Symbolic Reachability Analysis for Parameterized
Administrative Role Based Access Control:

Scott D. Stoller Ping Yang?

ABSTRACT

Role based access control (RBAC) is a widely used access
control paradigm. In large organizations, the RBAC policy
is managed by multiple administrators. An administrative
role based access control (ARBAC) policy specifies how each
administrator may change the RBAC policy. It is often dif-
ficult to fully understand the effect of an ARBAC policy by
simple inspection, because sequences of changes by different
administrators may interact in unexpected ways. ARBAC
policy analysis algorithms can help by answering questions,
such as user-role reachability, which asks whether a given
user can be assigned to given roles by given administrators.

Allowing roles and permissions to have parameters signifi-
cantly enhances the scalability, flexibility, and expressiveness
of ARBAC policies. This paper defines PARBAC, which ex-
tends the classic ARBAC97 model to support parameters,
and presents an analysis algorithm for PARBAC. To the
best of our knowledge, this is the first analysis algorithm
specifically for parameterized ARBAC policies. We evalu-
ate its efficiency by analyzing its parameterized complexity
and benchmarking it on case studies and synthetic policies.

Categories and Subject Descriptors: D.4.6 [Operat-
ing Systems]|: Security and Protection—Access Controls

General Terms: Security, Verification

1 Introduction

Role based access control (RBAC) [17] is a widely used ac-
cess control paradigm. In RBAC, users are assigned to roles,
and permissions are granted to roles. Allowing roles and per-
missions to have parameters significantly enhances scalabil-
ity: the policies of most large organizations can be expressed

*This work was supported in part by ONR under Grant
N00014-07-1-0928 and NSF under Grants CCF-0613913,
CNS-0627447, CNS-0831298, and CNS-0509230.

'Dept. of Computer Science, Stony Brook University.
Email: {stoller,cram}@cs.stonybrook.edu

2Dept. of Computer Science, Binghamton University.
Email: {pyang,mgofmanl}@binghamton.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT’ 09, June 3-5, 2009, Stresa, Italy.

Copyright 2009 ACM 978-1-60558-537-6/09/06 ...$5.00.

Mikhail Gofman?

C. R. Ramakrishnan*

more easily and compactly using parameters. For example,
consider a policy for a university. To grant different permis-
sions to users (e.g., faculty or students) in different classes
or departments, in an RBAC model without parameters,
we would need to create a separate role and corresponding
permission assignment rules for each course or department,
leading to a large and unwieldy policy. In a parameterized
RBAC model, this policy can be expressed using a few roles
and permissions parameterized by the class identifier or de-
partment name. Several parameterized RBAC models have
been proposed, going back at least to [11].

Administrative role based access control (ARBAC) refers
to administrative policies that specify how an RBAC policy
may be changed by each administrator. In ARBAC97, the
first comprehensive ARBAC model [16], ARBAC policies
assign users (administrators) to administrative roles, and
grant permissions for administrative operations—such as as-
signing a user to a role—to administrative roles. This sup-
ports decentralized policy administration, which is crucial
for large organizations, coalitions, etc.

Allowing administrative roles and administrative permis-
sions to have parameters significantly enhances the scalabil-
ity and practical applicability of the administrative model.
For example, consider the policy that the chair of a depart-
ment can assign users to committees in that department. In
a parameterized ARBAC model, this can be expressed by a
single rule, while ARBAC models without parameters would
require separate rules for each department and committee.
In this paper, we define parameterized RBAC and ARBAC
models, by extending the classic ARBAC97 model [16] with
parameters in a fairly straightforward way. We call these
models PRBAC and PARBAC, respectively.

While flexible and expressive administrative models are
needed to handle the complex policies that can arise in real
organizations, they also make it more difficult to ensure that
administrative policies accurately capture the author’s in-
tentions. It is often difficult to understand the effect of an
administrative policy by simple inspection, largely because
(without help) people may fail to see the possible effects of
sequences of administrative operations by different admin-
istrators, and may fail to take into account how the admin-
istrative rules interact with role hierarchy. Policy analysis
helps system designers and administrators understand poli-
cies, including administrative policies. This paper focuses
on user-role reachability analysis, which answers questions
of the form: given an initial PRBAC policy (“state”), a PAR-
BAC policy, a set of administrators, a target user, and a set
of roles (called the “goal”), is it possible for those adminis-

trators to modify the RBAC policy so that the target user
is a member of those roles? Other analysis problems includ-
ing permission-role reachability, user-permission reachabil-
ity, availability, role containment [14], and weakest precon-
dition [20] can be solved in a similar manner or by reduction
to user-role reachability analysis [19, 20].

This paper presents the first (to the best of our knowledge)
algorithm designed for reachability analysis of parameter-
ized ARBAC policies. We define the semantics of PARBAC
policies in terms of a straightforward concrete transition re-
lation. We then introduce a more complicated symbolic tran-
sition relation that captures the semantics compactly, effi-
ciently, and exactly using variables and constraints. Our
algorithm for user-role reachability has two stages. The
first stage performs a goal-directed approximate backward
search. The second stage performs an exact forward search
limited to transitions identified as useful by the first stage.
An optimization to the second stage exploits information
from the first stage to reduce the number of explored inter-
leavings of transitions.

Why are new algorithms needed to solve this problem? If
all parameters range over finite types, existing finite-state
reachability algorithms for unparameterized ARBAC (e.g.,
[14, 19, 20, 12]) can be used, by instantiating each rule with
all combinations of values of its parameters. However, this
approach is practical only if the types are small. Realistic
policies often involve large types (e.g., Stony Brook Uni-
versity has over 2000 class sections each semester and over
50 departments); symbolic analysis of such policies is much
more efficient. Another disadvantage of the finite-state ap-
proach is that the analysis results are valid only for the spe-
cific types used for instantiation. With symbolic analysis, an
infinite type can be used as an abstraction of a finite type, to
obtain more general results. Specifically, if symbolic analysis
with infinite types says that a goal (of the attackers, i.e., an
unsafe state) is unreachable, then that goal is unreachable
when the parameters range over any finite types.

Parameters in our framework may range over infinite types,
so the system is infinite-state, and reachability might be un-
decidable. Numerous algorithms have been proposed to ver-
ify specific classes of infinite-state systems. As discussed in
Section 9, to the best of our knowledge, none is suitable
for efficient analysis of PARBAC. Our algorithm is a semi-
decision procedure for PARBAC reachability, guaranteed to
terminate under realistic assumptions about the policy.

We also explore the parameterized complexity [7] of user-
role reachability for PARBAC and give a fixed-parameter
tractability result for it under realistic assumptions about
the policies. The idea of parameterized complexity is to
identify an aspect of the input that makes the problem com-
putationally difficult, introduce a parameter to measure that
aspect of the input, and develop a solution algorithm that
may have high complexity in terms of that parameter, but
has polynomial complexity in terms of the overall input size
when the value of that parameter is fixed. This is called
fixed-parameter tractability. Formally, a problem is fized-
parameter tractable with respect to parameter k if there ex-
ists an algorithm that solves it in O(f(k) x n°) time, where
f is an arbitrary function (depending only on its argument
k), n is the input size, and ¢ is a constant.

In summary, the main contributions of this paper are (1)
the definition of the symbolic transition graph, which com-
pactly captures the semantics of PARBAC policies and pro-

vides the basis for our algorithm, (2) a two-stage symbolic al-
gorithm for user-role reachability analysis of PARBAC that
terminates under realistic assumptions about the policy, (3)
a fixed-parameter tractability result for this reachability prob
lem under realistic assumptions about the policy, and (4)
experimental results demonstrating the efficiency of our al-
gorithm compared to non-symbolic algorithms.

We chose ARBAC97 as the basis for our PARBAC model
because it is relatively simple while still capturing essential
features of realistic administrative policies. We know of only
one other parameterized ARBAC model, UARBAC” [13].
UARBACY is more sophisticated and flexible than PAR-
BAC, but we believe the work in this paper provides a good
foundation for developing practical analysis algorithms for
UARBACYT and other parameterized security policy models.

2 PRBAC and PARBAC

This section formally defines parameterized RBAC (PRBAC)
and parameterized ARBAC (PARBAC). The definitions are
based on a notion of role schema. Each role schema speci-
fies the name of a role and the names of that role’s parame-
ters. To save space, we omit aspects of RBAC and ARBAC
related to the user-permission assignment and role hierar-
chy. Those aspects can be extended with parameters in the
same way as aspects related to the user-role assignment.
For analysis purposes, hierarchical PRBAC policies can be
transformed into non-hierarchical PRBAC policies using an
algorithm similar to the one in [19]. PARBAC policies that
control the user-permission assignment are structurally sim-
ilar to PARBAC policies that control the user-role assign-
ment and hence can be analyzed using the same techniques.
Analysis of PARBAC policies that control changes to the
role hierarchy requires different techniques.

2.1 Parameterized RBAC

The syntax of policies is parameterized by a set Var of vari-
ables, a set R of role names, a set O of object names, a set
P of parameter names, and a set Op of operation names.

A role schema is a term p(p1,p2,...,Pn), Where n > 0,
p € R is arole name, and each p; € P is a distinct parameter
name. In our basic framework, each parameter can take
values from an implicit universal data type that contains
an infinite number of data values (constants). Introducing
a type system in which each parameter in a role schema
ranges over a specified infinite data type has no significant
effect on our results, except to add clutter. Allowing finite
types requires only a change to the algorithm for checking
satisfiability of constraints, as described in Section 4. We
implicitly extend our framework with a type system with
finite types in some examples.

An instance of a role schema p(pi1,p2,...,pn) has the
form p(p1 = z1,p2 = x2,...,Pn = Tn), where each z; is
a data value or a variable. We use identifiers starting with
lower-case letters for data values, and identifiers starting
with upper-case letters for variables (identifiers starting with
upper-case letters are also used for role names, etc.). An in-
stance is concrete if it contains no variables. We use r to
denote an instance of a role schema, and r. to denote a
concrete instance.

For an instance 7, let schema(r) denote the schema of
which r is an instance. Let args(p(e1,...,en)) = (e1,...,¢€n).
For a set RS of role schemas, inst(RS) denotes the set of all
instances of RS, and conc(RS) denotes the set of concrete in-

stances of RS. For example, in a policy for a university, the
role schema Student(dept, cid) is used for students registered
for the course numbered cid offered by department dept, and
the role schema Student(dept) is used for all students of a
specific department. Students taking cs101 are members of
the instance Student(dept = cs,cid = 101). We make pa-
rameter names explicit to allow overloading; we sometimes
omit them for role names that are not overloaded.

A substitution is a mapping from variables to data val-
ues and variables. We use 6, o to denote substitutions. A
substitution 6 is ground, denoted ground(), if it maps all
variables to data values. The application of a substitution 6
to an expression e is denoted ef.

Definition 1. A parameterized RBAC (PRBAC) policy is
a tuple (RS, U, UA) where

e RS is a finite set of role schemas. U is a finite set of
users.

e UA C Uxconc(RS) is the user-role assignment. (u,7c) €
UA specifies that user u is a member of r..

For example, (Alan, Student(dept = cs)) € UA specifies
that user Alan is a member of role Student(dept = cs).

2.2 Parameterized ARBAC

A PARBAC policy is a tuple (RS, U, URA), where RS is a
set of role schemas, U is a set of users, and—analogously
to ARBAC97—URA is the user-role administration policy.
The PARBAC policy defines the transition relation that de-
scribes allowed changes to the PRBAC policy.

The user-role administration policy URA controls changes
to the user-role assignment. URA consists of two kinds of
rules: can_assign and can_revoke. A can_assign rule has
the form can_assign (rq, (P, N),r), where r, € inst(RS) is
the administrator’s role, P C inst(RS) is the positive pre-
condition, N C inst(RS) is the megative precondition, and
r € inst(RS) is the target. The rule means that an adminis-
trator in role r, can add a user to r if the user is a member
of all the roles in P and is not a member of any roles in N. In
examples, we usually write preconditions as logical formulas;
for example, the precondition ({r1, 72}, {rs}) would be writ-
ten as r1 Ara A—r3. For example, can_assign(Dean(school =
engg), Prof(dept = cs), Chair(dept = cs)) specifies that the
Dean of the Engineering School can assign a professor of
the CS Department to be the Chair of that Department.
The identity of the administrator performing an action is
sometimes relevant, so we introduce a distinguished variable,
Self, whose value identifies that administrator. For example,
can_assign(Faculty, Student, RA(fac = Self)) specifies that a
faculty member can assign a student to be his/her RA.

A can_revoke rule has the form can_revoke(rq,r). It means
that an administrator in role r, can remove users from role
r. We follow ARBAC97 in omitting preconditions from
can_revoke [16].

A role schema is an administrative role schema if it has an
administrative permission, i.e., it appears in the first com-
ponent of some can_assign or can_revoke rule. An adminis-
trative role is an instance of an administrative role schema.
The separate administration restriction requires that admin-
istrative role schemas do not appear in the precondition or
target of can_assign rules or the target of can_revoke rules.
We follow ARBAC97 in adopting this restriction. Our al-
gorithm is also applicable to many policies that satisfy a
different but related restriction, described in Section 6.

3 User-Role Reachability

This section defines user-role reachability for PARBAC. For
a PRBAC policy v, let U(v) and UA(y) be the set of users
and the user-role assignment in ~y, respectively.

Definition 2. A wuser-role reachability query has the form:
Given a user ug, an initial PRBAC policy v, a PARBAC
user-role administration policy URA, a subset A of the user-
role assignment UA(~) containing only administrative roles,
and a set g of role instances, can actions by administra-
tors in A, acting in the administrative roles to which they
are assigned in A, and using the administrative permissions
granted to those roles by URA, transform 7 to another
PRBAC policy 7' such that, for some substitution 6, uo
is a member of all roles in the instantiated goal g7

Under the separate administration restriction, the user-
role reachability problem can be simplified as in [19]. This
restriction implies that the transitions allowed by a PAR-
BAC policy do not change the set of tuples containing ad-
ministrative roles in the user-role assignment UA. Hence we
can partition UA into administrative and non-administrative
subsets, corresponding to tuples containing administrative
roles and those containing non-administrative roles, respec-
tively. Since the administrative subset does not change, we
“factor it out”, i.e., we do not include it in the nodes of
the concrete state graph, defined below. Moreover, in AR-
BAC97, each user’s role memberships are controlled com-
pletely independently of other users’ role memberships, so
we can perform user-role reachability analysis by tracking
only tuples in UA that contain the user up mentioned in the
reachability query. Thus, the answer to a user-role reachabil-
ity query can be expressed in terms of a graph whose vertices
(states) correspond to sets of non-administrative roles that
up is a member of.

The concrete transition relation T.(URA, A) expresses the
semantics of a user-role administration policy URA, restricted
to administrative actions performed by a user u 4 in adminis-
trative role 74 such that (ua,r4) € A. T.(URA, A) contains
(s, (p,0),5s") iff the rule ¢ in URA, instantiated using substi-
tution 6, allows an administrator ua acting in role r4 with
(uA, rA) c Ato perform a role assignment or role revocation
that changes the user-role assignment for a user from s to
s’. When URA and A are clear from context, we sometimes

write a triple (s, (¢,0),s") € T.(URA, A) as s 208

Definition 3. The concrete transition relation T.(URA, A)
for a user-role administration policy URA and a user-role as-
signment A containing only administrative roles is the small-
est relation such that:

o (5,(p,0),5) € T.(URA, A) if p = can_assign(ra, (P,N),r)
and ¢ € URA and 6 is a ground substitution such that
there exists (ua,r4) € A such that:

—rf¢sand s =sU{ro},
— PO C s, and NONs = B (the positive preconditions and
negative preconditions of ¢ are satisfied in state s),

— rqf = 74 (instantiating r, yields the administrative role
in A used to perform this role assignment), and

— 0(Self) = ua (0 maps the distinguished variable Self
to the identity u4 of the administrator performing this
role assignment)

o (s,(p,0),s") € T.(URA, A) if ¢ = can_revoke(rq,r) and
¢ € URA and 0 is a ground substitution such that there
exists (ua,ra) € A such that:

— 16 € s (the role to be revoked is present in state s),

— s =s—{ro},
— re0 =74, and
— 0(Self) = ua

The concrete state graph for a user-role reachability query
of the form in Definition 2 is the graph created by starting
from the initial user-role assignment for the target user ug
and using the concrete transition relation to repeatedly add
new edges and nodes. The answer to a user-role reachability
query is true iff there exists a substitution 6 such that the
concrete state graph contains a state s with g6 C s. For a
labeled graph, we use a triple (v, £,v") to represent an edge
from v to v’ labeled with .

Definition 4. The concrete state graph for a user-role reach-
ability query of the form in Definition 2 is the smallest
labeled directed graph (V, E) with vertices V' and labeled
edges E such that

o {r| (uo,r) € UA(7) A —~admin(r)} € V, where admin(r)
is true iff r is an administrative role.

e (s1,,82) € E and s € V if s1 € V and there exists a
substitution 6 such that (si1, (¢, 8),s2) € T.(URA, A).

Example 1. Consider the following PARBAC policy (for
brevity, we do not show the set of users, etc.).

RS = { Chair(dept), Student(dept, cid), TA(dept, cid) }

¢ : can_assign(Chair(dept = D), = Student(dept= D, cid= CID),

TA(dept= D, cid= CID))

The policy contains no can_revoke rules. Consider the query:
Can the chair of CS Department assign a user u who is ini-
tially a member of role Student(dept = cs, cid = 501) to
both roles TA(dept = cs, cid = 101) and TA(dept = cs, cid =
201)? The answer is yes. For illustrative purposes, we as-
sume the course identifier parameter cid ranges over the
set {101,201, 301,401, 501}; in this case, the concrete state
graph for this query contains 16 states and 32 transitions.
If cid ranged over an infinite data type, the concrete state
graph would be infinite.

These definitions define the semantics of PARBAC poli-
cies but do not provide an effective algorithm for reachability
analysis: parameters take values from an infinite type, so the
concrete state graph is infinite, except for trivial policies.

4 Symbolic State Graph

This section defines symbolic states and symbolic transi-
tions, which are the basis of our symbolic analysis algorithm.

A symbolic state is a pair (R,C) where R is a set of role
instances (not necessarily concrete), and C is a constraint
over variables that appear in R. A constraint is the constant
true or a conjunction of tuple disequalities. A tuple disequal-
ity has the form (e1,...,en) # (f1,..., fn), where each e;
and f; is a constant or a variable. We elide angle brackets
around singleton tuples. Note that a conjunction of tuple
disequalities is just a more compact notation for a logical
combination of single (as opposed to tuple) inequalities, in
conjunctive normal form.

For a constraint C, satisfiable(C) is true if C' does not
contain a tuple disequality whose left and right sides are the
same, and is false otherwise. For example, if Cy denotes X #
cs, then satisfiable(Co) is true, and satisfiable(Co[X — cs])
is false. As another example, if Cy denotes (X,Y) # (Z, cs)
then satisfiable(C1) and satisfiable(C1[X +— Z]) are true.

The above satisfiability test is correct when all variables
range over infinite data types. If we extend the framework
with a type system for parameters of role schemas, and the
types may be finite, then the satisfiability test must be ex-
tended to check whether there are sufficiently many values
of each type. This problem can easily be reduced to the
graph coloring problem, which can be solved quickly for the
small problem instances that typically arise in this setting.

A symbolic state (R,C') represents the concrete states
obtained by instantiating R consistent with C; formally,
the meaning of (R,C) is [(R,C)] = {RO | ground(6) A
satisfiable(CO)}. For example, ({Student(dept=D)}, D #
cs) represents states containing a single instance of Student
instantiated with any constant other than cs.

For a constraint C, simplify(C') returns a new constraint
obtained by removing tuple disequalities in which the two
tuples have distinct constants in some component (such dis-
equalities are equivalent to true, e.g., (X, cs) # (Y, ee)) and
removing components of tuple disequalities that are equal
in the two tuples (this yields a logically equivalent disequal-
ity, e.g., (X,Y) # (X, Z) is replaced with Y # Z). If the
last component is removed from a tuple disequality d (i.e.,
d becomes () # ()), then d simplifies to false. If all tuple
disequalities in C' are removed, C' simplifies to true.

For a constraint C' and a set Vars of variables, the pro-
jection of C' on Vars, denoted project(C, Vars), is the con-
straint obtained from C by discarding disequalities that do
not affect the satisfying values of variables in Vars. Specif-
ically, project(C, Vars) constructs an undirected graph with
a vertex for each tuple disequality in C, and with an edge
between disequalities di and d» if they share a variable (i.e.,
vars(di) Nwars(dz) # 0, where vars(e) is the set of variables
that appear in expression e), and discards disequalities that
are not reachable in the graph from any vertex d that men-
tions a variable in Vars. For example, project(X # Y AY #
ZANU £V, {Z}) equals X £Y ANY # Z.

A substitution 0y is more general than a substitution 62,
denoted 02 <, 601, if there exists a substitution 6 such that
02 = 01 o 0, where o denotes composition. A unifier for role
instances r1 and 79 is a substitution 8 such that r16 = r26.
The most general unifier of r1 and r2, denoted mg_unifier(r1,
r2), is a Xg-maximal unifier for 1 and r2 (it is unique up to
renaming of variables). For example, the substitution [Y —
cs, Z +— X| is a most general unifier for p(p = X,q = Y)
and p(p = Z,q = cs), while [X +— ¢s,Y — cs,Z +— cs] is a
less general unifier for them. For sets P; and P> of role in-
stances, subset_unifiers(P1, P2) = {6 € Subst | P10 C P20},
and mg_subset_unifiers(Pi, P2) is the set of most general
(i.e., Rg-maximal) elements of subset_unifiers(Pi, Pz). For
example, if Py = {p1(cs)} and P = {p1(X), pr(Y), pa(X)},
then [X — cs] and [Y — cs] are most general subset unifiers
for P; and P, and [X +— c¢s,Y + cs] is a less general subset
unifier for them.

The symbolic transition relation introduces locally fresh
variables, i.e., variables not appearing in the source state
of the transition that introduces them. Let freshSubst(6,
varsi, varsz) hold if § maps variables in wvars: to distinct

variables that are not in varss and are chosen in some de-
terministic manner (e.g., choose the lexicographically small-
est variables not in varsz). To simplify the semantics of the
graph, after the initial construction, we apply a straightfor-
ward, linear-time transformation mkGloballyFresh that re-
names introduced variables so they are globally fresh, i.e.,
each variable is introduced in at most one state in the graph.

Definition 5. The symbolic transition relation T(URA, A)
for a user-role administration policy URA and an assign-
ment A of users to administrative roles contains a tuple
((R,C), (p,0¢,0), (R',C")) if execution of rule ¢ in URA, in-
stantiated with the substitution 6 o 6, leads from symbolic
state (R,C) to symbolic state (R',C’), where 0 replaces
variables in ¢ with fresh variables, and 6 is a most general
subset unifier of the positive preconditions of ¢ with roles
in R. Formally, it is the least relation such that:

* ((R,C),(¢,05,0),(R,C")) € T(URA,A) if ¢ € URA
and ¢ = can_assign(rq, (P, N),r:) and there exist R, C
R, (ua,r4) € A such that

— freshSubst(0y, vars(p), vars((R, C)))

— 0 € mg_subset_unifiers(P8s, R,) (the roles in R, sat-
isfy the positive preconditions of ¢) and range(6) C
vars(Rp) U Constants.

— 14040 = 74 (instantiating r, yields the administrative
role in A used to perform this role assignment)

— 0(Self) = ua (0 maps the distinguished variable Self
to the identity ua of the administrator performing this
role assignment)

— R = ROU {r.040}

— distinct = /\TGR such that schema(r)=schema(rt) CLTgS(TQ) #
args(r:070) (the role being added is not already in the
state; note that a conjunction with no conjuncts is true)

— neg =
args(rn0s0) (the negative preconditions of ¢ are satis-
fied)

— C' = simplify(CO A distinct A neg)

— satisfiable(C') = true

* ((R,C),(¢,05,0), (R, C") € T(URA,A) if ¢ € URA
and ¢ = can_revoke(rq,r:) and there exist r € R,0¢ €
Subst, 0 € Subst, (ua,ra) € A such that

— 65 maps all variables in ¢ to distinct fresh variables,
i.e., variables that do not appear in (R, C)

— 0 = mg_unifier(r,m:0¢) (r is the role instance being
revoked) and range(f) N range(ff) = @ (6 does not
map variables in vars(r) Uvars(r:6) to fresh variables in

range(6y))
— rq0s0 = 74 (instantiating r, yields the administrative
role in A used to perform this role assignment)

— 0(Self) = ua (0 maps the distinguished variable Self
to the identity wa of the administrator performing this
role assignment)

— R' = RO\ {rb}

— Cy = simplify(C8)

— satisfiable(Ch) = true

C'" = project(Ch, vars(R'))

/\TneN /\TGR such that schema(r)=schema(ry) args(r&) #

Definition 6. The symbolic state graph for a user-role reach-
ability query of the form in Definition 2 is a labeled directed
graph mkGloballyFresh(V, E), where the set V of vertices
and the set F of edges are the smallest sets such that:

o ({r| (uo,r) € UA(y) A —admin(r)}, true) € V.

e (R,C),p,(R,C") € E and (R',C") € V if (R,C) €
V and there exist 0y € Subst, 0 & Subst, and
(R, C), (¢, 05,0), (R,7C/)) € T(URA, A).

Example 2. Consider the construction of the symbolic state
graph for the query in Example 1. The initial state is S; =
(R1,C1) = ({Student(dept = cs, cid = 501)},true). From
S1, the can_assign rule @ is applied (renaming D and CI1D
to fresh variables D’ and CID’ respectively and then sub-
stituting D’ with cs). This adds TA(dept = cs, cid = CID'")
to the state under the constraint CID’ # 501, resulting
in a symbolic state Sz = (R2,C2) = (R1 U {TA(dept =
cs,cid = CID")},(CID’ # 501)). S> represents the four
concrete states {{Student(dept = cs, cid = 501), TA(dept =
cs, cid = X)} for X € {101,201,301,401}. Similarly, from
Sa, rule ¢ can be applied again (renaming D and CID to
fresh variables D] and CID] respectively and then substi-
tuting D] with cs). This leads to the state S5 = (R3,C3) =
(R2 U {TA(dept = cs, cid = CID1)},Ca A (CID] # 501) A
(CID}] # CID")). Repeating this process results in a sym-
bolic state graph containing 5 states: Si, S2, S3, Sa =
(R4, C4) = (RsU{TA(dept = cs, cid = CID3)}, CsA(CID5 #
501) A (CIDy # CID') A (CIDy # CID,)) and S5 =
(R4 U {TA(dept = cs, cid = CID3%)},Cs A (CID3 # 501) A
(CIDy # CID') A (CIDy # CID}) A (CIDS # CIDY)),
and 4 transitions: S1 2 S 2 S35 5 Sy 5 Ss. If cid ranges
over an infinite data types, then the symbolic state graph
would be infinite, because an infinite number of instances of
TA(dept = cs, cid = CID) would be added to the state.

The following theorems say that the symbolic transition
relation and symbolic state graph are exact abstractions.

Theorem 1. Let A be a user-role assignment containing
only administrative roles. Let URA be a user-role adminis-
tration policy. For all symbolic states (R,C) and (R',C"),
all policy rules ¢ in URA, and all substitutions 6 and 6,
((R,C), (p,04,0), (R',C")) € T(URA, A) iff for all ground
substitutions 6. such that satisfiable(C0.)Asatisfiable(C’0..),
(RO, (¢,0.0000;),R'0.) € T.(URA, A).

Theorem 2. Let (V, E.) and (V, E) be the concrete and
symbolic state graphs, respectively, for a user-role reacha-
bility query of the form in Definition 2. (a) Vs, € V..3s €
V.sc € [s] (all reachable concrete states are represented by
reachable symbolic states). (b) Vs, s.,s,s’,¢. sc € [s] A
se € [S'T A (sey,8.) € Ec = (s,p,8") € E (all reachable
concrete transitions are represented by reachable symbolic
transitions). (c) Vs € V. 3s. € V.. sc € [s] (all reach-
able symbolic states represent reachable concrete states).
(d) Vs, s, 0. (s,0,8") € E=Vsc € [s],s. €[] (se,0,5.) €
E. (all reachable symbolic transitions represent reachable
concrete transitions).

S Analysis Algorithm

This section presents a symbolic algorithm for user-role reach-
ability analysis of PARBAC policies. The algorithm has two
stages. The first stage performs a backward search from

the goal towards the initial state. However, some of the
enabling conditions of the administrative actions are not
checked during the backward search. In other words, this
stage constructs an over-approximation of a backward slice
(starting from the goal) of the symbolic state graph. The
second stage determines which states in that graph are ac-
tually reachable, by running an exact forward search from
the initial state, but limiting the search based on the results
of stage 1. Compared to a purely forward algorithm, the
backward stage improves the algorithm’s efficiency by prun-
ing the search space, and improves the algorithm’s termina-
tion behavior. The overall strategy of using an approximate
backward search followed by a forward search is reminiscent
of Graphplan [5], although the details are quite different.

First Stage. The graph constructed by the first stage of
the algorithm is an over-approximation for two reasons: neg-
ative preconditions are ignored, and disequality constraints
are ignored. Negative preconditions could, at best, be only
partially checked during the first stage, because the symbolic
states constructed during the first stage might be subsets of
the symbolic states that are actually reachable. This is be-
cause those states might actually contain additional roles
that were needed to satisfy positive preconditions of earlier
transitions (i.e., transitions between a state and the initial
state); although some of those roles could perhaps be re-
voked, some of them might not be revocable by the admin-
istrative roles in A.

Since negative preconditions cannot be checked completely
during the first stage, for simplicity, we do not check them
at all during that stage; they are enforced during the second
stage. Since disequality constraints are used primarily to en-
force negative preconditions, we do not keep track of them
during the first stage. Thus, each symbolic state in the back-
ward symbolic state graph is simply a set of roles (i.e., role
instances). Edges are determined by the backward symbolic
transition relation Ty. A tuple (R, (¢,0f,0), R) is in that
relation if a backward step from R’ to R (i.e., R’ is closer
to the goal, and R is closer to the initial state) is possible—
ignoring negative preconditions—using rule ¢ with the given
substitutions, which are analogous to the substitutions in
the forward symbolic transition relation introduced in Sec-
tion 4. The backward symbolic transition relation considers
only role assignment actions; it does not consider revocation,
which cannot help satisfy positive preconditions.

Definition 7. The backward symbolic transition relation
T,(URA, A) for a user-role administration policy URA and
an assignment A of users to administrative roles is the least
relation such that:

o (R ,(p,0f,0),R) € T,(URA,A) if ¢ € URA and ¢ =
can_ asszgn(ra,(P, N),r:) and there exist r; € R, P; C
P,R, C R'\{ri},(ua,ra) € A such that

— freshSubst (05, vars(p), vars(R'))

— 0 € mg_subset_unifiers(P10s, Rp) (the positive precon-
ditions in P; are satisfied by the roles in R,; the other
preconditions of ¢ will be added to R, acting as new
sub-goals) and 6 does not map variables in vars(R’) to
locally fresh variables.

— 14050 = ra (instantiating r, yields the administrative
role in A used to perform this role assignment)

Figure 1:
3. An edge from R to R’ labeled with ¢ means

Backward symbolic graph for Example

(R',p,R) € E,. The roles all have one parameter,
p, which we elide; e.g., pi1(p =Y) is shown as p1(Y).

0(Self) = ua (0 maps the distinguished variable Self
to the identity ua of the administrator performing this
role assignment)

— 710 = 14040 (the role r; in R’ is the role added by this
transition)

= R=RO\{ri0} UU,cp\p {r0s0} (the earlier state R
contains the roles in R’, minus the role added by this

transition, plus roles used to satisfy the remaining pos-
itive preconditions of ¢)

— 10 € R (the role being added is not present in the
earlier state R)

Definition 8. The backward symbolic state graph for a user-
role reachability query of the form in Definition 2 is a labeled
directed graph mkGloballyFresh(V, E), where the sets V of
vertices and F of edges are the smallest sets such that:

e gcV.

e (R,p,R) € Eand R € V if R € V and there exist
07 € Subst and 0 € Subst such that (R',(p,0s,0),R) €
Ty(URA, A).

Example 3. The backward symbolic state graph for the
following policy and query is shown in Figure 1 (for read-
ability, the substitutions are omitted from the edge labels).
RS = {Ta,p1(p),p2(p),p3(p)}, UA(’Y) = {(ua,ra)},
A= {(ua,ra)}, g = {p1(p=Y), ps(p = 2)}
p1 = can_assign(ra, true, p1(p = X))
P2 = can-assign(ra, p1(p = X), p2(p = X))
p3 = camassigngm, p2(p = X) A=pi(p = X), p3(p = X))

(

(

w1 = can_revoke(rq, p1(p = X
w5 = can_revoke(rq, p2(p = X
ps(p=X

)A

)

)
w6 = can_revoke(Tq, p)
Second Stage. The second stage performs a forward
search and maintains a correspondence between states ex-
plored by the forward search, called forward states, and
states explored during the first stage, called backward states.
The correspondence is used to limit the forward search to ex-
plore only transitions that might be useful for reaching the
goal. From each forward state (R,C) and each backward
state Ry corresponding to it, the (unoptimized) forward al-
gorithm explores (1) all enabled can_assign rules ¢ such that
one of the backward states R; corresponding to (R, C) is the
target of an edge labeled with ¢ in the backward symbolic
state graph, and (2) all enabled can_revoke rules. The re-
sulting graph is called a goal-directed forward symbolic state

graph. Its nodes are pairs ((R,C), Ry) of a forward state
(R,C) and a corresponding backward state Ry.

Definition 9. The goal-directed forward symbolic state graph
for a user-role reachability query of the form in Definition
2 is a labeled directed graph mkGloballyFresh(V, E), where
(Vi, Eb) is the backward symbolic state graph for the query,
and V and F are the smallest sets such that:

e ((UAo,true), Ry) € V for each Ry € V, such that (30 €
Subst. Ry C UAp), where UAg, the initial role assign-
ment for uo, is given by UAo = {r | (uo,r) € UA(y) A
—admin(r)} (the initial forward state (UAo, true) is re-
lated to backward states that represent subsets of UAo;
intuitively, we use subset, instead of equality, because a
backward state is a set of sub-goals, and we just require
that the sub-goals are satisfied in the initial state)

d (((R7 C)va)v(‘p7€f76)7((R/7C/)7R§))) € E and
(R, C"),R,) € V if ((R,C),Ry) € V and
((R,C), (p,0¢,0),(R',C")) € T(URA,A) and either
o is a can_revoke rule and R}, = Ry, or ¢ is a can_assign
rule and (Ry, ¢, Ry) € Ep.

A forward state (R, C) satisfies goal g if there exists 6 €
mg_subset_unifiers(g, R) such that satisfiable(C0) = true.
The algorithm can easily provide a symbolic representation
of all reachable instances of the goal: for each reachable
forward state (R,C) that satisfies the goal, for each 6 €
mg_subset_unifiers(g, R) such that satisfiable(C0) = true,
add (g6, C) to the result.

Termination. Termination is an issue, because the sym-
bolic state graph may be infinite. For example, each use
of the rule can_assign(Chair(dept = D), Faculty(dept = D),
Instructor(dept = D, cid = C')) introduces a fresh variable
for the course identifier C', so a purely forward algorithm
may add an unbounded number of distinct instances of the
Instructor schema. The backward stage prevents divergence
in many cases, but not all. Our algorithm is guaranteed
to terminate if either (T1) the policy’s positive-precondition
dependency graph is acyclic, or (T2) all can_assign rules
in the policy have at most one positive precondition. The
positive-precondition dependency graph for a PARBAC pol-
icy is a directed graph that contains a vertex for each role
schema and contains an edge from 71 to rq if the policy
contains a can_assign rule with 71 in the positive precondi-
tion and 72 in the target. The policies for both of our case
studies satisfy both of these conditions, and we expect that
most real policies satisfy at least one of them. The positive-
precondition dependency graph is typically acyclic, because
roles in the positive precondition in a can_assign rule are
typically junior in the organizational hierarchy to the target
role, and organizational hierarchies are acyclic. (T1) or (T2)
directly ensure termination of the backward stage; this, in
turn, ensures termination of the forward stage, provided the
forward search is depth-first and is limited not to allow mul-
tiple transitions corresponding to the same backward edge
on the search stack (i.e., forward paths that correspond to
cycles in the backward graph are useless and can be pruned).

Optimizations. Our algorithm incorporates three opti-
mizations. (1) A policy slicing transformation, similar to
the one in [20] but enhanced with a forward pass, is applied
before analysis. (2) In the second stage, a can_assign transi-
tion corresponding to a backward transition (R, ¢, Rp) € Ep

is augmented so that it also revokes (i.e., removes from the
forward state) every revocable role r in the forward state
that does not match any element of R; (this is safe because
those roles will not be needed to satisfy any preconditions
in the rest of the path to the goal). A role r is revocable
with respect to a user-role reachability query of the form in
Definition 2 if A contains an administrative role with per-
mission to revoke r. A role r1 matches a role ro if 71 and
ro are instances of the same role schema and, for each pa-
rameter p of the schema, either (a) r1 or ro has a variable
as the value of p or (b) 71 and 72 contain the same constant
as the value of p. This is a kind of partial-order reduction
that performs revocations eagerly when it is safe to do so.
(3) If the user wants only one reachable instance of the goal,
then the forward search halts as soon as a state satisfying
the goal is encountered; we call this early stopping.

Example 4. Consider the goal-directed forward symbolic
graph for the policy and query in Example 3. The backward
state () corresponds to the initial forward state ({}, true).
Corresponding to the path {p1(p = Z), ps(p = Z)} 2 {ps(p =
2} B {palp = 2)} B {p1(p = 2)} B 0 in the backward
graph in Figure 1, the unoptimized algorithm constructs
the following path in the goal-directed forward graph (for
readability, the substitutions are omitted from the edge la-
bels): ((0,true),0) = (({p1(p = 2)}, true), {p1(p = 2)}) =
(({prlp = 2), p2(p = Z)}, true), {p2(p = 2)}) = (({p2(p =
20} true), {pa(p = 2)}) 2 (({p2(p = 2), ps(p = 2)}, true),
{ps(p=2)}) = ({pr(p=Y), p2(p = Z), p3(p = 2)}, true),
{pi(p = Y),ps(p = Z)}). The last of these states satis-
fies the goal. With optimization (2), the can_revoke tran-
sition using rule ¢4 would be combined with the preceding
can_asstgn transition using @2, and the transition that uses
3 to add ps(p = Z) would be extended to revoke pa(p = Z).

Fixed-Parameter Tractability. Expressing the com-
plexity of the optimized backward algorithm as a function
of the overall problem size alone is unsatisfactory, because
the worst-case complexity with respect to this parameter is
exponential, while we expect the typical complexity to be
much better. To provide some insight into when and why
this is the case, we express the complexity in terms of several
metrics that characterize the “difficulty” of the policy. Our
complexity results apply to policies that satisfy conditions
(T1) and (T2) in the paragraph about termination.

Let Gy denote the backward symbolic state graph for a
query. Each backward state Ry in G satisfies |Rp| < |g|, be-
cause each backward transition replaces the target role with
the positive precondition of the selected can_assign rule. Let
dp denote the diameter of the positive-precondition depen-
dency graph. Typically dp is much smaller than |RS|, be-
cause it measures the height, not the total size, of an orga-
nization’s administrative structure. The length of paths in
Gy is bounded by |g|dp, because each backward transition
decreases the sum of the heights (in the positive precondi-
tion dependency graph) of the schemas of the roles in the
backward state.

Let d¢ denote the maximum number of can_assign rules
with the same role schema as a target. The outdegree of a
vertex in the backward state graph is bounded by |g|d:ds,
where dy bounds the number of different successor states
that can be reached from a given backward state using a
given can_assign rule and different substitutions, i.e., it is

the maximum, over backward states Ry, in Gy and can_assign
rules ¢ in the policy, of [{Ry | 30¢,0. (Ry, (p,05,0), Ry) €
Ty(URA, A)}|. Note that dp is bounded by | Rj| hence by |g|,
because differences in 6 that lead to differences in R, come
from matching the target of ¢ with different elements of Ry.
Thus, the outdegree of a vertex in the backward state graph
is bounded by |g|?d;. The number of nodes in a graph with
maximum path length £ and maximum outdegree d is O(d").
Therefore, the number of backward states is O((|g|?d;)!9!%).

Let Gy denote the goal-directed forward symbolic state
graph for the query. Every node in Gy is reachable by a
simple path in Gy. Every simple path in Gy corresponds,
by projection onto the second component of each node, to a
distinct path in Gy, because (1) every transition in the goal-
directed forward symbolic graph corresponds to execution
of a backward symbolic transition that changes the second
component (i.e., the backward state) in the node, and (2)
distinct outgoing transitions from a state in the goal-directed
forward symbolic graph must correspond to execution of dif-
ferent can_assign transitions hence to execution of different
backward symbolic transitions. Furthermore, these paths
in GG contain at most one occurrence of each cycle in Gy,
because transitions that go around a cycle in G a second
time would not add more irrevocable roles or constraints to
the corresponding forward states, hence the corresponding
fragment of the path in Gy would be a cycle, contradicting
the assumption that the path in G is simple. Therefore, the
number of states in Gy is bounded by the number of paths in
G} that go around each cycle at most once. This is bounded
by some function ¢ of the number of backward states. The
time complexity of standard state-graph construction algo-
rithms is polynomial in the size of the input and linear in the
size of the output (i.e., the generated state graph). There-
fore, the worst-case time complexity of the overall backward
algorithm is O(|T|°¢((|g|*ds)!?!%)), for some constant ¢ and
some function ¢, where |I| is the size of the problem in-
stance (the query). This implies that user-role reachabil-
ity for queries satisfying (T1) and (T2) is fixed-parameter
tractable with respect to max(|g|, d¢, dp). For the queries in
our case studies, we found |g| < 2, d; < 10, and d,, < 3.

6 Beyond Separate Administration

In [20], we presented two approaches to analysis of policies
that do not satisfy separate administration. The first ap-
proach extends the algorithms to keep track of the user-role
assignment for each administrator as well as the target user
up; this is straightforward but may be computationally ex-
pensive. The second approach allows more efficient analysis
of policies that satisfy an alternative assumption called hi-
erarchical role assignment, which says, roughly, that each
administrative role has authority to assign users only to se-
lected roles that are junior to it in the role hierarchy. Both
approaches can be adapted for analysis of PARBAC.

7 Case Studies

We used PARBAC policies for a university and a health-care
facility as case studies. Unparameterized versions of these
policies were used as case studies in [20]; those versions are
unrealistic in the sense that they accommodate only one de-
partment, one course, one faculty, etc. The parameterized
versions accurately handle multiple departments, multiple
courses, multiple faculty, etc. Both policies have the fol-
lowing characteristics: (1) the positive-precondition depen-

dency graph is acyclic; (2) every can_assign rule has at most
one positive precondition; (3) for almost all can_assign rules,
there is a corresponding can_revoke rule, so almost all roles
are revocable; and (4) the policy does not satisfy separate
administration, but hierarchical role assignment is satisfied
for most sets of administrative roles. The policies contain
about 3 dozen and 1 dozen can_assign rules, respectively.

University. Our PARBAC policy for a university controls
assignment of users to student roles and employee roles. It
contains 60 role schemas and 35 can_assign rules; expanding
role hierarchy increases it to 625 rules. The role schemas
include Student, Undergrad, Undergrad(dept), Employee,
Faculty(dept), Instructor(dept, cid), etc. Role hierarchy
relationships include President > Provost »= Dean >
DeptChair etc. A sample user-role reachability query is:
Can an administrative user initially in DeptChair(dept =
cs) add a user initially in role Faculty(dept = ee) to
QualEzamCommittee(dept = cs).

Health Care Facility. Our second case study is a PAR-
BAC policy for a health care facility, based on policies in [10,
3]. The policy contains 14 can_assign rules and 2 SMER con-
straints. The role schemas include Doctor, Doctor(patient),
ReferredDoctor (patient), PrimaryDoctor(patient), Nurse,
ThirdParty, etc. Hierarchical role assignment is satisfied
for most sets of administrative roles, but not as high a per-
centage of them as for the university policy.

8 Experimental Results

We implemented the symbolic algorithm described in this
paper (including optimizations (1) and (3) but excluding
optimization (2) and the search stack check described in
the paragraph on termination; search stack checks are used
in well-known efficient model checkers, such as SPIN, and
should not significantly affect our performance results) and
the forward and backward algorithms for analysis of un-
parameterized ARBAC in [20] using the XSB tabled logic
programming system, version 3.1. We refer to the algo-
rithms in [20] as concrete algorithms. Performance data
in Table 1 were obtained on a 1.67 GHz Pentium Core
2 Duo machine with 2 GB RAM; other performance data
were obtained on a 2GHz AMD Athlon machine with 1 GB
RAM. The policies used in our experiments are available at
http://www.cs.stonybrook.edu/"stoller/parbac/.

Case studies. We applied the symbolic algorithm to 5
user-role reachability queries for the university policy and
2 such queries for the health care policy (details are at the
above URL). Each query is answered in less than 0.01 sec.

Performance Comparison for Parameterized Poli-
cies. These experiments evaluate the performance bene-
fit of using symbolic analysis for parameterized policies in
which all parameters range over finite types. These exper-
iments compare the performance of the symbolic algorithm
applied to a parameterized policy with the performance of
the concrete algorithm applied to each unparameterized pol-
icy obtained by instantiating the parameterized policy using
values from a single finite type, for varying sizes of the type.

To do this for a variety of “realistic” policies, we gener-
ate synthetic policies that are structurally similar to our
university policy after expansion of role hierarchy and that
contain about the same number of can_assign rules (namely,
625). The policies contain the same role schemas as the uni-

|g] Symbolic |'T| Concrete Backward
Node-1/Edge-1
Time | Mem | Node-2/Edge-2 Time| Mem |Node-1/Edge-1
1| 0.00| 2.86 27/291 1| 0.00 2.86 27/291
19/87| 2] 0.01 3.17 49/950
3| 0.01 3.88 76/2.2K
4| 0.02 5.13 109/4.4K
5| 0.05 7.16 149/7.7K
6| 0.10| 10.08 194/12.5K
7| 0.19] 14.16 246/19.1K
2| 0.20| 4.98 384/8.4K 1| 0.05 3.77 370/7.9K
808/10.0K| 2] 0.34 7.93 1.2K/47.5K
3| 1.40[20.61 3.0K/177.9K
4| 4.73| 52.36 6.3K/511.6K
3| 8.15]52.80 3.8K/125.1K 1| 0.87| 14.49 3.4K/108.6K
27.9K/381K 2[10.66|117.13 20.4K/1.2M
3]72.09]644.64 82.3K/7.3M

Table 1: Running time (sec) and memory consump-
tion (MB) on parameterized policies. Node-i/Edge-
i: number of nodes and edges generated in Stage .
K and M represent 10° and 10°, respectively.

|g] Symbolic Concrete Backward | Concrete Forward
Time | Mem | Time Mem | Time Mem

1| 0.00 0.35 0.00 0.36 0.00 0.43
2| 0.00 0.37 0.00 0.38 0.02 0.61
3| 0.02 0.54 0.01 0.56 0.03 0.67
4] 0.29 2.78 0.25 2.96 0.03 0.71
5 1.81 10.29 1.26 10.03 0.04 0.77

Table 2: Running time (sec) and memory consump-
tion (MB) on unparameterized policies.

versity policy. The number of can_assign rules per (target)
role schema is chosen randomly following the distribution of
rules per role schema in the university policy. The numbers
of positive and negative preconditions per rule are chosen in
an analogous way. For each rule, role schemas for the pos-
itive and negative preconditions are randomly selected and
then instantiated based on the following observation about
the university policy: in each rule, parameters (in differ-
ent role schemas) are instantiated with same variable iff the
parameters have the same name. “Easy” problem instances,
for which policy slicing yields an empty policy, are discarded
and replaced during policy generation.

Table 1 gives performance data for the algorithms. For
the concrete backward algorithm, we report only numbers
of nodes and edges in stage 1, because the nodes and edges
in stage 2 are a subset of those in stage 1. Each data point is
an average over 32 synthetic problem instances. We varied
the size |g| of the goal and the size |T| of the finite type.
Running time is rounded to the nearest 0.01 sec. We ob-
serve that the running time and memory consumption of
the concrete backward algorithm grow quickly as a function
of |T'|. The symbolic algorithm outperforms the concrete
backward algorithm when |T'| > 1. Data for the concrete
forward algorithm is omitted from Table 1 because that al-
gorithm runs significantly slower than the other two algo-
rithms when |T'| = 1 and runs out of memory when |T'| > 1,
because (1) that algorithm is exponential in the number of
mixed roles (roles that appear positively in some precondi-
tions and negatively in others) and the number of mixed
roles is large (namely, 18), and (2) that algorithm tends to
generate states containing unnecessarily many distinct in-
stances of some role schemas.

Performance Comparison for Unparameterized Poli-

cies. These experiments evaluate the performance penalty
of unnecessarily using symbolic analysis on unparameterized
policies, by comparing the performance of the symbolic and
concrete algorithms applied to the same unparameterized
policies. We used the synthetic unparameterized policies
used for Tables 2(a) and 2(b) in [20] (running times in [20]
were obtained with a different implementation of the con-
crete algorithms, in C++). Table 2 shows the time and space
requirements of the three algorithms on the unparameterized
policies used for Table 2(a) in [20], which contain 32 roles,
including 5 mixed roles. Observe that the performance of
the symbolic algorithm and concrete backward algorithm is
similar for these policies. As expected, the time and memory
consumption of these algorithms increases quickly with |g|,
while the cost of the concrete forward algorithm increases
slowly with |g|. All three algorithms terminate in less than
0.01 sec and consume less than 1 MB of memory on the un-
parameterized policies used for Table 2(b) in [20], where the
number of roles varies from 100 to 500 and |g| = 1.

9 Related Work

Analysis of Unparameterized ARBAC Policies. A
significant difference between this paper and prior papers on
reachability analysis for ARBAC, including [14, 19, 20, 12],
is that they consider only policies without parameters, so
they are inapplicable to policies with parameters that range
over infinite types, and they are inefficient when applied to
policies with parameters over finite types that have been
eliminated by exhaustive instantiation. Some general ideas
in our prior work in [20] are also used here (e.g., backward
search followed by forward search), but analysis of parame-
terized policies is significantly more difficult, requiring new
algorithms and complexity results: the symbolic transition
relations defined here are much more complicated than the
concrete ones used in [20], the relationship between the two
stages of the backward algorithm is different, new optimiza-
tions are needed for stage 2, different complexity parameters
are used in the fixed-parameter tractability result, etc. Sec-
tion 8 empirically compares our current work with [20].

Analysis of Other Kinds of Parameterized Systems.
In general, parameterized systems have infinite state spaces,
and the reachability problem for them is undecidable. Many
specialized techniques have been developed for verification
of various kinds of parameterized systems. There are two
broad, overlapping classes of parameterized systems. In
the first class, parameters represent the number of compo-
nents (e.g., processes) in a system. There are numerous
sound but incomplete reachability algorithms for such pa-
rameterized systems, e.g., [6, 8]. In the second class, pa-
rameters represent data values that range over infinite or
unbounded domains. There are numerous techniques that
analyze abstractions of such parameterized systems, giving
up either soundness or completeness, e.g., [15]. In some re-
stricted cases, such as data-independent systems and timed
automata, sound and complete algorithms for reachability
are known, e.g., [18, 1].

We are not aware of an existing symbolic reachability
framework that can directly be applied for analysis of PAR-
BAC, because of the following combination of features of the
problem: (1) states are described by potentially unbounded
sets of parameterized boolean variables corresponding to role
membership facts (in other words, the number of roles in a

state, hence the number of state variables, is unbounded,
as in the first category of parameterized systems described
above), (2) the parameterized boolean variables may be used
both positively and negatively in preconditions of transi-
tions, (3) the parameters of the boolean variables range over
an infinite data type (as in the second category of param-
eterized systems above), and (4) transitions may introduce
an unbounded number of these parameters (i.e., fresh vari-
ables) in the symbolic state graph (cf. the discussion of ter-
mination in Section 5). For example, work on verification of
unbounded networks of processes, such as [9], is not applica-
ble because it assumes that each process’s state ranges over
a fixed finite set. Work on verification of data-independent
systems, such as [18], is not applicable because it assumes
that fresh variables are not introduced during the search.
Work on verification of cryptographic protocols, such as [4],
allows unbounded numbers of nonces (represented by vari-
ables that range over an unbounded domain) but is not ap-
plicable because it does not allow these variables to be used
in negative preconditions of transitions. Work on verifica-
tion using inductive assertions, such as [2], heuristically con-
structs a candidate inductive invariant ¢ and calls a theorem
prover to check whether ¢ is inductive and stronger than the
property of interest, but is not applicable for a variety of
reasons: the method can prove formulas containing univer-
sal but not existential quantifiers, so it can try to prove that
a goal is unreachable but not that a goal is reachable (which
would require existential quantification over the substitu-
tion, as in Definition 2), and if the heuristic method fails to
prove that a goal is unreachable, we can draw no conclusions
(in particular, we cannot conclude the goal is reachable);
also, the heuristic cannot generate invariants that contain
existential quantifiers, which are sometimes needed to accu-
rately capture the effects of feature (4) above. Even if some
existing parameterized verification framework could be ap-
plied, we would still need to define a symbolic transition
relation for PARBAC, similar to Definition 5. Also, we are
not aware of any fine-grained complexity results or fixed-
parameter tractability results for such algorithms.

10 Conclusion

This paper presents an analysis algorithm for user-role
reachability for ARBAC with parameters. Our algorithm is
symbolic and does not need to consider all instantiations of
the parameters. It exploits the structure of PARBAC poli-
cies, constructing a backwards graph to prune the search
space. Future work on analysis for PARBAC includes algo-
rithms guaranteed to terminate in more cases, efficient anal-
ysis of policies that do not satisfy separate administration
or hierarchical role assignment, and analysis of policies that
control changes to the role hierarchy. Future work beyond
PARBAC includes analysis for trust management (e.g., [3]).

Acknowledgement. The authors thank Jason Cramp-
ton and the anonymous reviewers for valuable comments
and suggestions, and Yogesh Upadhyay for implementing the
conversion from hierarchical to non-hierarchical policies.

11 References

[1] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, 1994.

[2] T. Arons, A. Pnueli, S. Ruah, and L. Zuck.
Parameterized verification with automatically

3]

[4]

[5]

[6]

[7]

8]

[9]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

computed inductive assertions. In Int’l. Conf. on
Computer Aided Verification (CAV), 2001.

M. Y. Becker. Cassandra: Flexible Trust Management
and its Application to Electronic Health Records. PhD
thesis, University of Cambridge, Oct. 2005.

B. Blanchet and A. Podelski. Verification of
cryptographic protocols: tagging enforces termination.
Theoretical Computer Science, 333:67-90, Mar. 2005.
A. Blum and M. Furst. Fast planning through
planning graph analysis. Artificial Intelligence,
90(1-2):281-300, Feb. 1997.

E. Clarke, O. Grumberg, and S. Jha. Verifying
parameterized networks. ACM Trans. on Programming
Languages and Systems, 19(5):726-750, 1997.

R. G. Downey and M. R. Fellows. Fixed-parameter
tractability and completeness I: Basic results. STAM
Journal on Computing, 24(4):873-921, 1995.

E. Emerson and K. Namjoshi. Reasoning about rings.
In ACM Symposium on Principles of Programming
Languages, 1995.

E. A. Emerson and V. Kahlon. Reducing model
checking of the many to the few. In International
Conference on Automated Deduction, 2000.

M. Evered and S. Bogeholz. A case study in access
control requirements for a health information system.
In Australasian Information Security Workshop, 2004.
L. Giuri and P. Iglio. Role templates for content-based
access control. In 2nd ACM Workshop on RBAC
(RBAC ’97), pages 153159, 1997.

S. Jha, N. Li, M. Tripunitara, Q. Wang, and

W. Winsborough. Towards formal verification of
role-based access control policies. IEEE Trans. Depen-
dable and Secure Computing, 5(4):242-255, 2008.

N. Li and Z. Mao. Administration in role based access
control. In Proc. ACM Symposium on InformAtion,
Computer and Communications Security (ASIACCS),
pages 127-138, Mar. 2007.

N. Li and M. V. Tripunitara. Security analysis in
role-based access control. ACM Trans. on Information
and System Security, 9(4):391-420, 2006.

D. Long. Model checking, abstraction and
compositional verification. PhD thesis, CMU, 1993.

R. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based administration of
roles. ACM Trans. on Information and Systems
Security (TISSEC), 2(1):105-135, Feb. 1999.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2):38-47, Feb. 1996.

B. Sarna-Starosta and C. R. Ramakrishnan.
Constraint-based model checking of data-independent
systems. In 5th International Conference on Formal
Engineering Methods (ICFEM), 2003.

A. Sasturkar, P. Yang, S. D. Stoller, and C. R.
Ramakrishnan. Policy analysis for administrative role
based access control. In 19th IEEE Computer Security
Foundations Workshop (CSFW), 2006.

S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. 1.
Gofman. Efficient policy analysis for administrative
role based access control. In ACM Conference on
Computer and Communication Security, 2007.

