
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/14 1 2 1 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Corco r a n,  Pa d r aig  a n d  Gag a rin,  Andr ei  2 0 2 1.  H e u ris tics  for  k-do min a tion  m o d els  of

facili ty loc a tion  p roble m s  in s t r e e t  n e t wo rks.  Co m p u t e r s  a n d  Op e r a tions  Res e a rc h

1 3 3  , 1 0 5 3 6 8.  1 0.10 1 6/j.cor.202 1.10 5 3 6 8  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 1 6/j.cor.202 1.1 05 3 6 8  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



Heuristics for k-domination models of facility location

problems in street networks

Padraig Corcoran∗

School of Computer Science & Informatics

Cardiff University

Wales, UK.

Andrei Gagarin

School of Mathematics

Cardiff University

Wales, UK.

Abstract

We present new greedy and beam search heuristic methods to find small-size

k-dominating sets in graphs. The methods are inspired by a new problem for-

mulation which explicitly highlights a certain structure of the problem. An

empirical evaluation of the new methods is done with respect to two existing

methods, using instances of graphs corresponding to street networks. The k-

domination problem with respect to this class of graphs can be used to model

real-world facility location problem scenarios. For the classic minimum domi-

nating set (1-domination) problem, all except one methods perform similarly,

which is due to their equivalence in this particular case. However, for the k-

domination problem with k > 1, the new methods outperform the benchmark

methods, and the performance gain is more significant for larger values of k.
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1. Introduction

A graph is a mathematical (combinatorial) abstraction that is commonly

used to represent many real-world problems. A simple graph consists of a set of

objects called vertices and a set of pairwise relations between the objects called

edges. For example, a visual scene can be modelled as a graph [1]. Similarly, a

street network can be modelled as a graph where locations are modelled as ver-

tices and street segments connecting locations are modelled as edges [2]. Many

optimization problems are formulated on graphs. These include the shortest

path problem, which concerns computing a minimum length path between two

vertices in a graph, and the vertex cover problem, which concerns computing

a smallest subset of vertices that includes at least one endpoint of every edge.

Many real-world problems in turn can be modelled as instances of these graph-

theoretic problems. For example, the problem of finding a shortest path in a

street network can be modelled as the problem of computing the shortest path

in a graph which models that street network.

We consider the minimum k-dominating set (k-domination) problem in graphs,

which is one of the multiple domination problem types (e.g., see [3, 4]). Given

a simple graph and a positive integer k, the minimum k-dominating set (k-

domination) problem consists in finding a smallest possible (by cardinality)

subset of graph vertices such that each vertex is an element of this subset or is

adjacent to at least k elements of this subset. Examples and general description

for this kind of modelling can be found in Prolegomenon and Chapter 1 of the

classic book on domination in graphs [5]. Thai et al. [6] modelled the problem

of computing a virtual backbone in a wireless ad-hoc or sensor network as a

k-domination problem. Gagarin et al. [7] modelled the problem of optimizing

the placement of electrical vehicle charging stations as a k-domination problem.

Also, Khomami et al. [8] modelled the problem of maximizing influence in a

social network as a k-domination problem.

The k-domination problem has been proven to be NP-hard [9], even, e.g., in

split graphs [10]. As a consequence, unless the problem instance is reasonably
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small, one generally cannot use an exact method to compute an optimal solu-

tion in reasonable time (e.g., see the state-of-the-art deterministic algorithms

and computational results in [11, 12]). Therefore, heuristic methods are nor-

mally used to find small-size k-dominating sets in reasonable time, assuming

the solution may be suboptimal.

In this article we propose a novel formulation of the k-domination problem.

This new formulation makes explicit important structure in the problem, which

is not present in existing formulations. We subsequently propose two heuristic

methods for solving this problem, which exploit this structure. The methods in

question use greedy and beam search approach ideas. We empirically evaluate

these two methods with respect to street network reachability graphs. The k-

domination problem with respect to this class of graphs can be used to model

facility location problems in street networks [7].

The remainder of this paper is structured as follows. In Section 2 we review

existing solutions to the k-domination problem. In Section 3 we formally define

the k-domination problem and the proposed novel problem formulation. In this

section we also describe the proposed heuristic methods for solving this problem.

In Section 4 we present an experimental evaluation of the proposed methods

with respect to existing baseline methods on street network reachability graphs.

Finally, in Section 5 we draw some conclusions from this work and discuss some

possible directions for future research.

2. Related Works

In this section we review existing methods for computing solutions to the

k-domination problem. We focus exclusively on the case where the graphs in

question are unweighted and undirected. The methods described in this sec-

tion do not naturally generalise to other types of graphs and instead specialized

methods must be considered, e.g., see [13]. A number of authors have proposed

methods for computing solutions to different variants of the k-domination prob-

lem. For example, Klasing and Laforest [4] considered the k-tuple domination
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problem which is a more constrained variation of the k-domination problem.

Shang et al. [14] proposed a method for computing a k-tuple dominating set

which is also m-connected.

The k-domination problem is a classic optimization problem. As a conse-

quence, a large number of methods for solving this problem have been proposed.

These methods can broadly be distinguished with respect to the following five

features. The first feature concerns whether the method in question is designed

for the classic minimum dominating set problem, i.e. 1-domination problem in

our more general context (k = 1). The second feature concerns whether the

method in question automatically generalizes to the cases where k > 1. The fi-

nal three features concern whether the method in question uses a greedy search

heuristic, a metaheuristic or an exact method to determine a solution. Both

greedy search heuristic and metaheuristic methods attempt to compute a use-

ful solution in a reasonable amount of time, where this solution may be not

optimal. On the other hand, exact methods attempt to compute an optimal

solution. Table 1 presents a summary of existing methods for the k-domination

problem with respect to these five features.

The distinction with respect to whether a method is applicable only to the

case k = 1 or automatically generalizes to the case k > 1 is particularly im-

portant in the context of this work. Therefore, in Sections 2.1 and 2.2 we

respectively review methods belonging to these two categories.

2.1. Searching for minimum dominating sets (k = 1)

Existing solution methods for the classic minimum dominating set problem,

i.e. the k-domination problem where k = 1, can be broadly divided into greedy

search heuristic, metaheuristic, and exact solution (deterministic) methods. We

now review methods belonging to each of these categories in turn.

Greedy Search Heuristic Methods

The first and most commonly used standard greedy search heuristic for com-

puting dominating sets (k = 1) is described in Parekh [15]. The method ini-
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k = 1 k ≥ 1 Greedy Metaheuristic Exact

Search Method

Parekh [15] X X

Sanchis [16] X X

Eubank et al. [17] X X

Chellali et al. [18] X X X

Hedar et al. [19] X X

Hedar et al. [20] X X

Ho et al. [21] X X

Nehez et al. [22] X X

Bird [11] X X

Assadian [12] X X

Couture et al. [23] X X

Gagarin et al. [3] X X

Gagarin et al. [7] X X X

Table 1: Methods for computing solutions to the k-domination problem are distinguished with

respect to five features.
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tializes a set D to be the empty set and iteratively adds vertices to D until it

forms a dominating set. The vertex added to D at each iteration is determined

by selecting a vertex from the set of vertices whose neighbourhood contains a

maximum number of vertices currently not dominated. In this context, a vertex

is not dominated if it is not an element of the set D and not adjacent to any

vertex in D.

Sanchis [16] evaluated four greedy search heuristic methods for computing

small-size dominating sets. The first method is entitled Greedy. This method

initializes a set D to be the empty set and iteratively adds vertices to D until it

forms a dominating set. The vertex added to D at each step is determined by

selecting uniformly at random a vertex from the set of vertices whose neighbour-

hood contains a maximum number of vertices currently not dominated. This

method is similar to that described by Parekh [15] but with the addition of

randomization in vertex selection. The second method is entitled Greedy Rev.

This method initializes a set D to equal the set of graph vertices in question

and iteratively removes vertices from D until no further vertex can be removed

while still maintaining the property that D is a dominating set. The vertex

removed from D at each step is determined by selecting uniformly at random

a vertex from the set of vertices which are eligible to be removed and have the

maximum degree. The third method is entitled Greedy Ran. This method is

similar to that entitled Greedy with the exception that the vertex added to D

at each step is determined by selecting a vertex with probability proportional

to the number of adjacent vertices currently not dominated. The final method

is entitled Greedy Vote. This method initializes a set D to be the empty set and

iteratively adds vertices to D until it forms a dominating set. The vertex added

to D at each step is determined by selecting a vertex with probability propor-

tional to the number of neighbours of its neighbours currently not dominated.

The author evaluated the four above methods on two different classes of graphs

and found the Greedy and Greedy Vote methods to perform best.

Eubank et al. [17] evaluated five greedy search heuristic methods for finding

dominating sets. The first method is called RegularGreedy and is the same
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as the standard [15]. The second method is named FastGreedy. This method

initializes a set D to the empty set. It then iterates over the vertices in the graph

considering vertices of greater degree first and adding each vertex to the set D

until it forms a dominating set. The third method is entitled VRegularGreedy.

This method initializes a set D to be the set of all neighbours of vertices of

degree 1. It subsequently applies the standard greedy approach [15] to the

graph induced by vertices currently not in D. The fourth and fifth methods are

called FastGreedy-1 and FastGreedy-2. Both methods are slight variations of

the FastGreedy method described above. The authors evaluated the above five

methods on a number of real-world social networks and random graphs. They

found that the methods RegularGreedy and VRegularGreedy performed best.

Chellali et al. [18] proposed a greedy search heuristic method which initial-

izes a set D to be the empty set and iteratively adds vertices to D until it forms

a dominating set. The vertex added to D at each step is determined by selecting

uniformly at random a vertex from the set of vertices currently not dominated.

This method is implemented in the NetworkX software library which is a highly

popular Python software library for graph analysis [24].

It is important to note that many of the greedy search heuristic methods

reviewed above are also randomized methods. This combined with the general

low computational complexity of these methods means that they can be applied

to a given problem instance a large number of times with the best solution

obtained being returned.

Metaheuristic Methods

Hedar and Ismail [19] proposed a number of genetic algorithms for finding

dominating sets and evaluated them on a set of random graphs. The same

authors later proposed a simulated annealing method to search for dominating

sets [20]. They experimentally tested this method with respect to a stochastic

local search method, the genetic algorithm of [19], and the method entitled

Greedy proposed by Sanchis [16] on a set of random graphs. Their experiments

show the simulated annealing and the genetic algorithm of [19] to perform best.
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Ho et al. [21] proposed a number of ant colony optimization methods for

computing dominating sets. The authors evaluated these methods and a ge-

netic algorithm on a set of random graphs. They found that an ant colony

optimization method outperforms the genetic algorithm.

Exact Methods

Nehez et al. [22] proposed an integer linear programming (ILP) method

for computing dominating sets. The authors evaluated this method against a

randomized local search method and the standard greedy search heuristic [15]

on a number of real-world graphs. The authors found that the ILP approach

performed best but did not scale to large graphs. The same was shown by com-

putational experiments in Gagarin and Corcoran [7], where an ILP formulation

is described for a more general k-domination problem scenario.

The state-of-the-art deterministic search methods for dominating sets in

graphs have been recently developed and described by Bird [11] and Assadian

[12]. The methods are based on backtracking, and the experimental results in-

dicate that they are not likely to be practical for graphs with more than several

hundred vertices.

2.2. Searching for small k-dominating sets (k ≥ 1)

The more general k-domination problem, where k ≥ 1, is less well studied

than the classic minimum dominating set problem (k = 1). In fact, only a

few solution methods described in the previous section generalize to solve the

k-domination problem for any k ≥ 1. These solution methods can be broadly

divided into greedy search heuristics and exact (deterministic) algorithms.

Greedy Search Heuristic Methods

A generalization of the standard greedy algorithm ([15]) for computing k-

dominating sets is described in [7]. Specifically, this method initializes a set

D to be the empty set and iteratively adds vertices to D until it forms a k-

dominating set. The vertex added to D at each step is determined by selecting

uniformly at random a vertex from the set of vertices whose neighbourhood
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contains a maximum number of vertices currently not dominated enough. In a

certain sense, this simple greedy algorithm is inspired by the greedy approach

to find k-tuple dominating sets in Klasing et al. [4].

Couture et al. [23] proposed a method which first computes a dominating set

(k = 1) by finding a maximal independent set in a graph. Next, their algorithm

computes a maximal independent set for the vertices that are currently not 2-

dominated and adds those vertices to the dominating set to form a 2-dominating

set. This procedure is repeated k times until a k-dominating set is found.

Gagarin et al. [3] proposed a randomized algorithm which initializes a set D

as a random subset of graph vertices and then iteratively adds other vertices to

D if they are not dominated enough, mentioning some greedy ideas. The prob-

ability to initialize set D randomly is shown to be optimal in general graphs.

However, this probability had to be adjusted experimentally for graphs corre-

sponding to real-world road networks in [7]. The last paper also experimentally

compares the randomized approach to the basic greedy heuristic.

Exact (deterministic) methods

An ILP problem formulation for computing k-dominating sets is described

in [7]. The experiments show that this method clearly does not scale to the

size of two main graphs considered in the paper. Therefore a greedy search

heuristic remains one of the main optimization tools in that research. Also, the

computational results in [7] show that the ILP formulation solution approach

scales less well for larger values of k.

3. New Heuristic Search Methods for k-Domination

In this section we formally define the k-domination problem and present a

novel formulation of this problem. This formulation is in turn used to develop

two novel methods for solving the problem which use greedy and beam search

heuristic ideas.

We consider simple graphs G = (V,E), where V is a set of vertices and E

is a set of edges. Given a vertex v ∈ V , the open neighbourhood of v is the
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set of all its neighbours in G, i.e. all vertices adjacent to v. It is denoted by

N(v). The closed neighbourhood of v is N(v) ∪ {v}, it is denoted by N [v]. For

a given positive integer k, a k-dominating set of G is a set D ⊆ V such that

each v ∈ V is either an element of D or is adjacent to at least k elements of

D. The k-domination problem concerns finding a k-dominating set of G which

is as small as possible. This is formally defined as the following optimization

problem:

argmin
D⊆V

|D|

subject to ∀ v ∈ V \D, |N(v) ∩D| ≥ k

(1)

In general, solving this optimization problem is NP-hard [9, 10]. For any

D ⊆ V and v ∈ V , we define the parameter C(D, v), which indicates a level of

coverage of neighbours of v with respect to the set D in G as follows:

C(D, v) = min(k, |N(v) ∩D|) (2)

Then the optimization problem (1) can be formulated as the optimization prob-

lem (3). We prove this is an equivalent problem formulation in Theorem 1.

argmax
D⊆V

∑

v∈V \D

C(D, v)

subject to ∀ v ∈ V \D, |N(v) ∩D| ≥ k

(3)

Theorem 1. Given a graph G, a solution D to the optimization problem defined

in (3) is a minimum size k-dominating set in G.

Proof. A set D ⊆ V satisfying the constraints in (3) is a k-dominating set:

each vertex v ∈ V \ D is adjacent to at least k elements in D. Therefore,

C(D, v) = min(k, |N(v) ∩ D|) = k for all v ∈ V \ D. In turn, the value of

the objective function in (3) equals k(|V | − |D|). Since |V | is a constant, the

objective function is maximized when D is a minimum size k-dominating set.

In other words, the optimization problem (3) is equivalent to maximizing |V \D|

in G.
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Since the k-domination problem is NP-hard, one normally must use heuris-

tic methods to find a reasonably small k-dominating set ([3]), sacrificing quality

of the solution to a reasonable computational time ([7, 11, 12]). The problem

formulation in (3) uses the parameter C(D, v) from (2) to model the level to

which vertices are dominated by a set D. This contrasts with the formulation

(1), which simply requires satisfaction of the constraints. The additional infor-

mation incorporated in formulation (3) can potentially be exploited by heuristic

methods to make locally optimal decisions better.

In the following subsections we describe two heuristic solution methods for

the k-domination problem which use formulation (3). These methods are based

on greedy and beam search heuristics ideas.

3.1. New Greedy Search Heuristic

The problem formulation in (3) motivates Algorithm 1 which is a greedy

search heuristic. The algorithm takes as input a graph G = (V,E) and a positive

integer k, and computes a k-dominating set D for G. The algorithm initializes

D to be the empty set (line 2). Next, it iteratively adds vertices to D until

it forms a k-dominating set. The vertex added at each step is determined by

selecting uniformly at random a vertex from the set of vertices whose addition

maximizes the unconstrained objective function in (3) (see lines 3 to 7).

Convergence of Algorithm 1 to a k-dominating set is a consequence of the

fact that, unless a k-dominating set is formed earlier, the algorithm will converge

to the case where D = V , which is trivially k-dominating in G. Algorithm 1 is

also a randomized algorithm: in each iteration, if several vertices can increase

the objective function value by the same maximum amount, one of these vertices

is selected uniformly at random for addition to D.

To better explain effectiveness and efficiency of the heuristic ideas used in

Algorithm 1, we define the difference function ∆(D,u) (4) which represents the

change in the objective function C in (3) when a new vertex vertex u is added
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Algorithm 1: Greedy Search Heuristic

Input: A graph G = (V,E), a positive integer k.

Output: A k-dominating set D of G.

1 begin

2 Initialize D = {}

3 while |{v ∈ V \D : |N(v) ∩D| < k}| > 0 do

4 Find U = argmax
u∈V \D

∑

v∈V \(D∪{u})

C(D ∪ {u}, v)

5 Sample u ∈ U using a uniform distribution

6 Put D = D ∪ {u}

7 end

8 return D

9 end

to a given set D ⊂ V (u 6∈ D):

∆(D,u) =
∑

v∈V \(D∪{u})

C(D ∪ {u}, v)−
∑

v∈V \D

C(D, v)

= |{v ∈ N(u) : v /∈ D, |N(v) ∩D| < k}| −min(k, |N(u) ∩D|)

(4)

Now we have

max
u∈V \D

∆(D,u)

= max
u∈V \D





∑

v∈V \(D∪{u})

C(D ∪ {u}, v)



−
∑

v∈V \D

C(D, v),

(5)

where the sum
∑

v∈V \D

C(D, v) is constant for a given set D ⊂ V . Therefore, in

Algorithm 1, we have

U = argmax
u∈V \D

∑

v∈V \(D∪{u})

C(D ∪ {u}, v)

= argmax
u∈V \D

∆(D,u)

(6)

which is used when implementing Algorithm 1. The computational complexity

of Algorithm 1 can be analyzed as follows.
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Theorem 2. Algorithm 1 finds a k-dominating set in G in O(n3) time, n = |V |.

Proof. In the worst case, the while loop will terminate after n iterations when

all vertices have been added to D. Each iteration of the while loop examines all

vertices currently not in the set D. For each such vertex u ∈ V \D, the change

in the objective function following its addition is computed using the difference

function ∆(D,u) from (4). Evaluating the difference function (4) in the worst

case when |N(u)| ∈ Θ(n) can be done in O(n) time. Therefore each iteration of

the while loop takes O(n2) time.

To develop a better intuition of how Algorithm 1 works, notice that at each

step the algorithm does not determine the vertex added to D solely based on the

number of vertices currently not dominated in its open or closed neighbourhood.

In this context, a vertex is not dominated if it is not an element of D and not

adjacent to at least k vertices in D. The algorithm also considers how much the

vertices in question are already dominated. Specifically, all other things being

equal, a vertex which is currently least dominated will be added to D because it

contributes least to the sum
∑

v∈V \D C(D, v) (note that the sum is over vertices

currently not in the set D, see definition (4)). For example, if C(D, v) < k for

all v ∈ V \D, we have
∑

v∈V \(D∪{u}) C(D∪{u}, v) =
∑

v∈V \D C(D, v)+|N(u)∩

(V \D)| − |N(u) ∩D| for each u ∈ V \D.

To illustrate this concept, consider the graph displayed in Figure 1. Suppose

we wish to compute a 2-dominating set and are given D = {a}. If the next

vertex added toD is determined solely based on the number of vertices currently

not dominated in its corresponding open neighbourhood, vertices b and c are

equally likely to be added – each of the neighbourhoods contains exactly one

vertex currently not dominated. This may give a suboptimal result because

adding vertex b will not result in a 2-dominating set. The result is the same if

we consider the closed neighbourhood instead of the open neighbourhood of the

vertices. On the other hand, the proposed algorithm will add to D the vertex

c, which provides the optimal solution.
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Figure 1: An illustrative graph.

3.2. Beam Search Heuristic

Algorithm 1 is a greedy algorithm, and consequently it may converge to

a suboptimal solution. To illustrate this, consider again the graph displayed

in Figure 1 and the problem of computing a 2-dominating set. The optimal 2-

dominating set for this problem instance is {a, c}. However, applying Algorithm

1 to this problem will first add vertex b to D, followed by vertices a and c, to

give a larger 2-dominating set {a, b, c}.

To overcome this limitation, we propose a generalization of Algorithm 1

which uses a beam search heuristic instead of a pure greedy approach. A beam

search algorithm is an iterative search method which at each step maintains

a set of best intermediate or partial solutions [25]. The maximum size of this

set is a constant hyper-parameter called the beam width. The proposed beam

search with the beam width of one is equivalent to the greedy search of Section

3.1. The general beam search heuristic implemented in this work is described in

Algorithm 2. This algorithm takes as input a graph G = (V,E) and two positive

integer parameters k and b, and, using a beam of width b, finds a k-dominating

set D for G by considering a collection S of vertex subsets of G.

The algorithm initializes D to be the empty set (line 2) and S to be a list

containing a single partial solution corresponding to the empty set. In this

context, a partial or intermediate solution is a subset of graph vertices. Next,

the algorithm iteratively expands all subsets of vertices in S (lines 5 to 9). Each

partial solution s ∈ S, s ⊆ V , is expanded to form a set of partial solutions by

adding one vertex currently not in s in all possible ways, i.e. like in an exhaustive

search. For example, consider the graph in Figure 1 and a partial solution

set {b}. Expanding this vertex subset in all possible ways gives two partial
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solutions {a, b}, {b, c}. Similarly, expanding the empty set {} in the context of

the same graph gives three partial solutions {a}, {b}, {c}. The algorithm next

removes copies of partial solutions from the list of subsets S (line 10). The list of

intermediate solutions is then sorted in non-ascending (descending) order with

respect to the objective function value in (3). If several partial solutions have

the same objective function value, they are ordered randomly in S (line 11).

Then the top b partial solutions are retained in S (line 12). Finally, if there is a

k-dominating set s in S, i.e. a set s satisfying constraints in (3), we put D = s,

and it is returned as a solution to the problem (lines 15 and 19 respectively).

Convergence of Algorithm 2 to a k-dominating set is a consequence of in-

creasing cardinality of partial solutions in iteration and the fact that, unless a

k-dominating set is found earlier, the algorithm will converge to the case where

D = V , which is k-dominating. Algorithm 2 is also a randomized algorithm:

as stated above, when sorting is performed, if several partial solutions have the

same unconstrained objective function value, they are ordered randomly. The

computational complexity of Algorithm 2 is stated in Theorem 3.

Theorem 3. Algorithm 2 finds a k-dominating set in O(b2n3) time, where

n = |V | and b is the beam width.

Proof. In the worst case, the while loop will terminate after n iterations. Each

iteration of the while loop performs an expansion of intermediate solutions in

S, which contains O(b) subsets of vertices. Expanding each individual partial

solution takes O(n) steps. Then the list S′ will contain O(nb) elements. Check-

ing for copies of subsets in line 10 can be done in O(b2n2) time. Evaluating a

single element in the resulting list with respect to the objective function can be

done in O(n) time. Therefore, evaluating and sorting all elements in this list

with respect to the objective function takes O(bn2+bn log bn) steps. The overall

computational time complexity is therefore O(nbn+nb2n2+nbn2+nbn log bn) =

O(b2n3).

Selecting the beam width hyper-parameter for Algorithm 2 represents a

trade-off between computational complexity and the quality of obtained so-
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Algorithm 2: Beam Search Heuristic

Input: A graph G = (V,E), positive integers k and b.

Output: A k-dominating set D of G.

1 begin

2 Initialize D = {}

3 Initialize S = [{}]

4 while D = {} do

5 S′ = []

6 for s ∈ S do

7 S′ = S′ ∪ expand(s)

8 end

9 S = S′

10 remove duplicates(S)

11 sort descending(S)

12 S = S[1 . . . b]

13 for s ∈ S do

14 if s is k-dominating then

15 D = s

16 end

17 end

18 end

19 return D

20 end
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lution. That is, a larger beam width results in a better exploration of the

partial solution space and the potential for finding a better solution. However,

a larger beam width also results in higher computational complexity. To illus-

trate this, consider again the graph in Figure 1 and the problem of computing

a 2-dominating set. Applying Algorithm 2 to this graph with the beam width

of one returns the 2-dominating set {a, b, c}. On the other hand, applying this

algorithm to the same graph with the beam width of three returns the smaller

2-dominating set {a, c}. As mentioned earlier, Algorithm 2 with the beam width

equal to one reduces to Algorithm 1.

In Theorem 4, we establish a relationship between Algorithm 2 and a stan-

dard greedy approach for computing dominating sets (k = 1) described in [15, 7].

Recall that the standard greedy algorithm initializes a set D to be the empty set

and iteratively adds vertices to D until it forms a dominating set. The vertex

added to D at each step is determined by selecting uniformly at random a ver-

tex from the set of vertices whose closed neighbourhood contains a maximum

number of vertices currently not dominated.

Theorem 4. When computing a dominating set (k = 1), Algorithm 2 with the

beam width of one is equivalent to the standard greedy algorithm [15, 7].

Proof. For the beam width of one, Algorithm 2 behaves greedily and at each step

selects the vertex which maximizes the change in the unconstrained objective

function of (3). It is possible to see that for the case k = 1, the change in

the objective function value by adding a vertex v equals the number of not

dominated vertices in the closed neighbourhood of v minus one. In other words,

the selection criteria functions used by Algorithm 2 and the standard greedy

algorithm to rank vertices only differ by a constant value of minus one, implying

the vertex rankings are the same.

Consider two possible mutually exclusive cases corresponding to v being

currently dominated or not. If v is currently not dominated, the change in

the objective function value by adding v equals the number of not dominated

vertices in the open neighbourhood of v, which is the number of not dominated
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vertices in the closed neighbourhood of v minus one. If v is currently dominated,

the change in the objective function value by adding v equals the number of not

dominated vertices in the open neighbourhood of v minus one, which is, in this

case, the number of not dominated vertices in the closed neighbourhood of v

minus one.

4. Computational Results and Analysis

In this section we present an empirical evaluation of the two proposed heuris-

tic methods for computing k-dominating sets with respect to two baseline meth-

ods. We perform this evaluation using a set of graphs corresponding to street

network reachability graphs. The k-domination problem with respect to this

class of graphs can be used to model facility location problems in street net-

works [7].

The remainder of this section is structured as follows. In Section 4.1 we

formally define the concept of a street network reachability graph and the cor-

responding facility location problem. In Section 4.2 we present details of the

street networks used in this evaluation. Section 4.3 describes the baseline meth-

ods against which the proposed methods are evaluated. Finally, in Section 4.4

we present empirical results of our evaluation.

4.1. Reachability Graphs and Facility Location

A street network can be modelled as a weighted undirected graph Gs =

(V s, Es, w : Es → R), where the set of vertices V s corresponds to road inter-

sections and dead-ends, while the set of edges Es corresponds to road segments

connecting these vertices. The weight function w assigns to each edge the length

of the corresponding road segment measured in meters [26]. The street network

of Cardiff city modelled as such a graph is displayed in Figure 2(a).

Given a street network graph Gs = (V s, Es, w : Es → R), we define its

reachability graph Gr
t
= (V r, Er

t
) as a simple unweighted graph with V r = V s

and (u, v) ∈ Er
t
if and only if the length of shortest path (distance) between
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(a) (b)

Figure 2: (a) A graph modelling the street network of Cardiff city; (b) An illustration of

reachability graph for the Cardiff city street network: all red vertices are adjacent to a vertex

represented by a blue circle.

the corresponding vertices u and v in Gs is less than a specified reachability

threshold of t meters [7]. The reachability graph corresponding to the Cardiff

city street network of Figure 2(a) for t = 500 meters is illustrated in Figure 2(b).

In this figure, for the vertex represented by a blue circle, all adjacent vertices in

the corresponding reachability graph Gr
t
, t = 500, are represented by red circles.

The k-domination problem with respect to a street network reachability

graph is a useful model for facility location problems [7]. By placing the facility

in question at the locations corresponding to a k-dominating set, we ensure

that any agent wishing to use the facility in the street network has a guaranteed

minimum level of access options. Furthermore, by minimizing the size of a

k-dominating set, we minimize the cost of providing this facility.

4.2. Street Networks

To evaluate the proposed methods with respect to street network reachability

graphs we considered 20 medium sized street networks corresponding to twenty

UK cities and 5 large sized street networks corresponding to international cities.

For each city we selected a location in the city center and extracted the street
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Figure 3: A graph modelling the street network of Berlin city. All red vertices are adjacent

to a given single vertex in the corresponding reachability graph.
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network graph Gs within a bounding box centred at this location. For each UK

and international city a 3 and 15 kilometer bounding box respectively was used.

The street networks in question were obtained from OpenStreetMap which is a

crowdsourcing project for geographical data [27]. For each UK and international

street network, the corresponding reachability graph Gr
t
was computed using a

reachability threshold t of 500 and 3000 meters respectively. The reachability

graphs for the cities of Cardiff and Berlin computed using the above approach

are illustrated in Figures 2 and 3 respectively.

Tables 2 and 3 display the names of the UK and international cities respec-

tively, the number of vertices and edges in the corresponding street network

graphs Gs, and the number of vertices and edges in the corresponding reacha-

bility graphs Gr
t
.

4.3. Baseline Methods

We considered the standard heuristic algorithm (“standard greedy”) [15, 7]

and the algorithm by Couture et al. [23] as baseline solution methods. As

discussed in the related works section of this paper, these are current state-

of-the-art heuristic solution methods for the k-domination problem. We now

briefly review each of these methods in turn.

The standard heuristic algorithm (“standard greedy”) [15, 7] initializes a

set D to be the empty set and iteratively adds vertices to D until it forms

a k-dominating set. The vertex added to D at each step is determined by

selecting uniformly at random a vertex from the set of vertices whose closed

neighbourhood currently contains a maximum number of not dominated enough

vertices.

The method of Couture et al. [23] first computes a dominating set (k =

1) by computing a maximal independent set. Next, it computes a maximal

independent set for those vertices that are currently not 2-dominated, and adds

them to the dominating set to form a 2-dominating set. This procedure is

repeated k times until a k-dominating set is found. In our implementation,

a greedy randomized sequential algorithm was used to compute the maximal
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City Name No. vertices No. edges No. edges

Gs (Gr
t
) Gs Gr

t

Bath 910 1,147 18,560

Belfast 1,700 2,169 62,617

Brighton 976 1,342 35,012

Bristol 1,569 2,048 47,522

Cardiff 1,127 1,466 23,155

Coventry 1,175 1,507 26,689

Exeter 1,250 1,475 31,997

Glasgow 1,137 1,546 24,323

Leeds 1,647 2,197 56,511

Leicester 1,531 2,027 48,219

Liverpool 1,273 1,721 42,564

Manchester 1,991 2,696 77,286

Newcastle 1,109 1,402 26,614

Nottingham 1,739 2,134 51,595

Oxford 479 581 8,396

Plymouth 1,122 1,463 35,070

Sheffield 1,582 2,065 50,534

Southampton 796 1,062 19,942

Sunderland 1,346 1,783 42,013

York 1,044 1,228 23,774

Table 2: The number of vertices and edges in the street network graph Gs and the corre-

sponding reachability graph Gr

t
for 20 UK cities.
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City Name No. vertices No. edges No. edges

Gs (Gr
t
) Gs Gr

t

Belgrade, Serbia 22,218 28,465 9,092,430

Berlin, Germany 31,413 46,948 10,356,466

Boston, USA 34,713 50,190 23,379,262

Dublin, Ireland 35,172 41,744 20,513,936

Minsk, Belarus 11,388 16,217 1,387,938

Table 3: The number of vertices and edges in the street network graph Gs and the corre-

sponding reachability graph Gr

t
for 5 international cities.

independent sets [28].

4.4. Empirical Results

This section presents an empirical evaluation of the proposed methods for

computing k-dominating sets in the street network reachability graphs described

in Section 4.2 with respect to the baseline methods described in Section 4.3.

The beam search heuristic method of Algorithm 2 has a single hyper-parameter

of beam width. Recall that, this method with a beam width of one reduces to

the greedy search heuristic method of Algorithm 1. For the medium size UK

city graphs, we present results with respect to the beam search heuristic method

for the three beam widths of 1, 2, and 4. For the large international city graphs,

we present results with respect to the greedy search heuristic method. Due to

the high computational complexity of the beam search heuristic method, it was

not feasible to apply this method to these large graphs. Since all new and base-

line methods have a randomized component, they may find dominating sets of

different sizes when run with different random seeds. To understand the effect

of this randomness, for a given method and graph, we applied the method to

the graph using ten different random seeds and reported the minimum, mean

and standard deviation statistics of the resulting dominating set sizes. The

minimum is a very relevant statistic because when using a randomized algo-

rithm, one typically runs the algorithm multiple times and uses the best result
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achieved.

Table 4 displays the statistics of the computed dominating set sizes for k = 1

for each UK city. The last row in this table displays the average of each statistic

computed by each method across all cities. From these results, we see that the

method of Couture et al. [23] performed less well by a significant margin.

Specifically, the average minimum and mean dominating set size is significantly

greater than the other methods. Furthermore, the average standard deviation

of the dominating set size is also significantly greater than the other methods.

This demonstrates that the method is less stable and more dependent on the

choice of random seed.

The standard greedy method [15] performed equally well as the beam search

heuristic method with a beam width of one. This result can be attributed to

Theorem 4 which established an equivalence between these methods. For most

cities, the smallest minimum and mean dominating set size was achieved when

using the beam search heuristic method with a larger beam width. This is re-

flected in the corresponding average statistics. This demonstrates the usefulness

of using a beam search as opposed to the standard greedy search heuristic. Fi-

nally, the average standard deviation of the dominating set size for the standard

greedy and beam search heuristic methods is quite small. This demonstrates

that both methods are quite stable and less dependent on the choice of random

seed.

Tables 5 and 6 display the statistics of the computed dominating set sizes

for k equal to 2 and 4 respectively for each UK city. For both values of k, the

method of Couture et al. [23] performed less well by a significant margin while

the beam search heuristic method performed the best. Comparing the averages

of the best found 2-dominating set sizes, we see that on average it achieved

a best 2-dominating set size approximately 3, 3.5, and 4 vertices smaller than

that achieved by the standard greedy method when using the beam width of

1, 2, and 4, respectively. This approximately equals a 5% reduction in the size

of best found 2-dominating sets. Comparing the averages of the best found

4-dominating set sizes, we see that on average it achieved a best 4-dominating
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City Name Beam Sr Beam Sr Beam Sr Standard Greedy Couture et al.

b = 1 b = 2 b = 4 [15, 7] [23]

Bath 44, 45.0, 0.8 43, 44.7, 1.0 43, 44.6, 0.9 44, 45.1, 0.9 58, 63.9, 3.1

Belfast 48, 50.5, 1.8 48, 50.3, 1.6 48, 50.2, 1.5 48, 50.3, 1.5 74, 76.6, 2.7

Brighton 28, 28.6, 0.9 28, 28.2, 0.6 28, 28.2, 0.6 28, 28.8, 1.0 33, 37.3, 2.2

Bristol 47, 47.5, 1.0 46, 47.4, 1.0 47, 47.2, 0.9 47, 47.7, 0.8 69, 74.1, 5.6

Cardiff 49, 51.0, 0.9 49, 50.8, 0.7 48, 50.6, 1.0 49, 50.8, 0.9 71, 76.8, 4.0

Coventry 44, 45.1, 0.5 44, 44.9, 0.3 44, 44.8, 0.4 44, 45.2, 0.6 69, 73.8, 3.1

Exeter 50, 50.8, 0.9 49, 50.6, 0.8 50, 50.6, 0.5 50, 51.0, 0.7 71, 76.7, 3.0

Glasgow 58, 59.7, 1.2 58, 59.5, 1.1 58, 59.2, 0.7 58, 59.7, 1.2 79, 86.4, 3.7

Leeds 51, 52.7, 0.8 51, 52.6, 0.8 51, 52.4, 0.8 51, 52.7, 0.8 73, 76.7, 3.6

Leicester 51, 51.8, 0.4 51, 51.6, 0.5 51, 51.5, 0.5 51, 52.0, 0.4 75, 80.9, 3.6

Liverpool 38, 38.4, 0.5 38, 38.5, 0.5 38, 38.4, 0.5 38, 38.6, 0.5 50, 56.6, 4.3

Manchester 45, 46.2, 0.9 45, 46.0, 0.6 45, 45.9, 0.5 45, 46.0, 0.8 71, 75.2, 3.7

Newcastle 52, 53.3, 1.0 51, 52.9, 1.1 51, 52.6, 1.1 52, 53.4, 0.6 73, 77.5, 2.4

Nottingham 56, 57.1, 0.8 56, 56.9, 0.7 55, 56.6, 0.8 56, 56.9, 0.5 77, 81.8, 2.6

Oxford 28, 28.2, 0.4 27, 28.0, 0.6 27, 27.9, 0.5 27, 28.1, 0.7 38, 40.9, 1.9

Plymouth 40, 40.6, 0.6 40, 40.5, 0.7 39, 40.3, 0.8 40, 40.7, 0.6 54, 59.1, 3.4

Sheffield 52, 53.3, 0.9 52, 53.0, 0.9 51, 52.5, 0.7 52, 53.1, 0.5 76, 81.4, 3.2

Southampton 29, 29.9, 0.8 28, 29.8, 0.9 28, 29.6, 0.8 29, 29.6, 0.5 41, 46.0, 2.7

Sunderland 46, 46.5, 0.5 46, 46.3, 0.4 46, 46.3, 0.4 46, 46.5, 0.5 56, 62.7, 3.7

York 39, 39.3, 0.4 39, 39.2, 0.4 39, 39.1, 0.3 39, 39.5, 0.5 60, 68.5, 4.7

Average 44.7, 45.7, 0.8 44.4, 45.5, 0.7 44.3, 45.4, 0.7 44.7, 45.7, 0.7 63.4, 68.6, 3.3

Table 4: The minimum, mean and standard deviation of the dominating set (k = 1) sizes

computed using different heuristic methods for 20 UK cities.
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set size approximately 13.5, 14, and 14.5 vertices smaller than that achieved

by the standard greedy method when using the beam width of 1, 2, and 4,

respectively. This approximately equals a 9% reduction in the size of best found

2-dominating sets. Similarly to the case k = 1, the average standard deviation

of the dominating set size for the standard greedy and beam search heuristic

methods is quite small.

Tables 7, 8, and 9 display the statistics of the computed dominating set sizes

for k equal to 1, 2, and 4 respecively for each international city. For all values

of k, Couture et al. [23] performed less well by a significant margin. For k equal

to 2 and 4, the proposed greedy heuristic method performed the best. In fact,

comparing the averages of the best found dominating set sizes, we see that on

average it achieved a best 2- and 4-dominating set size approximately 6 and 23

vertices respectively smaller than that achieved by the standard greedy method.

This approximately equals a 3% and 6% reduction respectively in the size of

best found k-dominating set.

The proposed greedy and beam search heuristic methods perform better

than the standard greedy approach for larger values of k. This can be attributed

to the fact that, as the value of k increases, the number of levels to which a

vertex can be dominated increases. For example, in the case k = 1, a vertex

can only be dominated or not dominated. On the other hand, when k = 4, a

vertex can be dominated to five different levels, corresponding to the values of

coverage parameter C(D, v) in problem formulation (3). The proposed greedy

and beam search heuristic methods exploit this information to make better

decisions, while the standard greedy approach does not. In summary, for the

k-domination problem with k > 1, the proposed new greedy and beam search

heuristic methods outperform the baseline methods, and the performance gain

is greater for larger values of k.

Table 10 reports running times measured in seconds required by the pro-

posed and baseline methods to compute 2-dominating sets for five UK cities

and five international cities. All algorithms were implemented in the Python

programming language and executed on a desktop computer with an Intel Core
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City Name Beam Sr Beam Sr Beam Sr Standard Greedy Couture et al.

b = 1 b = 2 b = 4 [7] [23]

Bath 86, 89.0, 1.4 87, 89.0, 0.6 87, 88.0, 0.6 90, 91.2, 0.7 118, 122.5, 3.1

Belfast 96, 98.9, 1.6 96, 98.8, 1.6 96, 97.6, 1.0 100, 104.5, 1.9 140, 147.9, 4.0

Brighton 50, 50.6, 0.5 49, 50.0, 0.6 49, 49.4, 0.5 51, 52.3, 1.0 68, 73.2, 3.8

Bristol 93, 95.2, 1.1 93, 94.8, 0.9 91, 94.0, 1.4 96, 98.2, 1.8 142, 145.1, 4.0

Cardiff 95, 97.7, 1.4 95, 97.1, 1.1 92, 95.9, 1.6 97, 98.8, 0.9 141, 146.1, 3.7

Coventry 85, 85.8, 0.7 84, 85.3, 0.6 84, 85.1, 0.7 88, 89.1, 1.3 138, 142.3, 3.8

Exeter 94, 96.4, 1.1 94, 96.1, 0.9 94, 95.7, 1.0 97, 99.3, 1.6 141, 148.4, 4.5

Glasgow 111, 112.5, 1.3 108, 111.6, 1.7 108, 110.6, 1.7 113, 116.3, 2.2 149, 157.0, 4.4

Leeds 99, 100.3, 0.6 99, 100.0, 0.6 98, 99.6, 1.0 101, 102.6, 2.3 143, 150.2, 5.7

Leicester 94, 94.8, 0.6 93, 94.4, 0.9 93, 94.1, 0.8 100, 101.0, 0.8 146, 150.3, 2.9

Liverpool 71, 72.4, 0.8 71, 72.4, 0.8 71, 72.0, 0.8 73, 74.4, 0.6 102, 110.0, 4.6

Manchester 92, 93.0, 0.8 90, 92.2, 0.9 90, 91.5, 0.9 92, 93.9, 1.9 143, 147.5, 3.3

Newcastle 95, 97.2, 1.8 95, 96.4, 1.4 94, 95.4, 1.1 99, 101.5, 1.2 133, 142.3, 4.8

Nottingham 102, 103.5, 0.8 102, 103.3, 0.8 102, 103.3, 0.8 107, 108.5, 0.8 156, 161.0, 4.3

Oxford 55, 55.5, 0.7 54, 55.2, 0.6 54, 54.9, 0.7 58, 59.4, 1.0 74, 76.8, 2.2

Plymouth 74, 76.3, 1.2 74, 75.8, 1.0 73, 75.0, 1.1 77, 78.5, 0.7 105, 111.2, 4.9

Sheffield 98, 100, 1.4 97, 99.5, 1.5 97, 98.9, 1.3 105, 106.7, 1.7 148, 155.1, 5.4

Southampton 61, 61.7, 0.6 61, 61.6, 0.5 60, 61.1, 0.7 62, 64.2, 1.0 78, 87.2, 5.5

Sunderland 88, 90.4, 1.4 88, 89.9, 1.1 87, 89.1, 1.1 91, 92.2, 0.6 120, 121.8, 2.6

York 77, 77.9, 0.7 77, 78.0, 0.8 77, 77.6, 0.6 78, 78.8, 0.7 127, 131.0, 2.9

Average 85.8, 87.4, 1.0 85.3, 87.0, 0.9 84.8, 86.4, 0.9 88.7, 90.5, 1.2 125.6, 131.3, 4.0

Table 5: The minimum, mean and standard deviation of the dominating set (k = 2) sizes

computed using different heuristic methods for 20 UK cities.
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City Name Beam Sr Beam Sr Beam Sr Standard Greedy Couture et al.

b = 1 b = 2 b = 4 [7] [23]

Bath 160, 162.8, 1.6 159, 161.3, 1.2 159, 160, 1.1 178, 180, 1.33 210, 220.4, 4.3

Belfast 178, 181.0, 1.7 177, 180.2, 2.0 177, 179.6, 2.0 194, 196.0, 1.4 257, 263.0, 4.4

Brighton 93, 95.7, 1.4 93, 94.4, 0.9 92, 94.8, 1.9 101, 103.5, 2.1 123, 135.4, 5.5

Bristol 176, 177.7, 1.1 175, 176.8, 0.9 175, 176.4, 0.8 187, 188.3, 0.9 253, 263.2, 5.4

Cardiff 181, 185.0, 1.7 181, 183.6, 1.7 181, 183.2, 1.4 196, 199.6, 2.0 238, 252.5, 7.3

Coventry 171, 175.1, 1.7 171, 174.1, 1.5 170, 172.6, 1.4 182, 183.4, 1.5 247, 255.2, 5.2

Exeter 182, 183.1, 0.9 182, 182.8, 0.6 181, 182.3, 0.6 196, 199.4, 1.9 259, 263.9, 3.2

Glasgow 198, 201.6, 1.9 198, 200.5, 1.6 197, 199.8, 1.6 221, 226.2, 2.3 256, 264.3, 4.3

Leeds 186, 188.5, 1.2 187, 188.0, 0.8 186, 187.1, 0.7 198, 201.5, 2.4 264, 268.6, 3.8

Leicester 176, 179.6, 1.4 176, 179.3, 1.6 175, 177.7, 1.8 199, 202.0, 2.3 267, 274.1, 4.5

Liverpool 133, 134.5, 1.4 132, 133.7, 1.1 132, 133, 0.8 143, 145.4, 1.5 194, 201.9, 4.9

Manchester 177, 179.6, 1.2 177, 179.1, 1.2 177, 178.5, 1.0 185, 188.5, 1.3 251, 266.6, 7.6

Newcastle 170, 172.4, 1.0 169, 171.5, 1.2 170, 171.2, 0.7 189, 192.9, 2.33 242, 246.6, 4.9

Nottingham 194, 196.5, 1.1 194, 195.3, 1.0 193, 195.2, 1.2 205, 208.4, 2.4 288, 295.1, 4.6

Oxford 100, 101.7, 1.2 99, 100.8, 0.9 100, 100.8, 0.8 108, 114.8, 3.1 129, 130.9, 1.2

Plymouth 137, 138.8, 1.3 136, 137.9, 1.1 135, 137.0, 1.2 153, 155.1, 1.4 195, 200.4, 4.0

Sheffield 182, 184.3, 0.9 182, 183.2, 1.1 180, 182.2, 1.2 202, 204.3, 1.5 272, 278.3, 4.3

Southampton 113, 114.7, 1.6 113, 114.2, 1.3 112, 113.2, 1.4 124, 125.2, 1.2 150, 156.0, 3.4

Sunderland 164, 164.8, 0.7 163, 164.1, 0.7 162, 163.6, 1.0 176, 180.7, 3.1 218, 223.8, 4.2

York 146, 147.1, 1.0 145, 146.4, 1.2 144, 145.8, 1.2 153, 157.2, 2.2 223, 231.0, 6.0

Average 160.8, 163.2, 1.3 160.4, 162.3, 1.1 159.9, 161.7, 1.1 174.5, 177.6, 1.9 226.8, 234.5, 4.6

Table 6: The minimum, mean and standard deviation of the dominating set (k = 4) sizes

computed using different heuristic methods for 20 UK cities.
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City Name Proposed Greedy Standard Greedy Couture et al.

[15, 7] [23]

Belgrade, Serbia 99, 100.3, 0.9 99, 100.9, 0.9 128, 138.8, 5.0

Berlin, Germany 146, 147.2, 1.1 146, 147.0, 0.7 174, 181.7, 6.0

Boston, USA 71, 72.8, 1.2 71, 72.6, 1.4 85, 86.8, 2.3

Dublin, Ireland 88, 90.2, 1.8 89, 89.8, 1.2 129, 134.1, 3.5

Minsk, Belarus 139, 139.8, 0.9 138, 139.3, 1.1 183, 188.9, 4.6

Average 108.6, 109.9, 1.1 108.6, 109.9, 1.0 139.8, 146.0, 4.2

Table 7: The minimum, mean and standard deviation of the dominating set (k = 1) sizes

computed using different heuristic methods for 5 international cities.

City Name Proposed Greedy Standard Greedy Couture et al.

[15, 7] [23]

Belgrade, Serbia 197, 197.5, 0.9 199, 200.1, 0.7 271, 281.2, 6.7

Berlin, Germany 268, 270.4, 1.4 277, 278.0, 1.6 352, 361.5, 7.4

Boston, USA 133, 135.0, 1.1 137, 138.0, 0.6 167, 175.7, 6.1

Dublin, Ireland 166, 166.8, 0.4 175, 175.8, 0.7 256, 269.0, 7.6

Minsk, Belarus 265, 266.4, 1.3 271, 272.7, 1.3 360, 365.4, 5.4

Average 205.8, 207.2, 1.0 211.8, 212.9, 0.9 281.2, 290.5, 6.6

Table 8: The minimum, mean and standard deviation of the dominating set (k = 2) sizes

computed using different heuristic methods for 5 international cities.
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City Name Proposed Greedy Standard Greedy Couture et al.

[15, 7] [23]

Belgrade, Serbia 379, 381.4, 2.0 397, 400.1, 1.3 537, 550.5, 8.5

Berlin, Germany 501, 503.4, 1.9 531, 537.4, 4.4 685, 697.7, 13.4

Boston, USA 255, 255.4, 0.5 265, 266.8, 2.0 336, 349.4, 7.7

Dublin, Ireland 317, 318.5, 1.5 342, 344.1, 1.6 514, 530.5, 10.4

Minsk, Belarus 506, 509.4, 2.9 539, 542.3, 2.4 684, 701.5, 9.6

Average 391.6, 393.62, 1.76 414.8, 418.14, 2.34 551.2, 565.92, 9.92

Table 9: The minimum, mean and standard deviation of the dominating set (k = 4) sizes

computed using different heuristic methods for 5 international cities.

i7-8700 CPU. The proposed and standard greedy algorithms run very quickly

on the medium sized UK city networks. Both algorithms run reasonably fast on

the large sized international city networks considering the size of the networks

in question. The general beam search heuristic method runs much slower than

either of the greedy algorithms. This can be attributed to higher computational

complexity plus the challenge in transforming this method into an efficient im-

plementation. In particular, although the beam search heuristic with the beam

width equal to 1 is equivalent to the proposed greedy algorithm, its overhead

makes it much slower and inefficient in comparison to the pure greedy version.

The method of [23] runs very quickly on the medium sized UK city networks as

well as the large sized international city networks.

5. Conclusion

In this work, we proposed novel greedy and beam search heuristic methods

for the k-domination problem. These methods are inspired by a novel formu-

lation of the problem (3). The methods were evaluated with respect to two

baseline methods on a set of street network reachability graphs. Our evaluation

found that, for the classic domination problem (k = 1), the proposed methods

perform equally well with one of the existing methods. This result is attributed
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City Name Proposed Beam Sr Beam Sr Beam Sr Standard Couture

Greedy b = 1 b = 2 b = 4 Greedy [7] et al. [23]

Bath 1, 0 112, 1 464, 15 1736, 41 1, 0 1, 0

Belfast 3, 0 582, 14 2182, 99 8834, 177 2, 0 1, 0

Brighton 1, 0 78, 2 309, 4 1257, 31 1, 0 1, 0

Bristol 2, 0 447, 8 1752, 30 7156, 161 2, 0 1, 0

Cardiff 1, 0 210, 2 835, 21 3327, 100 1, 0 1, 0

Belgrade 907, 11 - - - 800, 17 14, 1

Berlin 1435, 40 - - - 1199, 31 21, 1

Boston 1761, 21 - - - 1437, 21 23, 2

Dublin 1828, 9 - - - 1593, 18 23, 1

Minsk 188, 1 - - - 165, 3 7, 0

Table 10: The mean and standard deviation of running times (in seconds) for computing

dominating sets (k = 2) using different heuristic methods.

to an equivalence between methods in this particular case. On the other hand,

for the k-domination problem with k > 1, the proposed methods outperform

the baseline methods, and the performance gain is greater for larger values of

k.

A useful characteristic of the proposed methods is their simplicity. The pro-

posed beam search heuristic method of Algorithm 2 with a beam width of one

reduces to the greedy search heuristic method of Algorithm 1. The latter algo-

rithm is efficient and simple to implement. This contrasts with metaheuristic or

machine learning based methods for combinatorial optimization problems which

can be very challenging to implement [29].

Possible directions for future research in this area include the following.

The evaluation presented in this work was purely empirical. In future work, it

would be interesting to show better analysis of the performance of the proposed

methods. Such analysis could take the form of proving some bounds on the size

of the k-dominating sets found by the algorithms. The related works section

of this article highlighted that there currently exist no metaheuristic methods
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for the k-domination problem where k > 1. Given good performance of such

methods with respect to the classic domination problem (k = 1), this presents

an interesting direction for research as well.
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