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Abstract 

 
Short Message Service is usually used to transport unclassified information, but with the rise 

of mobile commerce it has become an integral tool for conducting business. However SMS 

does not guarantee confidentiality and integrity of the message content. This paper proposes a 

protocol called SMSSec that can be used to secure a SMS communication sent by Java’s 

Wireless Messaging API. The physical limitations of the intended devices such as mobile 

phones, made it necessary to develop a protocol which would make minimal use of 

computing resources. SMSSec has a two-phase protocol with the first handshake using 

asymmetric cryptography which occurs only once, and a more efficient symmetric nth 

handshake which is used more dominantly. What distinguishes this work from conventional 

protocols is the ability to perform the secure transmission with limited size messages. 

Performance analysis showed that the encryption speed on the mobile device is faster than the 

duration of the transmission. To achieve security in the mobile enterprise environment, this is 

deemed a very acceptable overhead. Furthermore, a simple mechanism handles fault tolerance 

without additional overhead is proposed. 

 

Keywords: Small Message Service, Cryptography, Protocols, Mobile Devices, Wireless 

Messaging API. 
 

1 Introduction 
 
Short Message Service, better known as SMS is a service that enables the sending of text 

messages over a mobile cellular network. The messages can be stored in that network until 

they are collected by the recipient’s terminal equipment (such as a mobile phone, or devices 

that can be connected to the network). SMS was originally designed as part of Global System 

for Mobile communications (GSM), but is now available on a wide range of network 

standards such as the Code Division Multiple Access (CDMA). By mid-2004, SMS messages 

were being sent at a rate of about 500 billion per annum [34]. Although SMS was originally 
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meant to notify users of their voicemail messages, it has now become a popular means of 

communication by individuals and businesses. Banks worldwide are using SMS to conduct 

some of their banking services. For example, clients are able to query their bank balances via 

SMS or conduct mobile payments [10]. People sometimes exchange confidential information 

such as passwords or sensitive data amongst each other. 

 

SMS provides many conveniences in our everyday lives but is it really secure? When 

sensitive information is exchanged using SMS, it is crucial to protect the content from 

eavesdroppers as well as ensuring the origin of the message is from the legitimate sender. 

SMS messages are sent via a store-and-forward mechanism to a Short Message Service 

Centre (SMSC), which will attempt to send the message to the recipient and possibly retry if 

the user is not reachable at a given moment. Transmission of the short messages between 

SMSC and phone is via the Signalling System Number 7 (SS7) within the GSM MAP 

(Mobile Application Part) framework [4]. The problem with GSM MAP is that it is an 

unencrypted protocol allowing employees within the cellular provider’s network that has 

access to SS7 network to eavesdrop or modify SMS messages. Further SMS vulnerabilities 

are presented in section 2. 

 

Due to the popularity of SMS, Java 2 Micro Edition (J2ME) provides an optional package 

called Wireless Messaging API (WMA) [29] that enables mobile applications to send and 

receive wireless messages. J2ME is a Java platform that provides a standard environment for 

developing applications suitable for running on mobile devices such as mobile phones and 

PDAs.  Unfortunately, WMA does not support any security for SMS communication. SMS 

does not use TCP as the transport protocol, so it cannot rely on HTTPS to secure the 

transmission.  

 

There are two reasons why it is beneficial to implement SMS-based applications in Java. The 

first is the market potential. There are already many Java enabled handheld devices. Secondly, 

Java provides a richer way to present a SMS message. For example, instead of a plain text 

presentation, an individual can monitor personal stock exchange shares in the form of a graph 

constructed from SMS messages. Therefore it is imperative to investigate a way to provide a 

security mechanism for SMS communication using WMA. At the current time of this writing, 

there are two versions namely 1.0 and 1.1 for WMA implemented on most Java-enable 

phones [29].  
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In this paper, a protocol called SMSSec is proposed that can be used to secure SMS 

communication between a WMA client and a server using end-to-end encryption. With end-

to-end encryption, the encryption process is carried out at the two end systems [25]. Similar 

work has been done by [4] where the writers make use of an approximated one-time pad 

scheme to encrypt SMS messages between two mobile phones. The limitation in this 

mechanism is that it does not ensure end-to-end encryption between the two mobile phones 

because there is a decryption occurring within the cellular network so that another one-time 

pad can be created for the receiving phone to decrypt the message.  

 

1.1 Paper layout 
 
This paper contains seven sections. Section 2 presents the security concerns of SMS 

messaging. Section 3 presents the proposed protocol in terms of the choices made on which 

cryptographic algorithms to use, design objectives and specification, fault tolerance and 

implementation considerations. Section 4 and 5 presents the security and efficiency analysis 

respectively. Section 6 mentions the future challenges facing SMSSec and section 7 

concludes.  

 
 

2 Security concerns 
  
In this section an overview of the security issues within the GSM network infrastructure and 

the WMA package is presented. These security issues provide the pivotal motivation for this 

research.  

 

2.1 SMS message path between the mobile client and server 
 
The GSM network uses SMS and Unstructured Supplementary Service Data (USSD) as 

signalling technology. USSD is a capability built into the GSM standard for support of 

transmitting information over the signalling channels of the GSM network. USSD provides 

session-based communication, enabling a variety of applications suitable for mobile banking 

[10]. The primary benefit of USSD is that it allows for very fast communication between the 

user and an application. Some of the vulnerabilities within the GSM network infrastructure 

apply to USSD signals as well. We are not going to focus on USSD in this paper but rather 

have a pure focus on SMS.  
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Figure 1: SMS packet structure (adapted from [3]) 

 
An SMS packet contains a header and a payload. The header contains information that 

enables the cellular network to route the SMS message to the correct recipient. The 

originating address (the mobile phone number of the sender) is also included in the header. 

The payload is the message content that is displayed on the mobile handset. The size of the 

payload is 140 bytes, consisting of 160 7-bit characters, or 140 8-bit characters, depending on 

the provider [4]. Those 140 / 160 characters can comprise of alphanumeric characters or 

binary bytes.  

 

MS BSS MSC
SMSC/USSDC

AGW AS

MS           Mobile Station
BSS         Base Station System
MSC        Mobile Switching Centre
AGW        Authentication Gateway
SMSC      Small Message Service Centre
USSDC    Unstructured Supplementary Services Data Centre

AS          Authentication Source
OTA       Over The Air
SS7        Signaling System 7 

A B C D E

OTA A interface SS7 Internet Internet

 

Figure 2: Underlying carrier network (adapted from [18]) 

 
The underlying carrier network illustrated in Figure 2 depicts the path of SMS messages being 

sent in a two-way direction between a mobile station1 (MS) and the authentication source 

                                                
1 The mobile handset is often referred to as the mobile station, where the MS consists of the terminal equipment 
(TE) and a mobile terminal (MT). The TE is the device that hosts the applications and user interaction, while the 
MT is the part that proves networking capability. For the rest of this paper, we refer to mobile handsets as mobile 
station, with the abbreviation MS.   
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(AS) over a GSM network. The AS could be the backend server belonging to an issuing bank 

or a merchant where it verifies the authenticity of the person who is in possession of the MS. 

The location of the AS is located in the internet. Assuming that a user wishes to transfer 

money to some other account, he/she would send a SMS that will initiate this process. 

Therefore the SMS in this particular scenario would be sent from the MS first. The SMS 

message reaches the BSS via the air interface. The BSS composes of an base transceiver 

station (BTS) and a base station (BS) where a number of these base stations that form a 

coverage area can be connected to a base station controller (BSC). The BSS transfers the SMS 

message to the MSC over the A interface. The main purpose of the MSC is to control calls to 

and from other telephony networks. It plays a major role in subscriber roaming by providing 

all the necessary functionality involved in registering, authentication, location updating, SMS 

routing and call routing for a roaming subscriber. The MSC routes the SMS to the SMSC that 

the AS is connected to over the SS7 network. The connection between the AS and SMSC is 

facilitated by a GSM modem or a TCP/IP connection. It is possible to have more than one 

SMSC within the service provider to improve scalability. Once the AS has verified the MS, it 

will send an acknowledgement SMS message back to the MS. Once receiving the message at 

the SMSC, the contents of the incoming packets are examined and if necessary, converted 

into the SMS packet structure (see Figure 1). The SMSC queries a Home Location Register 

(HLR) to determine the location of the target MS. When the HLR locates the MS, it forwards 

the address of the MSC to the SMSC; otherwise the text is stored in the SMSC, until the 

target MS is located. The MSC then forwards the acknowledgement message to the BSS that 

serve the coverage area of the MS.     

  

2.2 Network vulnerabilities identification and analysis 
 
SMS messages are delivered in a best effort manner to other cellular telephone users 

asynchronously through the cellular network. These networks operate separately from the 

internet and are sometimes considered to be more secure, accessible and less open to misuse 

(such as spam). However the GSM network does not provide important security services such 

as mutual authentication, end-to-end security, non-repudiation or user anonymity [14]. In this 

section we present the vulnerabilities identified in [18] that occurs within a mobile payment 

environment.  
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2.2.1 Vulnerability at the MS 

 

The main risk to a MS is theft or misplacement and as a result, the attacker could gain access 

to the data content stored on the MS. This threat applies to SMS messages. Even if the entire 

SMS communication path is encrypted, the decrypted SMS messages are stored within the 

SIM or persistent flash storage. In order to protect sensitive SMS messages, extra mechanisms 

should be in place within the application that only decrypts received SMS messages when the 

user enters a correct password. However, if the user chooses a guessable password, the 

intention of protecting the encrypted messages are lost.   

 

2.2.2 Loss of messages that do not reach their destination (SMS or 
USSD) 

 
Because SMS messages are delivered in a best effort manner, there are no guarantees that a 

message will actually be delivered to its recipient. One can consider that there may be 

possibilities where messages routed between MS and AS could be lost. The possibilities are 

that messages could simply be lost, accidentally routed to an incorrect end-user and 

deliberately misrouted to another end-user (possibly to an attacker). The impact of message 

loss could result in denial of service (DoS) as transactions cannot be completed. The impact 

of misrouting could result in loss of privacy. For example, if a client sends a request to 

transfer his money to another account the possibility is that the information entered within the 

SMS message could contain the account number and some authentication details. However 

the feasibility of deliberate misrouting seems low, except if an attacker has access to any of 

the internal interfaces of the message handling system. Although there are no guarantees of a 

reliable message delivery, the reliability of SMS messages being delivered is quite high. This 

is justified by services where it enables sending a SMS message from one user to another in 

case of critical emergency by pressing a specific speed dial button on the mobile phone.   

 

2.2.3 SMS Spoofing to the MS or AS 

 

The possibility exists that an attacker manages to inject SMS messages into the messaging 

network with a ‘spoofed’ originator IDs. The attack can be applied in both ways by 

impersonating the AS for a legitimate MS or impersonating the MS for a legitimate AS. With 

the former case, the possibility of spoofing is very high as it is possible to send SMS message 
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from the internet with the correct headers, without the recipient being able to detect that it 

comes from the internet. Also the mobile service provider is able to change the originator ID. 

In the latter case, the possibility of spoofing is also high, however the attacker is required to 

know the authenticating information of the user. This depends on how the SMS service is 

implemented. If the attacker can manage to spoof an SMS message, fraudulent transactions 

can be conducted. 

 

2.2.4 Replay of messages 
 

The possibility exists that an attacker arranges for authentication request and/or authentication 

response messages to be replayed. An attack on the reply of an authentication request message 

does not seem obvious, however replaying an authentication response could be a more serious 

vulnerability. If such a replay is possible, it can be used to impersonate a legitimate user and 

hence authenticate a false transaction. Note however that this attack will not work if there 

exists an authentication request number (anti-replay mechanisms) that must be included in the 

response. Such a replay attack may also involve obtaining a copy of this message, which 

would automatically reveal the authentication information of the client. The likelihood that it 

would be possible to replay a message without having access to the message seems very low. 

Moreover, even if such a replay were possible, its effects would be mitigated by secure use of 

authentication request numbers. If this is implemented, chances of replay attacks are very low.  

 

2.2.5 Capturing and Modifying of data during OTA transmission 
 
SMS messages are sent across the air interface between the MS and BSS (indicated by A in 

Figure 2). In most GSM networks all traffic (digitised voice and data) and signalling data sent 

across this air interface is encrypted. However, the choice of whether or not to encrypt the 

data is network specific (it is under the control of the BSS) – in a number of countries, 

encryption is not permitted. Moreover the choice of encryption algorithm is also network 

specific, although it must be one of two GSM-specific algorithms known as A5/1 or A5/2.  

The A5 algorithm is a symmetric cipher, with A5/1 opting for 64-bit key encryption and A5/2 

for 16-bit key encryption. The A5/1 and A5/2 implementations of the A5 algorithm have been 

susceptible to cryptanalysis. Biryukov, Shamir and Wagner [1] demonstrated that the secret 

key could be cracked in minutes, rendering A5/1 only to counter casual eavesdropper and 

A5/2 completely insecure. The problem with A5 is that it was never under public scrutiny and 
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many flaws were exposed by cryptanalysis. If the network is unencrypted (A5/0), or the 

attacker has the means to decrypt the encrypted traffic, the attacker could read and possibly 

modify the message content. The result is loss of privacy, extraction of sensitive information 

and integrity of the message, which could lead to consequences such as fraud and DoS. The 

feasibility of this threat is very much country and operator specific. Intercepting messages is 

straightforward and assuming there is no encryption implemented in A the attacker would 

have the problem of finding the traffic of interest amongst all the other traffic and also linking 

the traffic to the transaction of interest.  

 

2.2.6 Vulnerabilities of the BSS 
 
GSM authentication is a one-way process i.e. the MS is authenticated to the BSS but not vice 

versa. As a result it is possible for the operator of a ‘false’ BSS equipment to ‘capture’ the 

MS. Of course, this false BSS will typically not possess the keys necessary to set up 

encrypted communications to the MS, but given that encryption is under BSS control, the 

false BSS can choose to simply disable encryption. The realization of this vulnerability is a 

loss of privacy, extraction of sensitive information and DoS. BSS equipment is (apparently) 

not difficult to obtain and is not expensive, however in order for this attack to be successful, 

the MS should be within the area of the false BSS. If the transaction is of a type where the 

legitimate user is likely to be in a particular location, then routine ‘capture’ of the user’s MS 

using a false BSS is simple to arrange.    

 

2.2.7 Lack of protection for message passing through SS7 
 
The security of the SMS/USSD messages sent across the SS7 networks depends on the levels 

of physical security provided for these networks and also on the nature of the cryptographic 

security, if any, provided for these networks. The security provision of the SS7 network is 

operator dependent. The realization of this vulnerability is a loss of privacy, extraction of 

sensitive information and DoS. The SS7 network is physically protected but not under the 

control of a single entity. The protection of the SS7 network against the injection of messages 

is thus only as effective as the weakest protection offered by any of the operators since 

messages can be injected into the weakest point of access. As mentioned earlier, GSM MAP 

is an unencrypted protocol allowing employees within the cellular provider’s network that has 

access to a SS7 network to eveasdrop or modify SMS messages. Also, the SS7 network is not 

a Federal Information Processing Standard approved for carrying sensitive information [19]. 
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However, given these circumstances, the difficulty the attacker will experience is finding 

within the high volume of traffic, a particular message that contains sensitive data.  

 

2.2.8 Vulnerabilities of the SMSC and USSDC 
 
If the SMSC/USSDC is accessible in some way to an attacker, then it may be possible to 

read/manipulate the messages in transit. The potential impact of this vulnerability is a loss of 

privacy, extraction of sensitive information and a possibility of denial of service (DoS). As 

with the SS7 networks, the degree to which the SMSC (or USSDC) systems are protected is 

not known (and probably difficult to find out). The protection almost varies between countries 

and between operators. The operators have less of an incentive to protect these systems than 

they do for SS7, since there is no danger of compromise of GSM authentication triplets.  

 

2.2.9 Lack of protection of the interface between SMSC or USSDC and 
AS 

 
If the interface to the SMSC (or USSDC) is accessible in some way to an attacker, then it may 

be possible to read/manipulate SMS (respectively USSD) messages in transit. In such a case, 

several threats could arise such as possible extraction of sensitive information within the 

message and DoS attacks from a fraudulent merchant. As mentioned earlier, a typical 

connection between the AS and SMSC is facilitated by a GSM modem or a TCP/IP 

connection. Because the traffic is outside of the mobile operator, it is not the responsibility of 

the operator to ensure its protection. The connections between the internet and cellular 

network introduce open functionality that detrimentally affects the fidelity of a cellular 

provider’s service [8]. To top it all, according to [19] the link between the SMSC and AS is 

unecrypted. 

 

2.3 WMA package 
 
As mentioned in Section 1, WMA is an optional package for J2ME that enables an application 

developer to develop an application that sends and receives an SMS. Figure 3, illustrates the 

components within the WMA package. 
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Figure 3: Components of the WMA package (adapted from [20]) 

 
None of these components includes any encryption mechanism to protect the confidentiality 

content of a SMS message during transit. Also, the WMA 1.1 specification [27] stipulates that 

for security purposes, an application must be granted permission to send and receive 

messages. Unfortunately, granting permissions for these operations does not ensure 

confidentiality.  Therefore, developers must supply their own security information and 

accompanying mechanism if they wish to secure the content.  

 

To handle SMS on server computers, one can develop a J2SE/J2EE WMA implementation 

that interacts with the SMSC via a GSM modem or TCP/IP connection [35]. In fact, the 

“Generic Connection Framework Optional Package for J2SE” (JSR 197) [26] provides a 

generic connection framework implementation for J2SE and hence allows the WMA to be 

ported to Java platforms beyond J2ME. Unfortunately, such an enterprise server-compatible 

WMA implementation is not available at the time of this writing. 

 

3 SMSSec: the proposed protocol 
 
In this section, various aspects concerning the design of the protocol are discussed. These 

aspects include the choice of cryptographic algorithms, fault tolerance and implementation. 

 

3.1 Design Requirements 
 
There are two main challenges that were encountered during the design of SMSSec. The first 

is the limited CPU strength and physical memory size on the MS. To ensure confidentiality 

and integrity of SMS messages, cryptographic algorithms are required. Cryptography can be 

computationally expensive to perform especially when public key cryptographic functions are 

used. We do not prefer to sacrifice security over efficiency so careful judgment needs to be 
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made on the choice and utilization of cryptographic algorithms on a MS. The choice of in 

cryptographic algorithms for SMSSec will be discussed in the next section. The second 

challenge is the SMS message structure and its length. In order to be compliant with all 

flavours of SMS, the encryption algorithm should possess three attributes, namely [4]: 

 

1. The encrypted message should be in the form of ciphertext in order to meet the SMS 

message body standards. 

2. The encryption algorithm cannot alter the size of the message, since that would 

cause initially large messages to exceed the maximum allowed size after encryption 

(no padding). 

3. The encryption algorithm should be simple and computationally inexpensive. 

 

Based on the security threats defined in section 2 and the limitations mentioned in the above 

two paragraphs, a security protocol of this nature should satisfy the following requirements 

outlined in [16]: 

−  secure, 

−  easy to implement, 

−  low computation needs, 

−  no storage of secret cryptographic keys, 

−  achieve entity authentication (integrity), 

−  achieve key exchange (confidentiality). 
 

 

 

In addition to these requirements, we further set objectives to ensure that there is: 

 

−  no transporting of secret keys and user’s personal identification number (PIN) on any 

computing environment or intermediate station in GSM network, 

−  sufficient speed in encryption and decryption, 

−  use of existing commercially available crypto algorithms, 

−  availability of end-to-end encryption, 

−  reliability, 

−  no additional security protocol (for example Kerberos) or network related hardware 

infrastructure required for implementation. 
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The result of applying SMSSec is illustrated in Figure 4, where the SMS message is protected 

for the entire duration of its transit through the network. 

 

Mobile 
Station

SMSC/Mobile Cellular 
Network

Authentication 
Source

Encrypted Link
 

Figure 4: End-to-end encryption 

 

3.2 Cryptographic algorithm choices 
 
According to the objectives laid out in the previous section, it is evident that all cryptographic 

systems such as symmetric and asymmetric cryptosystems and message authentication code 

(MAC) are going to be used. The algorithms within the systems chosen should enhance the 

system’s security and efficiency, with security being given at a higher priority than efficiency. 

It is no good to develop a security protocol and blame the insecurity on the poor choice of the 

crypto algorithm. 

 

Algorithm Key size Description 

AES_CTR (Rijndael) 256-bit Symmetric key cryptography using the 

AES (Rijndael) cipher and Counter 

Mode.  

RSAES-OAEP 2048-bit RSA cryptosystem using the OAEP 

encoding scheme 

HMAC_SHA256 256-bit secret value Message authentication using HMAC 

and the underlying hash function 

SHA256 

Table 1: Cryptographic algorithms required in SMSSec 

 
In Table 1, the cryptographic algorithms required in SMSSec are listed. For symmetric cipher, 

the choice is obviously to go for AES for its speed, efficiency and standardization [5, 24]. The 

counter (CTR) mode is easy to implement and does not introduce padding and collisions 

(provided that the counter is unique for each key) [9]. In this way, both these combinations 



 13 

are recommended for securing SMS applications with a small payload size. For a true 128-bit 

system, a 256 key is recommended due to the birthday paradox. Another reason for 

supporting a 256-bit key is that due to the cryptic nature of SMS messages, it facilitates easier 

cryptanalytic attempts based on word frequencies. Therefore by using a 256-bit key, it 

basically thwarts any cryptanalytic attempts. 

 

For asymmetric cipher the choice is to use the RSAES-OAEP scheme [23]. The RSA cipher 

has been trusted for many years and is still the most currently used cipher for securing e-

commerce applications. The Optimal Asymmetric Encryption Padding (OAEP) encoding 

function is included to destroy any mathematical structure within small messages that might 

be used in mobile applications [21]. As technology advances in factoring the RSA primes 

[22], the safest key size for the next 20 years is 2048-bit [9]. The reader might wonder why 

not choosing Elliptic Curve Cryptography (ECC) as the core benefit of ECC compared to 

RSA is that it appears to offer equal security for a far smaller key size, thereby reducing 

processing overhead [32]. The reason for not choosing ECC is because various aspects of 

ECC have been patented by a variety of people and companies around the world. Notably, the 

Canadian company, Certicom Inc. holds over 130 patents related to elliptic curves and public 

key cryptography in general [19]. 

 

HMAC with an underlying hash function called SHA256 (HMAC_SHA256) is chosen due to 

the recent attacks on collisions on SHA1 [33] and on recommendation by the National 

Institute of Standards and Technology that SHA1 is to be phased out by the year 2010. 

Therefore by proactively choosing a hash function that will last beyond the year 2010 is 

essential. HMAC is required to protect the digest against partial collision and length extension 

attacks [9].  

 

3.3 Design specification 
 
SMSSec is a protocol that uses public and symmetric key cryptography and two-factor 

authentication strategy. There are three criteria that authenticate a user namely: something the 

user knows (such as a password), something the user has (such as a credit card) and 

something the user is (such as is embodied in a fingerprint). Two-factor authentication is any 

authentication protocol that requires any two of these forms of authentication to access a 

system.  
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The following denotations are used for the explanation of the protocol design and they will be 

referred to throughout the paper: 

 

−  C: Mobile station (Client) 

−  S: Authentication source (Server) 

−  U: Cell phone number 

−  H: HMAC_SHA256(U || PIN || Q), where Q is given by the C 

−  K: Secret key generating parameters 

−  Kn: K generated on a new nth session 

−  Q: New session identifier 

−  Qn: Q generated on a new nth session 

−  Rc: Fresh random challenge from C (64-bits) 

−  Pf: A certain private port number f 

−  M: Message 

−  SQ: Sequence number 

−  HU: HMAC_SHA256(U)  

−  HUn: HU generated on a new nth session 

−  EPKpub: RSA_OAEP encryption using the public key of the server (2048-bits) 

−  SK: Secret key (256-bits) 

−  SK_n: A SK generated from Kn 

−  ESK: Symmetric key encryption using AES 

−  ESK_n: Symmetric key encryption using the SK_n key 

−  PIN: Personal identification number that is known to both the C and S 

−  || : Append 

−  {} : Communication through a certain port number 

 

At this point, the reader might question on the use of RSA cipher since one block of the 

encrypted RSA output exceeds 140 bytes when 2048-bits key is used, which means more than 

one SMS message are needed if the message content is going to be encrypted using a 2048-bit 

RSA key. In order to ensure a more efficient protocol, SMSSec is divided into two separate 

handshakes namely the First and the nth handshakes so that asymmetric and symmetric 

encryption techniques can be effectively utilized.   These two handshakes are illustrated in 

Figure 5. 
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Figure 5: SMSSec protocol 

 

3.3.1  First handshake 
 
The first handshake is defined as follows: 
 

M1: C {Pz} → S {Pz}: EPKpub[U || H || K || Q || Rc] 

M2: S {Pz} → C {Pz}: ESK[Rc || Pj || SQ] 

M3: C {Pz} → S {Pj}: ESK[M || SQ] 

Mn: S {Pj} → C {Pz}: ESK[M || SQ] 
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The number denotations from Figure 5 are defined as follows: 
 
 

           1a) Inputs PIN and U before M1 

           2a) Saves (K, Q) once M1 completes 

           3a) Retrieves user’s PIN to use in H for M1 

           4a) Saves (K, Q, HU) once M1 completes 

 
M1: For the initial handshake message, the user inputs the PIN and U. The PIN is the 

password or passphrase the user chose for login. Therefore the PIN represents what the user 

knows. Both the C and the S know the PIN. The U represents what the user has.  The C 

generates K, Q, H and a random challenge Rc. The purpose of the Rc is to assure the freshness 

of a protocol run [16]. The value K consists of values that are required to regenerate a 

symmetric key using the PIN. This is similar to password-based encryption [22], but with 

additional security provided by K in keeping the generated key random for each handshake. 

The K should not contain the PIN nor be the actual symmetric key. The value of K depends on 

the key generating algorithms used; therefore it does not have to contain an initialization 

vector. The simplest and probably the most efficient is that K should contain a 256-bit salt2, 

possibly the number of rounds (r) used to stretch the PIN [9]. The password stretching 

technique mentioned in [9] is more efficient than [22] as it contains less computations and it 

works as follows: Let p be the password and s be the salt. Using any cryptographically strong 

hash function h, C can compute the SK as:    

    

            X0 := 0 

                Xi := h(Xi-1 || p || s)      for i=1,…,r  

                                                 SK := Xr 

     

The parameter r is the number of iterations in the computation, and should be as large as 

practical. It goes without saying that Xi and SK should be 256-bits long; therefore the 

recommended hash function is SHA256. The size of r is chosen such that computing SK takes 

200-1000 milliseconds on a user’s equipment [9] and is therefore a never a fixed value. This 

concept applies to the MS as computing speed of the MS will increase in the future; therefore 

by not having a fixed r value, r can increase accordingly to the computation speed. There are 

                                                
2 The salt is a random value of 256-bits generated by a cryptographically strong pseudorandom number 
generator. 
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other cryptographic libraries that have key generators [2, 17], which might require different 

input to generating a symmetric key, therefore the value K will be dependent on those input 

requirements, for example, an inclusion of a counter or an initialization vector.  

 

It is important for the reader to note that C generates ESK based on the K and that the S 

regenerates ESK itself according to the received K from the C. ESK is never transported within 

the handshake. The secret value for the HMAC used in H can be the salt value derived from 

K. The value Q is the session id for this particular SMS communication originated by the C. 

Because SMS messaging is stateless, Q can be used to keep track of the current 

communication.  For the first time in handshake establishment, the value of Q in C is 1 and S 

is 0 because the value of Q in C should never be higher than the Q in S in order to prevent 

replay attacks during error correction (see section 3.4). The order in which U, H, K, Q and Rc 

are appended is not explicit as long as S can unmarshal these elements in the correct order. 

The size of these elements altogether should be less than 190 bytes instead of 256 bytes due to 

OAEP encoding. The entire M1 is encrypted with EPKpub
3 and before M1 is sent to S, K and Q 

are saved on a persistent flash storage (record store) on the C. The assumption is that M1 is 

sent via a fixed port number Pz that is pre-specified within the protocol. Once S receives M1, 

it decrypts M1 using the private key of S. If the decryption is successful, S will first retrieve 

the user’s PIN from the secure database by looking for U. S verifies the H and Q to make sure 

the message is authentic and not replayed. To verify H, it first computes H and matches the H 

received from C. If the H computed by S matches the one received from C then C is 

authenticated. The initial value of Q should be 0 to indicate that no handshake ever took 

place. If the verification of H and Q fails, then S discards M1 and the protocol terminates. 

Before S sends M2, it saves HU, K and Q in a secure database associating it with the U. HU is 

computed by hashing the U with the 256-bit salt derived in K as the secret value.    

 
M2: Once C is authenticated, S will generate a new private port number Pj in which C can use 

for further communication after M2. The reader should note that Pj is generated uniquely per 

user; therefore the protocol should manage which ports are used and not used at S. This is to 

ensure more privacy and scalability is given to each connection. SQ will start at 14 signalling 

that this is the first message sent using symmetric key encryption. S will encrypt M2 by 

generating SK in the same way C did in M1 using K. By using symmetric key cryptography, 

the size of the message can be sent within one SMS message and requires less computation 

                                                
3 The precondition to using the public key of the server is that it is obtained securely.  
4 There is nothing wrong with starting SQ at 0. The number 1 is easier to denote that this is the first encrypted 
message using symmetric key encryption in our opinion.  
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compared to asymmetric key cryptography. Once C receives M2 it decrypts the message and 

verifies Rc. S is authentic to C, if C can decrypt and verify Rc, because only the legitimate S 

can generate the SK. Otherwise if C cannot verify Rc it discards M2 and the protocol 

terminates.  After C verifies M2 the handshake completes. 

 

M3 and Mn: M3 and Mn are the subsequent SMS messages sent between the C and S. The S 

will still send SMS messages to the port Pz on C, but the C will send messages to the new port 

number Pj
5. The entire duration of the communication is encrypted using SK. Both C and S 

must ensure the SQ in the current message is incremented since the previous message. This is 

to ensure that no replay attacks have occurred during the entire communication using the 

shared SK between C and S. If SQ is out of sequence in either C or S, the protocol should 

terminate with an appropriate timeout error message. The C does not need to send a terminate 

message to the S to close any communication. If there are no more SMS messages sent from 

C, a timeout would occur at S. Once the timeout occurs, the Pj assigned to that particular C 

would be freed.  

 

3.3.2 nth handshake 
 
The nth handshake is defined as follows: 
 

        M1: C {Pz} → S {Pz}: [HU || ESK[U || H || Kn || Qn || Rc]] 

                                   M2: S {Pz} → C {Pz} : ESK_n[Rc || Pj || SQ] 

            M3: C {Pz} → S {Pj}: ESK_n[M || SQ] 

              M4: S {Pj} → C {Pz}: ESK_n[M || SQ] 

 
The number denotations are defined as follows: 
 

       1b) Inputs PIN and U before M1 

       2b) Retrieves (K, Q) to produce ESK  and HU during M1 

       3b) Saves (Kn, Qn) once M1 completes 

       4b) Retrieves HU and  (K, Q, PIN) to produce ESK, and H during M1  

       5b) Saves (Kn,Qn, HUn) once M1 completes 

 
                                                
5 The reader should note that there are no security risks of reusing Pz on C because C will discard any messages 
that it cannot verify. S already established a secure handshake with C; therefore it is still safe for S to 
communicate to C via Pz. By reusing Pz on C, it will result in a more memory efficient implementation for the C. 
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It is not efficient for SMSSec to always use the RSA cryptosystem to engage in the handshake 

because it will cost two SMS messages for M1. Therefore, to save computation, time and 

monetary cost on the number of SMS messages send during the handshake, the nth handshake 

is used. The nth handshake denotes the subsequent new handshakes conducted when the user 

wish to establish a new connection with S. The first handshake will never be used again, 

except for fault tolerance (see section 3.4).  

 

M1: The formation of M1 is similar to the M1 in the first handshake, except using symmetric 

encryption.  In order for the S to distinguish which user the M1 is sent from, the C appends 

HU in front of M1. The C regenerates the HU by reusing the salt value it retrieves from the 

record store.  The Kn and Qn are the newly generated K and Q values for the current 

handshake. Qn is the result of incrementing Q by 1. The entire M1 is encrypted using the SK 

established during the previous handshake. Before M1 is sent, C replaces the K and Q with Kn 

and Qn. Once S receives the M1 via port Pz, it should determine that the message is smaller 

than 256 bytes; therefore HU is split from M1 and is used by S to look up within the secure 

database, the HU established from a previous session. If the matching HU is not found the 

protocol will terminate, otherwise K is retrieved to regenerate SK in order to decrypt M1. 

Once M1 is decrypted, the values H and Q are evaluated in the same way as it is described in 

the first handshake, with an extra requirement for Q to be a higher value than what S has. C is 

authenticated to S because it encrypted M1 using the same SK that S knew from a previous 

handshake after verifying Q and H.  Before S sends M1, the values of K, Q and HU are 

replaced with Kn, Qn and HUn, so that these values will be reused again until the next protocol 

establishment.       

 

M2: Once C is authenticated, S will encrypt the same message content as it is described in the 

first handshake, with the exception that the entire M2 is encrypted with ESK_n using SK_n that 

is generated in the same way as it is described in the first handshake by using the new Kn. 

Once C receives M2, it uses its own generated SK_n to decrypt M2. S is authentic to C, if C 

can decrypt and verify Rc, because only the legitimate S can generate the SK_n. Otherwise if 

C cannot verify Rc it will discard M2 and the protocol terminates.  After C verifies the M2 the 

handshake completes. 

 

M3 and Mn: Subsequent messages are commuicated in the same way as it is described in the 

first handshake, with the exception that these messages are encrypted using SK_n. 
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3.3.3 Security of persistent storage 
 
An important security consideration is ensuring the values K and Q are stored securely on 

MS. The record store system for MIDP ensures that the record generated by a Java application 

is only accessible by itself [6, 15]. This means that no other Java applications on the MS may 

write or delete a record store.   

 

Securing the database at the S is just as important. There are two customary types of database 

security mechanism that are used to prevent unauthorized access to databases namely 

discretionary and mandatory [7].  It is not the focus of this paper to provide specific 

instructions on securing databases, however it is important for the reader to note that SMSSec 

requires security mechanisms in place for the databases it accesses. 

 

3.4 Fault tolerance 
 
Fault tolerance means a system can still provide a service even in the presence of errors [31]. 

Here are some possible scenarios that one can encounter errors on a MS during SMS 

messaging: 

 

−  Crash failure: Before or after the messages are sent, the MS suddenly crashes. The 

cause for this crash could be memory fault, persistent storage space is full, or worse a 

software bug within the implementation of the operating system, and so on. 

−  Omission failure: The MS itself fails in receiving or sending messages as a result of a 

crash or loss of message within the communication path. The server might have a 

receive omission failure due to battery failure on the MS after an SMS message was 

sent. 

−  Timing failures: The MS can experience timing failures when the server times out 

due to an error in transmission. Sometimes timeouts can be caused by incorrect 

delivery of message sequences. For example in the case of M1 in the first handshake, 

the entire message is 256 bytes therefore the message will be split into two 140-byte 

messages and if the messages are not reassembled in the correct sequence, the server 

will not be able to decrypt it.   
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SMSSec should have a mechanism to recover from these errors because during the protocol 

run, elements such as K, Q, HU are saved and these values might be inconsistent if either the 

C or S experiences a failure.  

 

If a failure occurs, the most feasible and efficient solution is to have a forward recovery by 

asking the user to engage in the first handshake again. The developer can create an option 

within the application menu to force the protocol to engage in the first handshake in case of an 

error within the communication. By using the first handshake, C recreates K and Q and sends 

them to S in M1 exactly as it is described in section 3.3.1. Once S receives the message it 

verifies H and Q and determines Q is a higher value than a 0. Therefore S can safely replace 

the old K and Q with the current value and the protocol continues. A question might arise is 

what happens if a failure occurs during the correcting of the error in first handshake? As long 

as the Q generated by the C is a higher value than the Q stored in S, it doesn’t matter. For 

example, during a second attempt at error recovery, C might have a Q value of 23 and the 

server 21, but because 23 is greater than 21, the S will accept the values as long as H is 

verified.  A more difficult question is what happens if the Q in C is lower than the Q in S.  

There is a possibility this might happen because Q might not be written onto the flash storage 

within the MS. Therefore a situation occurs where the Q on both the C and S might equal or 

that the Q on C might be less than the Q on S. Generally speaking, the difference between the 

Q values on C and S is 1 within an error free communication and should hardly go beyond 10; 

otherwise there is something wrong with the hardware of the MS, network or the actual server 

and SMSSec should not be deployed. Therefore during fault handling, the Q generated by C 

should be incremented by 10 from the previous Q in order to be safe from all these problems.  

 

The last problem is what happens when Q reaches 231 - 16 at the C? The possiblity of this 

happening for SMS messaging is slim because it is quite impossible for the C to establish so 

many SMSSec connections. For example, assuming a user wishes to establish on average 

10000 connections a day (an impossible target anyway), then this user would take ≈ 588 years 

for Q to reach 231 – 1!   

 

 

 

 

                                                
6 This value is the largest integer value that a Java integer variable can hold. 
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3.5 Implementation considerations 
 
A suggested architecture placement of the SMSSec protocol within the system is illustrated in 
Figure 6.  
 
 

 
Figure 6: SMSSec package dependency structure 

 
The packages are defined as follows: 

 

−  application: The application on the C and S that utilizes SMSSec  

−  viewer: The component that renders the interface according to the received SMS 

message 

−  business logic: The component that contains the code for writing to and querying 

from a particular database system    

−  database: The persistent storage that stores the security elements used in SMSSec  

−  smssec: The component that contains the code for the SMSSec protocol 

−  network: The network packages that enables SMS messaging (for example WMA) 
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It is recommended that SMSSec be implemented as a software component within the system, 

with the benefit that it can be reused in other applications that require the securing of SMS 

messages. The application utilizes the SMSSec protocol for encrypting the SMS 

messages to be sent across the cellular network and does not have to access the actual API 

required to send SMS messages. The actual protocol implementation of smssec should not 

contain the implemented code for accessing the persistent storage. Instead, this should be 

implemented in the business logic component. The implementation of the business 

logic is different between C and S because the persistent storage medium differs from each 

other as it is mentioned earlier. During the protocol run smssec invokes the interface defined 

in the business logic for accessing the persistent storage. Because SMS messaging is 

asynchronous, the decrypted message is sent from smssec to the viewer component by 

invoking the viewer’s interface. The viewer enables the display of the message within the 

application.   

 

By referring to the protocol design in Figure 5 and the package dependency structure in 

Figure 6, SMSSec is easy to implement with no additional protocol or hardware infrastructure 

required for implementation.        

 

4 Security analysis 
 
In this section, a more detailed security analysis of SMSSec is presented.  
 

4.1 Application of public key cryptography 
 
The two main concerns of public key cryptography are the authenticity of the public key and 

private key management. Anyone can generate and forge a public key and falsely claim who 

they are. In order to prevent this, the public key is digitally signed by a certificate authority 

(CA). All Java applications are deployed on mobile phones in the form of a compressed Java 

Archive (jar) file.  Ideally this jar file must be signed by the originating party and should be 

downloaded securely onto the mobile phone via HTTPS or Wireless Transport Layer Security 

(WTLS). It is recommend to follow this practice in order to support SMSSec since the public 

key will be protected within the jar file along with the other class files. This prevents 

tampering of the authentic public key by an attacker. The public and private key pair is 

generated at the server and the private key is kept securely in a secure key storage mechanism 

(for example the keytool facility provided by the Java 2 Standard Edition platform). The 
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jar file can also be cryptographically signed prior to deployment. A further security 

enhancement provided by MIDP 2.07 enabled phones is the verifying of the cryptographically 

signed jar file on the MS, which gives users some security about executing downloaded 

code [13].  In this way, the certificate encapsulated within the jar file is also verified so that 

man-in-the-middle attacks can be prevented.   

 

If the server is compromised and the private key is retrieved by an attacker, the whole 

protocol will fail because the attacker can act as the legitimate party. Therefore an effective 

key management on S is crucial.    

 

4.2 Authentication between two entities 
 
One of the objectives of SMSSec is to ensure authentication between two parties (C and S). 

SMSSec is analysed according to the three rules that Tanenbaum [30] mentions for an 

authentication protocol: 

 

1. Have the initiator prove who he/she is before the responder has to. 

2. Have the initiator and responder use different keys for proof. 

3. Have the initiator and responder draw their challenges from different sets. 

 

In point 1, S does not have to respond to C if it fails to verify the H and Q. Verification of H 

would fail if C provides the wrong PIN and Q provided by C is smaller than the Q stored on S 

as the MAC result would not be the same. Before C will respond any further after M2, the SK 

generated by S should be the same as the SK generated by C and further verification should be 

done on the Rc to prove to C that S sent the message for the current protocol run using the 

session key SK.  In point 2, the C uses the public key of S in M1 and in M2, S responds by 

proving it can generates the SK. In point 3, the Q both is higher for C and lower for S. Once 

the handshake establishment completes, the SQ keeps an odd and even challenge value 

between the C and S for further communication. 

 
 
 
 
 

                                                
7 MIDP stands for Mobile Information Device Profile and contains APIs that targets cellular phones and simple 
pagers within the J2ME platform. The current version of MIDP as of this writing is 2.0.  
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4.3 Attacking the protocol 
 
As already mentioned in section 2, not all vulnerabilities share the same feasibility for an 

attack. This section presents attacks to SMSSec by assuming all of the vulnerabilities are 

feasible and it is just as easy to launch attacks as it would be on a public network.  In order to 

attack the SMSSec, an assumed role is made so that either C or S could be the attacker. For 

the first attack, S is the attacker and C is legitimate. S captures M1 but cannot decrypt it 

because it does not have the private key. What S can do is that it can try to fool C by sending a 

previously captured M2. When C receives this M2, it will discard it because the SK used is 

different to the previous handshake and the protocol terminates.     

 

For the second attack, assume C is the attacker and further assume C has the U. C can 

generate M1 and send it to S. However the problem is that C does not know the PIN, therefore 

it cannot generate the correct H. Even if the U is known, it is difficult to compute HU because 

of the 256-bit secret value used for the HMAC.  The only way to send a legitimate M1 is by 

guessing the correct PIN and computing the correct HU, which is quite impossible to do if the 

PIN is stretched with a 256-bit salt. 

  

4.4 Security advantages 
 
There are four main security advantages SMSSec provides. The first advantage is that the PIN 

and the SK are not included in M1 because key exchange through network transactions 

degrades the reliability of a security system [12]. The main idea is to get both C and S to 

generate SK by using the PIN they share between them. An attack on the encrypted M1 would 

not be fruitful if the opponent does not know the PIN. However this might lead to dictionary 

or brute-force attacks on the PIN. But as already mentioned earlier, a brute-force attack on the 

PIN is fruitless. Due to the fact that SK is always generated when used, it is not stored on the 

MS and in this way SK is not compromised if the MS is stolen. The second advantage is 

achieving mutual authentication (section 4.2). The third advantage is using strong 

cryptography. Lastly, end-to-end encryption is achieved. 
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5 Efficiency analysis 
 
Although SMSSec uses strong cryptography, it is still efficient to use on a MS. In this section, 

an efficiency analysis on the number of SMS messages sent, scalability and handshake 

duration are presented. 

 

5.1 Number of SMS messages sent 
 
For the first handshake, the size of the elements U, H, K, Q and Rc added together should be 

less than 190-bytes due to OAEP encoding. Fortunately, U = 10 bytes, H = 32 bytes, K = 32 

bytes, Q = 4 bytes and Rc = 8 bytes adds up to 86 bytes.  Recall earlier that K could be 

variable in length due to certain requirements for generating K on different cryptographic 

APIs. Therefore a 32-byte value for K is the minimum, which leaves extra 104 bytes in case K 

is bigger than 32 bytes. The total size of M1 after encryption is 256 bytes, which requires two 

SMS messages to be sent. The minimum total space required for persistent storage is 36 bytes 

on the MS and 68 bytes on the S (per connection basis). The total size of M2 is 16 bytes and 

because the encryption scheme used is AES_CTR, it requires no padding; therefore after 

encrypting M2 the size remains the same and M2 can be sent within one SMS message.  

 

For nth handshake, the size of the M1 is the same as the first handshake but with an extra 32 

bytes for the HU to be appended in front. The size of K would be limited to 22 bytes for 

sending M1 within one SMS message. In general the nth handshake is far more efficient than 

the first and if there are no communication errors, the entire handshake could be done using 

two SMS messages instead of three.  

 

Communication after both handshakes could be done using one SMS message, depending on 

the size of M. However, by appending SQ the size if M is reduced to 136 bytes. After 

successful first handshake establishment and with the continuation of using the nth 

handshake, SMSSec complies with the three requirements mentioned in the second paragraph 

of section 3.1.  

   

5.2 Scalability 
 
The issue of using the port numbers could give rise to a question on scalability. The port 

number is a 16-byte value therefore it can only handle port numbers up to 65536 connections 
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concurrently (assuming SMS connections don’t have reserved port numbers). If SMSSec is 

applied in a mobile payment environment where the clientele is around 6000000, scalability 

can be improved if these customers are given different cellular numbers for the S, because one 

number can host 65536 connections concurrently.   

 

5.3 Handshake duration 
 
In this section, the handshake duration is measured according to the time taken (in 

milliseconds) for the both the first and nth handshakes to complete on the C and S. 

 

Due to the unavailability of a WMA implementation for a desktop server, the S will be 

another MS. The specifications of the C and S are summarised in Table 2. 

 

Attributes Client Server  

(Using another phone) 

Manufacturer Nokia 6600 Nokia 6680 

CPU Architecture ARM4T ARM5 

CPU Speed 104 MHz 220 MHz 

Flash Size 6139 KB 9928 KB 

Ram Size 379 KB 1883KB 

Memory Card 31066 KB 65536 KB 

Table 2: Hardware specification 

 
The goal behind this performance analysis is to give the reader an approximation on the 

duration of the handshakes especially experienced at the C. The duration for M1 and M2 

denotes the time taken for the devices to compute M1 and M2 according to what is described 

in sections 3.3.1 and 3.3.2. The time taken for the entire protocol to complete successfully is 

registered at the C and not at the S because C receives the last handshake message. The 

network used to conduct this experiment is GSM.      

 

The actual SMSSec protocol is implemented using the Linca API [17] and Tables 3 and 4 

present the first and nth handshake durations respectively. 
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Device Duration 

for M1 

Duration 

for M2 

Time taken for the 

handshake to 

complete 

Tries 

C 8906ms 250ms 56797ms Try 1 

S 5657ms 5703ms - Try 1 

C 9047ms 312ms 49391ms Try 2 

S 5656ms 5516ms - Try 2 

Table 3: First handshake durations 

 

Device Duration 

for M1 

Duration 

for M2 

Time taken for the 

handshake to 

complete 

Tries 

C 2250ms 297ms 46313ms Try 1 

S 812ms 1125ms - Try 1 

C 2016ms 312ms 27438ms Try 2 

S 625ms 1000ms - Try 2 

Table 4: nth handshake durations 

 
As expected, the performance for the nth handshake is quicker. The experiment was 

conducted in two tries for each handshake, with each try taken at a random time during the 

day. What is interesting to note is the time taken for the SMS messages to be send across the 

network takes longer than computing M1 and M2 because the delays observed for the time 

taken for the entire handshake to complete includes the durations of M1 and M2 for both the 

C and S. The time for S can be faster if an actual server is used instead of another smart 

phone.     

 

6 Future challenges 
 

The current work shows the feasibility of executing the protocol between two mobile phone 

peers. Future work is to implement SMSSec on a WMA enabled J2SE/J2EE server and doing 

further research into the scalability of the protocol. Concurrently, work is underway to 

determine the feasibility of implementing SMSSec for other mobile device operating systems 

such as Symbian OS, Pocket PC, Windows CE, Qtopia and Palm OS. When implementing on 
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these operating systems, security analysis on accessing the persistent storage will be 

conducted.  

 

Due to the flexibility of SMSSec, a study will be conducted to determine the applicability of 

using SMSSec to secure other mobile services such as Multimedia Messaging Service (MMS) 

and HTTP connections on MIDP 1.0 enabled phones because not all of these phones have 

HTTPS implemented.  

 

With MMS, mobile clients are able to send graphics, text, audio and video clips instead of 

plain text such as SMS. MMS relies on packet switched cellular network infrastructure such 

as the General Packet Radio Service (GPRS) or 3G in forwarding the messages. The security 

implications of GPRS and 3G [11] apply to MMS messaging as well; therefore it is 

worthwhile to look into the possibility securing MMS messages.     

 

Currently, MIDP 1.0 phones are still dominating the market [28], but with MIDP 2.0 being 

released on newer phones, there will still be a mixture of the two MIDP versions in the market 

for a few years. Although HTTPS is implemented for MIDP 2.0 phones, [6] found that the 

Reference Implementation of SSL for MIDP 2.0 uses only the system time 

(System.currentTimeMillis())  for its seed update. Hence in order to obtain the 

random values generated by the client, all what the attacker has to do is to guess the precise 

system time (in milliseconds) at the moment of the random value computation. Based on this 

weakness, it would seem ideal to improve HTTPS in MIDP 2.0 using SMSSec where it could 

be applied on top of HTTPS within the application; however further research is required to 

determine whether the two protocols can function together, without changing SMSSec if 

needed.      

 

7 Conclusion 
 
SMS communication is not totally secure and therefore it should not always be trusted. To 

place trust on SMS messaging especially if it is used in an enterprise environment, a protocol 

should be in place to ensure confidentiality, integrity and authentication between the two 

communicating parties. Due to the lack of security in WMA and SMS messaging in general, a 

protocol called SMSSec is presented to ensure an end-to-end secure SMS communication. 

Throughout this paper, SMSSec is found to be secure, reliable and efficient. Further work is 

required to apply SMSSec on other mobile operating systems and services. 
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9 Glossary 
 
3G  Third Generation Network 
AGW   Authentication Gateway 
API   Application programming interface 
AS   Authentication Source 
BSS   Base Station System 
CTR  Counter mode  
DoS  Denial of Service 
ECC             Elliptic Curve Cryptography 
GPRS  General Packet Radio Service 
GSM   Global System for Mobile communications 
HLR   Home location register 
HTTP  Hyper Text Transport Protocol 
HTTPS Secure Hyper Text Transport Protocol 
J2ME  Java 2 Micro Edition 
MIDP   Mobile Information Device Profile 
MS   Mobile Station 
MSC   Mobile Switching Centre 
USSDC  Unstructured Supplementary Services Data Centre 
OAEP  Optimal Asymmetric Encryption Padding 
OTA   Over The Air 
RSAES   Encryption scheme using the RSA cryptosystem 
SMS  Small Messaging Service 
SMSC  Small Message Service Centre 
SS7   Signaling System 7  
WMA  Wireless Messaging API 
WTLS  Wireless Transport Layer Security 
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