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Abstract

It is desirable to be able to gather more forensically valuable audit data from
computing systems than is currently done or possible. This is useful for the
reconstruction of events that took place on the system for the purpose of digital
forensic investigations. In this paper, we propose a mechanism that allows
arbitrary meta-information bound to principals on a system to be propagated
based on causality influenced by information flow. We further discuss how to
implement such a mechanism for the FreeBSD operating system and present
a proof-of-concept implementation that has little overhead compared to the
system without label propagation.

1 Introduction

Security mechanisms on computing systems, such as intrusion detection systems,
access control, and audit facilities rely on the information that is available on the
system on which they are deployed. The information that is available on computing
systems about the events that occur, however, did not evolve from the need for good
security data but rather from the need to manage the available shared resources of
the system among its users. If the need arises to investigate an incident, as part of a
forensic investigation or incident response, the information available to an investigator
is often further reduced, as not everything is recorded on a permanent basis. This
makes it difficult to draw sound conclusions from the available information. Most
of the effort to date in the digital forensics community has been in the retrieval and
analysis of existing information from computing systems. Little has been done to
increase the quantity and quality of the forensic information on computing systems.

An operating system’s main function is to administer the limited available re-
sources to the programs that request them. Thus, much of the information a system
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keeps about its processes and objects is related directly to the task of administering
those resources. A large part of this information is kept for reasons of access control.
Other important security concerns do not play a prominent role. While processes
usually carry a user identifier, it may be unclear whether this user is truly responsible
for the actions the process performs. Furthermore, there is no notion at all about
location, or origin, of a system’s processes and objects. From where was a session
initiated? Where did a file come from?

Third party extensions exist that add more information for the purpose of access
control [41] but also for detecting policy violations [25, 48], adding a sense of location
[41, 14] or more general security audit mechanisms [28, 40]. Logging facilities such
as syslog for UNIX and the Event Viewer mechanism for the Windows platform
may record extra information about events as they occur. However, most of these
extensions lie outside the system itself, which means that they may be subject to
tampering. Furthermore, separate event logs need to be correlated to establish any
causal relationship between events. This is at best a tedious task, but may even turn
out to be impossible in certain situations because not enough information is recorded
or propagated.

When adding new audit information to a system, the goal should be to preserve
event relationships. From a security perspective, one wants to determine answers
to questions such as “who is responsible for events?” or “where are the entities
that caused the events located in the world (or network)?” To achieve this, it is
not sufficient to simply have one user identifier per process or file, or introduce a
location field. This is because a principal acting within a system is influenced by
other principals or by the contents of objects such as files. This causality is governed
by the information flow among principals and objects on the system. A principal
communicating with another principal may influence/force/ask/trick/signal the latter
into performing some sort of action. The same is true for the content of an object that
a principal accesses. In this paper we present a methodology that allows the system
to bind arbitrary information in the form of a label to its principals. Labels are then
propagated to other principals and objects on the system as information is exchanged
between them. Depending on the nature of such a label, e.g. user identity or location
information, valuable audit data can be created on a system. This is especially useful
for digital forensics, intrusion detection, network traceback, and access control.

In this paper we present a propagation model and a proof-of-concept implementa-
tion, where labels are propagated based on information flow between subjects. This
includes cases where one principal (or more) controls the actions of another. Our
approach differs from traditional information flow analysis methods in the way that
we do not attempt to determine how information actually is exchanged but rather
determine who communicates with whom. We will focus on two categories of informa-
tion that may be desired during a forensic investigation but current operating systems
cannot supply. These two categories are user influence and location information (host
causality [7]). The need for this kind of information and other categories is discussed
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in previous work [8].
The remainder of this paper is organized as follows: Section 2 defines the problem

space and addresses related work. Section 3 introduces our propagation model and
discusses its properties. In Section 4 we discuss aspects for implementing the model
for an operating system and present a proof-of-concept implementation for important
subsets of the FreeBSD operating system. Section 5 shows case study and performance
results. We give conclusions and address future work in Sections 6 and 7.

2 Related Work

Keeping track of extra information in a computing system about events at the lo-
cation where they occur is typically merely a problem of allocating storage for the
information, when recording it. Recording the event or the nature of the event at
its source is not a problem (e.g., a user modifying a file or a process receiving data
from a specific remote location). However, events may influence other events and as
processing of data potentially results in new events, the roles of the earlier events
get lost because the information is no longer available to the entities observing the
new events. If we want to keep track of which events influenced others, we need to
examine how information flows within the system.

Information flow policies describe how information is supposed to be accessed or
modified on a system [1, 11, 2, 3] These models merely formalize the system policy in
regard to how information is supposed to flow. It is up to individual systems to make
sure they adhere to the model. This may be a difficult task when considering the
trade-off between security and usability on a system. In particular, to make a system
practical, concessions have to be made in terms of confidentiality and integrity. In a
practical environment subjects need to have more rights than they are allowed under
the Bell-LaPadula and Biba models. Nevertheless, an observer might be interested
in what actual information flow has taken place to determine if undesired accesses or
modifications have occurred. Information flow analysis addresses this problem. Here,
either the possible or actual information flow of programs is analyzed to either enforce
information flow according to the model or to detect violations of the information flow
policy.

2.1 Static Information Flow Analysis

A substantial amount of research has been done in the area of static information flow
analysis [36]. The primary focus lies in assuring data confidentiality and integrity
when using certain programs on a system. One approach is to use techniques from
type systems for controlling information flow. Security identifiers are attached to
variables and expressions and used to verify the information flow at compile time [12,
13, 43, 20, 21, 35, 37]. Other approaches use semantic-based security models [42, 24],
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analyzing end-to-end program behavior, often related to some sort of noninterference
[19, 32] policy.

Static information flow analysis is a powerful method to determine how infor-
mation is propagated by which principals. However, all the programs running on a
system need to be analyzed to verify that they adhere to the information flow policy.
Even though advances are made in the automation of the tedious work, analyzing pro-
grams is still a time-consuming and expensive task that increases with a program’s
complexity. Furthermore, one can only be certain about those programs on a system
that have been analyzed, which takes away the ability to execute general-purpose
programs. This limitation is acceptable in many scenarios where knowledge of the
exact information dissemination in a system is crucial.

2.2 Dynamic Analysis

Some work exists that is intended to track runtime information flow of programs
[44]. Here it is proposed to incorporate Denning’s compiler-based information flow
concepts [12, 13] into the Java virtual machine to keep track of every user identifier
associated with the running program and then enforcing access control at the time
when system calls need to be made. A weakness of this approach is that the user iden-
tifiers are vulnerable to tampering when kept in user space. Also, no implementation
or results have yet been published.

The Data Mark Machine developed by Fenton [16] associates a security class label
with every variable on the system and is able to analyze information flow at execution
time. However, it is a highly abstracted machine not suitable to monitor information
flow on a more complex system.

Other work utilizes virtual machines that record certain checkpoints of the system
state they are emulating, thus allowing a post-event analysis of how information has
disseminated through the system. This work is either motivated by intrusion analysis
[15, 18, 26] or operating system and program debugging [27, 45, 46]. This logging of
state changes allows an investigator to retrace the operations and information flow
as it has occured on a system. However, to determine if a specific resource has been
affected by certain input or actions, a separate trace graph has to be constructed
for the resource. Furthermore, to list all resources that were affected by a specific
input or action, trace graphs for all resources must be constructed and the results be
filtered afterward.

The information flow analysis techniques we discuss here find their application
in specialized environments. To have a complete understanding of how information
flows, all the programs running on the system need to be analyzed. The alternative to
this is to limit the execution of programs to an environment where their actions can
be monitored. Thus far, research in dynamic information flow analysis has utilized
program interpreters of virtual machines for that purpose, which comes at a high
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performance cost. In this paper we will present an alternative that allows us to track
information across a system dynamically without the performance penalty incurred
by virtual machines or interpreted programs.

3 Propagation Model

The propagation model we introduce in this section is meant to reflect the methods a
(computing) system has to observe the information flow of its principals (processes).
There are similarities to Denning’s lattice model [11]. We do not, however, have a
concept of a flow relation, which governs permissible information flow. We also do
not attempt to enforce any security of the information flow on the system, but want
to merely observe it. Denning talks about dynamic binding as not being practical,
because the objects and processes of the model “are usually considered to have a fixed
class.” The approach we present in this paper utilizes labels (similar to Denning’s
security classes) to be dynamically bound to our principals and objects at run-time.
While Denning is clearly concerned about objects belonging to particular security
classes, we use our labels as tokens that are propagated during communication ex-
change. Furthermore, we only support a limited set of operations, because these are
the only ones available to a system that passively observes information exchange of
its principals. We now formally describe our model.

3.1 Causality and Labels

Consider a system that is comprised of active principals and passive objects. We
define a principal as the active agent on a system that performs actions and interacts
with other principals. A principal may act as an agent of a human being, on behalf
of other principals, or the system itself. Principals can create other principals; create,
access, and modify passive objects; and exchange information with other principals
through communication channels. We use the term subject to denote either a principal
or an object.

Principals have inputs and outputs for the purpose of interacting with other prin-
cipals and accessing passive objects. Observable changes in a principal’s state are
defined by its outputs. Such a change can be caused by many factors: implicit mea-
sures within the principal itself, input from the system, input from another principal,
input from an object, or any combination of the above. There might be other changes
of state for a principal. These may include hardware failure, electrical surges, or cos-
mic radiation. As these are non-deterministic, unpredictable events, those types of
change of a principal’s state will be ignored by our model.

We define a given input to be a cause for an observable change in state of a
principal (and thus the cause for an output), if a change in state observed in the
output is different based on whether or not the input is provided. This is consistent
with the principle of non-interference [19, 32].
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When all the internals of a principal are known and deterministic, it is possible
to analyze exactly which inputs cause what outputs. However, generally this is not
the case. If we view a principal as a black box and only observe its inputs and
outputs, even in the simple case when there are only two inputs and one output, it
is undecidable to determine which input (if any) caused the output, for the general
case [5].

To avoid the undecidability issue, we utilize a pessimistic heuristic: if an output
can be observed for a principal at time t, we consider all previous inputs of time
ti ≤ t as potentially having caused the output. Thus any information exchange
between principals – direct or indirect – has a potential effect on successive outputs
of a principal. This approach will yield false positives as certain inputs may not have
been the cause of an output. However, this ensures that any input that did cause an
output will be considered.

In the following, we will present a model that allows us to track communication
between principals based on causality. For this purpose we introduce an operation
that binds a label to a principal. By label we mean an arbitrary string of bytes whose
interpretation depends on the given application of the model. Labels are propagated

to principals and objects based on causality: if an input causes an output, the label
of the input’s source needs to be propagated to the input’s target. By propagation
we mean some function of the label and any existing labels of the target (the target’s
label set), resulting in a new label set for the target.

This approach differs from the information flow analysis methods we discussed
in Section 2. It is a dynamic run-time solution without the overhead incurred with
utilizing specialized interpreters or virtual machines. We achieve this at the penalty
of being imprecise, meaning we do not track the exact information flow but rather
all possible ones. The dynamic approach gives us the advantage of being able to
execute arbitrary programs on a system without having to analyze their information
flow first. There is no need for an interpreter-based runtime environment or virtual
machines, which incur a performance penalty. Also, no special hardware is needed to
track information flow. Using labels and propagating them dynamically at run time
means that we perform a forward propagation of meta-information. As a result, we
can observe the information immediately with the principals and objects on a system,
without having to perform any reconstruction steps as required in other work, where
the operations of a system are recorded and later analyzed [26]. With our approach
it is possible to not only determine labels sets of any given principals and objects,
but also to determine if a given label is present at what entities without having to
reconstruct the information flow explicitly for all entities on the system.

3.2 Description of the Model

The ability to bind arbitrary labels to principals allows us to address a variety of
scenarios where it is important to track not only how information propagates on a
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system but also what kind of information. It further allows us to focus on only the
information that is relevant for a given scenario.

The following is an abbreviated description of the propagation model. In this
paper we only focus on the basic model and its properties. A full description and
model variants discussing space considerations have been addressed in previous work
[5].

Information exchange between principals is performed through communication
channels that are established between the two participants. As the communication
between principals does not necessarily have to be synchronized, there may be an
arbitrary time delay between one participant’s write and the other’s read operation.
In a sense, channels are abstract passive objects that act like FIFO queues from which
principals read and write. Channels in this model are uni-directional, meaning that
only one principal may write to the channel and the other can only read from the
channel.

Information between principals may also be exchanged indirectly through storage
objects (objects). By storage objects we mean shared objects on a system that are
used to store data either temporarily or on a long-term basis. As objects may be
used to transfer information, labels from principals also need to be associated with
storage objects that are modified or created by them, and be propagated to principals
accessing those objects. Here, the concept of information exchange is less restrictive
than above, as only a modification of the object or actual data transfer from the
object needs to be considered. The mere existence of an object may also be used to
exchange information between principals one bit at a time: one principal can create
or destroy an object while a second principal tests for the object’s existence. If the
two principals synchronize their operations, they can exchange information this way.
This is the type of channel Lampson defines as a storage channel [29, 30].

We define the following sets for the propagation model:

L: set of labels

P : set of principals

O: set of storage objects

C ⊆ {P × {P ∪ O}} ∪ {{P ∪ O} × P}: set of ordered pairs 〈i, j〉 ∈ C if and only if a
communication channels exists between i ∈ P and j ∈ {P ∪O} or i ∈ {P ∪O}
and j ∈ P .

label(): P ∪O → 2L, a function that given a principal or an object returns a subset
of L that is called the label set of the principal or object. The function label(φ)
will always return the empty set ∅.

clabel(): O → 2L, a function that given an object returns a subset of L that is called
the creator label set of the object. This function denotes the label set of the
object’s creating principal at the time of creation.
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Channels between two principals are uni-directional and function according to
the consumer-producer model as a FIFO queue. Instead of actual data items, it is
sufficient for this model to require only that the label set associated with the data is
contained in the channel. For this purpose, we define two operations on channels:

enqueue(c, l) adds a label set l ∈ 2L to the FIFO queue of channel c ∈ C.

dequeue(c) returns and removes the next label set l ∈ 2L from the FIFO queue for
c ∈ C. If the queue is empty, the empty set is returned.

We further have a mapping on label sets, update: 2L × 2L → 2L. The mapping
determines how label sets are updated as two processes exchange information. This
function must be defined for sub-models derived from this model.

Below we define the operations on the sets described above. An operation consists
of two parts: an optional precondition and an action part. If there is a precondition
associated with an operation, it must be fulfilled for the operation to succeed. Oth-
erwise, the operation fails. Operations without a precondition will always succeed.
Only a principal may perform an operation. To avoid a cumbersome notation, the
principal that performs the operation can either be implied from the operation itself,
or, if necessary, is explicitly mentioned.

create(p1, p2) Principal p1 creates principal p2. The label set of p1 needs to be
inherited by p2:

P := P ∪ {p2}

label(p2) := label(p1)

create(p, o) Principal p creates object o. The object’s label set as well as the creator’s
label set need to be inherited from p:

O := O ∪ {o}

clabel(o) := label(o) := label(p)

open(p1, p2) The channel 〈p1, p2〉 is opened between principals p1 and p2. The chan-
nel has the direction from p1 to p2, meaning that p1 can perform write operations
and p2 can perform read operations on the channel. Whether the operation of
opening the channel succeeded or not can already be viewed as the exchange
of 1 bit of information: success or failure. Therefore, the label sets of both
principals need to be updated at this point:

C := C ∪ {〈p1, p2〉}

label(p1) := label(p2) := update(label(p1), label(p2))
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open(p, o) The channel 〈p, o〉 is opened between principal p and object o. P can
write to the object. A successful open indicates that o actually exists, so the
object’s creator label set needs to be updated with the principal’s:

C := C ∪ {〈p, o〉}

label(p) := update(label(p), clabel(o))

open(o, p) This is analogous to the previous operation, using channel 〈o, p〉 and p
having read access instead.

write(p1, p2, n) Principal p1 writes n data items to the channel 〈p1, p2〉, i.e. it consists
of n enqueue operations. In this case the channel 〈p1, p2〉 needs to be open.

Precondition: 〈p1, p2〉 ∈ C

repeat n times:

enqueue(〈p1, p2〉, label(p1))

write(p, o) Principal p writes data to object o. In this case the channel 〈p, o〉 needs
to be open. Because o is receiving information, o’s label set needs to be updated
with p’s:

Precondition: 〈p, o〉 ∈ C

label(o) := update(label(p), label(o))

read(p2, p1, n) Principal p1 reads and removes n data items from channel 〈p2, p1〉, i.e.
it performs n successive dequeue operations.. In this case the channel 〈p2, p1〉
needs to be open. Because p1 is receiving information, p1’s label set needs to
be updated with the ones read from the channel:

Precondition: 〈p2, p1〉 ∈ C

repeat n times:

label(p1) := update(label(p1), dequeue(〈p2, p1〉)

read(o, p) Principal p reads data from object o. In this case the channel 〈o, p〉 needs
to be open. Because p is receiving information, p’s label set needs to be updated
with o’s:

Precondition: 〈o, p〉 ∈ C

label(p) := update(label(p), label(o))
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close(p1, p2) The channel 〈p1, p2〉 between principals p1 and p2 is closed. Both princi-
pals may interpret this event, so this can be seen as a 1-bit information exchange.
Both principals’ label sets need to be updated with each other’s label sets:

Precondition: 〈p1, p2〉 ∈ C

C := C − 〈p1, p2〉

label(p1) := label(p2) := update(label(p1), label(p2))

close(p, o) The channel 〈p, o〉 between principal p and object o is closed. No infor-
mation is exchanged.

Precondition: 〈p, o〉 ∈ C

C := C − 〈p, o〉

close(o, p) This is analogous to the previous operation, using channel 〈o, p〉 instead.

addlabel(p, l) Label l is bound to principal p. L needs to be added to any existing
labels in p’s label set:

label(p) := label(p) ∪ {l}

destroy(p) Principal p is destroyed. All open channels involving p are closed.

P := P − p

{〈x, y〉 ∈ C|x = p ∨ y = p} : close(x, y)

destroy(o) Object o is destroyed. All open channels involving o are closed.

O := O − o

{〈x, y〉 ∈ C|x = o ∨ y = o} : close(x, y)

A sequence of operations is an ordered list of operations, in the order they oc-
cur. At any given discrete time interval ti exactly one operation is allowed and that
operation is considered atomic. To extend the model, it may be necessary to de-
fine composite operations from the basic operations given above. For example, the
opening of a bi-directional channel between principals p1 and p2 may be defined as
{open(p1, p2), open(p2, p1)}. This new operation is also atomic. There is also an initial
state of the system, which at a minimum consists of P = {p0} and label(p0) = {}.

10



3.3 Properties of the Propagation Model

For the remainder of this paper, we require that the label-updating function update

preserves the labels. An example of this is the set union operation, i.e., update =
∪. Furthermore, we define a special set Pg ⊂ P of principals, which contains the
principals that may generate labels.

Such a group Pg of principals implies that each label is uniquely identifiable as
having originated from a particular principal or a group of principals from Pg. That
means there is a mapping originated : L → 2Pg that takes a label and returns the
principal that created the label or the group of principals from which the label could
have originated. For example, if we have a group of principals httpd, telnetd,

ftpd, sshd, which are responsible for communicating with principals from other
systems and they generate labels identifying those systems, then any label found
within the system that is an identifier of a foreign system must have been generated
by one of those four principals.

We shall now give an informal description of what we consider information ex-
change between principals. Intuitively, two principals exchange information at or after
a given time when data flows from one to the other. If intermediaries, such as other
principals or objects, have been used to exchange the information, then information
is exchanged between the source and the intermediaries as well as the intermediaries
and the target. The successful opening of channels constitutes a 1 bit information
exchange. In case of checking the existence of an object for the purpose of information
exchange is only relevant for the creator of the object and the principal who tests
the existence. Principals who may have written to the object in the meantime do
not matter as they played no role in the existence of the object. Writing data into
a channel is only relevant if that very data is also read. That means that if data is
already present in the channel prior to a write operation w, that data needs to be
read from the channel before a reading principal is affected by w.

Because of our conservative approach when tracking information flow, we can not
be sure that information was actually exchanged between principals. However, infor-
mation could have been exchanged. Therefore, we consider a potential information

exchange path IEn(p1, p2) between two principals p1, p2 ∈ P as a sequence of n ≥ 1
operations from our model

op
1
(p1, s1) ◦ op

2
(s1, s2) ◦ . . . ◦ opn(sn−1, p2)

that directly adheres to the above description. For a more formal description we refer
to previous work [5].

Some operations may only be in the path if they are matched with other operations
in a manner so that information is propagated from one subject to the next. A write
operation needs to be matched with sufficient read operations, an open operation
of a channel between principals is only relevant for the information exchange if the
opening principal was created by an operation in the path, and an open operation of a
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channel involving an object is only relevant if the object was created by an operation
in the path. In general these operations may exist by themselves, but without their
matching operations will not contribute to the information exchange and therefore
need not be in the path.

We say p1 and p2 potentially exchange information iff there exists a potential
information exchange path between p1 and p2.

Given the definitions above, our model has the following two properties1:

1. If information is exchanged between principals p1 ∈ Pg and p2 /∈ Pg, and label
l ∈ label(p1) prior to the information exchange, then l ∈ label(p2) after the
information exchange.

2. If principal p2 /∈ Pg and label l ∈ label(p2), then information was potentially
exchanged between p2 and a principal p1 ∈ originated(l).

4 Implementation

In the following we discuss the implementation of our model as a proof-of-concept
study. The model was implemented by modifying the FreeBSD 4.12 operating system
[17]. The implementation is kernel-based, which means that the propagation method
lies in a protected space that cannot be tampered with from user mode programs.
If the kernel can be trusted, then so can the label propagation and any information
gained by it. Implementing the model for a real production operating system as
opposed to a simulated one serves multiple purposes:

• We demonstrate that utilizing the model is feasible for modern operating sys-
tems.

• We can accurately measure the computational overhead needed for label prop-
agation to work.

• We encounter and can address the difficulties and limitations that come with
such an implementation.

• Results obtained from this proof-of-concept implementation may be applied to
other operating systems with similar architectures.

Section 4.1 describes which subsystems would need to be addressed for a full im-
plementation of the model we described. Given that our implementation is merely
a proof-of-concept, we focus on the major subsystems needed for label propagation
to function. It addresses all the important aspects that need to be considered, and

1A proof of the properties can also be found in previous work [5]
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most of the other subsystems can be implemented in a similar fashion. In the sub-
sequent sections we describe the parts that were actually implemented, namely: the
data structures and operations introduced to the kernel (Section 4.2), how to mod-
ify network sockets as part of interprocess communication (Section 4.3), and how to
handle label propagation for files (Section 4.4).

4.1 Subsystems Affected by Label Propagation

Applying our model for a computing system means that we need to translate the
sets of principals, objects, and channels to entities of the system. Furthermore, the
operations of the model need to be implemented accordingly. The acting principals
on a computing system are its processes. Therefore, the set P maps to the set of
processes on the system. This is consistent with the notion that on all computing
systems, there is one initial process (such as init in the UNIX world), from which
subsequently all other processes on the system are created (unless it is not a multi-
process system, in which case there is only one initial process). The set of objects O of
the model are all the resources that are shared on the system among processes. Those
resources that belong solely to one given process need not be considered. Furthermore,
the set of possible channels is comprised of the system’s provisions for interprocess
communication, as well as the means to access, modify, and create shared resources.
To implement label propagation for an entire operating system, essentially three parts
need to be completed:

1. The system needs to be aware of labels and be able to bind them to its principals.

2. All interprocess communication needs to be covered by the label propagation
mechanism.

3. All objects shared among processes need to be associated with labels for the
duration of the sharing and those labels updated according to the model.

4.1.1 Shared Resources

The resources that are shared among processes on a system are numerous. In FreeBSD
and other UNIX-type operating systems they consist of at least the following[39, 5]:

• Files

• Mutexes and Condition Variables

• Read-write and Record Locks

• Semaphores

• Shared Memory
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• Sockets and Message Queues

The implementation we describe in the following handles label propagation for a
fixed number of globally shared labels. That means that there is an upper bound on
the number of labels, which allows us to allocate sufficient space for the processes and
objects or fail during their creation. Furthermore, the update function will always
succeed and we do not have to worry about the measures to take when there is
insufficient space for labels as a result of the update.

As there is no system involvement when shared memory is processed, there is no
elegant solution to keep track of label propagation. One might imagine monitoring
all the system calls that involve copying of data between buffers and determine if any
of the addresses involved fall into a shared memory region. However, because data
may directly be assigned in chunks of up to a word length, this will not cover all
of the information flow between processes. Barring the utilization of static analysis
techniques as discussed in Section 2.1, a monitoring device such as Fenton’s Memory
Mark machine [16], or the utilization of virtual machines or special hardware, the
only reliable method to properly implement the model is once again conservative: all
processes that share memory between them need to be treated as a single principal
during the duration of the sharing. For an implementation of this, for every operation
that involves a principal, further lookups will have to be made to see if it belongs to
such a group and then perform the operation for all processes involved. The utilization
of shared memory is a feature not common to many programs. Thus, the inclusion
of such a mechanism lies well outside of a proof-of-concept implementation, and we
will not consider shared memory any further (and as a direct consequence we also
will not have to consider mutexes, condition variables, and read-write locks)[5].

4.1.2 Interprocess Communication

Interprocess communication mechanisms allow two processes on a system to exchange
data. In UNIX-like operating systems there are the following mechanisms available
[31, 39]:

• Pipes and FIFOs

• Sockets

• Message Queues

• Remote Procedure Calls

• Signals
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4.1.3 Operations and System Calls

In FreeBSD and many other operating systems the way a process is able to commu-
nicate with other processes or access system resources is governed through the use of
system calls. System calls are the interface from user space processes and the oper-
ating system kernel. The shared objects are created and manipulated that way and
all the interprocess communication mechanisms utilize system calls. Due to space
constraints we are unable to discuss at large the details of our implementation. For
a more detailed description we refer to previous work [5, 9]. In the following we give
a rough outline of the implementation efforts.

Table 1: FreeBSD system calls and their relevance to the model

Operation System calls
Create fork, open, creat, mknode, fcntl, sem open,

semget, sem init

Open pipe, socket, socketpair, accept, msget, open

Write write, writev, send, sendto, sendmsg, fnctl,

ioctl, setsockopt, msgsnd, msgctl, kill, sem wait,

sem trywait, sem post, semget, semop, semctl,

pwrite, open, ioctl, truncate, ftruncate, chmod,

fchmod, lchmod, chflags, fchflags, chown, fchown,

lchown, utimes, lutimes, futimes, rename, link,

symlink, mkdir

Read read, readv, recv, recvfrom, recvmsg, fcntl,

iocntl, msgget, msgrcv, msgctl, sem trywait,

sem getvalue, semget, semop, semctl, pread, stat,

lstat, fstat, poll, access, chdir, fchdir, readlink

Close and destroy close, pclose, shutdown, msgctl, kill

Table 1 gives an overview of which FreeBSD system calls are relevant for which
operation of our model. The number of system calls we have listed there that need to
be modified to allow full label propagation is extensive. Some of the implementation
work may be reduced as some system calls share lower level functions in the kernel,
where the appropriate modifications may be performed (see the following sections).
However, most of the complexity arises from the need to address communication
through storage channels. In the general case processes will not abuse mechanisms
such as the existence of files, locks, semaphores, or message queues, changes in socket
parameters, or changes in file metadata to exchange information. With the introduc-
tion of observation techniques such as the ones we discuss in this paper, this may
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change, however. If all legitimate channels on a system are effectively monitored then
malicious users will find ways to circumvent those channels. However, addressing
those storage channels in a proof-of-concept implementation is well beyond the scope
of the work we present here. Therefore, we picked the most relevant subsystems and
focused only on implementing label propagation for the data channels on the system.
That means that we will ignore the open and close operations of our model, and
do not keep track of creator label sets. The techniques we describe in the following
should apply for most of those instances, and many of the system calls we do not
address can be modified in the same manner as we describe below.

4.2 Data Structures and Operations

The main data structure that manages the labels in the kernel is a global table, which
is an array that contains the label data as well as its position within the table. This
allows the referencing of a label to be its entry number within the label table. Thus,
any given label set associated with a process or object can be as simple as a bit-vector,
where each bit signifies whether the label at that position is contained in the set or
not. That means that any given label set is a bit vector with as many bits as there
are possible labels. Note that the actual content of the label is not important for the
propagation at all. Any interpretation of the labels is done by other extensions of the
system (i.e., access control mechanisms, logging facilities, etc.), which are outside the
scope of this work.

It is conceivable to have a further mapping that, given a label, finds the position
in the table. This may be useful to determine if a potentially new label to the system
is already contained in the label table (and thus is not new). This may be achieved,
for example, with a binary search tree using the label data as a key that maps back
to the position in the global table. The global table will still be necessary, because
once a position has been assigned to a label it must be permanent or the label sets
will carry incorrect information. Plus, we achieve a O(1) lookup for a given position
in the table as opposed to the O(log n) such an operation would take if only a search
tree were realized.

To provide an interface to user space that allows user programs to query processes’
labels, two new system calls were introduced to the system. The getlabel call
retrieves the label set for a specified process id and stores it into the supplied buffer.
The getlabeldata call retrieves the label data for the specified entry in the global
label table and stores it in the supplied buffer. It is thus the responsibility of the
user space program to compute the position in the label table from the bit vector and
then retrieve the data.

For debugging purposes we also implemented another system call, addlabel,
which binds a new label to a specified process. This call would not be part of a
regular system.

Note that there are no operations removing labels from the system. That means
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that the proof-of-concept implementation will only be useful to a limited degree for
label sets that are not fixed in size. This could be remedied by introducing a reference
count for each label and, once the reference count reaches zero, removing the label
from the table. However, this would imply that the update function no longer is a
simple “OR” operation. The update function now would need to determine which
labels were newly added to label sets as part of the update and increase the reference
count. Furthermore, whenever a process, shared resource, or label set residing in a
channel gets destroyed the reference count needs to be decreased.

4.3 IPC: Sockets

From the different types of interprocess communication described in Section 4.1.2,
the socket subsystem is the most complex one. The FreeBSD implementation of
pipes utilizes supposedly the socket infrastructure to transmit data [31], but our
performance overhead results in Section 5.4 indicate otherwise. Furthermore, the
Sun RPC mechanism also uses sockets and the network subsystem to function. That
and the fact that message queues are commonly not used too often by programs led
us to implement label propagation for the socket subsystem only.

The system calls that we need to consider for an implementation are read, readv,
recv, recvfrom, recvmsg, write, writev, send, sendto, and sendmsg. However,
there are lower level functions that are invoked by those system calls, which, in turn,
all call the soreceive function for the reading calls and sosend for the writing calls.
Figure 1 illustrates the function hierarchy and the overall network stack structure of
FreeBSD.

We modified the sosend and soreceive functions to prepare the mbufs as de-
scribed above with some minor changes to the soo read and recvit functions, as
well.

4.4 Shared Resources: Files

Files are by far the most complex among the shared resources in FreeBSD. Further-
more, files are the only kind of shared object in the system that are intended for data
exchange (we do exclude shared memory from our analysis; see Section 4.1.1). Thus
our proof-of-concept implementation needs to deal only with files for label propaga-
tion among shared resources.

FreeBSD, like many other UNIX-like operating systems, supports many different
file systems. To bring many different file systems with different layouts and operation
into one single framework transparent to the user space processes, FreeBSD utilizes
a virtual file system layer. This ensures that standard operations that the operating
system supplies can be properly mapped to the file system specific functions. The
generic operations that can be performed on a file descriptor by a process are mapped
in a structure, which contains pointers to the appropriate low-level operation for
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Figure 1: FreeBSD kernel functions for socket I/O

the underlying file system. This is done for read, write, ioctl, poll, stat, and close
operations.

There are two ways to implement label propagation regarding file systems: the
labels are stored with each file, or the kernel itself keeps track of which file is as-
sociated with what labels. The first approach has the advantage that there is little
computational overhead as there needs to be no explicit mapping of files to labels.
Simply by accessing the file, which is done anyway during the operations, the label
set may be retrieved. Plus, the labels for a file are automatically stored permanently.
However, this way each individual file system needs to be modified to accommodate
label propagation. This might not be possible for certain file systems. While for some
file systems, such as ext2 [10], there are unused fields (e.g., the access control pointer),
which can be used to point to blocks containing labels, there is no such extra space
in the Reiser file system [4], and future file systems might be similarly frugal with the
space they use. When the kernel keeps track of what the labels for a file are, then
there needs to be some sort of lookup data structure for the mapping. However, by
keeping the mapping in the kernel, the implementation is independent of the under-
lying file systems, supporting any of those supported by the operating system itself,
provided a unique identifier can be assigned to each file on the system. Furthermore,
a data structure that contains all the files that have label sets associated with them
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allows us to efficiently answer questions such as: “Which are the files that possess
label X?”. If labels were stored directly with the file, then all the files on the system
would have to be examined, not only those that have a label set.

Because of those advantages and the fact that an implementation affects fewer
subsystems of the kernel, we have decided to keep track of file label sets directly in
the kernel. For this, we have implemented a global mapping that utilizes a balanced
binary search tree. This gives us O(log n) lookup and insertion time, where n is the
number of files with labels.

Files in FreeBSD (and according to the POSIX standard [22]) are uniquely iden-
tified system-wide by the pair of device and inode numbers. This is because, inode
numbers are unique only within the disk partition where they reside. Both are cur-
rently 32-bit values, so there is a hard upper limit of 64 comparisons for up to 264

total items when performing operations on the binary search tree.
The system calls that are responsible for data transfer to and from files are read,

readv, write, writev. The read and readv system calls, both invoke fo read,
which invokes the proper low-level function for read (this is true not only for regular
files, but also for sockets and pipes). Therefore this is the place to handle the label
propagation. After a successful call to the low-level read function we retrieve the
device and inode information. If an entry for the device/inode pair exists, then we
update the calling process’s label set with the one retrieved by the lookup.

Similar to the reading calls, the fo write function is called by the writing system
calls. After a successful low-level write operation and if the calling process has a label
set associated with it, we perform a lookup and update the retrieved label set with
that of the writing process.

5 Results

In the following we demonstrate the effectiveness of our approach by showing how
to use the implementation to solve some of the problems discussed earlier. Further-
more, we will measure performance overhead to show that an implementation of label
propagation is feasible.

5.1 User Influence

We shall demonstrate the effectiveness of user influence labels by using the following
example. As depicted in Figure 2, the process controlled by User A reads data from
File 1. It then communicates via interprocess communication (IPC) with a process
controlled by User B, which subsequently creates a new file with the content of what
was communicated during the exchange with User A.

To associate a user identifier with the processes that are under that user’s control,
we bind the user ID that is assigned to the process at login time to the process as
a label as well. While this may seem redundant at first, note that the user ID of a
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Figure 2: The contents of File 2 are influenced by User A

process that is recorded in the process table is subject to change during subsequent
login and logout operations (e.g., via the su command), while a label is persistent.
The setlogin system call was modified to add the user identifier as a label to the
process’s label set that invoked the setlogin call.

To illustrate that any labels already attached to the original file will also be
propagated, we first execute the set filelabel system call to bind a label to the
file. Then we execute a program that opens the file, reads data from it and then
opens a TCP connection to a second process with a different user id and transmits
the file. The program also prints out the label set to the console before and after each
operation. The second process (listening on the TCP socket) reads the data from the
first process and then creates a file with the data it received. Finally, we execute a
program that calls get filelabel to see what the label set of the newly created file
is. The output from both user sessions are shown in Figure 3.

The setfilelabel program binds the label “File XXX” to the file XXX on the
system. The sender program opens the file specified on the command line, reads a
number of bytes from it, then opens a TCP connection to port 7000 on the local host
and transmits the data that was read from the file. The receiver program listens for
TCP connections on port 7000. Once a connection is established, it reads a number
of bytes from the socket and then creates a new file with the data it received. The
sender and receiver program also print out their label sets before and after the
operations that receive data.

Initially the two processes have only the user id label bound to them.2 After
reading the file, Process A now also contains the label “File XXX”. After receiving
data from the network socket from Process A, Process B has three labels associated
with it: “User 1002”, its original label, as well as labels “User 1001” and “File
XXX”. After Process B creates and writes data to file YYY, the filelabels program
reveals that the label set of file YYY also contains those three labels. An investigator
examining file YYY now can determine that both users 1001 and 1002 could have
played a role in the current state of the file, plus that there is a possibility that the
contents of file XXX might also have been an influence. We can further conclude that

2For better readability we actually use a string ’User nnnn’ as a label as opposed to a 2-byte
label containing only the id itself.
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SESSION A SESSION B

% ./setfilelabel 265476 649649 "File XXX"

% ./receiver YYY

Receiver starting with pid 162

Label set at start:

Label 0: User 1002

Listening on port 7000

% ./sender XXX

Sender process starting with pid 163

Label set:

Label 1: User 1001

Label set after reading file:

Label 1: User 1001

Label 2: File XXX

Writing data to socket

Connection established

Label set after socket read:

Label 0: User 1002

Label 1: User 1001

Label 2: File XXX

Writing to file YYY

% ./filelabels YYY

File YYY has labels:

Label 0: User 1002

Label 1: User 1001

Label 2: File XXX

Figure 3: Output from the user influence test from both user sessions

no other users could have been responsible in the creation or modification of the file
YYY.

5.2 Location Information

To show that the label propagation also works well with non-custom programs, we
also tested the location information case study as described in previous work [8].
Here, we assign origin information to a file containing C-source code, a library used
in the code, the gcc compiler, and the current session as shown in Figure 4.

We do this manually through utility programs that call the system calls set filelabels

and addlabel and then compile the program. Then we use the program from the
previous example to print out the label set of the newly created file (see Figure 5).

As in the example, we bind a label called “OS-CDRom” to “/usr/bin/gcc”, “Con-
sole” to the “sender.c” file, “Website” to the file “printutils.c”, which we compile in
directly as opposed to implementing a library from it first; the result is the same. Plus,
we bind a label “192.168.0.1” to the shell process. We then compile the “sender.c”
program. A filelabels lookup on the file “sender” now shows that the file is asso-
ciated with all of the labels of the entities that played a role in its creation.
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Figure 4: Given the origin of the involved entities, what is the origin of the new file?

5.3 Remote System Compromise

A system is compromised, when an unauthorized user has gained control over the
system. This is typically done by exploiting a vulnerability of the system to re-
ceive access to the system and permissions to perform certain tasks. In many cases,
the compromise occurs through the exploit of a vulnerability of one of the system’s
network services. Our label propagation mechanism does not differentiate between
authorized and unauthorized accesses and operations. If we are able to bind a location
label to the process accepting the network traffic, then those labels are propagated
for both legitimate as well as malevolent uses. If a real compromise occurs from a
remote location, all processes and files affected by it will be labeled with that location
label.

To simulate a system compromise we will run a program that accepts network
connections and supplies a shell. This is the basic functionality of a backdoor pro-
gram, but could also be the result of the compromise of a well-known server daemon
process (be it httpd running as the http user, or even sshd running as the root user).
The nature of the compromise (e.g. buffer overflow or script vulnerabilities) is not
important, the end result is the same: a remote attacker has access to a shell with
the privileges of the daemon process that was compromised. Thus it is sufficient to
test the label propagation with a “normal” remote login via ssh.

For our labeling approach to capture the entry point of the intrusion, we need to
associate network-location labels to those processes receiving data from the network.
For this, we have modified the accept system call to bind a label to the process
invoking accept whenever a connection is successfully accepted. For demonstration
purposes, we only use the foreign IP address as a label. For a more complete network
identifier, the 4-tuple of foreign IP address and port as well as the protocol and local
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% ./setfilelabel sender.c Console

% ./setfilelabel /usr/bin/gcc OS-CDRom

% ./setfilelabel printutils.c Website

% ./setproclabel -1 192.168.0.1

% gcc -o sender sender.c printutils.c

% ./filelabels sender

File sender has labels:

Label 0: Console

Label 1: OS-CDRom

Label 2: Website

Label 3: 192.168.0.1

Figure 5: Output from the location information case study

port information can be used. For UDP, a similar addition can be made to the recv

and recvfrom system calls.
Figure 6 shows an ssh session with location labels enabled. The process running

the proclabels program is clearly marked with the location label3, which means that
the process running the shell also carries the label. Furthermore, if we create new
files on the system or modify existing ones, the label is propagated.

florian@schlaraffenland:~> ssh morpheus-8

Password:

Last login: Tue May 17 14:09:40 2005 from schlaraffenland

Welcome to FreeBSD!

%./proclabels

Process ID: 74778

Label 0: 128.10.243.68

%echo test > testfile

%./filelabel testfile

File testfile has device 0x40d04 and inode 651811

Syscall result: 0. Ret: 1

File testfile has the following labels:

Global pos: 0 data: 128.10.243.68

%

Figure 6: An ssh session with location labels

The approach we chose of binding the label at the time of accept has the dis-
advantage that the common network server architecture as described by Stevens [38]

3Again, we bind a string containing the IP address as a label for the purpose of better readability
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has the server accept a connection and then fork a child process. The child process
inherits all the connections from its parents and does the actual handling of that
particular session, while the parent process goes back to the listening state. This
means that over time the server process will accumulate all the labels of the past
network connections and pass those labels on to its children. This can be avoided if
we supply a new system call that accepts the connection, automatically forks a child
process, and only then binds the label to the child. An alternative location to bind
the network-location label is the interface on which the data is received. If the label
is generated there and then associated with the mbufs that make up the network
packet, then our socket implementation as described in Section 4.3 will automatically
update the labels to exactly the processes that receive the data. The disadvantage
of this is that every time data enters the system from the network we need to make
a lookup whether the network-location label is already in the system or not, which
may slow down performance.

5.4 Performance Overhead

In this section we will describe the results of performance overhead measurements
we performed for the proof-of-concept implementation. We ran our experiments on a
Sun SunFire V60x with an Intel 2.8 GHz Xeon processor, 512MB RAM, and a 36GB
SCSI hard drive. As a baseline we use the generic FreeBSD 4.12 kernel that comes
with the regular installation of the operating system. We then ran the performance
tests on the same hardware booting the modified version of the kernel.

To measure the overall performance, we utilize the LMBench [33] benchmark
suite. LMBench is a set of small micro-benchmarks, which measure system latency
and bandwidth of data movement among the processor and memory, network, file
system, and disk. LMBench is a widely used benchmark suite used to profile many
hardware and software systems, providing more accurate results compared to other
benchmarks in many cases [34]. We have broken down the tests into four categories:

1. Processor and process tests. These are tests that measure the time it takes a
process to perform certain tasks. These include a basic system call (null call),
the installing of a signal handler (sig inst.), the signal handler overhead (sig
hand.), the time to fork a new process (fork), the time to execute a simple
program (exec), and the time to execute the ’/bin/sh’ program (sh). Of par-
ticular interest to us are the times for the fork and the executions as these are
directly affected by our modifications. The fork mechanism takes care of the
label propagation by inheritance and the execute test further makes some read
operations to access the specified programs.

2. File system tests. The file system tests consist of several simple tests to measure
the execution time of the read system call for a file (read), the write system
call (write), performing a stat operation on a file (stat), performing an fstat
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operation (fstat), the opening and closing of a null file (open/close), as well
as the select operation on 500 file descriptors (select). These tests use the file
system cache, not the actual time it takes for the disk operation as there are too
many unknown factors to consider to generate reproducible results for those.
Of particular interest are the measurements of the read and write operation as
they are directly affected by our modifications.

3. Network latency tests. These tests determine the time it takes for network
messages to propagate. Short control messages are sent back and forth between
processes and the round trip time is measured. This is done for pipes as well
as sockets of types AF UNIX, TCP, and UDP, all within the local host. All
of these tests are relevant as they all measure the performance of the socket
subsystem that we modified.

4. I/O bandwidth tests. The bandwidth test measure the data throughput on
the system. All of these tests write a certain amount of data to a file or a
communication channel in transfers of constant size. The file write test writes
8MB of data in 64K buffers. For the IPC bandwidth tests two processes are
created that transfer the data between them. Pipes transfer 50M in 64K chunks,
and the TCP and AF UNIX sockets transfer 50M in 1M chunks. All of these
tests are relevant as they directly measure the impact of our modifications to
the I/O throughput of the system.

These tests were run on the regular FreeBSD 4.12 kernel (FreeBSD) as well as on
three variants of our modified kernel. The first version (Label-0) is the kernel with
all the modifications for label propagation in place but without any labels actually
present in the system. This captures the overhead of a system with label propagation
in place without labels present, but also gives a measure for how the socket subsystem
is affected if the processes involved have no label sets associated with them. The sec-
ond version (Label-s), in addition to the Label-0 version also has a label associated
with the shell process that invokes the LMBench test suite. It is sufficient to only
bind one label to the process as the entire label vector is propagated once a process
is marked to have labels. Furthermore, a small set of files is marked with labels as
well. This number is initially one, but as files are created during the performance
test, the number will increase slightly. This version will give a measure for the socket
subsystem overhead as well as the file system performance for a small set of files with
labels. The last version (Label-l), in addition to the Label-s version, has a large
number of files in the system. This will give a measure for the file system overhead
for a large number of files.

To label the files for the Label-l set, we used a program that utilizes the set filelabel

system call in a for-loop for different inode numbers to generate a set of 100,000 files
– 50,000 for each of the two disk partitions on the system – that have labels associated
with them. The maximum number of labels in the system was set to 1024, which
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means that the label vectors are 128 bytes long. This allows us to use the label vector
for user influence as the normal number of users on a system is well below 1024. We
chose the maximum number of labels significantly higher than the expected number
of users on a system, so we can also gain a measure for the performance overhead of
a large fixed-label set implementation. Thus, our results for the user influence are
pessimistic while our implementation still enables us to maintain location information
for a limited number of locations.

Each test was performed 200 times for each kernel version, and the results are
shown in Tables 2 through 5. Detailed measurement results including mean, standard
deviation, minimum, and maximum for each version are available from previous work
[5].

Table 2: Processor and process tests – times in µs
Kernel Null call sig inst. sig hand. fork exec sh
FreeBSD 0.4504 0.6643 1.3467 129.0783 594.1023 1176.8880
Label-0 0.4499 0.6666 1.3404 128.3902 596.1760 1173.6708
Label-s 0.4498 0.6650 1.3364 129.1161 602.4783 1185.3990
Label-l 0.4501 0.6658 1.3393 129.1359 604.5881 1187.9500

Table 2 shows that our experiments show only a slight increase in execution time
for the process tests. System calls and signal handling is not affected by our modifi-
cations. The fork system call has to copy an extra 132 bytes, 128 for the label vector
and 4 for the label flag. The measured overhead for this is less than 1%. The times
for the exec and /bin/sh tests are influenced by the file system performance. The
observed overhead here lies between 0.3% when no labels are present to 1.7% for the
large set of labeled files (both for the exec test).

Table 3: File system tests – times in µs

Kernel read write stat fstat open/close select
FreeBSD 1.0437 0.9836 2.2547 0.6598 3.3546 19.8101
Label-0 1.1235 0.9839 2.2744 0.6649 3.4365 20.0437
Label-s 1.2139 1.3903 2.2739 0.6662 3.4457 19.9333
Label-l 1.3297 1.4934 2.3362 0.6621 3.4701 19.9283

Table 3 shows the execution times for the file system calls. As expected, there is no
noticeable difference between the FreeBSD and the Label-0 kernels. We measured a
an average of 0.0798 µs (7.6% overhead) for the read test, which can be attributed to
the lookup that is performed for the file. The stat, fstat, open/close, and select

test did not have any noticeable differences between the kernel versions, as expected.
With labels present on the system the read test now showed a difference of 0.1702
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µs (16.3%) for the small label set and a difference of 0.2860 µs (27.4%) for the large
label set. When comparing the Label-s and Label-l versions, the overhead for the
100,000 labeled files (a binary search tree depth of about 16) is 0.1831 µs (15.1%). For
the write test, there is no noticeable difference between the FreeBSD and the Label-0
versions. This was to be expected as no lookups are performed and no labels need to
be inserted into the binary tree. For the remaining two versions, the write test was
measured with an overhead of 0.4067 µs (41.3%) for Label-s and 0.5098 µs (51.9%)
for Label-l, respectively. This is because first a lookup is performed to see if a label
set is already present in the search tree, and if not one needs to be allocated and
inserted. When comparing the small and the large label set versions, we observed an
overhead of 0.1031 µs (7.4%). Note that all the observed differences lie in the tenths
of microsecond range and were performed on the file system cache for a small read
and write buffer. This makes it difficult to predict what the effect on a “normal”
system is. The results do, however, reflect the worst case scenario, where a program
performing rapid and short read or write operations could be slowed down noticeably.
For the general case, though, we do not expect this to occur.

Table 4: Network latency tests – times in µs

Kernel pipe AF UNIX UDP TCP
FreeBSD 11.2702 12.5225 17.0421 17.8300
Label-0 11.4273 12.6802 17.1144 18.0908
Label-s 11.4340 13.5479 18.0801 18.9715
Label-l 11.4582 13.5722 18.0479 18.9950

The local networking latency times are shown in Table 4. The measured overhead
in all instances is small. There is no noticeable difference between the FreeBSD and
Label-0 versions, as expected. For Label-s the we measured an average overhead
of 8.2% for AF UNIX sockets, 6.1% for UDP, and 6.4% for TCP. Label-l has an
observed overhead of 8.4% for AF UNIX, 5.9% for UDP, and 6.5% for TCP. The
fact that the measurements for the pipe latency do not vary noticeably between the
different versions leads us to believe that pipes on FreeBSD do not utilize the socket
subsystem despite such claims [31].

Table 5 shows the I/O bandwidth measurement results. Surprisingly, despite the
rather large overhead for the write system call test the file write performance does
not differ noticeably from that of the original FreeBSD kernel, even outperforming it
slightly during our measurements for Label-s and Label-l. Between the FreeBSD

and Label-0 versions we did not observe any noticeable difference. The fact that there
is a 2.0% improvement in our measurements for Label-0 in the TCP throughput,
however, suggests that there is a large variance in the network bandwidth tests as can

4file write is in KB/s
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Table 5: I/O bandwidth tests – in MB/s

Kernel file write 4 TCP AF UNIX pipe
FreeBSD 63576.9450 377.8209 617.4526 1845.4127
Label-0 63571.9400 385.6075 612.9818 1842.9119
Label-s 63630.4250 365.5163 544.0799 1835.8787
Label-l 63595.2050 366.4497 543.9735 1833.3753

also be seen in the standard deviation values [5]. Label-s shows a deprecation of 3.3%
in the TCP throughput and a deprecation of 11.9% for the AF UNIX bandwidth. For
Label-l we measured a TCP bandwidth 3.0% worse than FreeBSD and an AF UNIX
deprecation of 11.9%. Again, pipes are not noticeably affected by process labeling,
which we take as further evidence that they do not use the socket subsystem.

The overall performance overhead that we observed in our experiments for process
labeling is promising. The overhead for the individual tests ranges from smaller than
1% to no more than 10% in many cases. The read and write tests carry a higher
overhead of up to 51.9%, but the file write bandwidth was not affected at all. For
programs that frequently write small amounts of data into the file system cache this
will be a problem, but overall we do not expect the file system slowdown to be severe,
especially when factoring in the time to write the cache to the disk.

The network measurements were performed for a label vector size of 128 bytes
(1024 labels), and we expect the overhead to be smaller for smaller vector sizes. This
may well be the case for certain fixed-label set size applications of a process labeling
approach, such as user influence, where we expect the label vectors to be smaller than
10 bytes for most systems. If a fully dynamic approach with a potentially unbounded
label set size is desired, however, performance is likely to suffer more.

6 Conclusions

In this paper we presented a label-propagation model and its implementation, that lets
a system propagate arbitrary labels of information among its principals and objects
based on how information flows within the system. We have demonstrated how those
labels can be used to gain some of the desired information regarding the causal effects
of events. Our proof-of-concept implementation shows the feasibility of incorporating
label propagation for a production-type operating system with little to no overhead.

In previous work [8] we have discussed desired information from a forensic investi-
gator’s point of view. For a typical home computer none of the extra information may
be worth the space requirements or restrictions that would result from recording it.
However, when factors such as due diligence, protecting critical information, or being
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able to quickly determine what happened on a computing system are important, all
of the extra information discussed may play an important role. Current systems do
not offer the ability to record much of the desired information even if one wanted to
record it.

The label propagation mechanism we present in this paper can supply some of
the lacking information in the form of user influence and location information. The
examples we provide in Sections 5.1, 5.2, and 5.3 demonstrate the effectiveness of our
approach. We had already demonstrated the value of labeling for network traceback
in earlier work [6, 7]. When examining processes and objects on the system we now
can make statements as to whether or not they were influenced by external factors
such as different users of remote locations. We are not able to assert for sure that if a
label is found there was an actual influence, but we have proved in previous work [5]
that the lack of such labels means that no communication took place through those
channels of the system that support label propagation. Keeping the label sets of the
principals and objects of a system small is therefore an important goal, which further
needs to be addressed by future research. For this, a combination of label propagation
and access control mechanisms could be devised.

Labels are mostly meaningful when their presence at principals and objects is lim-
ited. For example, if labels are user identifiers, and a User A’s actions were influenced
by another malicious User B, then A’s process is labeled with both user ids. If only
those two labels are present and there is malicious behavior by A the list of potential
culprits may be narrowed down to A and B. If, for whatever reason, A is labeled
with all possible user identifiers on the system, the labels have become worthless be-
cause no information may be gained from them. For this reason, a production system
that implements our model should make sure that labels are only propagated when
necessary and that a principal cannot add new labels to its label set frivolously to ob-
scure its label set. Our proof-of-concept implementation in Section 4 adheres to these
principles. Also, it might be necessary to develop new, label-friendly programming
paradigms. These could include the concept of an execution context for processes,
where a new context is created for a specific task and then discarded without the
process gaining information about what occurred while the context was active. This
way, labels could be bound to the context and disappear with it instead of remaining
with the process even though they are not relevant for any new tasks. This effect of
label creep needs to be examined further and lies out of the scope of this paper.

For these reasons any framework that utilizes the model should make sure that
labels only be propagated and created when absolutely necessary. Well-behaving
principals from our case studies should not carry many labels in their label sets. In
a computing system, opportunities need to be created for programmers who develop
label-friendly programs. If the framework is used to enforce policy, then access control
mechanisms need to be implemented in conjunction with the label propagation. This
can further reduce the probability that a well-behaving principal acquires unnecessary
labels. For example, if a user by default does not have any access to other users’ data,
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he will only pick up another user label if that user explicitly grants such access and the
data is actually accessed. If the framework is used to monitor policy violations, some
sort of alert mechanism, such as in intrusion detection, could be utilized to identify
principals and objects whose label sets satisfy certain parameters. For this, some
sort of human control mechanism that allows an investigation of the label sets and
also removal of labels after the investigation, if necessary, may be useful to keep the
overall label sets small. For example, after a remote compromise has been detected
and contained, the files that were affected by it should be cleared of the labels obtained
during the compromise and its consequences. Naturally, such a control mechanism
should lie outside the normal system capabilities, such as a special run-level with an
operator sitting at the console.

Given this, it becomes clear that a computing system for the average home user is
not the target platform for our model. Limitations imposed on the system would be
too restrictive to justify the benefits. For example, if peer-to-peer file sharing software
were executed for a host causality system, a single file, once completely downloaded,
may already have hundreds of labels bound to it. If the user then accesses the file via
a shell command, the process running the shell inherits the labels and so will all the
subsequent processes that are executed from that shell and the files that are affected
by them.

For our proof-of-concept implementation we have chosen an operating system ker-
nel, as the kernel’s system call interface to the user space closely resemble the opera-
tions described in our model. For label propagation to be secure in this scenario, we
have to make the assumption that the kernel is trusted and untampered. Securing
the kernel is certainly outside the scope this paper, but project such as LIDS [47]
can be used for such measures. An operating system’s kernel is not the only place
where labeling of principals may be implemented. Integrating label propagation into
a virtual machine will enhance the trustworthiness of the labels but comes at the cost
of utilizing the virtual machine. This approach is already being realized [23]. But
label propagation may also be utilized in user applications or a middle-ware layer.
This may be desired when the label granularity of system objects is too coarse to be
of value for certain applications. Consider a database management system where the
databases are stored in large files. Associating labels about database transactions
with the files themselves might result in too many labels being associated with too
many entities of the database system. If instead the database management system
implemented label propagation through the interface it provides to the clients, labels
could be used to analyze or enforce information flow within a database.
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7 Limitations and Future Work

The work we present in this paper addresses many important aspects of label prop-
agation, the model’s properties, space concerns, and correctness as well as usability.
However, there are limitations that we do not specifically address but may be of con-
cern. Some of the limitations we discuss in the following apply to the implementation
of the model only, whereas others are also true for the theoretical model.

7.1 Privacy

The label data is not encrypted and potentially can be seen by any user on the system.
Depending on the nature of the label, this may lead to privacy concerns. One simple
measure could be to limit access to the labels only to a limited set of users. However,
this may not be sufficient in all scenarios. One can imagine situations where only the
originator of the label should have the option to disclose the data. Using a random
token instead of the actual label data may solve the problem in some cases, but once
the mapping of token to data is revealed, all users once again have access to the label
data. However, because the only requirement we impose on the label update function
is that the label needs to be preserved (or at least one should be able to deduce
the previous label from the current one), one can imagine the use of cryptographic
functions that generate a unique identifier for the result of each update operation,
where the original label data may be decrypted with a key. However, we would expect
that this functionality would come with a performance cost.

7.2 Label Accumulation

When a principal or an object accumulates many labels, the usefulness of the la-
bels’ presence degrades. When a subject possesses all possible labels, an investigator
has gained no extra information compared to a system that does not utilize label
propagation. This kind of label obfuscation may be attempted deliberately by a mali-
cious principal to obfuscate his tracks. In many existing systems there exist globally
writable objects that are read by many principals on the system. In FreeBSD there is
the syslog facility to which all processes may report and is further accessed by many
processes on the system. Services such as cron and at also may pick up labels from
all the processes that utilize them. These globally shared objects are a problem when
looking to avoid label obfuscation. One could try to eliminate the global sharing by
providing mini-services that are valid only for one given process. While this may be
acceptable for cron and at, a per-process syslog service would yield scattered log
files, with much less usefulness than a single log file would have.

The above discussion about how to deal with label obfuscation and globally shared
resources on an existing system shows that label propagation will not always work
smoothly together with existing systems. Our proof-of-concept implementation shows
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that label propagation can work with a system such as FreeBSD, but some of the
limitations will be difficult if not impossible to remove. The intent of our work
lies primarily in the introduction of the label propagation paradigm. While legacy
systems may be adapted for label propagation, we feel that systems designed with
label propagation in mind will benefit the most from the concepts discussed here. But
not only systems should be designed with label propagation in mind. Label-friendly

programming techniques could be used to keep the label set of a process as small as
possible. If all “normal” programs adhere to this principle, misbehaving processes
could be better identified and contained.

7.3 Multi-threading and multi-processors

The implementation of label propagation we present in this paper does not support
separate label sets for threads of a multi-threaded process. As threads share mem-
ory space among them, the system is not able to monitor information flow between
threads. Given that some programs use a large number of threads to perform tasks,
in some cases the granularity of labels for the entire process may be too coarse,
meaning that the process will accumulate all of its threads’ labels. However, as with
shared memory, barring special hardware that can monitor those information trans-
fers, implementing label propagation on the operating system level prohibits label
propagation on the thread-level.

We also do not discuss architectures that utilize multiple processors. In this
case the sense of a “system” is distributed among the processors, which can lead to
problems for label propagation due to concurrency.

7.4 Label retention

Labels are not stored permanently in our proof-of-concept implementation. Once the
system reboots, all labels are lost. Incorporating label support directly into a file
system, as mentioned in Section 4, is one necessary step to achieve a permanent label
retention on a system. In addition to that the labels need to be read from storage
at start-up and be written to storage at shutdown. This introduces the danger that
labels may not be stored when the system is not shut down properly (i.e. it crashes).
Storing the label periodically can reduce the number of labels that are potentially lost,
but the threat of losing labels remains. Also, if labels sets are stored in label-vectors
as in our proof-of-concept implementation, the global label table needs to keep labels
always in the same order. This is because not all labels are necessarily introduced
to the system at start-up. Some file systems with labels may be mounted at a later
time at which point the label-vector bits need to point to the correct entries in the
label table. Furthermore, if a file system from a different system is mounted and also
has labels associated with it, the new labels need to be incorporated into the current
system or be discarded. In the former case, the label data has to be stored on the file
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system device, as well.

We see as immediate topics of future work the following list:

• Research if and how existing programs and programming paradigms fit in with a
label propagation framework in regard to the amount of labels they accumulate
and the implications this has for access control.

• Determine how to integrate label propagation into access control and intrusion
detection mechanisms.

• Explore new uses for labels outside of those discussed in this paper.

• Identify scenarios where label propagation and its (possible) limitations award
the most benefits to justify its use.
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