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Abstract

In this paper, a new upper bound for the Multiple Knapsack Problem (MKP)
is proposed, based on the idea of relaxing MKP to a Bounded Sequential Multiple

Knapsack Problem, i.e., a multiple knapsack problem in which item sizes are divisi-
ble. Such a relaxation, called sequential relaxation, is obtained by suitably replacing
the items of a MKP instance with items with divisible sizes. Experimental results on
benchmark instances show that the upper bound is effective when the ratio between
the number of items and the number of knapsacks is small.
Keywords: multiple knapsack problem, sequential relaxation, upper bound, divis-
ible sizes.

1 Introduction

Given a set of n items with weigths w1, . . . , wn and profits p1, . . . , pn, and a set of m
knapsacks with capacities c1, . . . , cm, the 0–1 Multiple Knapsack Problem (MKP) problem
consists in packing items into the knapsacks, in such way that the total weight of the items
assigned to a knapsack does not exceed its capacity. The objective is to maximize the
total profit of the assigned items. Let xij be equal to 1 if item j is assigned to knapsack
i, an ILP formulation for MKP reads as

max

m
∑

i=1

n
∑

j=1

pjxij (1)

n
∑

j=1

wjxij ≤ ci for i = 1, . . . , m (2)

m
∑

i=1

xij ≤ 1 for j = 1, . . . , n (3)

xij ∈ {0, 1} for i = 1, . . . , m j = 1, . . . , n (4)
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The objective function (1) accounts for the maximization of the total profit. Constraints
(2) limit the total weight of items assigned to each knapsack. Constraints (3) state that
an item can be assigned at most to one knapsack.

In this paper, a new upper bound for MKP is proposed, based on the idea of relaxing
the problem to a Bounded Sequential Multiple Knapsack Problem (BSMKP) [2], i.e., a
multiple knapsack problem in which item sizes are divisible. Such a relaxation, called
sequential relaxation in what follows, is obtained by suitably replacing the items of an
MKP instance with items with divisible sizes. In BSMKP, multiple copies may exist of
each item. Hence, items can be partitioned into classes, each class containing items with
the same profit and weight. BSMKP can be polynomially solved in O(n̄2 + n̄m) time
[2], where n̄ is the number of item classes (the complexity reduces to O(n̄ log n̄ + n̄m)
when a single copy of each item exists). We prove that the upper bound provided by
the sequential relaxation is always not worse than the linear relaxation of model (1) –
(4). Computational results on benchmark instances from the literature show that, in
comparison with a classical upper bound for MKP [14, 16], the sequential upper bound
is particularly effective when the ratio n/m is small, i.e., n/m ≤ 3.

The paper is organized as follows. Section 2 reports results from the literature. In
Section 3, the sequential relaxation is formally defined and described. In Section 4, a
procedure for generating a series of different sequential relaxations is proposed. In Section
5, computational experiments on benchmark instances are presented. Finally, conclusions
follow.

2 Literature results

MKP is a strongly NP-hard problem intensively studied in the literature. For reviews on
MKP and its variants, we refer the reader to the books by Martello and Toth [15] and
Kellerer et al. [10]. Effective exact algorithms for MKP include the bound and bound
method proposed in [14], called MTM, turned out to be computationally much faster than
the previous approaches proposed in the literature. Pisinger in [16] derived from MTM a
more efficient exact procedure, called MULKNAP, capable of solving to optimality large-
size instances with up to 100,000 items and 5 or 10 knapsacks. However, none of the
algorithms were able to solve instances with small values of n/m. MTM and MULKNAP
employ upper bound computations obtained through the surrogate relaxation [14] of the
capacity constraints.

Recent contributions to MKP have been presented by Chekuri and Khanna [4], Fuku-
naga and Korf [7], Fukunaga [6], Jansen [11], Lalami et al. [12], and Balbal et al. [1].
In [7], a branch-and-bound algorithm is proposed, based on a bin-oriented branching
structure and a dominance criterion. The algorithm turned out to be effective for rela-
tively small n/m ratios (i.e., n/m ∼ 4). More recently, Fukunaga [6] proposes a solution
approach for MKP, (extending the one proposed in [7], based on the integration of path-
symmetry and path-dominance criteria and bound-and-bound techniques [14, 16]. The
solver appears to be effective on instances with high n/m ratios. Dell’Amico et al. [5]
propose two new pseudo-polynomial formulations, and an exact effective method based on
the hybrid combination of several techniques, called Hy-MKP. On benchmark instances,
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Hy-MKP attains very good performances, failing on some instances with n/m = 3 and
on few instances with ratios 4 and 5.

As the computational experiments show, the sequential relaxation proposed in this
paper, based on solving a BSMKP problem, turns out to be effective when n/m is small,
i.e., n/m ≤ 3.

BSMKP has been addressed in the literature in [2, 3]. The single knapsack version
of BSMKP is known in the literature as sequential knapsack problem (SKP). For the
unbounded SKP (i.e., the problem in which an infinite number of copies exists for each
item), Marcotte proposes a linear time algorithm [13], and Pochet and Wolsey [18] provide
an explicit polytope description. For the bounded SKP, Verhaegh and Aarts present an

O(n2 log n) algorithm [19], Hartmann and Olmstead [8] propose an O(n logn+
n
∑

j=1

log bj)

algorithm, where bj is the number of copies of item j, and Pochet and Weismantel [17]
provide a polytope description.
In [2], Detti proposed a polynomial O(n2 + nm) algorithm for BSMKP. The complexity
of the algorithm reduces to O(n logn + nm) when a single copy exists for each item.
Hence, for SKP, the algorithm presented in [2] requires O(n2) steps for the bounded case
and O(n logn) steps, when a single copy exists of each item (the same complexity of the
algorithm proposed in [8]). A complete description of the BSMKP polytope is presented
in [3].

3 The Sequential relaxation

The new proposed upper bound is based on relaxing MKP to a Bounded Sequential
Multiple Knapsack Problem. BSMKP can be formally stated as follows. There are a set
of items partitioned into n̄ different classes and a set of m̄ knapsacks. Each item of class
t has a size st ∈ Z+, a profit vt ∈ Z+ and an upper bound bt ∈ Z+, for t = 1, . . . , n̄. Item
sizes are divisible, i.e., st+1 is divisible by st, for t = 1, . . . , n̄− 1. Each knapsack i has a
capacity c̄i ∈ Z+. The problem is to find the number yit of items of class t, to be assigned
to each knapsack i, in such a way that the total profit is maximized. A formulation of
BSMKP reads as follows:

max

m̄
∑

i=1

n̄
∑

t=1

vtyit (5)

n̄
∑

t=1

styit ≤ c̄i for i = 1, . . . , m (6)

m̄
∑

i=1

yit ≤ bt for t = 1, . . . , n̄ (7)

yi,t ∈ Z+ (8)

The objective function (5) accounts for the maximization of the total profit. Constraints
(6) state that the total size of items assigned to a knapsack does not exceed its capacity.
Constraints (7) impose that the total number of the assigned items of class t does not
exceed the upper bound.
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Given an instance of MKP, we call sequential relaxation the transformation of the
MKP instance into an instance of BSMKP. The sequential relaxation is formally defined
in the following.

Definition 1 The sequential relaxation of an instance I of MKP is an instance Is of

BSMKP obtained by replacing each item j in I with a set of items Sj = {j1, . . . , jKj
} with

positive sizes sj1 ≤ sj2 ≤ . . . ≤ sjKj
and profits vj1, vj2 . . . vjKj

, respectively, such that:

∑

k∈Sj

sjk = wj for k = 1, . . . , Kj (9)

vjk =
pj
wj

sjk for j = 1, . . . , n, k = 1, . . . , Kj (10)

the sizes sjk are divisible, for j = 1, . . . , n, k = 1, . . . , Kj − 1. (11)

All items in Is with the same size and profit belong to the same class. The knapsacks in

Is are the same of I, i.e., m̄ = m and c̄i = ci, for i = 1, . . . , m.

Note that, Conditions (9) and (10) imply that

∑

k∈Sj

vjk = pj for k = 1, . . . , Kj.

As shown in [2], Is can be optimally solved in O(n̄2+ n̄m) time. Many different sequential
relaxations may exist, depending on the set of divisible sizes sjk , for j = 1, . . . , n and
k = 1, . . . , Kj, used for generating Is. In fact, if weights wj and capacities ci are integers,
the sequential relaxation is equivalent to the linear relaxation of model model (1)–(4)
when sjk = 1, for j = 1, . . . , n and k = 1, . . . , Kj is set (i.e., each item in I is split into
smaller items of size 1).

As an example, let I be a MKP instance with two knapsacks of capacities c1 = 47 and
c2 = 64, and five items, with weights and profits reported in Columns 2–3 of Table 1.

Let Is be an instance of BSMKP produced by partitioning each item of I into items of
divisible sizes s1 = 1, s2 = 3 and s3 = 33. Hence, since w1 = s3, item 1 is not partitioned
and is included in Is. Item 2 can be partitioned into two items of size 1 and profit 2, and
one item of size 33 and profit 66. From item 3 the following items are generated: one
item of size 1 and profit 2, one item of size 3 and profit 6, and one item of size 33 and
profit 66. Item 4 is partitioned into two items of size 1 and profit 1, four items of size
3 and profit 3, and one item of size 33 and profit 33. Finally, item 5 can be partitioned
into one item of size 1 and profit 1, ten items of size 3 and profit 3, and one item of size
33 and profit 33. Columns 4–9 of Table 1 report all the items of Is. More precisely, for
each item of MKP, Columns 4, 6 and 8 respectively report the number of items of size s1,
s2 and s3 generated in Is, denoted as #s1, #s2 and #s3. Columns 5, 7 and 9 show the
profits, v1, v2 and v3, of the generated items of size s1, s2 and s3, respectively. Note that,
#sj = bj for j = 1, 2, 3.

Let zMKP and zseq be the optimal solution values of a MKP instance and of any
sequential relaxation, respectively. The following lemma holds.
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j wj pj #s1 v1 #s2 v2 #s3 v3
1 33 99 - - - - 1 99
2 35 70 2 2 - - 1 66
3 37 74 1 2 1 6 1 66
4 47 47 2 1 4 3 1 33
5 64 64 1 1 10 3 1 33

Table 1: Instances I of MKP and Is of BSMKP.

Lemma 2 Given an instance I of MKP, the optimal solution value zseq of any sequential

relaxation Is is an upper bound to the optimal solution value zMKP of I, i.e.,

zMKP ≤ zseq.

Proof. Given a feasible solution, x, for I, let y be a solution for Is obtained by x replacing
each item j in I with items in Sj . By Equation (9), y is feasible for Is, and by Equation
(10), x and y have the same objective function value. This holds even if x is optimal and
the thesis follows. �

Let zLPMKP be the optimal solution of the linear relaxation of the model (1)–(4) for
an instance I of MKP. Then, Lemma 3 holds.

Lemma 3 Given an instance I of MKP, the upper bound zseq derived from instance Is
obtained by any sequential relaxation of I is not bigger than the upper bound zLPMKP

obtained by the linear relaxation of model (1)–(4), i.e.,

zLPMKP ≥ zseq.

Proof. The Lemma is proved by showing that any feasible solution of Is is also feasible
for the linear relaxation of model (1)–(4). Given a feasible solution, y, for Is, let qitj be
the number of items of class t (i.e., of size st and profit vt) belonging to Sj and assigned

to knapsack i in y. Then, we have yit =
n
∑

j=1

qitj . Note that, by (9) and by the definition

of qitj , we have
m
∑

i=1

n̄
∑

t=1

stqitj ≤ wj . Let x be the solution of the linear relaxation of model

(1)–(4) in which xij =
n̄
∑

t=1

stqitj/wj is set, for j = 1, . . . , n and i = 1, . . . , m. Then,

m
∑

i=1

xij =
m
∑

i=1

n̄
∑

t=1

stqitj/wj ≤ 1 (i.e., x satisfies Constraints (3)). Furthermore, by (6) we

have
n

∑

j=1

wjxij =
n

∑

j=1

wj

n̄
∑

t=1

stqitj/wj =
n̄

∑

t=1

styit ≤ c̄i = ci,

i.e., x satisfies Constraints (2). Hence, x is a feasible solution for the linear relaxation of
model (1)–(4). By formulas (1) and (5) and by conditions (10), the objective functions
(1) and (5) (computed in x and in y, respectively) have the same objective function value.
This holds even if x is optimal and the thesis follows. �

Hence, the sequential relaxation provides an upper bound that is not worse than the
one provided by the linear relaxation of model (1)–(4).
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The exact algorithms MTM and MULKNAP [14, 16] employ upper bounds computed
by the surrogate relaxation of the capacity Constraints (2), obtained by replacing them

by the single knapsack constraint
m
∑

i=1

n
∑

j=1

πiwjxij ≤ ci, where π1, . . . , πm are non-negative

multipliers. Martello and Toth [14] proved that for any instance of MKP, the optimal
choice of multipliers is πi = k for all i, where k is a positive constant. Hence, the
surrogate relaxation can be found by solving an ordinary 0–1 Knapsack Problem. In the
following, we denote the upper bound obtained by the surrogate relaxation as zsurr.

As also shown by the computational analysis in Section 5, it is not possible to estab-
lish a theoretical relationship between the bounds provide by sequential and surrogate
relaxations.

In the following, as an example, we derive upper bounds from the sequential, surrogate
and linear relaxations for the MKP instance reported in Table 1. As shown below, we have
that zseq is smaller than zLPMKP and zsurr. In Pisinger [16], a procedure is used to tighten
the capacity constraints of a MKP instance I. In practice, m Subset-sum problems are
solved, one for each knapsack, for detecting the maximum knapsack capacities that can be
filled by the items in I. Then, knapsack capacities are reduced to such maximum values.
Note that, for the MKP instance of Table 1 capacity constraints can not be tightened
by this approach. The optimal solution of the instance consists in assigning items 1 and
3. Hence, zMKP = 173. The surrogate bound is found by solving a single knapsack
problem with knapsack capacity c1+ c2 = 111. It is easy to see that zsurr = 243, obtained
by assigning items 1, 2 and 3 with a total weight of 105. The optimal solution of the
sequential relaxation (reported in Columns 4–11 of Table 1), is obtained by assigning the
new items as follows. Items assigned to Knapsack 1: the item of size 33 and profit 99,
the item of size 3 and profit 6, three items of size 1 and profit 2, two items of size 3 and
profit 4, two items of size 1 and profit 1. Items assigned to Knapsack 2: 1 item of size
33 and profit 66, ten items of size 3 and profit 3, 1 item of size 1 and profit 1. Hence,
zseq = 119+97 = 216. Finally, the optimal solution value of the linear relaxation of model
(1)–(4) is zLPMKP = 249.

4 Generating and solving sequential relaxations

In this section, we address the problem of generating different sequential relaxations from
a MKP instance I, in order to get small zseq values. In fact, many possible sequential
relaxations may exist, depending on the divisible sizes st used to generate items in Is. In
what follows, we denote sequential sequence the set S containing the divisible sizes of the
items of Is. The procedure described below can be used for finding a series of different
sequential sequences.

Let j be an item in I, let Q be an integer smaller than wj , and let q ≥ 2 be the biggest
integer smaller than or equal to Q such that (wj mod q) is minimum. In Is, we denote
as reference size the value s̄ = wj − (wj mod q). In other words, q is the biggest integer
not bigger than Q such that s̄ is “closest” to wj.

Note that, s̄ and q are divisible. At the beginning, S = {1, s̄} is set. Then, the
procedure sequentially scans the numbers in the ordered set T = {s̄− q, s̄− 2q, . . . , q, q−

6



1, q − 2, . . . , 2}: Whenever an element of the set T is detected that divides all values
in S, it is included in S (and the search continues considering the next elements of T ).
The procedure ends either when S contains lmax elements or when all elements of T are
scanned.

Note that, the above procedure is not polynomial in the input size of the instance I,
since it depends on the weight wj and Q. However, it can be made faster by suitably
choosing small values for Q and lmax.

Let S = {1, s1, s2, . . . , s̄ = sn̄} be the sequential sequence obtained so far, with 1 ≤
s1 ≤ s2 ≤ . . . sn̄. The items in Is are generated as follows. Firstly the biggest size sn̄ in S
is considered, and, for each item j of I, ⌊wj/sn̄⌋ items are generated with profit (pj/wj)sn̄
and size sn̄ and included in Is. Then, wj = wj − ⌊wj/sn̄⌋sn̄ is set for all items j of I, and
the above argument is applied by considering the second biggest size sn̄−1. And so on,
until the last size 1 is considered. Hence, the instance Is generated so far will contain at
most n× n̄ item classes.

The overall procedure can be executed more than one time, by selecting at the begin-
ning a different item j in I (possibly leading to new q and s̄ values). In this way, we get
different instances Is, each of them solvable in O(n̄2 + n̄m) by the algorithm proposed in
[2]. At the end, the smallest zseq value is returned. The overall algorithm is reported in
Figure 1. In the algorithm, Qmax is an input parameter used to limit Q.

As an example, let us consider the MKP instance of Columns 1–3 of Table 1 and
let Qmax = 10 and lmax = 5. Let us suppose that the item j = 5 is selected. Then,
Q = min{Qmax, w5} = min{10, 64} = 10 and q = 8. Hence, s̄ = w5 − (w5 mod q) =
64, and S = {1, 64} is initially set. Then, the algorithm scans the ordered sequence
T = {s̄ − q = 56, s̄ − 2q = 48, s̄ − 3q = 40, . . . , q = 8, 7, 6, . . . , 2} and includes in S
all numbers dividing all the elements of the current set S (until |S| ≤ lmax). Hence,
the sequential sequence S = {s̄ = sn̄, . . . , s1} = {64, 32, 16, 8, 1} is get. By solving the
BSMKP instance generated from S we get zseq = 249, equal to the optimal solution of
the linear relaxation of model (1)–(4). On the the other hand, let us suppose that the
algorithm selects item j = 1. Then, Q = min{Qmax, w1} = min{10, 33} = 10 and q = 3.
Hence, s̄ = 33, and S = {1, 33} is set. Then, the algorithm scans the ordered sequence
T = {s̄−q = 30, s̄−2q = 27, s̄−3q = 24, . . . , 6, q = 3, 2}, and produces the final sequential
sequence S = {33, 3, 1}. From S, we get the BSMKP instance of Table 1 with optimal
solution value zseq = 216.

5 Computational results

In this section, computational results are presented on different sets of benchmark in-
stances, in order to compare the sequential and the surrogate relaxations, and the linear
relaxation of model (1)–(4). More precisely, six sets of instances have been used: the first
five sets are from the literature, while the sixth set contains new instances with n/m ratios
smaller than 2. All the instances were obtained through Pisinger’s instance generator. In
all the instances, knapsack capacities have been tightened as proposed in [16] (by solving
a series of Subset-sum Problems), and the surrogate upper bound is computed by the C
code developed by Pisinger [16]. The instance generator and the code to solve the sur-
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Algorithm 1 Algorithm for generating and solving sequential relaxations of MKP.

Algorithm Sequential Relaxations

Input: An instance I of MKP, an integer Qmax, a maximum number of elements lmax, a maximum iteration number Itmax ≤ n;
Output: The best upper bound zseq ;
h = 0; mark all items in I as not visited.
while (h ≤ Itmax)
begin

Select a not already visited item j in I, and set Q = min{Qmax, wj}.
Let q ≤ Q be the biggest integer such that (wj mod q) is minimum. Set s̄ = wj − (wj mod q), S = {s̄, 1}.
Sequentially scan the ordered set T = {s̄− q, s̄− 2q, . . . , q, q − 1, q − 2, . . . , 2} and include in S
all numbers of T dividing all elements in S until |S| ≤ lmax.
while (S 6= ∅)
begin

Let sn̄ be the biggest element in S.
For all items l in I, generate ⌊wl/sn̄⌋ items with profit (pl/wl)sn̄ and size sn̄.
Set S = S \ {sn̄}.

end

h = h+ 1; mark j as visited.
Get zseq by solving Is by the algorithm proposed in [2].

end

Return the smallest zseq obtained so far.

rogate relaxation are available at http : //hjemmesider.diku.dk/ ∼pisinger/codes.html.
The Algorithm 1 for computing the sequential upper bound has been also coded in C. In
the algorithm, parameters have been set as follows: Qmax = 10, lmax = 5 and Itmax = 10.

All the experiments have been performed on a machine equipped with Intel i7, 2.5
GHz Quad-core processor and 16 Gb of RAM. Gurobi solver has been used to compute
the linear relaxations of the Integer Linear Programming formulation (1)–(4).

The first five sets of instances contain instances generated in Dell’amico et al. [5], and
firstly proposed by Kataoka and Yamada [9] and Fukunaga [6], denoted as SMALL, Fk1,
Fk2, Fk3 and Fk4 (available at http : //or.dei.unibo.it/library). The sixth set, denoted
as Set6, contains large randomly generated instances with n/m < 2 and is available at
https : //www3.diism.unisi.it/ ∼ detti/SequentialBound.html. As in Pisinger [16], four
classes of correlation are considered: uncorrelated, weakly correlated, strongly correlated,
subset-sum. In the following, the instances are described into detail.

SMALL is a set of 180 instances proposed by Kataoka and Yamada [9] for a variant
of the MKP with assignment restrictions, and adapted to MKP by Dell’Amico et al. [5]
by simply disregarding the additional constraints. This set contains uncorrelated, weakly
correlated and strongly correlated instances with m ∈ {10, 20} and n ∈ {20, 40, 60}, for
a total of 18 settings (10 instances exist for each setting). Weights wj are uniformly
distributed in [1, 1000] in all the SMALL instances. In uncorrelated instances, profits pj
are uniformly distributed in [1, 1000]. In weakly correlated instances, profits are set as
pj = 0.6wj + θj , with θj uniformly random in [1, 400]. In strongly correlated instances,
pj = wj +200 is set. The knapsack capacities were generated as ci = ⌊σλi

∑n
j=1wj⌋, with

λ uniformly distributed in [0, 1] such that
∑m

i=1 λi = 1, and σ ∈ {0.25, 0.5, 0.75}. The
values of n and m and the correlation classes of the instances in this set are reported in
the second row of Table 2.

The other set of instances, i.e., Fk1–Fk4 and Set6, have been generated as in [16].
In Set6, data are generated according to different ranges R = 100, 1000, 10000, while
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R = 1000 has been used in all the instances of Sets Fk1–Fk4. In uncorrelated instances:
pj and wj are randomly distributed in [10, R]. In weakly correlated instances, wj is
randomly distributed in [10, R] and pj is randomly distributed in [wj −R/10, wj +R/10]
such that pj ≥ 1. In strongly correlated instances, wj is randomly distributed in [10, R]
and pj is set to wj + 10. In subset-sum instances, wj is randomly distributed in [10, R]
and pj equals wj . The first m − 1 knapsack capacities ci are randomly distributed in
[

0.4
n
∑

j=1

wj/m, 0.6
n
∑

j=1

wj/m

]

and cm = 0.5
n
∑

j=1

wj −
m−1
∑

i=1

ci.

The sets Fk1, Fk2, Fk3 and Fk4 contain 480 instances each. They have been generated
in [5] and reproduce those used in [6]. The values of n and m and the correlation classes
of the instances in sets Fk1–Fk4 are reported in Rows 3–5 of Table 2. Twenty instances
exist for each setting. Set6 contains 1620 large instances (n/m ranges from 150/80 to
45000/30000), weights and profits are generated for all values of R = 100, 1000, 10000 as
in [16]. The values of n and m and the correlation classes of the instances in set Set6 are
reported in Rows 6–7 of Table 2. (For each setting, 20 instances exist).

Tables 3–10 report the computational results on the six sets. In the tables, zseq,
zsurr and zLP are the average values of the sequential, surrogate and linear relaxations,
respectively, and tseq, tsurr and tLP are the related average computational times. Tables
3–7 report the results for the sets SMALL and Fk1–Fk4, respectively. In Tables 3–7,
“opt” is the optimal average solution values on each setting, kindly provided by the
authors of [5]. A “-” in this column means that the optimum is not known for at least
one instance of the setting. In Columns 12–14 of the tables, gapse, gapsu and gapLP are
the percentage optimal gaps of sequential, surrogate and linear relaxations computed as
(zseq − opt)/opt× 100, (zsurr − opt)/opt× 100 and (zLP − opt)/opt× 100, respectively.

Table 3 reports the results on the SMALL set. The results in each row of the table are
average values on 10 instances. The last row of the table reports the average results over
all the instances. Observe that, in general, all gaps are big for instances with small ratios
n/m and decrease as the ratios increase. In fact, when n/m = 1, we have gapse, gapsu
and gapLP equal to about 45%, 74% and 87% on average, respectively, with the sequential
bound attaining the best performance (especially on uncorrelated and weakly instances).
On instances with n/m = 2, the sequential and surrogate relaxations produce the best
results, with gapse = 5.48, gapsu = 5.63 and gapLP = 7.66 on average. In instances with
bigger ratios (i.e., n/m = 3, 4, 6), gapsu is always smaller than gapse (and obviously than
gapLP ). In fact, we have gapsu = 0.15, gapse = 0.59 and gapse = 0.65 on average.

The computational results on FK1–FK4 instances are shown in Tables 4–7, respec-
tively, where each row report average values on the 20 instances of each setting (with the
same n, m and correlation class). The trends on these instances are similar to those high-
lighted on SMALL instances. In fact, the biggest optimality gaps are attained on instances
with the smallest ratio n/m = 2. On these instances, gapse is definitely smaller than gapsu
and gapLP on uncorrelated and weakly correlated instances, and slightly smaller or equal
on strongly correlated instances. When n/m = 3, zseq is smaller than zsurr on uncorrelated
and weakly correlated instances, while zsurr is smaller on strongly correlated instances.
On instances with biggest ratios, zsurr is generally smaller for uncorrelated, weakly and
strongly correlated instances. In all subset-sum instances of sets FK1–FK4, the sequen-
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Set n/m wj in Correlation
SMALL {20/10, 40/10, 60/10, 20/20, 40/20, 60/20} [1− 1000] {uncorr., weekly, strongly}
FK1 {60/30, 45/15, 48/12, 75/15, 60/10, 100/10} [10− 1000] {uncorr., weakly, strongly, subset-sum}
FK2 {120/60, 90/30, 96/24, 150/30, 120/20, 200/20} [10− 1000] {uncorr., weakly, strongly, subset-sum}
FK3 {180/90, 135/45, 144/36, 225/45, 180/30, 300/30} [10− 1000] {uncorr., weakly, strongly, subset-sum}
FK4 {300/150, 225/75, 240/60, 375/75, 300/50, 500/50} [10− 1000] {uncorr., weakly, strongly, subset-sum}
Set6 {150/80, 300/160, 600/350,1200/700, 2500/1400,

5000/2800,10000/5600, 20000/13000, 45000/30000} {[10-100], [10-1000],
[10-10000]} {uncorr., weakly, strongly}

Table 2: Description of the instances.

tial and surrogate relaxations produce the same bounds, that are equal or very close to
the bounds provided by the linear relaxation.

As Tables 5–7 show, the optimality gaps can not be computed for some instances of
sets FK2, FK3 and FK4 with ratios n/m = 3, 4, 5, since, a the the best of our knowledge,
the optimal solutions are not available for some of these instances in the literature. In
fact, as shown in the detailed analysis reported in Tables 5 and 6 of [5], it turns out that
the effective Hy-MKP approach (proposed in [5]) fails to find optimal solutions especially
on instances with n/m = 3, and on some instances with ratios 4 and 5.

For a clearer comparison, Table 8 reports the gaps between sequential and surrogate
bounds for the instances with ratios n/m = 3, 4, 5 belonging to the sets FK2, FK3

and FK4. In the table, gse−LP is the percentage gap between zseq and zLP , and gsu−LP

is the percentage gap between zsurr and zLP , computed as (zLP − zseq)/zseq × 100 and
(zLP − zsurr)/zsurr×100, respectively. Hence, the bigger gse−LP and gsu−LP are the better
the sequential and surrogate bounds are. As shown in Table 8, zseq is better than zsurr
on uncorrelated and weakly correlated instances with ratio 3. In fact, gse−LP and gsu−LP

respectively are equal to 0.53 and 0.06 on average. On the remaining instances, zseq is
essentially equal to zLP while zsurr is slightly better with gsu−LP = 0.02 on average.

The computational times on SMALL and FK1–FK4 instances are very small for the
sequential (1 millisecond or less on average) and surrogate (from 1 to 3 milliseconds)
relaxations, while the linear relaxation requires about 0.39 seconds on average.

Tables 9 and 10 report the computational results on instances of Set6. Observe that,
on this set, the ratio n/m is very small, ranging from about 1.5 to 1.9. In each table,
for each n, m, R, and correlation class, the average over the 20 instances is reported. In
Table 9, the results on the smallest instances of Set6 are reported. More precisely, in
the last two columns of the table, gse−LP is the percentage gap between zseq and zLP ,
and gsu−LP is the percentage gap between zsurr and zLP , computed as in Table 8, i.e.,
(zLP − zseq)/zseq × 100 and (zLP − zsurr)/zsurr × 100, respectively. First observe that, in
Table 9, the linear relaxation requires about 15 seconds on average, but more than 130
seconds on instances with m = 1400 and n = 2500. On the other hand, the computational
times of the sequential and surrogate relaxations are negligible, about 3 ms and 5 ms on
average, respectively. The sequential relaxation always attains the best performances,
with gse−LP = 8% and gsu−LP = 0.01% on average. The sequential bounds are smaller
than zsurr especially on uncorrelated and weakly correlated instances.

Table 10 reports the results on the biggest instances of Set6. On these instances, due
to the high computational times to compute the linear relaxations, only the sequential
and surrogate bounds are compared. Note that, zseq is always better than zsurr. In
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m n n/m Corr. zseq tseq zsurr tsurr zLP tLP opt gapse gapsu gapLP

20 20 1 unc. 5963.31 <0.001 7659.5 <0.001 8071.08 0.57 4685.8 27.26 63.46 72.25
20 20 1 wea. 4633.687 <0.001 5696.6 <0.001 6158.33 0.42 2957 56.70 92.65 108.26
20 20 1 str. 9015.2 <0.001 9973.7 0.002 10758.88 0.38 6010.3 50 65.94 79.01
10 20 2 unc. 7869.777 <0.001 7863 0.001 8075.55 0.54 7483.5 5.16 5.07 7.91
10 20 2 wea. 6001.897 <0.001 5986.3 <0.001 6162.66 0.58 5594.4 7.28 7.01 10.16
10 20 2 str. 10560.6 <0.001 10444.1 <0.001 10766.88 0.43 9740.9 8.42 7.22 10.53
20 40 2 unc. 16078.99 <0.001 16368.9 <0.001 16484.34 0.57 15462.6 3.99 5.86 6.61
20 40 2 wea. 12178.64 <0.001 12351.4 <0.001 12454.56 0.42 11638.8 4.64 6.12 7.01
20 40 2 str. 21178.92 <0.001 20993.2 0.002 21248.26 0.37 20478.5 3.42 2.51 3.76
20 60 3 unc. 24783.75 <0.001 24717.7 <0.001 24800.72 0.57 24632 0.62 0.35 0.68
20 60 3 wea. 18777.19 <0.001 18739.1 <0.001 18788.38 0.42 18661.4 0.62 0.42 0.68
20 60 3 str. 31800.32 <0.001 31608.3 0.002 31816.56 0.37 31535.6 0.84 0.23 0.89
10 40 4 unc. 16464.61 <0.001 16395.4 <0.001 16488.41 0.57 16366.7 0.60 0.18 0.74
10 40 4 wea. 12446.41 <0.001 12397.3 <0.001 12459.13 0.48 12379.1 0.54 0.15 0.65
10 40 4 str. 21235.54 <0.001 21024.1 0.003 21256.26 0.42 21011.2 1.07 0.06 1.17
10 60 6 unc. 24797.61 <0.001 24728.6 0.001 24804.74 0.57 24728.6 0.28 0 0.31
10 60 6 wea. 18790.28 <0.001 18746.1 <0.001 18793.29 0.42 18746.1 0.24 0 0.25
10 60 6 str. 31819.13 <0.001 31660.2 0.001 31825.56 0.41 31660.2 0.50 0 0.52
Av 16355.33 <0.001 16519.64 0.001 16734.09 0.47 15765.15 9.56 14.29 17.30

Table 3: Results on SMALL instances.

fact, zseq is about 20%, 9% and 2.5% lower than zsurr on uncorrelated, weakly correlated
and strongly correlated instances, respectively. Regarding the computational times for
instances of Set6, the computation of the surrogate and sequential bounds require about
0.036 and 0.08 seconds on average. However, the surrogate relaxation is always faster
than the sequential relaxation on uncorrelated and weakly correlated instances.

Summarizing, from a quality point of view, the sequential relaxation attains good per-
formances for uncorrelated and weakly correlated instances with n/m ratios smaller than
or equal to 3. The surrogate relaxation produces the best results on strongly correlated
instances and on instances with n/m > 3. On subset-sum instances with n/m ≥ 2 the
sequential, the surrogate and the linear relaxation attain the same results. On instances
with n/m < 2 the sequential relaxation always produces the best results. Regarding
the computational times, in general, the sequential upper bound can be computed with
a small computational effort: it requires at most less than 0.3 seconds on the biggest
instances of Set6. Such facts suggest that a combined use of sequential and surrogate
relaxations could be effective when employed in enumeration solution schemes for MKP.

As an example, in order to asses whether the sequential bound can be effectively
employed in the solution of multiple knapsack problems, three new MKP instances have
been considered, denoted as Inst1, Inst2 and Inst3. Inst1 is the MKP instance with n = 36
and m = 30 reported in Table 11. For this instance the optimal solution value zMKP =
2000, zseq = 2033.31 zsurr = 2103 and zLP = 2117.19. Inst2 is generated by making three
copies of each item and each knapsack of Inst1, and Inst3 is the instance containing 6
copies of each item and each knapsack of Inst1. Hence, we have n = 36 × 3 = 108 and
m = 30 × 3 = 90 in Inst2, and n = 36 × 6 = 216 and m = 30 × 6 = 180 in Inst3.
Furtheremore, we have zMKP = 6000, zseq = 6099.92 zsurr = 6350 and zLP = 6351.56 in
Inst2, and zMKP = 12000, zseq = 12199.85 zsurr = 12700 and zLP = 12703.12 in Inst3.
The three instances have been solved by Gurobi both by the standard formulation (1)–(4)
and on a modified formulation obtained by simply adding to the standard formulation the
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m n n/m Corr. zseq tseq zsurr tsurr zLP tLP opt gapse gapsu gapLP

10 60 6 unc. 23933.99 <0.001 23867.05 <0.001 23940.81 0.24 23867.05 0.28 0 0.31
10 60 6 wea. 16567.99 <0.001 16543.95 <0.001 16568.94 0.07 16540.9 0.16 0.02 0.17
10 60 6 str. 15076.14 <0.001 15071.55 0.001 15076.26 0.07 15071.55 0.03 0 0.03
10 60 6 s-s 14649.50 <0.001 14649.5 0.001 14649.50 0.07 14649.5 0 0 0
10 100 10 unc. 40256.88 <0.001 40207.05 0.001 40259.40 0.07 40207.05 0.12 0 0.13
10 100 10 wea. 27622.95 <0.001 27608.3 0.001 27623.77 0.07 27608.3 0.05 0 0.06
10 100 10 str. 25438.62 <0.001 25432.45 0.001 25438.69 0.07 25432.45 0.02 0 0.02
10 100 10 s-s 24729.45 <0.001 24729.45 0.001 24729.45 0.06 24729.45 0 0 0
12 48 4 unc. 18948.89 <0.001 18886.05 <0.001 18957.97 0.06 18871.35 0.41 0.08 0.46
12 48 4 wea. 13094.05 <0.001 13068.6 <0.001 13095.99 0.06 13024.1 0.54 0.34 0.55
12 48 4 str. 11961.72 <0.001 11956.2 0.001 11961.86 0.06 11955.5 0.05 0.01 0.05
12 48 4 s-s 11620.20 <0.001 11620.2 0.001 11620.20 0.06 11619.8 0 0 0
15 45 3 unc. 17751.83 <0.001 17787.75 <0.001 17857.79 0.06 17575.65 1.00 1.21 1.61
15 45 3 wea. 12802.02 <0.001 12832.45 <0.001 12860.73 0.06 12552.4 1.99 2.23 2.46
15 45 3 str. 12123.22 <0.001 12116.5 0.001 12123.56 0.06 12089.85 0.28 0.22 0.28
15 45 3 s-s 11811.25 <0.001 11811.25 0.001 11811.50 0.06 11790 0.18 0.18 0.18
15 75 5 unc. 30128.45 <0.001 30075.45 0.001 30133.00 0.06 30075.45 0.18 0 0.19
15 75 5 wea. 20677.82 <0.001 20660.85 0.001 20678.78 0.07 20649.85 0.14 0.05 0.14
15 75 5 str. 18804.37 <0.001 18798.95 0.001 18804.47 0.06 18798.95 0.03 0 0.03
15 75 5 s-s 18271.40 <0.001 18271.4 0.001 18271.40 0.06 18271.4 0 0 0
30 60 2 unc. 22413.89 <0.001 24725.45 0.001 24797.32 0.06 19412 15.46 27.37 27.74
30 60 2 wea. 16205.79 <0.001 17153.65 0.001 17179.30 0.07 12158.95 33.28 41.08 41.29
30 60 2 str. 15779.16 <0.001 15780.85 0.001 15786.51 0.07 12515 26.08 26.10 26.14
30 60 2 s-s 15368.90 <0.001 15368.9 0.001 15369.40 0.06 12152.5 26.47 26.47 26.47
Av 19001.60 <0.001 19125.99 0.001 19149.86 0.07 18400.79 4.45 5.22 5.35

Table 4: Results on FK1 instances.

m n n/m Corr. zseq tseq zsurr tsurr zLP tLP opt gapse gapsu gapLP

20 120 6 unc. 48174.79 <0.001 48129.25 <0.001 48177.20 0.55 48129.25 0.09 0 0.10
20 120 6 wea. 32949.39 <0.001 32935.85 <0.001 32949.96 0.55 32935.85 0.04 0 0.04
20 120 6 str. 30861.78 <0.001 30856.75 0.001 30861.87 0.42 30856.75 0.02 0 0.02
20 120 6 s-s 30014.25 <0.001 30014.25 0.001 30014.25 0.40 30014.25 0 0 0
20 200 10 unc. 80121.46 0.001 80095.65 <0.001 80122.77 0.39 80095.65 0.03 0 0.03
20 200 10 wea. 55415.80 0.001 55408.05 0.001 55416.14 0.37 55408.05 0.01 0 0.01
20 200 10 str. 51581.81 0.001 51577.65 0.001 51581.85 0.34 51577.65 0.01 0 0.01
20 200 10 s-s 50170.85 <0.001 50170.85 0.001 50170.85 0.34 50170.85 0 0 0
24 96 4 unc. 38643.99 <0.001 38593.05 0.001 38646.53 0.33 38590 0.14 0.01 0.15
24 96 4 wea. 26438.73 <0.001 26423.3 0.001 26439.44 0.33 26390.5 0.18 0.12 0.19
24 96 4 str. 24382.23 <0.001 24378 0.001 24382.33 0.32 24378 0.02 0 0.02
24 96 4 s-s 23701.70 <0.001 23701.7 0.001 23701.70 0.31 23701.7 0 0 0
30 90 3 unc. 36020.33 <0.001 36211.85 0.001 36260.69 0.31 35804.5 0.60 1.14 1.27
30 90 3 wea. 25017.34 <0.001 25115.25 <0.001 25132.18 0.31 24699.95 1.28 1.68 1.75
30 90 3 str. 23231.50 <0.001 23225.6 0.001 23231.64 0.30 23222 0.04 0.02 0.04
30 90 3 s-s 22596.10 <0.001 22596.1 0.001 22596.15 0.31 - - - -
30 150 5 unc. 60157.34 0.001 60119.3 0.001 60158.92 0.30 60119.3 0.06 0 0.07
30 150 5 wea. 41743.95 0.001 41733.95 0.001 41744.33 0.30 41733.3 0.03 0 0.03
30 150 5 str. 38687.99 0.001 38683.65 0.001 38688.04 0.30 38683.65 0.01 0 0.01
30 150 5 s-s 37629.65 <0.001 37629.65 0.001 37629.65 0.29 37629.65 0 0 0
60 120 2 unc. 43708.45 <0.001 48671.45 0.001 48710.32 0.29 37433.85 16.76 30.02 30.12
60 120 2 wea. 31814.82 <0.001 33941.2 0.001 33955.99 0.29 23446.75 35.69 44.76 44.82
60 120 2 str. 31081.82 <0.001 31096.05 0.001 31101.54 0.30 23700.15 31.15 31.21 31.23
60 120 2 s-s 30256.55 <0.001 30256.55 0.001 30256.55 0.30 22970.65 31.72 31.72 31.72
Av 38100.11 <0.001 38398.5396 0.001 38413.79 0.34 37464.88 5.13 6.12 6.16

Table 5: Results on FK2 instances.
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m n n/m Corr. zseq tseq zsurr tsurr zLP tLP opt gapse gapsu gapLP

30 180 6 unc. 71941.09 0.001 71914.45 <0.001 71942.72 0.33 71914.45 0.04 0 0.04
30 180 6 wea. 49796.58 0.001 49786.4 <0.001 49796.85 0.33 - - - -
30 180 6 str. 46498.21 0.001 46494 0.003 46498.32 0.33 46494 0.01 0 0.01
30 180 6 s-s 45228.55 <0.001 45228.55 0.003 45228.60 0.33 45228.55 0 0 0
30 300 10 unc. 120389.12 0.001 120370.45 0.003 120390.18 0.29 120370.45 0.02 0 0.02
30 300 10 wea. 82745.83 0.001 82740 0.002 82746.01 0.29 82740 0.01 0 0.01
30 300 10 str. 77481.90 0.001 77476.65 0.004 77481.93 0.29 77476.65 0.01 0 0.01
30 300 10 s-s 75366.75 0.001 75366.75 0.002 75366.75 0.29 75366.75 0 0 0
36 144 4 unc. 57575.14 0.001 57539.95 0.003 57577.51 0.33 57539.95 0.06 0 0.07
36 144 4 wea. 40025.04 0.001 40012.3 0.002 40025.50 0.33 - - - -
36 144 4 str. 36915.62 0.001 36910.25 0.003 36915.68 0.33 36910.25 0.01 0 0.01
36 144 4 s-s 35898.25 <0.001 35898.25 0.003 35898.25 0.33 35898.25 0 0 0
45 135 3 unc. 54277.77 <0.001 54490.65 0.002 54533.76 0.32 54024.4 0.47 0.86 0.94
45 135 3 wea. 37481.28 0.001 37637.95 0.002 37650.88 0.32 37212.8 0.72 1.14 1.18
45 135 3 str. 34968.79 <0.001 34963.4 0.003 34968.86 0.32 - - - -
45 135 3 s-s 34019.90 <0.001 34019.9 0.003 34019.90 0.32 - - - -
45 225 5 unc. 90132.20 0.001 90107.55 0.003 90133.34 0.29 90107.55 0.03 0 0.03
45 225 5 wea. 62117.52 0.001 62110.35 0.003 62117.92 0.28 - - - -
45 225 5 str. 58143.37 0.001 58138.5 0.004 58143.41 0.29 58138.5 0.01 0 0.01
45 225 5 s-s 56557.60 <0.001 56557.6 0.003 56557.60 0.29 56557.6 0 0 0
90 180 2 unc. 64184.24 0.001 72464.65 0.003 72498.32 0.41 55174.75 16.33 31.34 31.40
90 180 2 wea. 47594.69 0.001 50527.85 0.003 50539.64 0.41 34645 37.38 45.84 45.88
90 180 2 str. 47221.35 0.001 47295.2 0.003 47300.31 0.41 36306.3 30.06 30.27 30.28
90 180 2 s-s 45982.15 <0.001 46036.7 0.003 46036.70 0.41 35208.8 30.60 30.75 30.75
Av 57189.29 0.001 57670.3458 0.003 57682.04 0.33 58279.74 6.09 7.38 7.40

Table 6: Results on FK3 instances.

m n n/m Corr. zseq tseq zsurr tsurr zLP tLP opt gapse gapsu gapLP

50 300 6 unc. 120225.26 0.001 120208.50 <0.001 120226.33 0.80 120208.50 0.01 0 0.01
50 300 6 wea. 82739.73 0.001 82733.60 0.001 82739.92 0.82 - - - -
50 300 6 str. 77626.97 0.001 77621.50 0.004 77627.01 0.80 77621.50 0.01 0 0.01
50 300 6 s-s 75513.00 0.000 75513.00 0.002 75513.00 0.61 75513.00 0 0 0
50 500 10 unc. 201363.40 0.002 201349.45 0.003 201364.22 0.64 201349.45 0.01 0 0.01
50 500 10 wea. 138576.70 0.002 138572.40 0.003 138576.79 0.66 138572.40 0 0 0
50 500 10 str. 129921.07 0.002 129915.00 0.006 129921.10 0.69 129915.00 0 0 0
50 500 10 s-s 126402.00 0.001 126402.00 0.002 126402.00 0.57 126402.00 0 0 0
60 240 4 unc. 95969.46 0.001 95946.15 0.003 95970.42 0.40 - - - -
60 240 4 wea. 66057.19 0.001 66049.95 0.003 66057.52 0.39 - - - -
60 240 4 str. 61995.19 0.001 61991.20 0.003 61995.23 0.40 - - - -
60 240 4 s-s 60307.25 0.000 60307.25 0.003 60307.25 0.38 60307.25 0 0 0
75 225 3 unc. 89875.07 0.001 90309.05 0.004 90333.29 0.49 - - - -
75 225 3 wea. 62468.21 0.001 62848.35 0.003 62855.22 0.49 - - - -
75 225 3 str. 58349.92 0.001 58345.10 0.004 58349.95 0.49 - - - -
75 225 3 s-s 56766.20 0.000 56766.20 0.003 56766.20 0.48 - - - -
75 375 5 unc. 150371.81 0.001 150353.20 0.003 150373.02 1.12 - - - -
75 375 5 wea. 104389.88 0.001 104384.15 0.003 104390.04 0.79 - - - -
75 375 5 str. 97111.32 0.001 97105.70 0.005 97111.35 1.01 97105.70 0.01 0 0.01
75 375 5 s-s 94470.20 0.001 94470.20 0.003 94470.20 0.54 94470.20 0 0 0
150 300 2 unc. 105646.90 0.001 120378.55 0.002 120401.98 1.37 89253.45 18.37 34.87 34.90
150 300 2 wea. 77750.28 0.001 82871.45 0.004 82878.32 1.13 56429.45 37.78 46.86 46.87
150 300 2 str. 78215.07 0.001 78283.25 0.005 78288.99 1.26 57565.95 35.87 35.99 36.00
150 300 2 s-s 76161.25 0.001 76182.85 0.003 76182.85 0.60 55772.45 36.56 36.60 36.60
Av 95344.72 0.001 96204.50 0.003 96212.59 0.71 98606.16 9.19 11.02 11.03

Table 7: Results on FK4 instances.

13



m n n/m Corr. gse−LP gsu−LP

30 90 3 unc. 0.67 0.13
45 135 3 unc. 0.47 0.08
75 225 3 unc. 0.51 0.03
30 90 3 wea. 0.46 0.07
45 135 3 wea. 0.45 0.03
75 225 3 wea. 0.62 0.01
30 90 3 str. 0 0.03
45 135 3 str. 0 0.02
75 225 3 str. 0 0.01
30 90 3 s-s 0 0
45 135 3 s-s 0 0
75 225 3 s-s 0 0
24 96 4 unc. 0.01 0.14
36 144 4 unc. 0 0.07
60 240 4 unc. 0 0.03
24 96 4 wea. 0 0.06
36 144 4 wea. 0 0.03
60 240 4 wea. 0 0.01
24 96 4 str. 0 0.02
36 144 4 str. 0 0.01
60 240 4 str. 0 0.01
24 96 4 s-s 0 0
36 144 4 s-s 0 0
60 240 4 s-s 0 0
30 150 5 unc. 0 0.07
45 225 5 unc. 0 0.03
75 375 5 unc. 0 0.01
30 150 5 wea. 0 0.02
45 225 5 wea. 0 0.01
75 375 5 wea. 0 0.01
30 150 5 str. 0 0.01
45 225 5 str. 0 0.01
75 375 5 str. 0 0.01
30 150 5 s-s 0 0
45 225 5 s-s 0 0
75 375 5 s-s 0 0

Table 8: Gap results for FK2–FK4 instances with ratios n/m = 3, 4, 5.
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m n n/m R Corr. zseq tseq zsurr tsurr zLP tLP gse−LP gsu−LP

80 150 1.88 100 unc. 5285.17 < 0.001 6011.55 < 0.001 6014.50 0.56 13.80 0.05
80 150 1.88 100 wea. 4220.98 < 0.001 4492.4 < 0.001 4493.52 0.57 6.46 0.02
80 150 1.88 100 str. 5097.86 < 0.001 5113.15 0.001 5118.76 0.55 0.41 0.11
80 150 1.88 1000 unc. 53472.20 0.001 61305.85 0.001 61336.80 0.52 14.71 0.05
80 150 1.88 1000 wea. 39046.66 0.001 41810.45 0.001 41821.65 0.41 7.11 0.03
80 150 1.88 1000 str. 39177.02 0.001 39269.65 0.001 39274.12 0.42 0.25 0.01
80 150 1.88 10000 unc. 540793.37 0.001 616671.25 0.001 616992.50 0.42 14.09 0.05
80 150 1.88 10000 wea. 393215.31 0.001 421058.15 0.001 421183.73 0.40 7.11 0.03
80 150 1.88 10000 str. 373428.06 0.001 374758.15 0.006 374764.16 0.38 0.36 0
160 300 1.88 100 unc. 10554.14 0.001 12015.2 0.001 12017.24 1.45 13.86 0.02
160 300 1.88 100 wea. 8454.72 0.001 8991.25 0.001 8991.63 1.29 6.35 0
160 300 1.88 100 str. 10250.96 0.001 10287.5 0.001 10292.20 0.47 0.40 0.05
160 300 1.88 1000 unc. 104327.69 0.001 121290.7 0.001 121314.58 1.35 16.28 0.02
160 300 1.88 1000 wea. 79150.28 0.001 84439.7 0.001 84446.18 1.21 6.69 0.01
160 300 1.88 1000 str. 78727.26 0.001 78812.35 0.002 78817.35 1.34 0.11 0.01
160 300 1.88 10000 unc. 1058583.33 0.001 1218847.9 0.001 1219050.39 1.32 15.16 0.02
160 300 1.88 10000 wea. 774145.57 0.001 828211.75 0.001 828277.84 1.25 6.99 0.01
160 300 1.88 10000 str. 762157.28 0.001 762215.8 0.010 762220.62 1.34 0.01 0
350 600 1.71 100 unc. 20205.29 0.002 23895.3 0.001 23896.22 2.44 18.27 0
350 600 1.71 100 wea. 16684.80 0.002 17988.7 0.001 17988.96 1.04 7.82 0
350 600 1.71 100 str. 20340.81 0.001 20546.45 0.001 20551.09 0.95 1.03 0.02
350 600 1.71 1000 unc. 204882.70 0.002 243150.35 0.001 243163.82 3.02 18.68 0.01
350 600 1.71 1000 wea. 153559.08 0.002 166036.75 0.001 166040.90 2.37 8.13 0
350 600 1.71 1000 str. 153823.12 0.002 155697.55 0.004 155703.05 2.73 1.22 0
350 600 1.71 10000 unc. 2078107.61 0.002 2431168.2 0.001 2431307.17 3.10 17.00 0.01
350 600 1.71 10000 wea. 1549021.57 0.002 1671662.7 0.001 1671701.79 2.75 7.92 0
350 600 1.71 10000 str. 1492937.22 0.002 1498734.55 0.024 1498739.88 3.39 0.39 0
700 1200 1.71 100 unc. 39952.73 0.004 47787.55 0.002 47788.20 5.94 19.61 0
700 1200 1.71 100 wea. 33465.43 0.004 36088.2 0.002 36088.41 3.43 7.84 0
700 1200 1.71 100 str. 40638.11 0.002 41058.55 0.002 41062.78 3.28 1.05 0.01
700 1200 1.71 1000 unc. 412982.36 0.004 486229 0.001 486237.68 15.39 17.74 0
700 1200 1.71 1000 wea. 310003.60 0.005 332949.4 0.001 332951.46 8.44 7.40 0
700 1200 1.71 1000 str. 309706.65 0.004 311753.75 0.007 311758.68 4.89 0.66 0
700 1200 1.71 10000 unc. 4121581.48 0.005 4868058.4 < 0.001 4868134.03 11.72 18.11 0
700 1200 1.71 10000 wea. 3082395.30 0.005 3306136 0.001 3306159.16 12.58 7.26 0
700 1200 1.71 10000 str. 2998861.93 0.004 3002797.35 0.044 3002802.23 13.68 0.13 0
1400 2500 1.79 100 unc. 86986.84 0.008 99836.7 < 0.001 99837.26 28.54 14.77 0
1400 2500 1.79 100 wea. 70725.36 0.008 75211.85 < 0.001 75211.85 27.75 6.34 0
1400 2500 1.79 100 str. 85257.79 0.004 85643.85 0.003 85648.42 30.96 0.46 0.01
1400 2500 1.79 1000 unc. 873657.01 0.010 1017653.7 0.001 1017658.21 97.50 16.48 0
1400 2500 1.79 1000 wea. 649399.51 0.010 696410.4 0.001 696411.44 47.01 7.24 0
1400 2500 1.79 1000 str. 644382.36 0.007 644953.6 0.012 644958.14 22.67 0.09 0
1400 2500 1.79 10000 unc. 8678526.05 0.010 10144737.8 < 0.001 10144780.06 78.01 16.90 0
1400 2500 1.79 10000 wea. 6424109.63 0.010 6892621.15 0.002 6892633.80 130.81 7.29 0
1400 2500 1.79 10000 str. 6264418.04 0.009 6265005.15 0.090 6265009.82 105.11 0.01 0
Av 1003482.23 0.003 1095098.13 0.005 1095125.61 15.22 8.00 0.01

Table 9: Results on instances of Set6 first part.
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m n n/m R Corr. zseq tseq zsurr tsurr
2800 5000 1.79 100 unc. 174131.97 0.014 199976.5 <0.001
2800 5000 1.79 100 wea. 141397.62 0.012 150448.6 <0.001
2800 5000 1.79 100 str. 170593.25 0.008 171362.45 0.004
2800 5000 1.79 1000 unc. 1733779.56 0.019 2026512.55 0.001
2800 5000 1.79 1000 wea. 1295325.84 0.019 1389545.5 0.001
2800 5000 1.79 1000 str. 1295059.09 0.012 1296189.75 0.026
2800 5000 1.79 10000 unc. 17322644.64 0.023 20273817.3 0.001
2800 5000 1.79 10000 wea. 12852362.34 0.023 13799455.7 0.002
2800 5000 1.79 10000 str. 12524179.73 0.020 12525355.05 0.210
5600 10000 1.79 100 unc. 349151.19 0.030 400784.55 0.001
5600 10000 1.79 100 wea. 283165.76 0.024 301331.85 0.001
5600 10000 1.79 100 str. 341534.04 0.015 342973.9 0.008
5600 10000 1.79 1000 unc. 3469091.22 0.041 4054885.65 0.001
5600 10000 1.79 1000 wea. 2600634.72 0.040 2788691.8 0.001
5600 10000 1.79 1000 str. 2589502.98 0.024 2591776.15 0.051
5600 10000 1.79 10000 unc. 34714138.04 0.050 40650097.05 0.001
5600 10000 1.79 10000 wea. 25707763.86 0.051 27594278.75 0.002
5600 10000 1.79 10000 str. 25066973.99 0.038 25069333.35 0.298
13000 20000 1.54 100 unc. 669426.91 0.055 802070.55 0.001
13000 20000 1.54 100 wea. 561260.53 0.043 602619.65 0.001
13000 20000 1.54 100 str. 678745.71 0.031 686666.7 0.017
13000 20000 1.54 1000 unc. 6541607.46 0.086 8114919.4 0.002
13000 20000 1.54 1000 wea. 4999547.44 0.085 5567798.15 0.002
13000 20000 1.54 1000 str. 5021434.80 0.045 5191444.65 0.100
13000 20000 1.54 10000 unc. 65419254.77 0.104 81302573.65 0.002
13000 20000 1.54 10000 wea. 49493710.84 0.108 55209028.55 0.002
13000 20000 1.54 10000 str. 48547914.48 0.071 50198100.65 0.980
30000 45000 1.50 100 unc. 1488357.61 0.116 1804547 0.002
30000 45000 1.50 100 wea. 1253916.51 0.092 1355354.6 0.001
30000 45000 1.50 100 str. 1525743.16 0.071 1544526.25 0.029
30000 45000 1.50 1000 unc. 14193039.47 0.220 18258034.65 0.002
30000 45000 1.50 1000 wea. 10746949.94 0.203 12527337.45 0.002
30000 45000 1.50 1000 str. 10738679.17 0.105 11672608 0.294
30000 45000 1.50 10000 unc. 144512754.32 0.261 182724949.3 0.003
30000 45000 1.50 10000 wea. 108538518.40 0.266 124095787.9 0.003
30000 45000 1.50 10000 str. 105180360.39 0.155 112885427.5 3.551
Av 20076184.77 0.07 23060294.75 0.16

Table 10: Results on instances of Set6 second part.
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w 33 35 37 47 64 30 35 36 39 39 40 41 33 35 37 47 64 33 35 37 47
64 30 35 36 39 39 40 41 33 35 37 47 64 47 64

p 99 70 74 47 64 50 50 39 39 39 38 37 99 70 74 47 64 99 70 74 47
64 50 50 39 39 39 38 37 99 70 74 47 64 100 50

c 47 64 40 64 47 64 40 64 47 64 40 64 40 64 40 64 40 64 47 64 40
39 39 37 39 39 37 39 39 37

Table 11: The MKP instance Inst1.

Instance PLI (1)–(4) PLI (1)–(4)+(9)
# BB nodes time (sec.) # BB nodes time (sec.)

Inst1 511 1.48 9 1.53
Inst2 1082 4.64 39 3.25
Inst3 1784.0 26.98 31 10.61

Table 12: Gurobi results.

following valid cut
m
∑

i=1

n
∑

j=1

pjxij ≤ ⌊zseq⌋, (12)

where zseq is the sequential bound obtained by Algorithm 1.
In Table 12, the branch and bound nodes and the computational times required by

Gurobi for solving the three instances both by the formulation (1)–(4) and by the modified
formulation (1)–(4)+ (12) are reported. Note that, the addition of Constraint (12) allows
a faster solution of Inst2 and Inst3, requiring in all the cases a smaller number of branch
and bound nodes.

6 Conclusions

In this paper, a new technique for computing upper bounds for MKP is proposed, based
on the idea of relaxing MKP to a Bounded Sequential Multiple Knapsack Problem. The
sequential upper bound turns out to be not worse than the linear relaxation of the standard
formulation. Computational results on benchmark instances from the literature shows
that the sequential upper bound can be computed by small a computational effort, and
outperforms the bound produced by the surrogate relaxation when the ratio n/m is smaller
than or equal to 3 and weights and profits are uncorrelated or weakly correlated. On the
other hand, for bigger n/m ratios or strongly correlated instances, the surrogate bound
is better than the sequential bound. Future research includes: (i) the designing of exact
solution schemes for MKP embedding the sequential relaxation; (ii) investigating whether
the sequential relaxation can be applied to other optimization problems.
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