort: it requires at most less than 0.3 seconds on the biggest instances of $S e t_{6}$. Such facts suggest that a combined use of sequential and surrogate relaxations could be effective when employed in enumeration solution schemes for MKP.

As an example, in order to asses whether the sequential bound can be effectively employed in the solution of multiple knapsack problems, three new MKP instances have been considered, denoted as Inst1, Inst2 and Inst3. Inst1 is the MKP instance with $n=36$ and $m=30$ reported in Table 11. For this instance the optimal solution value $z_{M K P}=$ $2000, z_{\text {seq }}=2033.31 z_{\text {surr }}=2103$ and $z_{L P}=2117.19$. Inst2 is generated by making three copies of each item and each knapsack of Inst1, and Inst3 is the instance containing 6 copies of each item and each knapsack of Inst1. Hence, we have $n=36 \times 3=108$ and $m=30 \times 3=90$ in Inst2, and $n=36 \times 6=216$ and $m=30 \times 6=180$ in Insts. Furtheremore, we have $z_{M K P}=6000, z_{\text {seq }}=6099.92 z_{\text {surr }}=6350$ and $z_{L P}=6351.56$ in Inst2, and $z_{M K P}=12000, z_{\text {seq }}=12199.85 z_{\text {surr }}=12700$ and $z_{L P}=12703.12$ in Inst3. The three instances have been solved by Gurobi both by the standard formulation (11)-(4) and on a modified formulation obtained by simply adding to the standard formulation the

m	n	n / m	Corr.	$z_{\text {seq }}$	$t_{\text {seq }}$	$z_{\text {surr }}$	$t_{s u r r}$	$z_{L P}$	$t_{L P}$	opt	gap $p_{s e}$	gap $p_{s u}$	gap $p_{L P}$
10	60	6	unc.	23933.99	<0.001	23867.05	<0.001	23940.81	0.24	23867.05	0.28	0	0.31
10	60	6	wea.	16567.99	<0.001	16543.95	<0.001	16568.94	0.07	16540.9	0.16	0.02	0.17
10	60	6	str.	15076.14	<0.001	15071.55	0.001	15076.26	0.07	15071.55	0.03	0	0.03
10	60	6	s-s	14649.50	<0.001	14649.5	0.001	14649.50	0.07	14649.5	0	0	0
10	100	10	unc.	40256.88	<0.001	40207.05	0.001	40259.40	0.07	40207.05	0.12	0	0.13
10	100	10	wea.	27622.95	<0.001	27608.3	0.001	27623.77	0.07	27608.3	0.05	0	0.06
10	100	10	str.	25438.62	<0.001	25432.45	0.001	25438.69	0.07	25432.45	0.02	0	0.02
10	100	10	s-s	24729.45	<0.001	24729.45	0.001	24729.45	0.06	24729.45	0	0	0
12	48	4	unc.	18948.89	<0.001	18886.05	<0.001	18957.97	0.06	18871.35	0.41	0.08	0.46
12	48	4	wea.	13094.05	<0.001	13068.6	<0.001	13095.99	0.06	13024.1	0.54	0.34	0.55
12	48	4	str.	11961.72	<0.001	11956.2	0.001	11961.86	0.06	11955.5	0.05	0.01	0.05
12	48	4	s-s	11620.20	<0.001	11620.2	0.001	11620.20	0.06	11619.8	0	0	0
15	45	3	unc.	17751.83	<0.001	17787.75	<0.001	17857.79	0.06	17575.65	1.00	1.21	1.61
15	45	3	wea.	12802.02	<0.001	12832.45	<0.001	12860.73	0.06	12552.4	1.99	2.23	2.46
15	45	3	str.	12123.22	<0.001	12116.5	0.001	12123.56	0.06	12089.85	0.28	0.22	0.28
15	45	3	s-s	11811.25	<0.001	11811.25	0.001	11811.50	0.06	11790	0.18	0.18	0.18
15	75	5	unc.	30128.45	<0.001	30075.45	0.001	30133.00	0.06	30075.45	0.18	0	0.19
15	75	5	wea.	20677.82	<0.001	20660.85	0.001	20678.78	0.07	20649.85	0.14	0.05	0.14
15	75	5	str.	18804.37	<0.001	18798.95	0.001	18804.47	0.06	18798.95	0.03	0	0.03
15	75	5	s-s	18271.40	<0.001	18271.4	0.001	18271.40	0.06	18271.4	0	0	0
30	60	2	unc.	22413.89	<0.001	24725.45	0.001	24797.32	0.06	19412	15.46	27.37	27.74
30	60	2	wea.	16205.79	<0.001	17153.65	0.001	17179.30	0.07	12158.95	33.28	41.08	41.29
30	60	2	str.	15779.16	<0.001	15780.85	0.001	15786.51	0.07	12515	26.08	26.10	26.14
30	60	2	s-s	15368.90	<0.001	15368.9	0.001	15369.40	0.06	12152.5	26.47	26.47	26.47
Av				19001.60	<0.001	19125.99	0.001	19149.86	0.07	18400.79	4.45	5.22	5.35

Table 4: Results on $F K_{1}$ instances.

m	n	n / m	Corr.	$z_{\text {seq }}$	$t_{\text {seq }}$	$z_{\text {surr }}$	$t_{\text {surr }}$	$z_{L P}$	$t_{L P}$	opt	gap $p_{\text {se }}$	$g a p_{s u}$	$g a p_{L P}$
20	120	6	unc.	48174.79	<0.001	48129.25	<0.001	48177.20	0.55	48129.25	0.09	0	0.10
20	120	6	wea.	32949.39	<0.001	32935.85	<0.001	32949.96	0.55	32935.85	0.04	0	
20	120	6	str.	30861.78	<0.001	30856.75	0.001	30861.87	0.42	30856.75	0.02	0	0.04
20	120	6	s-s	30014.25	<0.001	30014.25	0.001	30014.25	0.40	30014.25	0	0	0
20	200	10	unc.	80121.46	0.001	80095.65	<0.001	80122.77	0.39	80095.65	0.03	0	0.03
20	200	10	wea.	55415.80	0.001	55408.05	0.001	55416.14	0.37	55408.05	0.01	0	0.01
20	200	10	str.	51581.81	0.001	51577.65	0.001	51581.85	0.34	51577.65	0.01	0	0.01
20	200	10	s-s	50170.85	<0.001	50170.85	0.001	50170.85	0.34	50170.85	0	0	0
24	96	4	unc.	38643.99	<0.001	38593.05	0.001	38646.53	0.33	38590	0.14	0.01	0.15
24	96	4	wea.	26438.73	<0.001	26423.3	0.001	26439.44	0.33	26390.5	0.18	0.12	0.19
24	96	4	str.	24382.23	<0.001	24378	0.001	24382.33	0.32	24378	0.02	0	0.02
24	96	4	s-s	23701.70	<0.001	23701.7	0.001	23701.70	0.31	23701.7	0	0	0
30	90	3	unc.	36020.33	<0.001	36211.85	0.001	36260.69	0.31	35804.5	0.60	1.14	1.27
30	90	3	wea.	25017.34	<0.001	25115.25	<0.001	25132.18	0.31	24699.95	1.28	1.68	1.75
30	90	3	str.	23231.50	<0.001	23225.6	0.001	23231.64	0.30	23222	0.04	0.02	0.04
30	90	3	s-s	22596.10	<0.001	22596.1	0.001	22596.15	0.31	-	-	-	-
30	150	5	unc.	60157.34	0.001	60119.3	0.001	60158.92	0.30	60119.3	0.06	0	0.07
30	150	5	wea.	41743.95	0.001	41733.95	0.001	41744.33	0.30	41733.3	0.03	0	0.03
30	150	5	str.	38687.99	0.001	38683.65	0.001	38688.04	0.30	38683.65	0.01	0	0.01
30	150	5	s-s	37629.65	<0.001	37629.65	0.001	37629.65	0.29	37629.65	0	0	0
60	120	2	unc.	43708.45	<0.001	48671.45	0.001	48710.32	0.29	37433.85	16.76	30.02	30.12
60	120	2	wea.	31814.82	<0.001	33941.2	0.001	33955.99	0.29	23446.75	35.69	44.76	44.82
60	120	2	str.	31081.82	<0.001	31096.05	0.001	31101.54	0.30	23700.15	31.15	31.21	31.23
60	120	2	s-s	30256.55	<0.001	30256.55	0.001	30256.55	0.30	22970.65	31.72	31.72	31.72
Av				38100.11	<0.001	38398.5396	0.001	38413.79	0.34	37464.88	5.13	6.12	6.16

Table 5: Results on $F K_{2}$ instances.

m	n	n / m	Corr.	$z_{\text {seq }}$	$t_{\text {seq }}$	$z_{\text {surr }}$	$t_{\text {surr }}$	$z_{L P}$	$t_{L P}$	opt	gap se	gap su	gap ${ }_{L P}$
30	180	6	unc.	71941.09	0.001	71914.45	<0.001	71942.72	0.33	71914.45	0.04	0	0.04
30	180	6	wea.	49796.58	0.001	49786.4	<0.001	49796.85	0.33	-	-	-	-
30	180	6	str.	46498.21	0.001	46494	0.003	46498.32	0.33	46494	0.01	0	0.01
30	180	6	S-S	45228.55	<0.001	45228.55	0.003	45228.60	0.33	45228.55	0	0	0
30	300	10	unc.	120389.12	0.001	120370.45	0.003	120390.18	0.29	120370.45	0.02	0	0.02
30	300	10	wea.	82745.83	0.001	82740	0.002	82746.01	0.29	82740	0.01	0	0.01
30	300	10	str.	77481.90	0.001	77476.65	0.004	77481.93	0.29	77476.65	0.01	0	0.01
30	300	10	s-s	75366.75	0.001	75366.75	0.002	75366.75	0.29	75366.75	0	0	0
36	144	4	unc.	57575.14	0.001	57539.95	0.003	57577.51	0.33	57539.95	0.06	0	0.07
36	144	4	wea.	40025.04	0.001	40012.3	0.002	40025.50	0.33	-	-	-	-
36	144	4	str.	36915.62	0.001	36910.25	0.003	36915.68	0.33	36910.25	0.01	0	0.01
36	144	4	s-s	35898.25	<0.001	35898.25	0.003	35898.25	0.33	35898.25	0	0	0
45	135	3	unc.	54277.77	<0.001	54490.65	0.002	54533.76	0.32	54024.4	0.47	0.86	0.94
45	135	3	wea.	37481.28	0.001	37637.95	0.002	37650.88	0.32	37212.8	0.72	1.14	1.18
45	135	3	str.	34968.79	<0.001	34963.4	0.003	34968.86	0.32	-	-	-	-
45	135	3	s-s	34019.90	<0.001	34019.9	0.003	34019.90	0.32	-	-	-	-
45	225	5	unc.	90132.20	0.001	90107.55	0.003	90133.34	0.29	90107.55	0.03	0	0.03
45	225	5	wea.	62117.52	0.001	62110.35	0.003	62117.92	0.28	-	-	-	-
45	225	5	str.	58143.37	0.001	58138.5	0.004	58143.41	0.29	58138.5	0.01	0	0.01
45	225	5	s-s	56557.60	<0.001	56557.6	0.003	56557.60	0.29	56557.6	0	0	0
90	180	2	unc.	64184.24	0.001	72464.65	0.003	72498.32	0.41	55174.75	16.33	31.34	31.40
90	180	2	wea.	47594.69	0.001	50527.85	0.003	50539.64	0.41	34645	37.38	45.84	45.88
90	180	2	str.	47221.35	0.001	47295.2	0.003	47300.31	0.41	36306.3	30.06	30.27	30.28
90	180	2	S-S	45982.15	<0.001	46036.7	0.003	46036.70	0.41	35208.8	30.60	30.75	30.75
Av				57189.29	0.001	57670.3458	0.003	57682.04	0.33	58279.74	6.09	7.38	7.40

Table 6: Results on $F K_{3}$ instances.

m	n	n / m	Corr.	$z_{\text {seq }}$	$t_{\text {seq }}$	$z_{\text {surr }}$	$t_{\text {surr }}$	$z_{L P}$	$t_{L P}$	opt	gap ${ }_{\text {se }}$	$g a p_{s u}$	$g a p_{L P}$
50	300	6	unc.	120225.26	0.001	120208.50	<0.001	120226.33	0.80	120208.50	0.01	0	0.01
50	300	6	wea.	82739.73	0.001	82733.60	0.001	82739.92	0.82	-	-	-	-
50	300	6	str.	77626.97	0.001	77621.50	0.004	77627.01	0.80	77621.50	0.01	0	0.01
50	300	6	S-S	75513.00	0.000	75513.00	0.002	75513.00	0.61	75513.00	0	0	0
50	500	10	unc.	201363.40	0.002	201349.45	0.003	201364.22	0.64	201349.45	0.01	0	0.01
50	500	10	wea.	138576.70	0.002	138572.40	0.003	138576.79	0.66	138572.40	0	0	0
50	500	10	str.	129921.07	0.002	129915.00	0.006	129921.10	0.69	129915.00	0	0	0
50	500	10	s-S	126402.00	0.001	126402.00	0.002	126402.00	0.57	126402.00	0	0	0
60	240	4	unc.	95969.46	0.001	95946.15	0.003	95970.42	0.40	-	-	-	-
60	240	4	wea.	66057.19	0.001	66049.95	0.003	66057.52	0.39	-	-	-	-
60	240	4	str.	61995.19	0.001	61991.20	0.003	61995.23	0.40	-	-	-	-
60	240	4	s-s	60307.25	0.000	60307.25	0.003	60307.25	0.38	60307.25	0	0	0
75	225	3	unc.	89875.07	0.001	90309.05	0.004	90333.29	0.49	-	-	-	-
75	225	3	wea.	62468.21	0.001	62848.35	0.003	62855.22	0.49	-	-	-	-
75	225	3	str.	58349.92	0.001	58345.10	0.004	58349.95	0.49	-	-	-	-
75	225	3	s-s	56766.20	0.000	56766.20	0.003	56766.20	0.48	-	-	-	-
75	375	5	unc.	150371.81	0.001	150353.20	0.003	150373.02	1.12	-	-	-	-
75	375	5	wea.	104389.88	0.001	104384.15	0.003	104390.04	0.79	-	-	-	-
75	375	5	str.	97111.32	0.001	97105.70	0.005	97111.35	1.01	97105.70	0.01	0	0.01
75	375	5	s-s	94470.20	0.001	94470.20	0.003	94470.20	0.54	94470.20	0	0	0
150	300	2	unc.	105646.90	0.001	120378.55	0.002	120401.98	1.37	89253.45	18.37	34.87	34.90
150	300	2	wea.	77750.28	0.001	82871.45	0.004	82878.32	1.13	56429.45	37.78	46.86	46.87
150	300	2	str.	78215.07	0.001	78283.25	0.005	78288.99	1.26	57565.95	35.87	35.99	36.00
150	300	2	s-S	76161.25	0.001	76182.85	0.003	76182.85	0.60	55772.45	36.56	36.60	36.60
Av				95344.72	0.001	96204.50	0.003	96212.59	0.71	98606.16	9.19	11.02	11.03

Table 7: Results on $F K_{4}$ instances.

m	n	n / m	Corr.	$g_{s e-L P}$	$g_{s u-L P}$
30	90	3	unc.	0.67	0.13
45	135	3	unc.	0.47	0.08
75	225	3	unc.	0.51	0.03
30	90	3	wea.	0.46	0.07
45	135	3	wea.	0.45	0.03
75	225	3	wea.	0.62	0.01
30	90	3	str.	0	0.03
45	135	3	str.	0	0.02
75	225	3	str.	0	0.01
30	90	3	S-S	0	0
45	135	3	S-S	0	0
75	225	3	S-S	0	0
24	96	4	unc.	0.01	0.14
36	144	4	unc.	0	0.07
60	240	4	unc.	0	0.03
24	96	4	wea.	0	0.06
36	144	4	wea.	0	0.03
60	240	4	wea.	0	0.01
24	96	4	str.	0	0.02
36	144	4	str.	0	0.01
60	240	4	str.	0	0.01
24	96	4	S-S	0	0
36	144	4	S-S	0	0
60	240	4	S-S	0	0
30	150	5	unc.	0	0.07
45	225	5	unc.	0	0.03
75	375	5	unc.	0	0.01
30	150	5	wea.	0	0.02
45	225	5	wea.	0	0.01
75	375	5	wea.	0	0.01
30	150	5	str.	0	0.01
45	225	5	str.	0	0.01
75	375	5	str.	0	0.01
30	150	5	S-S	0	0
45	225	5	S-S	0	0
75	375	5	S-S	0	0

Table 8: Gap results for $F K_{2}-F K_{4}$ instances with ratios $n / m=3,4,5$.

m	n	n / m	R	Corr.	$z_{\text {seq }}$	$t_{\text {seq }}$	$z_{\text {surr }}$	$t_{\text {surr }}$	$z_{L P}$	$t_{L P}$	$g_{s e-L P}$	$g_{s u-L P}$
80	150	1.88	100	unc.	5285.17	< 0.001	6011.55	< 0.001	6014.50	0.56	13.80	0.05
80	150	1.88	100	wea.	4220.98	<0.001	4492.4	< 0.001	4493.52	0.57	6.46	0.02
80	150	1.88	100	str.	5097.86	< 0.001	5113.15	0.001	5118.76	0.55	0.41	0.11
80	150	1.88	1000	unc.	53472.20	0.001	61305.85	0.001	61336.80	0.52	14.71	0.05
80	150	1.88	1000	wea.	39046.66	0.001	41810.45	0.001	41821.65	0.41	7.11	0.03
80	150	1.88	1000	str.	39177.02	0.001	39269.65	0.001	39274.12	0.42	0.25	0.01
80	150	1.88	10000	unc.	540793.37	0.001	616671.25	0.001	616992.50	0.42	14.09	0.05
80	150	1.88	10000	wea.	393215.31	0.001	421058.15	0.001	421183.73	0.40	7.11	0.03
80	150	1.88	10000	str.	373428.06	0.001	374758.15	0.006	374764.16	0.38	0.36	0
160	300	1.88	100	unc.	10554.14	0.001	12015.2	0.001	12017.24	1.45	13.86	0.02
160	300	1.88	100	wea.	8454.72	0.001	8991.25	0.001	8991.63	1.29	6.35	0
160	300	1.88	100	str.	10250.96	0.001	10287.5	0.001	10292.20	0.47	0.40	0.05
160	300	1.88	1000	unc.	104327.69	0.001	121290.7	0.001	121314.58	1.35	16.28	0.02
160	300	1.88	1000	wea.	79150.28	0.001	84439.7	0.001	84446.18	1.21	6.69	0.01
160	300	1.88	1000	str.	78727.26	0.001	78812.35	0.002	78817.35	1.34	0.11	0.01
160	300	1.88	10000	unc.	1058583.33	0.001	1218847.9	0.001	1219050.39	1.32	15.16	0.02
160	300	1.88	10000	wea.	774145.57	0.001	828211.75	0.001	828277.84	1.25	6.99	0.01
160	300	1.88	10000	str.	762157.28	0.001	762215.8	0.010	762220.62	1.34	0.01	0
350	600	1.71	100	unc	20205.29	0.002	23895.3	0.001	23896.22	2.44	18.27	0
350	600	1.71	100	wea.	16684.80	0.002	17988.7	0.001	17988.96	1.04	7.82	0
350	600	1.71	100	str.	20340.81	0.001	20546.45	0.001	20551.09	0.95	1.03	0.02
350	600	1.71	1000	unc.	204882.70	0.002	243150.35	0.001	243163.82	3.02	18.68	0.01
350	600	1.71	1000	wea.	153559.08	0.002	166036.75	0.001	166040.90	2.37	8.13	0
350	600	1.71	1000	str.	153823.12	0.002	155697.55	0.004	155703.05	2.73	1.22	0
350	600	1.71	10000	unc.	2078107.61	0.002	2431168.2	0.001	2431307.17	3.10	17.00	0.01
350	600	1.71	10000	wea.	1549021.57	0.002	1671662.7	0.001	1671701.79	2.75	7.92	0
350	600	1.71	10000	str.	1492937.22	0.002	1498734.55	0.024	1498739.88	3.39	0.39	0
700	1200	1.71	100	unc.	39952.73	0.004	47787.55	0.002	47788.20	5.94	19.61	0
700	1200	1.71	100	wea.	33465.43	0.004	36088.2	0.002	36088.41	3.43	7.84	0
700	1200	1.71	100	str.	40638.11	0.002	41058.55	0.002	41062.78	3.28	1.05	0.01
700	1200	1.71	1000	unc.	412982.36	0.004	486229	0.001	486237.68	15.39	17.74	0
700	1200	1.71	1000	wea.	310003.60	0.005	332949.4	0.001	332951.46	8.44	7.40	0
700	1200	1.71	1000	str.	309706.65	0.004	311753.75	0.007	311758.68	4.89	0.66	0
700	1200	1.71	10000	unc.	4121581.48	0.005	4868058.4	< 0.001	4868134.03	11.72	18.11	0
700	1200	1.71	10000	wea.	3082395.30	0.005	3306136	0.001	3306159.16	12.58	7.26	0
700	1200	1.71	10000	str.	2998861.93	0.004	3002797.35	0.044	3002802.23	13.68	0.13	0
1400	2500	1.79	100	unc.	86986.84	0.008	99836.7	<0.001	99837.26	28.54	14.77	0
1400	2500	1.79	100	wea.	70725.36	0.008	75211.85	< 0.001	75211.85	27.75	6.34	0
1400	2500	1.79	100	str.	85257.79	0.004	85643.85	0.003	85648.42	30.96	0.46	0.01
1400	2500	1.79	1000	unc.	873657.01	0.010	1017653.7	0.001	1017658.21	97.50	16.48	0
1400	2500	1.79	1000	wea.	649399.51	0.010	696410.4	0.001	696411.44	47.01	7.24	0
1400	2500	1.79	1000	str.	644382.36	0.007	644953.6	0.012	644958.14	22.67	0.09	0
1400	2500	1.79	10000	unc.	8678526.05	0.010	10144737.8	< 0.001	10144780.06	78.01	16.90	0
1400	2500	1.79	10000	wea.	6424109.63	0.010	6892621.15	0.002	6892633.80	130.81	7.29	0
1400	2500	1.79	10000	str.	6264418.04	0.009	6265005.15	0.090	6265009.82	105.11	0.01	0
Av					1003482.23	0.003	1095098.13	0.005	1095125.61	15.22	8.00	0.01

Table 9: Results on instances of Set $_{6}$ first part.

m	n	n / m	R	Corr.	$z_{\text {seq }}$	$t_{\text {seq }}$	$z_{\text {surr }}$	$t_{\text {surr }}$
2800	5000	1.79	100	unc.	174131.97	0.014	199976.5	<0.001
2800	5000	1.79	100	wea.	141397.62	0.012	150448.6	<0.001
2800	5000	1.79	100	str.	170593.25	0.008	171362.45	0.004
2800	5000	1.79	1000	unc.	1733779.56	0.019	2026512.55	0.001
2800	5000	1.79	1000	wea.	1295325.84	0.019	1389545.5	0.001
2800	5000	1.79	1000	str.	1295059.09	0.012	1296189.75	0.026
2800	5000	1.79	10000	unc.	17322644.64	0.023	20273817.3	0.001
2800	5000	1.79	10000	wea.	12852362.34	0.023	13799455.7	0.002
2800	5000	1.79	10000	str.	12524179.73	0.020	12525355.05	0.210
5600	10000	1.79	100	unc.	349151.19	0.030	400784.55	0.001
5600	10000	1.79	100	wea.	283165.76	0.024	301331.85	0.001
5600	10000	1.79	100	str.	341534.04	0.015	342973.9	0.008
5600	10000	1.79	1000	unc.	3469091.22	0.041	4054885.65	0.001
5600	10000	1.79	1000	wea.	2600634.72	0.040	2788691.8	0.001
5600	10000	1.79	1000	str.	2589502.98	0.024	2591776.15	0.051
5600	10000	1.79	10000	unc.	34714138.04	0.050	40650097.05	0.001
5600	10000	1.79	10000	wea.	25707763.86	0.051	27594278.75	0.002
5600	10000	1.79	10000	str.	25066973.99	0.038	25069333.35	0.298
13000	20000	1.54	100	unc.	669426.91	0.055	802070.55	0.001
13000	20000	1.54	100	wea.	561260.53	0.043	602619.65	0.001
13000	20000	1.54	100	str.	678745.71	0.031	686666.7	0.017
13000	20000	1.54	1000	unc.	6541607.46	0.086	8114919.4	0.002
13000	20000	1.54	1000	wea.	4999547.44	0.085	5567798.15	0.002
13000	20000	1.54	1000	str.	5021434.80	0.045	5191444.65	0.100
13000	20000	1.54	10000	unc.	65419254.77	0.104	81302573.65	0.002
13000	20000	1.54	10000	wea.	49493710.84	0.108	55209028.55	0.002
13000	20000	1.54	10000	str.	48547914.48	0.071	50198100.65	0.980
30000	45000	1.50	100	unc.	1488357.61	0.116	1804547	0.002
30000	45000	1.50	100	wea.	1253916.51	0.092	1355354.6	0.001
30000	45000	1.50	100	str.	1525743.16	0.071	1544526.25	0.029
30000	45000	1.50	1000	unc.	14193039.47	0.220	18258034.65	0.002
30000	45000	1.50	1000	wea.	10746949.94	0.203	12527337.45	0.002
30000	45000	1.50	1000	str.	10738679.17	0.105	11672608	0.294
30000	45000	1.50	10000	unc.	144512754.32	0.261	182724949.3	0.003
30000	45000	1.50	10000	wea.	108538518.40	0.266	124095787.9	0.003
30000	45000	1.50	10000	str.	105180360.39	0.155	112885427.5	3.551
Av					20076184.77	0.07	23060294.75	0.16

Table 10: Results on instances of $S e t_{6}$ second part.

w	33	35	37	47	64	30	35	36	39	39	40	41	33	35	37	47	64	33	35	37	47
	64	30	35	36	39	39	40	41	33	35	37	47	64	47	64						
p	99	70	74	47	64	50	50	39	39	39	38	37	99	70	74	47	64	99	70	74	47
	64	50	50	39	39	39	38	37	99	70	74	47	64	100	50						
c	47	64	40	64	47	64	40	64	47	64	40	64	40	64	40	64	40	64	47	64	40
	39	39	37	39	39	37	39	39	37												

Table 11: The MKP instance Inst1.

Instance	PLI (1)-(4)		PLI (1)-(4)+(9)	
	\# BB nodes	time (sec.)	\# BB nodes	time (sec.)
Inst1	511	1.48	9	1.53
Inst2	1082	4.64	39	3.25
Inst3	1784.0	26.98	31	10.61

Table 12: Gurobi results.
following valid cut

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} p_{j} x_{i j} \leq\left\lfloor z_{s e q}\right\rfloor \tag{12}
\end{equation*}
$$

where $z_{\text {seq }}$ is the sequential bound obtained by Algorithm 1 .
In Table 12, the branch and bound nodes and the computational times required by Gurobi for solving the three instances both by the formulation (11)-(4) and by the modified formulation (11)-(4) + (12) are reported. Note that, the addition of Constraint (12) allows a faster solution of Inst2 and Inst3, requiring in all the cases a smaller number of branch and bound nodes.

6 Conclusions

In this paper, a new technique for computing upper bounds for MKP is proposed, based on the idea of relaxing MKP to a Bounded Sequential Multiple Knapsack Problem. The sequential upper bound turns out to be not worse than the linear relaxation of the standard formulation. Computational results on benchmark instances from the literature shows that the sequential upper bound can be computed by small a computational effort, and outperforms the bound produced by the surrogate relaxation when the ratio n / m is smaller than or equal to 3 and weights and profits are uncorrelated or weakly correlated. On the other hand, for bigger n / m ratios or strongly correlated instances, the surrogate bound is better than the sequential bound. Future research includes: (i) the designing of exact solution schemes for MKP embedding the sequential relaxation; (ii) investigating whether the sequential relaxation can be applied to other optimization problems.

References

[1] Balbal, S. Local Search Heuristic for Multiple Knapsack Problem. International Journal of Intelligent Information Systems. 4, 35, 2015
[2] Detti, P. A polynomial algorithm for the multiple knapsack problem with divisible item sizes, Information Processing Letters, 109 (11), 582-584, 2009.
[3] Detti, P. On the Sequential Multiknapsack polytope, arXiv 1406.3131, 2014.
[4] Chekuri, C., and Khanna, S. A PTAS for the multiple knapsack problem. In Proceedings of the 11th annual ACM-SIAM symposium on discrete algorithms, 213-222, 2000.
[5] Dell'Amico, M., Delorme, M., Iori, M., Martello, S. Mathematical models and decomposition methods for the multiple knapsack problem, European Journal of Operational Research, 274 (3), 886-899, 2019
[6] Fukunaga, A. A branch-and-bound algorithm for hard multiple knapsack problems. Annals of Operations Research, 184(1), 97-119, 2011.
[7] Fukunaga, A., Korf, R. Bin-completion algorithms for multicontainer packing, knapsack, and covering problems. Journal of Artificial Intelligence Research, 28, 393-429, 2007.
[8] Hartmann, M., Olmstead, T., Solving sequential knapsack problems, Operations Research Letters, Vol. 13, 4 (1993) 225-232.
[9] Kataoka, S., Yamada, T., Upper and lower bounding procedures for the multiple knapsack assignment problem, European Journal of Operational Research, 237, 2,440447, 2014
[10] Kellerer, H., Pisinger, D., and Pferschy, U. Knapsack problems. Berlin: Springer, 2004.
[11] Jansen, K. Parameterized Approximation Scheme for the Multiple Knapsack Problem, Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 665674, 2009.
[12] Lalami M.E., Elkihel M., Baz D.E., Boyer V. A procedure-based heuristic for 0-1 multiple knapsack problems, Int J Math Oper Res, 4, 214-24, 2012.
[13] Marcotte, O., The cutting stock problem and integer rounding, Mathematical Programming, 33, 82-92, 1985.
[14] Martello, S. and Toth, P. A bound and bound algorithm for the zero-one multiple knapsack problem, Discrete Applied Mathematics, 3(4), 275-288, 1981.
[15] Martello, S. and Toth, P. Knapsack Problems: Algorithms and Computer Implementations. Chichester: John Wiley \& Sons, 1990.
[16] Pisinger, D. An exact algorithm for large multiple knapsack problems, European Journal of Operational Research, 114(3), 528-541, 1999.
[17] Pochet, Y., Weismantel, R. The sequential knapsack polytope, SIAM Journal on Optimization, 8, 248-264, 1998.
[18] Pochet Y., Wolsey, L. A. Integer knapsack and flow covers with divisible coefficients: polyhedra, optimization and separation, Discrete Applied Mathematics, 59, 57-74, 1995.
[19] Verhaegh W.F.J., Aarts, E.H.L. A polynomial-time algorithm for knapsack with divisible item sizes, Information Processing Letters, 62, 217-221, 1997.

[^0]: *Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università di Siena, Via Roma 56, 53100 Italy, e-mail: detti@dii.unisi.it, tel.: +39 0577-235892, fax: $+390577-233602$

