
Compliance by Design –
Bridging the Chasm between Auditors
and IT Architects

Klaus Julisch a), Christophe Suter b), Thomas Woitalla b), and Olaf Zimmermann a)

a) IBM Research GmbH, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
b) PricewaterhouseCoopers AG, Birchstrasse 160, 8050 Zürich, Switzerland

Abstract: System and process auditors assure – from an information processing
perspective – the correctness and integrity of the data that is aggregated in a com-
pany’s financial statements. To do so, they assess whether a company’s business
processes and information systems process financial data correctly. The audit proc-
ess is a complex endeavor that in practice has to rely on simplifying assumptions.
These simplifying assumptions mainly result from the need to restrict the audit
scope and to focus it on the major risks. This article describes a generalized audit
process. According to our experience with this process, there is a risk that material
deficiencies remain undiscovered when said simplifying assumptions are not satis-
fied. To address this risk of deficiencies, the article compiles thirteen control pat-
terns, which – according to our experience – are particularly suited to help informa-
tion systems satisfy the simplifying assumptions. As such, use of these proven
control patterns makes information systems easier to audit and IT architects can use
them to build systems that meet audit requirements by design. Additionally, the
practices and advice offered in this interdisciplinary article help bridge the gap be-
tween the architects and auditors of information systems and show either role how
to benefit from an understanding of the other role’s terminology, techniques, and
general work approach.

Keywords: Information systems audit, CAVR, compliance, security architecture,
patterns, service-oriented architecture, business processes, enterprise applications.

NOTICE: This is the author’s version of a work that was ac-
cepted for publication in Computers & Security. Changes re-
sulting from the publishing process, such as peer r eview, ed-
iting, corrections, structural formatting, and othe r quality
control mechanisms may not be reflected in this doc ument.
Changes may have been made to this work since it wa s submitted
for publication. A definitive version was subsequen tly pub-
lished in Computers & Security (2011), doi:10.1016/j.cose.
2011.03.005 (http://dx.doi.org/10.1016/j.cose.2011. 03.005).

2

1 Introduction

Accounting standards such as the International Financial Reporting Standards
(IFRS), United States Generally Accepted Accounting Principles (US-GAAP), and
the German “Handelsgesetzbuch” provide guidelines for the transparent and compa-
rable reporting of financial information. Moreover, publicly traded companies have
to follow additional regulations that are prescribed by regulatory bodies such as the
Security and Exchange Commission (SEC) in the USA. Arguably, the best-known
of these additional regulations is the Sarbanes Oxley Act of 2002 (Congress, 2002).

Financial auditors verify that a company’s financial statements are compliant
with the applicable accounting standards and correct in all material respects. Finan-
cial auditors define material correctness as errors that are negligibly small in rela-
tion to the monetary amounts reported in the financial statements (for example, not
more than 5% of earnings before interest and taxes). Financial auditors are con-
cerned with how financial information is captured, aggregated, contextualized, and
disclosed to the public. As a prerequisite, the correctness and integrity of the finan-
cial information has to be verified. This verification is the responsibility of Systems
and Process (S&P) auditors.1 S&P auditors examine the business processes that
handle financial data (in the widest sense) and the information systems that support
these business processes: They investigate whether these business processes and in-
formation systems assure the correctness and integrity of the financial data they
process. We will later define what we mean by “correctness” and “integrity”; at this
point, it is sufficient to intuitively understand that correctness and integrity refer to
the completeness, accuracy, validity of, and restricted access to financial data.

The S&P auditor’s role is often taken by Certified Information Systems Auditors
(CISA) (ISACA, 2010). This certification is awarded by the Information Systems
Audit and Controls Association (ISACA). The responsibilities of the S&P auditor
are, however, broader than those of the CISA because the S&P auditor also has to
identify (and in many cases reverse engineer) the financially relevant business proc-
esses. This requires business skills and experience.

In this interdisciplinary article, we examine information systems both from the
perspectives of auditing and of designing them. More specifically, we first discuss
how we review information systems in the S&P auditor role, and we show how
commonly made assumptions can undermine the quality of audits if they turn out to
be unfounded. We then focus on enterprise applications (Fowler, 2003) as the core
component of many information systems and identify thirteen control patterns that,
according to our experience, lead to enterprise applications that are easier to audit
and less prone to negative audit findings. By doing so, this experience report shows
(a) how proven control patterns can be applied to build enterprise applications that

1 When this article mentions financial auditors and S&P auditors, we mean two different roles that are

defined by the activities they perform. In practice, a single individual can play both roles on a particu-
lar audit.

 3

satisfy S&P audit requirements by design; (b) this article further bridges the gap be-
tween the designers and auditors of information systems and gives professionals in
either community practical advice on how they can benefit from a better understand-
ing of the terminology, techniques, and work approach of the other community; (c)
the article finally includes references that guide the reader to detailed material on the
implementation of the control patterns.

The remainder of this article is structured as follows: Section 2 introduces our
terminology and related work; Section 3 describes a generic S&P audit approach
and critically appraises it using an example; Section 4 identifies the control patterns
(to be) applied by information technology (IT) architects when developing applica-
tions that are subject to audits; Section 5 concludes the article and summarizes its
main points.

2 Background and Related Work

2.1 Terminology in S&P Auditor and IT Architect Com munities

S&P auditors and IT architects use different terminologies. Even a simple concept
such as “transaction” can be the source of confusion as it is interpreted differently
by either community. This section therefore introduces a common terminology that
is understandable to auditors and IT architects.

Figure 1 summarizes the terminology introduced so far: financial auditors audit
financial statements as directed by the applicable Generally Accepted Auditing
Standards (GAAS, e.g., (AICPA, 2001)). The financial statements are produced by
accountants using financial data which is collected, processed, and stored in busi-
ness processes. The business processes are supported and partially automated by in-
formation systems, which can informally be defined as integrated hardware and
software systems for collecting, storing, processing, and presenting data. Enterprise
applications are a special type of software that forms an integral part of information
systems. More specifically, enterprise applications are large, complex, physically
distributed, and generally mission-critical software applications that process busi-
ness data (Zimmermann, 2009). Examples of enterprise applications include soft-
ware for payment processing, human resources management, customer relationship
management, and business intelligence.

It is important to understand that the activities of the financial auditor focus on
the financial data appearing above the dashed line in Figure 1. To assure the cor-
rectness and integrity of this data, the financial auditor commissions an auditor in
the S&P auditor role. It is an S&P auditor’s responsibility to audit the business proc-
esses and information systems with the objective to assure the correctness and integ-
rity of the financial data that these processes and systems produce. As indicated in
the introduction (Section 1), this article focuses on the S&P auditor’s role that as-
sesses business processes and information systems.

4

Figure 1: Roles and Relationships in Financial Audits

A business process – shown as an atomic box in Figure 1 – is a workflow that

connects activities according to their order of execution (Leymann and Roller,
1999). Activities are units of work such as “book flight”, “review travel expense”, or
“credit account”. The flow of activities does not have to be sequential: Gateways
fork the flow of activities into multiple parallel strands, or they merge multiple par-
allel strands into a single one. The flow of activities is also affected by events.
Events are external stimuli such as customer orders arriving. Figure 2 shows how
activities, gateways, and events are represented in the Business Process Modeling
Notation (BPMN). Business processes frequently also contain more granular struc-
tures, which can also be expressed in BPMN. We do not discuss these BPMN struc-
tures as they are not needed to follow the article.

Figure 2: Description of a Business Process in BPMN

 5

In this article, we are exclusively concerned with business processes that process
financial data. An event that triggers such a business process is called a financial
event. Financial events are known as transactions in the audit community, but we
will avoid this term as it has a very different meaning in the field of software engi-
neering (Fowler, 2003). A financial event always creates a data record, which is
subsequently processed by business processes. We call these data records financial
Business Objects (fin-BOs) throughout this document. In summary, financial events
create fin-BOs, which are processed by the activities of business processes. Gate-
ways fork and merge the flow of activities within a business process.

When processing fin-BOs, enterprises have the business objective of providing a
fair and accurate representation of financial information. To ensure that this objec-
tive is achieved in the presence of adverse circumstances such as accidents, frauds
or cyber-attacks, enterprises deploy controls. In general, controls are the mecha-
nisms (including processes, structures, culture, and tasks) that an enterprise deploys
in its processes and systems to ensure that business objectives are met (Bradshaw
and Willis, 1998). In line with Figure 1, the Sarbanes-Oxley Act of 2002 (Congress,
2002) and the Public Company Accounting Oversight Board (PCAOB) Audit Stan-
dard No. 5 (PCAOB, 2007) focus on controls over financial reporting and distin-
guish between audits over controls and audits over financial statements, which are
then integrated.

Examples of controls are firewalls, the four-eye principle, or the cross-checking
of documents. A control is adequate and effective to the extent that it provides rea-
sonable assurance (a.k.a. “evidence”) that the organization will achieve its objec-
tives reliably. Compensating controls complement weak or deficient controls and
reduce the risk of such control weaknesses resulting in errors or omissions. Further
aspects of compensating controls, such as the fact that they generally operate on a
higher level than the controls they complement, are beyond the scope of this article.
Manual controls are controls that are performed “manually”, i.e., by people, while
automated controls are implemented by machines (systems). For example, a com-
puter program that matches invoices against orders implements an automated con-
trol, while the four-eye principle is a classic manual control. Semi manual controls
or IT dependant controls combine manual activities (e.g., the verification of infor-
mation) with automated procedures and information processing (e.g., report genera-
tion). Therefore the review of a report is such a control as it relies on the informa-
tion in the report and does not challenge the content itself.

2.2 Related Work

In this section, we position our work relative to the ISO 27K (ISO/IEC 2005a,
2005b), COBIT (IT Governance Institute, 2005), and ITIL (OGC, 2007) standards.
All three standards are used heavily in security and compliance projects. It is there-
fore important to understand how they are different from the practices presented in
this article. We also relate our work to the classic CIA (Confidentiality, Integrity,
and Availability) and AAA (Authentication, Authorization, and Auditing) security
models.

6

ISO 27001 standardizes the activities in an Information Security Management
System (ISMS). The activities defined in the standard describe a continuous cycle of
planning, implementing, monitoring, and improving information security. In terms
of ISO 27001, this article focuses on the planning and implementation activities.
Moreover, the article investigates these activities towards the goal of building enter-
prise applications (rather than generic IT systems) that meet the specific require-
ments of S&P auditors (rather than generic security requirements). Section 4.4
elaborates on this point by placing our work in the context of a management lifecy-
cle that is similar to the one defined in ISO 27001.

ISO 27002 is a catalogue primarily consisting of IT general controls whereas our
article focuses on application controls and explains how to use such controls effec-
tively to meet the requirements of S&P auditors. Moreover, it is common in S&P
audits to assume that IT general controls had previously been verified (see Section
3.2). ISO 27002 with its focus on IT general controls is therefore largely comple-
mentary to our work.

COBIT (Control Objectives for Information and related Technology) is the inter-
nationally recognized framework for IT governance, i.e., for assuring that informa-
tion technology is aligned with business requirements and that IT risks are mitigated
by controls. COBIT covers all aspects of IT governance; security is only a part of it.
Out of the 34 COBIT control objectives, only PO4, PO9, AI2, DS5, DS7-9, DS11,
and DS12 are related to IT security. The remainder of COBIT focuses on other as-
pects of IT governance. Our paper, by contrast, is focused on compliance (not gov-
ernance), enterprise applications (not entire IT systems), and architecting and audit-
ing of such applications (not their entire lifecycle).

ITIL (IT Infrastructure Library) provides best practices for delivering IT services
that are fit for purpose, stable, and reliable. ITIL Version 3 defines 25 processes
that, to varying degrees, are required in the five lifecycle stages of a service. Infor-
mation security management is one such ITIL process, which has the largest bearing
on the design and operation stages of a service’s lifecycle. The information security
management process of ITIL Version 3 treats IT security comprehensively – includ-
ing people, processes, infrastructure, and applications. While being broader in
scope, ITIL is less detailed than this article in its specifics. This is particularly so as
this article relates to achieving compliance with S&P audit requirements.

In summary, this article focuses on application controls for enterprise applica-
tions that process financial data and it shows how those applications can be built to
meet the S&P auditors’ requirements by design. By doing so, the article adds the
next level of domain-specific detail to broader standards such as ISO 27K, COBIT,
and ITIL. Most closely related to our work is ISACA’s (2009) guide on COBIT and
application controls; this article complements the ISACA guide with domain-
specific technical recommendations.

Among IT security professionals, the CIA and AAA frameworks are widely used
(Cross et al., 2002). CIA stands for Confidentiality, Integrity, and Availability,
which are key objectives of information security. AAA stands for Authentication,
Authorization, and Auditing; they are three important mechanisms for achieving
CIA. With respect to CIA, Section 3 will show that integrity is particularly impor-
tant in S&P audits, while confidentiality violations pose a lesser risk; availability is

 7

addressed by IT general controls (e.g., backups, fail-over mechanisms, etc.), which
is out of the scope of S&P audits. With respect to AAA, Section 4 of this article will
extend the AAA framework with additional control patterns and it will show how to
apply these patterns effectively during the design phase.

3 S&P Auditor Examination of Business Processes and
Information Systems

3.1 Audit Types, Scope, and Objectives

An audit is an assessment of an entity’s ability to meet its objectives. There are
many potential entities (e.g., products, people, organizations, projects) and objec-
tives (e.g., reliability, policy compliance, strategic alignment, security) that can be
postulated. Accordingly, there are many different types of audits, and any given au-
dit is defined by its scope and objective (Senft and Gallegos, 2009). The audit scope
defines the entity to be reviewed, including its geographic or functional area, time
periods, documents, systems, and other specifics. The audit objective is a formal
statement that describes the purpose of the audit. For example, a pharmaceutical
company may audit its chemical plant (the scope) with the objective of assessing
compliance with the applicable manufacturing quality standards such as Good
Manufacturing Principles (EC, 2010).

The audit scope in this article is the business processes and information systems
that are involved in the collection, storing, processing, and presentation of financial
data. The audit objective is to verify that the business processes and information sys-
tems satisfy the following control objectives for handling fin-BOs:

• Completeness (C): When a financial event occurs, one and only one fin-
BO is entered and accepted for processing.

• Accuracy (A): Fin-BOs are recorded at the correct monetary amount, in
the appropriate account, and for the proper period.

• Validity (V): Only authorized fin-BOs that represent financial events that
actually occurred and that affect the organization’s financial statements
are recorded.

• Restricted access (R): Fin-BOs are protected against unauthorized access
and amendments.

The properties of completeness, accuracy, validity, and restricted access have
jointly become known as the acronym of CAVR (Killmeyer, 2000). Assessing the
CAVR properties defines the objective of the S&P audit.

The scope of S&P audits can be defined even more precisely, recalling that an
S&P audit is generally commissioned by a financial auditor. The financial auditor
seeks to assure external stakeholders of the correctness and integrity of financial ac-
counts. Towards this goal, it is sufficient to preclude material accounting errors
(with materiality being defined as “significant”, relative to the total monetary

8

amounts reported). The S&P audit is therefore scoped to focus only on those busi-
ness processes and information systems that have a material impact on the com-
pany’s financial statements (Cascarino, 2007). By contrast, if an internal audit func-
tion commissions the S&P audit, then the scope can be defined to be any arbitrarily
chosen business process. In a sense, internal audits treat all errors as “material”,
even when they result in no or only in tiny losses. In either case, the objective of the
S&P audit is to assess compliance with the CAVR properties.

As an aside, the financial auditor’s objectives are analogous to the S&P auditor’s
objectives of assessing CAVR (see Figure 1 for the relationship between financial
and S&P auditors). In fact, the CAVR properties mirror the so called financial
statement assertions, which consist of completeness, accuracy, existence or occur-
rence, cut-off, valuation or allocation, rights and obligations, presentation and dis-
closure (PCAOB, 2007). The purpose of financial statement assertions is to assert
the existence of controls that assure a fair and accurate representation of financial
information; the exact definition depends on the accounting standard. For example,
the financial statement assertion of “completeness” states that controls have been
put in place to assure the completeness of information according to the used stan-
dard (e.g., all qualified write-offs are accounted for). Additionally, the completeness
assertion assures that CAVR-type controls are implemented so that, for instance, no
fin-BOs representing write-offs are lost for technical reasons. A single control can,
but does not have to fulfill completeness in both senses. We will not consider finan-
cial statement assertions any further in this article.

3.2 Audit Approach and Assumptions

S&P auditors use the following five-step examination method (or variants thereof)
to assess business processes and information systems (Cascarino, 2007; Senft and
Gallegos, 2009):

Step 1 (Scope definition): The auditor identifies the material accounts in the finan-
cial statements. The auditor then identifies the fin-BOs that have a material impact
on these accounts. The business processes and information systems that create and
manipulate these “material fin-BOs” constitute the scope of the S&P audit.

Step 2 (Risk assessment): Once the material fin-BOs have been identified, a walk-
through is performed for each of them. This walkthrough starts with the financial
event that creates the fin-BO and follows it through the business processes that ma-
nipulate it, all the way to the financial statements in which it becomes a line item.
During the walkthrough, the S&P auditor identifies the risks that threaten to destroy
the CAVR properties of a fin-BO. Risks are adverse events that result in failures or
losses, e.g., the modification of a charge on an invoice or the double-paying of a bill.

Step 3 (Control identification): Next, the S&P auditor identifies the controls asso-
ciated with each risk. As previously explained, these controls are the mechanisms an
organization has established to mitigate the risks so that the organization is able to
achieve its business objectives.

 9

Step 4 (Control testing): The S&P auditor then evaluates the adequacy and effec-
tiveness of the controls that Step 3 identified. Two questions need to be answered
here: First, are the controls (theoretically) sufficient to mitigate the identified risks,
i.e., are they adequate? And second, do these controls operate correctly, i.e., are they
effective? To answer these questions, S&P auditors collect evidence, i.e., docu-
ments, interviews, log files, test runs, physical inspections and any other relevant in-
formation that can be used to form a conclusive opinion on the adequacy and effec-
tiveness of controls (Bitterli et al., 2009).

Step 5 (Reporting): Finally, S&P auditors document their findings and present
them to management and other stakeholders, e.g., application and audit owners.

Note that S&P audits do not seek to prove CAVR-compliance with this method.
Rather, they seek to provide reasonable assurance thereof. Reasonable assurance is
a high, but not absolute level of evidence that provides prudent officials with a
sound basis for concluding that the audit objectives are met (AICPA, 2006; SEC,
2007).

Assumptions: In conducting their work, S&P auditors make several assumptions:

1. In Steps 3 and 4, S&P auditors do not concern themselves with IT general
controls, but rather assume that these have been assessed previously in an IT
audit. In practice, the IT audit and the S&P audit can be performed by the
same person but acting in the different roles of IT auditor and S&P auditor,
respectively. IT General Controls (ITGC) (IT Governance Institute, 2005;
Bayuk, 2004) are application-independent controls that protect the IT envi-
ronment in which applications run. Examples of IT general controls are ade-
quate cooling and power supply, infrastructure security, user access man-
agement, and sound management policies. IT general controls can be
contrasted with application controls (IT Governance Institute, 2005; Bayuk,
2004), which are the unique controls that are embedded in a specific business
process or information system. For example, a cryptographic signature that
prevents the unauthorized modification of fin-BOs in an information system
is an application control. It is noteworthy that this first assumption is not in-
evitable. In fact, rather than relying on IT general controls being tested, S&P
auditors may also use techniques such as extensive sampling to assure that IT
general controls effectively support the relevant application controls.

2. When S&P auditors test controls (step 4), they do not test the software func-
tionality, but rather assume that the software works as specified by the soft-
ware vendor. Note that by testing application controls, S&P auditors also
implicitly test some aspects of software functionality; however, this is not the
purpose of the S&P audit. An example of such an implicit test occurs when
the testing of a debit operation also (implicitly) confirms that the software
correctly subtracts numbers as specified in the software manual. Such con-
firmation is welcome, but it is not the objective of the S&P auditor to collect
it. This second assumption may be further justified by the fact that the speci-
fied software functionality has been certified by a third party. Such third-
party certification can be thought of as an audit of the software development

10

process. Successful certification means that the software development proc-
ess has adequate controls to assure that the produced software implements its
specified functionality correctly. In certain cases, additional audit procedures
might be needed, e.g., if the customization of a software package represents a
significant deviation from its off-the-shelf configuration.

3. It is assumed that processes cannot be bypassed. More specifically, during
the walkthrough in Step 2 of the audit method, the S&P auditor follows indi-
vidual fin-BOs in order to identify the business processes that manipulate
them. In addition, the S&P auditor may utilize interviews, process maps that
depict the flow of fin-BOs, or other techniques. Ultimately, the S&P audi-
tor’s time is finite and at some point it therefore has to be assumed that all
processes have been identified and that each and every fin-BO follows one of
the identified processes. In particular, it is assumed that potential “shadow
processes“ have been found and are known (i.e., visible to application own-
ers and auditors). This assumption can be false because, for example, fraudu-
lent insiders such as Jerome Kerviel of Société Générale (Epstein, 2008) can
know loopholes that circumvent the official processes. More generally, at-
tackers and fraudsters always target the “weakest link” in a system, while
sampling or walkthroughs are inherently limited in their ability to identify all
“weak links”.

4. S&P auditors assume that it is not necessary to estimate the risk with
mathematical accuracy. Rather, auditors assess risks based on their profes-
sional judgment which is grounded in their formal education, work experi-
ence, and contextual knowledge of past incidents and the overall IT envi-
ronment.

5. It is assumed that best practices, personal and professional judgment, and
experience are sufficient to select appropriate risk-mitigating controls.

The first two assumptions are born out of the need to limit the scope of S&P audits.
In other words, S&P auditors have to assume that certain things (e.g., IT general
controls and software functionality) just “work” because testing every control com-
pletely would require an infinite amount of time and budget. Nonetheless, it is im-
portant to be cognizant of these assumptions because they can destroy the CAVR
properties when they are unjustified. For example, a failed IT general control may
cause computers to be unpatched, which opens them up for hackers to create fraudu-
lent fin-BOs – a clear violation of the CAVR principles.

The assumptions 3 to 5 affect the way in which S&P auditors perform their work,
rather than the scope of their work. Each of these assumptions can have far-reaching
consequences. For example, the existence of unknown (invisible) “shadow proc-
esses”, i.e., processes that remain invisible during the S&P audit, can falsify as-
sumption 3 and destroy the CAVR properties for all fin-BOs that flow through these
processes.

Assumption 4 implies that the risk assessment is as good as the S&P auditor’s
judgment. However, human judgment is fallible and this may be most apparent
when risks are correlated. For example, assume the S&P auditor notices that an au-
dited enterprise has weak access restrictions (“R”) for its order fin-BOs. Will the

 11

S&P auditor classify this risk as “low” because the impact of disclosing order data is
small? Or will the S&P auditor ask what a malicious employee could do if (s)he had
information about past orders? Would the S&P auditor notice that, by having
knowledge of past orders, a malicious employee could issue second payments to fic-
titious suppliers whose names resemble the names on the order forms and thereby
pass the control ensuring that payments match orders? Would the S&P auditor then
check whether there are controls that prevent such double-payments of the same or-
der? And how would the S&P auditor finally rank the real risk of disclosing order
fin-BOs?

Assumption 5 is problematic on several levels. First, the argument can be made
that we do not have enough actuarial-like data in information security to know what
(truly) best practices are. Second, the actual individuals performing S&P audits are
typically entry-level associates, which may lack the experience or knowledge to
choose appropriate controls. Third, regulatory capture, i.e., the situation where
regulators serve the interests of the institutions they regulate (Kidwell et al., 2008),
threatens to undermine best practices. Lastly, best practices evolve at the speed of
consensus-driven committees (i.e., very slowly), while threats evolve at Internet
speed (i.e., very fast). For example, while best practices still approve of virus scan-
ners as a means to control malware, the hacking community has long known ways to
evade virus scanners and to render them less effective than desired (Baker et al.,
2009; Symantec, 2009). Similarly, to prevent fraudulent or erroneous payments, best
practice has long recommended controls to check that each supplier invoice matches
a purchase order and no order is paid twice. These controls have been bypassed by
suppliers that did not ship what had been ordered and invoiced, i.e., they sent either
fewer or inferior items. This fraud (and frauds in general) work until they become so
common and prevalent that best practices are updated to include further controls that
prevent them (and, in fact, today’s three-way-matching control (Schaeffer, 2006)
prevents the particular fraud in this example). The problem is not that one cannot
provide controls mitigating all risks, but rather that the use of best practices system-
atically introduces control gaps and weaknesses, hence falsifying Assumption 5.

Unfortunately, we have no silver bullet that makes the above assumptions justi-
fied in all instances. However, in Section 4 we will outline proven control patterns
and methods that, according to our experience, reduce the risks of these assumptions
being incorrect and, consequently, becoming the source of control failures.

3.3 Example S&P Audit of a Sales Process

We now describe the S&P audit of a sales process. The sales process and its under-
lying information system are depicted in Figure 3. To simplify the description, we
do not consider any cost and price calculation for goods sold; we also exclude as-
pects such as sales order confirmations. The key elements are as follows:

1. A customer triggers an order (the financial event at the left-hand side of the
figure).

2. The producer receives the order and checks if it can fulfill this order out of
its inventory.

12

Receive
Order

Customer
Triggers
Order

Check
Inventory

Book Revenue
and Accounts

Receivable

Manufacture
Goods

Ship to
Customer

Invoice
Customer

insufficient

sufficient

Receive and
Process Payments

Monitor Accounts
Receivable

Customer
Master Data

Order and
Financial Data

Production
Data

Business Process

Information System

Operating Systems + Middleware

Server and Network Infrastructure

Sales Processing
Enterprise Application

Figure 3: Business Process and Information System for Sales Processing

3. If the inventory does not contain the products ordered, then they are manu-

factured.
4. Once the ordered goods are available, they are shipped to the customer and

the customer is invoiced.
5. The revenues are booked on the income statement, and the money that the

customer owes to the producer is recorded under accounts receivable on the
balance sheet of the producer.

6. Two additional activities that the producer engages in are the receiving and
processing of payments, as well as the monitoring of accounts receivable.
The first of these activities handles the book keeping for payments that cus-
tomers make to settle their invoices. The second activity checks for cus-
tomers whose payments are overdue and sends them reminders.

7. Below the dotted line, Figure 3 shows the information system that supports
the sales process. The information system includes one enterprise applica-
tion and three databases containing customer master data, order and finan-
cial data, and production data.

With the audit scope being the process and system of Figure 3 and the audit objec-
tive being to assess if the business process guarantees CAVR, the S&P auditor iden-
tifies the customer order as the material fin-BO and follows it from the start to the
point where it gets recorded in the financial statements. Along the way, the S&P
auditor identifies various risks that threaten to destroy CAVR. The auditor further
assesses if there are adequate and effective controls to mitigate these risks, and (s)he
makes various assumptions about the information system. By way of illustration, we
now consider three examples.

 13

Example 1: Erroneous customer order

• Risk: The S&P auditor identifies the risk that the customer’s order may be
erroneous, e.g., quoting the wrong product price, containing incorrect bill-
ing or shipment information, or being entirely fictitious to meet some sales
incentive (step 2 of the audit method from Section 3.2).

• Controls: The S&P auditor checks which controls exist to mitigate these
risks (step 3 of audit method). Based on professional experience and the
evidence the auditor collects, (s)he further judges whether these controls
are adequate and effective (step 4). For example, the S&P auditor may be
satisfied to find a control that cross checks the information on the order
with the customer master data that the producer maintains about its cus-
tomers. However, the auditor may notice that orders are submitted using
unencrypted email. The risk here is that anyone could fake such orders.
This destroys the validity property of CAVR and constitutes an audit find-
ing.

• Assumptions: The S&P auditor learns that customer orders are received and
processed by an integrated Enterprise Resource Planning (ERP) package,
which is protected by a firewall to fend off cyber attacks. Firewalls are IT
general controls, and following Assumption 1, the S&P auditor therefore
assumes that the firewall is adequate and effective at preventing cyber at-
tacks.

Example 2: Erroneous invoices

• Risk: The S&P auditor identifies the risk of erroneous invoices, such as the
wrong invoice amount, incorrect Value Added Tax (VAT) amounts in
cross-border shipments, failure to invoice certain goods shipped, or the ex-
istence of invoices for goods that were not shipped.

• Controls: The S&P auditor identifies a control that verifies invoices against
orders to assure correct quantities, delivery addresses, and prices. Further-
more, an evaluation of log files provides evidence that this control operates
correctly. Sampling the control with test data further corroborates this
judgment. The S&P auditor therefore assesses that the risk of erroneous in-
voices has been mitigated.

• Assumptions: The Value Added Tax (VAT) is calculated by an ERP system
and – given the ERP system’s certification – it is assumed that the VAT is
always correct.

Example 3: Transfer of fin-BOs between integrated information systems

• Risk: The S&P auditor identifies a manually operated file transfer interface
between the sales processing application and another information system
not shown in Figure 3, the production system. More specifically, the S&P
auditor observes that when inventory is insufficient to fulfill an order then
an operator manually transfers a file containing the order information from
the sales processing application to the production system.

14

• Controls: The S&P auditor identifies a control that restricts access to the
file and thereby enforces the R-property (restricted access). The file con-
tains also a cryptographic signature which leads to an error the file or its
signature is manipulated during the file transfer. This signature secures va-
lidity according to CAVR.

• Assumptions: The copying of files between the sales processing system and
the production system is standard software functionality and therefore as-
sumed to work correctly.

4 Architecting for CAVR Compliance

As explained in Section 3, Completeness, Accuracy, Validity, and Restricted access
(CAVR) are the four properties that S&P auditors assess when auditing business
processes and enterprise applications. The challenge for IT architects therefore is to
design and implement enterprise applications that are CAVR-compliant; they can do
so by properly configuring the native controls of commercial software packages or
by designing additional controls into their custom developed enterprise application
architectures. The latter is frequently done by complementing enterprise applications
with special-purpose, out-of-the-box Governance Risk and Compliance (GRC)
software, which (among other things) offers libraries of automated controls (Trent,
2008). In this section, we present a systematic approach for achieving CAVR com-
pliance during these activities.

Our approach to building CAVR-compliant applications has three parts: First, we
compile a control pattern catalog from the literature that highlights proven mecha-
nisms that, according to our experience, are most suitable to control risks and pre-
vent violations of the CAVR properties (full pattern descriptions and implementa-
tion advice can then be found in the referenced literature). Second, we present a
design method for applying controls from the catalog to one’s architecture. Third,
we outline how to realize selected controls in layered enterprise application and in-
tegration architectures. We also discuss the importance of application lifecycle
management for CAVR compliance and describe several risky designs that archi-
tects should be aware of.

4.1 Control Pattern Catalog for CAVR Compliance

Controls are the mechanisms that an enterprise deploys in its processes and systems
to assure that business objectives are met. Various control catalogs have been sug-
gested, e.g., by the IT Governance Institute (2005), ISO/IEC (2005b), and Ross et al.
(2007). Here, we focus on application controls helping enterprise applications to sat-
isfy the CAVR properties. Other controls such as IT general controls relating to
physical, network and server security are outside the scope of this article and can be
found in the previously mentioned standards. The software engineering community
recommends architectural patterns (Blakley and Heath, 2004; Schumacher et al.,

 15

2006; Yoder and Barcalow, 1997) as a state-of-the-art way to sketch and share reus-
able designs. Hence, Table 1 collects thirteen proven control patterns that IT archi-
tects can apply to assure compliance with each of the four CAVR properties.

We selected these thirteen patterns from the vast body of knowledge that can be
found in the literature. The rationale justifying this particular compilation is:

• All thirteen patterns address design problems imposed by one or more of
the CAVR properties.

• These patterns have been successfully applied in practice in multiple occa-
sions (according to our own industry project experience and the literature).

• Combining them into an end-to-end information system and enterprise ap-
plication architecture is technically feasible and yields a complete response
to our goal (i.e., solution to our design problem), compliance by design.

The remainder of this section and Section 4.3, sketch the control patterns in more
detail; for space reasons, full pattern descriptions and implementation advice could
not be included in this article but can be found in the referenced literature.

STANDALONE OBJECTS. To ensure that all fin-BOs are entered and accepted for
processing once and only once (namely when a financial event occurs), they should
be represented explicitly in the architecture so that they are easy to locate for archi-
tects, developers, application maintainers, and reviewers. This can be accomplished
a) by tagging them as fin-BOs in an analysis- and design-level domain model (Ev-
ans, 2003; Fowler, 2003) and b) by adding fin-BO components to the functional ar-
chitecture. With respect to a), a domain model specifies the key concepts in a par-
ticular application domain (e.g., pharmaceutical industry or telecommunications) in
a standardized, often machine-readable way; it covers data structures and behavior
as well as the relations between the different concepts. Class diagrams from the Uni-
fied Modeling Language (UML) are often used to document domain models during
requirements engineering and architecture design. During development, the concepts
from the domain model become a source of components in the architecture, e.g.,
HTML forms displayed in a Web browser, server-side business objects and service
components coded in Java, PHP, or other programming languages, and tables in a
relational database. The usage of such components should be controlled similarly to
the access to the entire system (e.g., using access management middleware provid-
ing authentication and authorization services).

SINGLE ACCESS POINT. An application is difficult to test and audit when it has mul-
tiple “front doors”, “back doors”, and “side doors” for entering the application. It is
therefore recommended to set up only one way to access an application (Yoder and
Barcalow, 1997). In our context, this means setting up only one interface through
which fin-BOs can be created and modified. That way, it becomes easier to assure
completeness because a single interface has to be tested for duplications and omis-
sions and correct treatment of relations to and from other fin-BOs.

16

Table 1: Application Controls Enforcing CAVR Compliance

CAVR Property Eligible Control Patterns
Completeness (C):
Fin-BOs are entered and
processed once and only
once; each financial
event is represented by
exactly one fin-BO

• STANDALONE OBJECTS: Model fin-BOs explicitly and represent
them as dedicated components in the functional architecture;

• SINGLE ACCESS POINT: Provide a single interface through which
fin-BOs can be entered into the application;

• RELIABLE MESSAGING: Use messaging as integration style and
message channels that guarantee delivery to prevent losing or du-
plicating fin-BOs that are passed among distributed components;

• LOGGING: Maintain an audit log to document the operations per-
formed on fin-BOs as well as the subject that triggered these op-
erations;

• COMPLETE MEDIATION: Every time a fin-BO is accessed, intercept
and check the access attempt and deny it if it is not authorized;

Accuracy (A):
The information in fin-
BOs is correct and pre-
cise

• CONTROLLED INTERFACES: Give fin-BO processing components
narrow Application Programming Interfaces (APIs) and/or com-
munication interfaces that restrict the operations a user (or other
component or other system) can perform on them;

• LEAST PRIVILEGE: Grant subjects only the privileges they abso-
lutely need to accomplish their tasks;

• INPUT AND OUTPUT VALIDATION : Define pre- and post-conditions
for each fin-BO and check all input and output against these con-
ditions; in particular, cross-check the data in fin-BOs against mas-
ter data repositories;

• IDENTITY GRANULARITY : Assign each subject (user or activity) an
identity of its own and force it to operate under this identity; avoid
using group identities because such group identifies destroy ac-
countability of subjects;

• CRYPTOGRAPHIC SIGNATURES: Have the creator and modifiers of
a fin-BO cryptographically sign it to vouch for its correctness;

• LOGGING: As above;

• COMPLETE MEDIATION: As above.
Validity (V):
Fin-BOs correspond to
real-word financial
events

• SEPARATION OF DUTY: No single user has the power both to create
fin-BOs and to review/approve these fin-BOs;

• CROSS-CHECKING: Cross-check related fin-BOs (e.g., orders, in-
voices, and shipment confirmations) to detect inconsistencies;

• INPUT AND OUTPUT VALIDATION : As above; may help detect in-
consistencies such as payments to parties that are not in the sup-
plier database;

• CRYPTOGRAPHIC SIGNATURES: Require creators and modifiers of
fin-BOs to certify their validity by cryptographically signing them;

• IDENTITY GRANULARITY : As above;
• LOGGING: As above.

Restricted Access (R):
Fin-BOs are protected
against unauthorized ac-
cess and modification

• ENCRYPTION: Encrypt fin-BOs to prevent unauthorized access;
• SEPARATION OF DUTY: As above;
• COMPLETE MEDIATION: As above;
• LEAST PRIVILEGE: As above;
• IDENTITY GRANULARITY : As above;
• LOGGING: As above.

 17

RELIABLE MESSAGING. The “once and only once” aspect of the completeness prop-
erty suggests messaging to be the preferred integration style to connect physically
distributed software components within a single enterprise application, but also dif-
ferent enterprise applications (Hohpe and Woolf, 2004). Message channels then
transfer messages with exactly-once guaranteed delivery semantics (Hohpe and
Woolf, 2004), even if the message receiver becomes unavailable temporarily. In
such a setting, the fin-BOs are treated as textual document messages that are trans-
ferred from application (component) to application (component) over the message
channels (Hohpe and Woolf, 2004).

The accuracy property of CAVR requires that fin-BOs are transported from one
processing component to another without modification. Hence, the message chan-
nels are subject to audit control; all systems management patterns from (Hohpe and
Woolf, 2004) can be leveraged to facilitate such audits. For instance, a wire tap
component intercepts a message flow without affecting it, thus allowing tools and
humans to inspect the message content. A message history can be created for log-
ging purposes.

LOGGING. Logging allows documenting the lifecycle of fin-BOs starting with the
creation of fin-BOs and ending with their inclusion as line items in financial state-
ments. All major operations performed on fin-BOs should be logged along with the
user who triggered them. Major operations that should be logged are sometimes re-
ferred to as CRUD operations, which stands for the operations create, read, update,
and delete. The message store pattern (Hohpe and Woolf, 2004) can be used to cen-
tralize these logging capabilities in loosely coupled integration architectures.

CONTROLLED INTERFACES. Fin-BOs should implement well-defined and restrictive
interfaces which allow subjects to do exactly what they have to do, but not more.
For example, consider a fin-BO that stores the number of items ordered. In a good
design, the add_item() method is invoked when an additional item is ordered. A
poor design, by contrast, would offer a method set_items(int no_of_items) ,
through which a subject can set the number of orders to any arbitrary number.
Clearly, the set_items(int no_of_items) method offers more flexibility, and
more opportunity to introduce inaccuracies. Tulach (2008) elaborates on this control
pattern within the larger context of API design.

COMPLETE MEDIATION. Every access to every fin-BO must be checked to ensure it
is allowed (Saltzer and Schroeder, 1975). This principle requires a sound method for
identifying the subjects that trigger operations on fin-BOs. Complete mediation fur-
ther restricts the use of caching: Rather than remembering the result of a prior au-
thority check, the system should check each time if a subject (e.g., end user or activ-
ity in a business process as introduced in Section 2) is authorized to perform a given
operation on a fin-BO. While this design has a negative impact on performance, it
leads to a simpler implementation that can be tested and audited more easily.

LEAST PRIVILEGE. Each subject should be given only those privileges that are
needed to complete its tasks. Again, subjects are users or activities. Howard and
LeBlanc (2003) discuss the least privilege pattern in detail and offer many practical
examples.

18

INPUT AND OUTPUT VALIDATION . All fin-BO processing activities that involve algo-
rithms (e.g., customer segmentation, calculation of prices and discounts, loan proc-
essing, etc.) should follow the design-by-contract principle and check at run-time
that inputs and outputs satisfy pre- and post-conditions (Meyer, 2000) that collec-
tively ensure accuracy and validity. Input validation should pay particular attention
to verifying border values (lower and upper boundaries), invalid input, canonization
issues, and exceptional situations. Master Data Management (MDM) repositories
should be used where available to check input and output data against the authorita-
tive records. That way, inaccurate addresses or account data can be detected. How-
ard and LeBlanc (2003) offer more detailed advice and examples on performing in-
put and output validation in practice.

IDENTITY GRANULARITY . Each subject (user or activity) should be assigned a dedi-
cated identity of its own; subjects should then be forced to operate under these dif-
ferent identities (NIST, 1983). Having a unique identity allocated to each subject (be
it an individual or an activity in a business process) is a prerequisite for having fine-
grained access-control and accountability in a system. As a consequence, group
identities such as “sales department” and default identities such as “guest” or “ad-
ministrator” should be avoided. Hansen et al. (2008) discuss the privacy issues re-
lated to the use fine-grained identities.

CRYPTOGRAPHIC SIGNATURES. Require subjects to cryptographically sign fin-BOs
that they create or modify. By virtue of this signature, subjects vouch for the validity
and accuracy of the fin-BOs they create and manipulate. This principle enforces ac-
countability, as signatures are tied to subjects in a non-repudiable manner. Key
management and storing secret information such as cryptographic keys are generally
considered the weakest link of cryptographic applications. Howard and LeBlanc
(2003) as well as Ferguson and Schneier (2003) offer practical solutions to these
problems.

SEPARATION OF DUTY (SOD). SoD (Benantar, 2006) is the principle of requiring
more than one person to complete an activity. That way, SoD helps prevent fraud
and accidental errors that jeopardize the validity or accuracy of fin-BOs.

CROSS-CHECKING. Invalid fin-BOs can be detected and prevented by comparing
them to other fin-BOs that should contain matching information (Bragg, 2010). For
example, a payment fin-BO without an order fin-BO is invalid in most circum-
stances. Similarly, a “capital expenditure” fin-BO that is not matched by a “new as-
set” fin-BO should raise warning flags. Bragg (2010) offers further examples of how
the cross-checking control pattern can be applied in practice. When designed into an
enterprise application, this control pattern can report such processing errors to users
and log files.

ENCRYPTION. Encryption “scrambles” data so that only authorized parties – who
have the key to descramble it – can read the data. This restricts the access to the
data. Practical implementation specifics can be found in (Howard and LeBlanc
2003) and (Ferguson and Schneier, 2003).

 19

For space reasons, we could only outline the patterns in this section. Having se-
lected one or more of them, many subsequent design decisions have to be made – by
definition, patterns are “soft around the edges” and only sketch a solution to a recur-
ring design problem (Fowler 2003, Hohpe and Woolf, 2004). Section 4.3 adds an-
other level of detail by describing how the control patterns should be applied in a
Service-Oriented Architecture. Further details, e.g., on implementation activities,
can be found in the referenced literature.

4.2 Design Method for Achieving CAVR Compliance

We now present a design method for selecting the specific controls that are best
suited for achieving CAVR compliance. When applying the proposed method, we
recommend that the following design principles are also applied:

• Defense in depth, i.e., never rely on one control alone;
• Automation, i.e., seek to automate controls as much as possible;
• Fail-safe, i.e., controls that break should default to a state that protects as-

sets even though this may reduce usability or performance.

In other words, solely relying on a single control, on manual controls, or on controls
that expose assets in the event of their failure is not advisable. With this in mind, the
IT architect can use the following five-step method to build CAVR-compliance into
new enterprise applications:

Step 1 (Define Control Objectives): This step determines which of the four CAVR
properties have to be assured for which fin-BOs. In most cases, the control objective
is to enforce all CAVR properties for all fin-BOs. We have, however, also encoun-
tered situations where not all four CAVR properties were required, and the control
objectives could be relaxed. According to the state of the art in the related field of
security engineering, control objectives are derived from the need to defend against
attack threats, such as the threats given by the STRIDE model (Howard and
LeBlanc, 2003). CAVR can therefore be seen as a catalogue of threats that are spe-
cific to S&P audits and largely complementary to STRIDE or other conventional
threat modeling frameworks.

On our own development and integration projects, we found it important to per-
form Step 1 of our method during the requirements analysis phase. To do so, we
successfully extended object-oriented analysis and design (Rumbaugh et al., 1999)
with techniques to solicit and prioritize non-functional requirements (including the
CAVR properties). One such technique is Attribute-Driven Design (ADD) (Bass et
al., 2003). More recently, we added agile practices such as user story telling (Cohn,
2004) to our requirements engineering portfolio.

Step 2 (Create Architecture Overview): The architect identifies the business proc-
esses that process fin-BOs. Specifically, it is important to identify the subjects (users
or activities) that interact with fin-BOs and the operations that these subjects invoke
on the fin-BOs.

20

If object-oriented analysis and design techniques are used, the actor information
found in UML use cases is an important source for the identification of subjects and
operations. In UML, actors represent the external parties (i.e., human users or other
systems) that interact with the system under construction; these interactions are
CAVR audit relevant if fin-BOs are involved. When agile practices are applied, the
personas in the user stories provide similar input. For example, a user story that de-
scribes an end user interaction such as “as a call center agent, I want to create orders
that are processed and invoiced at a later stage…” reveals important information
about subjects and how they manipulate fin-BOs.

In our industry projects, we customized both object-oriented analysis and user
agile development methods so that audit-relevant information on subjects, fin-BOs,
and their interactions is captured explicitly. Additionally, we found value in model-
ing misuse cases that capture problematic situations such as those outlined in the ex-
amples from Section 3.

Step 3 (Assess Risk): For each fin-BO, subject, and operation, the IT architect as-
sesses if and how the fin-BOs’ pertinent CAVR properties (according to Step 1)
may be destroyed. In practice, such risk assessments suffer from a lack of hard data
on the probabilities and impact of most threats. We found the DREAD approach to
be helpful (Howard and LeBlanc, 2003), which weights the Damage potential, Re-
producibility, Exploitability, Affected users, and Discoverability of threats. When
assessing the damage potential it is important to not only work with the financial
amounts represented by the fin-BOs, but to also consider the reputational and legal
risks of CAVR violations. The purpose of Step 3 is to rank the threats to CAVR by
decreasing risk, so as to prioritize the work in Step 4.

Step 4 (Select Mitigating Controls): The architect selects suitable control patterns,
e.g., those introduced in Section 4.1, to mitigate the (major) identified risks. Accord-
ing to our overarching design principles, automated controls are preferable, and at
least two controls should be implemented to mitigate each risk (defense-in-depth).
Controls should be configured in such a way that they do not leave any assets ex-
posed in the event of their failure.

This step represents a non-trivial design task for which typically no optimal solu-
tion can be found under real-world constraints such as budget limitations and other
forces. For instance, non-functional requirements such as performance, usability and
security conflict with each other, and project sponsors are not always willing to pay
for all security measures that would be useful in theory. One would think that multi-
ple control patterns from Section 4.2 should always be applied to ensure defense in
depth; however, this is not always feasible for technical and/or economic reasons.
To give an example, if an existing legacy system participates in a business process
whose source code can not be modified (e.g., because the required skills and experi-
ence are not available at a reasonable cost), it can be rather expensive to add a proxy
that performs INPUT AND OUTPUT VALIDATION .

Dealing with such conflicts and making appropriate tradeoffs is an important part
of the expertise of application and security architects; it can be supported by meth-

 21

ods and techniques such as ADD and the Architecture Tradeoff Analysis Method
(ATAM) (Bass et al., 2003). Concepts, methods, and tools for these activities are
developed in the architectural patterns community (Schumacher et al., 2006) and in
the architectural knowledge management community (Zimmermann, 2009).

Step 5 (Realize Controls): Finally, the architect enforces the selected controls dur-
ing the realization of the enterprise application architecture.

According to our experience, this step is best supported by design-time methods
such as developer coaching and providing architectural templates (i.e., working
sample solutions), code generation in model-driven development, and explicit archi-
tectural decision identification, making, and enforcement (Zimmermann, 2009).

As the following section shows, controls become easier to select and realize in
architectures that follow the service-oriented architecture style.

4.3 Realizing Control Patterns in Service-Oriented Architectures

In Step 5, “Realize Controls”, architects must implement the selected risk-mitigating
controls in the enterprise application. Not surprisingly, the ease of implementation
depends on the architecture of the enterprise application, and it is easier to add con-
trols when applications are well-engineered. In this section, we focus on layered en-
terprise applications that follow the Service-Oriented Architecture (SOA) style, and
we show how this style facilitates the implementation of controls. For space reasons,
we cannot consider the “reverse” problem of auditing controls in SOAs.

An architectural style is a set of architectural principles, constraints, and patterns
that share a common design intent and are aligned with each other to make architec-
tures recognizable and their construction repeatable (Zimmermann, 2009). SOA is
an architectural style that builds enterprise applications according to the following
principles and patterns (Josuttis, 2007; Zimmermann, 2009):

• Layering. Applications should be organized into logical layers to separate
concerns. The access to components in a given layer is restricted to compo-
nents in the same and in higher layers. Layered application architectures
with well-defined layer boundaries benefit the CAVR properties.

• Service, service contract, service provider and service consumer. Applica-
tions are structured into mutually invoking services. Services are software
components that provide distinctive business functionalities via network-
accessible interfaces. These interfaces are specified and exposed by service
contracts: A service provider implements an interface, and a service con-
sumer invokes it. Services can either be atomic or be composed from others
via service composition. Business processes are often realized as composed
services; as outlined in Section 2, the Business Process Modeling Notation
(BPMN) allows specifying such composed process services.

• Integration via Enterprise Service Bus (ESB). All consumer-provider inter-
actions are brokered by an ESB that decouples service consumers from ser-
vice providers to promote loose coupling principles such as protocol, for-

22

mat, and location transparency. Messaging middleware is often used to im-
plement the ESB pattern.

• Service registry. A service registry provides a facility to discover service
providers so that service consumers are able to acquire all information that
is required to invoke these providers.

Extending the layered architectures described by Fowler (2003) and Zimmermann
(2008), Figure 4 presents a canonical reference model for CAVR-compliant enter-
prise applications that follow the SOA style. The figure shows that enterprise appli-
cations serve multiple end users (humans or other IT systems) over one or more
channels (vertical lines); financial events may occur and fin-BOs be created when
end users interact with the enterprise application. The software and hardware com-
ponents that the end user works with are known as the frontend tier of the enterprise
application. The middle tier serves these client components; it is logically layered
into the presentation, business logic, and data access & application integration lay-
ers. The middle tier uses the services provided by databases and other systems resid-
ing in the backend tier. The tiers may be physically distributed (e.g., different serv-
ers, different network zones, and/or different geographical locations).

Web Clients
(fin-BO Forms)

End Users
(Frontend Tier)

Presentation
Layer (Mid Tier)

Backend Systems
(Backend Tier)

Business Logic
Layer (Mid Tier)

Access & Integration
Layer (Mid Tier)

Validation
Services

Composed Services (Business Processes)

fin-BO Service
Components

Logging
Service

Reliable Messaging incl.
ESB Integration Services

External
Enterprise

Applications

Authorization & Authentication Services
(incl. Key Management and User Registry)

SOA Middleware
(incl. Process
Engine and

Service Registry)

Rich Clients
(incl. fin-BO Data)

Systems
Management

Services
incl. Log Archive

Service and Middleware
Management Clients

fin-BO Tables

Database Management System Services

Control Proceduresfin-BO Tables

Database Management System Services

Control Procedures

Figure 4: Building CAVR-Compliant SOA with Control Patterns

Being service providers and/or service consumers, each functional component in the
application (represented as a box in Figure 4) exposes certain compliance risks, but
also gives an opportunity to implement controls. The same holds true for the integra-
tion channels (represented as vertical lines). The two dotted horizontal lines repre-
sent boundaries of physical tiers; therefore, they expose network access points
which have to be secured properly (e.g., access control).

 23

The concrete architecture of an enterprise application is an instance of this ca-
nonical reference model, i.e., it follows the same principles of componentization,
layering, and ESB integration, but applies them to a specific architecture. For in-
stance, the information system supporting the sales process in Figure 3 in Section 3
contains such an enterprise application; in the architecture of this enterprise applica-
tion, the sales process may be realized as a composed service which is supported by
fin-BO service components and database tables for order and financial data. Addi-
tional service components and fin-BO tables may represent the customer master data
and production data from Figure 3 in the architecture.

Logical layering and the SOA patterns facilitate achieving CAVR-compliance.
This is because the control patterns from Section 4.1 can be implemented with par-
ticular ease in layered architecture that follows the SOA style. Specifically, the con-
trol patterns can be realized as follows:

STANDALONE OBJECTS. Fin-BOs should be stored as data objects in the database
management system in the backend tier (Figure 4). To facilitate the implementation
of other controls, it is further important that the database management system stores
one and only one copy of each fin-BO (i.e., there are no duplicates). This copy is
then referenced and accessed throughout the application, e.g., from composed ser-
vices and service components that process fin-BOs in the mid tier.

SINGLE ACCESS POINT. The database management system becomes the single access
point for the backend tier through which fin-BOs are created, updated, queried, and
otherwise manipulated. It is important to suppress any access to the fin-BOs that
does not “pass through” the database management system. It is further important to
tightly control the number of components (i.e., business processes and fin-BO ser-
vice components) that can access and manipulate fin-BOs in the database. Such tight
control is important because otherwise these components may become “loopholes”
that enable indirect access to fin-BOs while circumventing the access control of the
database management system. Authentication and authorization services therefore
constitute the SINGLE ACCESS POINT of the mid tier in our canonical reference model
(Figure 4).

RELIABLE MESSAGING. Reliable messaging is represented as an architectural com-
ponent in the mid tier of Figure 4. Message channels and messaging endpoints
(Hohpe and Woolf, 2004) can be provided “out-of the box” by messaging middle-
ware, which may also realize the ESB patterns. The remaining design tasks for the
architect are message construction, message routing and transformation, message
consumption, and systems management (Hohpe and Woolf, 2004). Detailed architec-
ture and design patterns for these tasks have to be selected and implemented for
each message endpoint and channel in the system. In a SOA, service consumers and
service providers are message endpoints; service invocations translate into message
exchanges.

LOGGING. The logging control pattern can be realized by a logging service compo-
nent in the mid tier in Figure 4 which feeds a log archive (appearing in the systems
management services box). The remainder of the application should then use this
logging service for all their logging needs. The log archive applies the message store

24

pattern (Hohpe and Woolf, 2004) to create an audit trail of all services and other
components that processed fin-BOs. Such an audit trail is useful for answering ques-
tions about data provenance such as “who created a fin-BO?”, “where and when was
it created?”, “who modified it?”, and so on.

CONTROLLED INTERFACES, COMPLETE MEDIATION, INPUT & OUTPUT VALIDATION ,
CROSS-CHECKING. These controls extend the SINGLE ACCESS POINT pattern. On the
backend tier (Figure 4), these controls should be enforced by implementing a well-
defined and restrictive interface to the fin-BOs, by enforcing that only authorized
subjects have access to fin-BOs, and by validating (and cross-checking) inputs so
that invalid or potentially malicious data can be handled safely. Using foreign key
relationships and stored control procedures the database management system can
help doing this (Davidson et al., 2006).

It is recommended that all mid-tier service components are protected with the
CONTROLLED INTERFACES, COMPLETE MEDIATION, and INPUT & OUTPUT

VALIDATION controls. This is particularly important for service components that
manipulate fin-BOs. CROSS-CHECKING is required for all service components work-
ing with multiple related fin-BOs; the relationships between these fin-BOs should be
specified in a domain model as introduced in Section 4.1 in the context of the
STANDALONE OBJECTS pattern. The SOA style facilitates such comprehensive pro-
tection because it composes software out of services (i.e., self-contained compo-
nents). Each of these service components can (and should) be protected by the above
four controls. In this context, it is important that each service implements its own
controls and does not rely on other services to enforce the necessary controls. In par-
ticular, the lower architectural layers of Figure 4 should implement their own input
validation services rather than “trusting” that higher layers check the input data.
While such trust assumptions are not uncommon in practice, they bear risks and
should be taken with caution.

For COMPLETE MEDIATION (and, to a lesser degree, the other control patterns)
one has to decide where in Figure 4 access control is implemented. One option is
that each service component implements its own access control. A second option is
that middleware enforces all access control according to a user-defined security pol-
icy (Buecker, 2007). Within the middleware, access control can be provided either
by the container (e.g., Java Enterprise Edition) running the services or by stand-
alone authentication and authorization services acting as gateways (Ebbers et al.,
2008). Today’s best practice advocates the middleware option because it makes ac-
cess rights explicit and centralizes them in a single place. Access control rights be-
come easier to verify, audit, and revise this way.

LEAST PRIVILEGE and SEPARATION OF DUTY (SOD). The controls of minimizing
user privileges and of not giving one subject “both keys to the bomb” are related to
the COMPLETE MEDIATION control pattern. More precisely, they are enforced by
configuring the COMPLETE MEDIATION control in a manner that prohibits any access
to a service if such access violates the LEAST PRIVILEGE or SEPARATION OF DUTY
patterns. This can be achieved by configuring the authentication and authorization
services adequately. Such configurations of the COMPLETE MEDIATION controls can
be derived from the end user information in the requirements specification, e.g.,

 25

from the actors in UML use case models. If the requirements specification turns out
to be incomplete or in conflict with the audit control requirements solicited in steps
1 to 4 of our design method (see Section 4.2), it might be necessary to revise the re-
quirements specification at this point.

IDENTITY GRANULARITY . Intuitively, the identity of a user is the unique “name” un-
der which an information system knows the user after (s)he logged in. Managing
and controlling identities is a particularly difficult challenge because identities tend
to proliferate as most applications introduce their own user registries and identities.
The complex design decisions involved in managing this proliferation of identities
go beyond the scope of this article; they have been described in the literature (Ber-
tocci, Serack and Baker, 2008). However, we will highlight certain practices that are
advisable from a controls point of view: First, we recommend adopting a Single Sign
On (SSO) solution (Bertocci, Serack and Baker, 2008), in which a single authentica-
tion service (a.k.a. identity provider), maintains all user accounts. Users then “log
into” the authentication service, and the authentication service subsequently vouches
for the users’ identities to other services. Among other benefits, the authentication
service can centrally enforce authentication policies (such as password aging) and it
can reduce the risk of users adopting multiple identities.

A second recommendation concerns the common practice that a user logs into a
service A, which then accesses further services B and C under its own identity rather
than the identity of the user. A preferable solution to this is to use delegation where
the user authorizes service A to interact with B and C on its behalf (Cantor, 2005;
OAuth, 2009). All activities can be tied back to the user who initiated them. As
delegation is not widely implemented, we recommend propagating the identity of
request originators and to diligently log when a service component uses its own
identity to act on behalf of somebody else. These implementation options and the
associated trade-offs are further discussed by Rosen et al. (2008) as well as Meier et
al. (2003).

CRYPTOGRAPHIC SIGNATURES and ENCRYPTION. Cryptographic operations are typi-
cally provided in operating system libraries. As such, the SOA style offers no ad-
vantages here. However, SOA can help with the management of the secret keys that
much of today’s cryptography is based on. This so-called key management com-
prises the generation, recording, distribution, installation, storage, change, disposi-
tion, and control of cryptographic keys (Murray , 2007). In a SOA, the functionality
of the key management system should be embedded in a service (see Figure 4).

4.4 Impact of Application Lifecycle Management on C AVR
Compliance

An architecture based on strong controls is an important prerequisite for attaining
CAVR compliance, but it is not sufficient. The other stages in the lifecycle of an ap-
plication play an equally important role towards achieving CAVR compliance. Con-
sistent with COBIT (IT Governance Institute, 2005) and ISO 27001 (ISO/IEC,

26

2005a), we distinguish four application lifecycle phases which we call plan, build,
deploy and operate, and monitor:

Phase 1 (Plan): The plan step identifies the control objectives, risks, and mitigating
controls as per Steps 1 to 4 of our method from Section 4.2. The plan step also de-
fines the roles and responsibilities for the tasks that are to be performed in the sub-
sequent lifecycle phases 2 to 4.

Phase 2 (Build): In the build step, the application architecture is designed as de-
scribed in Step 5 of our method (Section 4.3). Additionally, application and security
architects derive the security policies that configure the controls. Defining appropri-
ate security polices is essential because controls like COMPLETE M ITIGATION and
INPUT AND OUTPUT VALIDATION are of limited value unless they are configured cor-
rectly and consistently. In the build step, the enterprise application is also imple-
mented and tested using representative sample data. Potentially, formal correctness
proofs for key algorithms may be used to achieve a desired level of quality and con-
fidence or to pass software certification for custom code. As discussed in Section
3.2, S&P auditors may assume such software certification to exist.

Phase 3 (Deploy and operate): System administrators install the application and
work with security experts to configure the application and its associated controls.
Further deployment activities are to change default passwords, to deactivate all in-
frastructure resources that are not required (e.g., network ports) and to take precau-
tions to protect test data and program source code from accidental disclosure (these
activities are often summarized under the term application and infrastructure hard-
ening). Once deployment has completed, the application becomes operational in a
production environment.

Phase 4 (Monitor): System administrators continuously monitor the application to
detect compliance violations, control failures, or security threats. They further re-
spond to such problems by refining security policies or by adding further controls. It
is important that all changes to enterprise applications are controlled, including im-
pact assessment, formal approval, testing, and documentation.

4.5 Anti-Patterns and Risks of New Technologies

As the last part of our experience report, this section briefly highlights some “risky
designs” that we encountered in practice. As these designs may be forced upon ar-
chitects by circumstances (e.g., legacy system limitations or other environmental
constraints) they are not “bad” per se. They are, however, more risky in terms of
CAVR compliance, and should be used cautiously:

• If the file transfer pattern (Hohpe and Woolf, 2004) is chosen as the inte-
gration style (e.g., as described in Example 3 in Section 3.3), architects and
auditors may lose control over who accesses and processes fin-BOs that are
stored in and exchanged as files. Shared hard drives in particular pose sig-
nificant audit risks; although operating systems allow system administra-

 27

tors to restrict and log access to files, the probability that shared drives are
not configured properly is, in practice, rather high.

• Introspection (i.e., self reflective, adaptive, dynamic programs that make
use of runtime meta-information about the program code) is a popular pro-
gramming paradigm in certain developer communities. This paradigm al-
lows the creation of generic and therefore flexible programs that can work
with many different types of input data; however, in such a setting it is
rather difficult to identify and tag fin-BOs, both during design and audit.
As a consequence, our five-step design method (cf. Section 4.2) can no
longer be followed; it is also unclear how to apply the control patterns
(Section 4.1) in such a setting.

• Scheduled batch jobs that are invoked automatically rather than by a trig-
gering user activity run the risk of bypassing the control patterns without
notice. An example is a home grown Perl script that is configured to run
every day and directly accesses the fin-BO database (e.g., as a crontab job
on UNIX systems). Such a script might violate the SINGLE ACCESS POINT

control if the access management procedures are not configured properly.
• Similar risks arise if homegrown ad-hoc workflows exist (e.g., realized in

spreadsheets, structured emails with textual attachments, or groupware ap-
plications). If such ad hoc workflows are part of audited business processes
then special care has to be taken to implement suitable controls. Otherwise,
the uncontrolled nature of ad-hoc workflows may expose fin-BOs to threats
that destroy their CAVR properties. For example, an ad-hoc workflow may
stipulate the use of the operating system clipboard to cut-and-paste fin-BOs
between activities. Clearly, such an approach exposes fin-BO data and
threatens to destroy CAVR compliance. As a consequence, the auditor’s
assumptions about the existence of general IT controls and correct func-
tioning of certified software (these assumptions were discussed in Section
3.2) may no longer be valid.

• Via openly accessible data marts and data warehouses, fin-BOs can be ex-
ported as reports and then modified in personal productivity tools such as
spreadsheet editors. This may violate the restricted access property, in par-
ticular if the exported reports are further distributed by email or other un-
controlled means. If the modified data is re-imported into the operational
fin-BO database, the other CAVR properties may also be violated.

It is worth noting that the risks introduced by these bad designs cannot be mitigated
by adding GRC systems as such systems typically protect properly engineered, pos-
sibly certified software packages such as ERP systems and not the proprietary (cus-
tom) use of the technologies listed above.

Risks of new technologies. While the SOA style facilitates the achievement of
CAVR-compliance in many ways, it is also afflicted with certain problems. These
problems arise when applications are built by mixing and matching services in dif-
ferent combinations as required by the business logic. As a consequence, any given
service may be shared among multiple enterprise applications. The crux with this
setup is that each enterprise application comes with its own compliance require-

28

ments, which in turn translate into compliance requirements for constituent services.
Consequently, each service is subject to multiple compliance requirements from
multiple enterprise applications, and it is not always clear how services can accom-
modate all of them. The situation is further complicated when services are com-
posed dynamically at runtime (i.e., during phases 3 and 4 of the application lifecycle
from Section 4.4). Such problems did not exist previously when monolithic enter-
prise applications “owned” all their parts and could consequently control these parts
entirely.

Virtualization is another new technology that poses new challenges to auditors.
Virtualization is the practice of simulating multiple computers (so-called virtual ma-
chines) on a single physical machine. Virtual machines and the programs they exe-
cute can be moved dynamically between physical machines with the objective to
balance load, to become more tolerant to failures, to speed up deployment, and to
cut cost. The drawback of such flexibility is that it complicates the control of enter-
prise applications. For example, fin-BOs may dynamically be relocated to different
physical machines; services or entire business processes may no longer execute
within fixed system boundaries. Hence, these modern paradigms pose important
challenges from an S&P audit’s point of view, which are hotly debated in research
and development communities at present.

5 Summary and Conclusions

In this article, we disclosed our experience with a risk-based systems and process
audit method. This method is based on a walkthrough, where the auditor identifies
major classes of financial business objects and follows them through the business
processes that manipulate them. In doing so, the auditor tests each financial business
object for compliance with four properties – Completeness, Accuracy, Validity, and
Restricted access (CAVR). We illustrated the audit method with an example and
identified five major assumptions that the method is based on:

1. The IT infrastructure of an information system that supports enterprise ap-
plications and business processes is assumed to be controlled and audited
separately (e.g., by auditors specializing in IT general controls).

2. All software, particularly ERP packages and custom developed enterprise
applications, works as specified by their creators (e.g., a software vendor).

3. Due to the automated nature of IT systems, it is assumed that a small sam-
ple of walkthroughs is sufficient to identify all business processes and test
all controls.

4. The auditor’s professional judgment is considered adequate to assess risks;
mathematical models are not employed.

5. It is assumed that best practices and professional judgment are sufficient to
select appropriate risk-mitigating controls.

Having described the audit method and its underlying assumptions, we discussed
how IT architects can build enterprise applications that are easier to audit and that

 29

more justifiably fulfill the auditor’s assumptions. This led us to the identification of
a set of thirteen proven control patterns that IT architects apply when designing en-
terprise applications that are subject to systems and process audits. We further de-
scribed a five-step architecture design method for compliance, and we showed how
control patterns and design method fit into the larger lifecycle of enterprise applica-
tions. We also presented how the control patterns and design method can be applied
to layered, service-oriented enterprise application architectures and highlighted sev-
eral risky designs that he have encountered in practice.

While not directly applicable to off-the-shelf software packages that come with
predefined architectures, our control patterns and design method are still useful dur-
ing package customization, e.g., when integrating packages with other systems or
when modifying the meta-model and database schemas in a package. Moreover,
package architects should consider our patterns when designing additional package
capabilities or outlining the architectures for new packages.

Our patterns and methods are applicable in most sectors, including pharmaceuti-
cals, finance, and government. Eventually, our work could reduce audit time in these
sectors, e.g., by reducing the need to test controls: It might be possible to thoroughly
audit a reference implementation of the control patterns and to build anchor points
into enterprise application architectures where these reference implementations can
be “plugged in”. The audit process could then be reduced to testing whether the ref-
erence implementations have been integrated correctly into the anchor points. Ap-
plying this approach consequently strengthens the simplifying assumption that one
sample is sufficient. Detailed sector-specific design guidance exceeds the scope of
this article.

The interdisciplinary work leading to this article was in many ways insightful and
instructive. In particular, we highlight three key points:

• We realized that auditors and IT architects use different vocabularies, as-
sumptions, and methods when discussing and analyzing systems. For ex-
ample, S&P auditors and IT architects use the term “transaction” in very
different ways, as explained in Section 2.1. Moreover, IT architects do not
always fully understand the differences between IT General Controls au-
dits, S&P audits (this paper’s focus), and financial audits; furthermore,
they cannot be expected to be aware of the entire set of unique require-
ments imposed by each audit type. Auditors, on the other hand, are not al-
ways familiar with Business Process Modeling Notation (BPMN), domain
models, architectural patterns, Uniform Modeling Language (UML), user
stories and other design artifacts that can support audits. As such, we con-
sider it an important contribution of this article that it presents a joint busi-
ness process-oriented view on enterprise applications, including a shared
notion of fin-BOs, control objectives that are associated with fin-BOs, a
consistent risk-based approach to design and audit, and a catalogue of
proven control patterns. A common language as established by our control
patterns catalog and our canonical SOA reference model increases the effi-
ciency in joint meetings and avoids misunderstandings when reviewing
each other’s work (e.g., design specifications or audit reports).

30

• Understanding architectural methods and artifacts enables auditors to ask
for more specific documentation to inform the audit process. Moreover, we
found that understanding how CAVR can be engineered systematically into
enterprise applications makes it easier for auditors to identify ad-hoc or
improvised controls, which are more likely to be deficient in practice.

• For IT architects, it is important to appreciate that compliance is not just
another non-functional requirement, but has the potential to delay software
development projects significantly or even prevent the developed solutions
from being deployed. As such, it is important to understand S&P audits and
how software can be built that satisfies them. The work leading to this pa-
per also reinforced the importance of secure software engineering princi-
ples (Howard and LeBlanc, 2003). What was interesting, though, was the
realization that completeness and validity (the C and V in CAVR) are par-
ticularly difficult to assure using the known software security methods.
This difficulty originates from the fact that completeness and validity re-
quire (electronic) fin-BOs to correctly represent real-world financial
events. This is a difficult task because IT controls are confined to the elec-
tronic world and can only partially control what, in effect, happened in the
real world.

Both enterprise application design and systems and process audits remain de-
manding tasks, even in the light of the methods and patterns presented in this article.
Dealing with the intricacies of large and complex systems is never easy. This is par-
ticularly true when requirements change as they frequently do in practice. For ex-
ample, it is not uncommon for business executives to request new application fea-
tures that unwittingly break compliance; laws and regulations constantly change,
which generally imposes new requirements on enterprise applications; IT architects
and their development teams may have been unaware of audit requirements so that
the corresponding functionality has to be added in hindsight. The methods, princi-
ples, and patterns we reported on in this article clearly help in dealing with these and
other realities; however, they do not render them mechanical or easy.

Acknowledgements

The authors would like to thank the anonymous reviewers for their thoughtful com-
ments on this work.

In conducting the research leading to these results, Klaus Julisch has received
funding from the European Community’s Seventh Framework Program (FP7/2007-
2013) under grant agreement No. FP7-216917.

 31

References

AICPA. American Institute of Certified Public Accountants. Generally Accepted
Auditing Standards. SAS 95, 2001. URL: http://www.aicpa.org/
download/members/div/auditstd/AU-00150.PDF

AICPA, American Institute of Certified Public Accountants. Statements on Auditing
Standards (SAS) No. 104. Amendment to Statement on Auditing Standards No.
1 Codification of Auditing Standards and Procedures (“Due Professional Care
in the Performance of Work”). 2006.

Baker WH, Hutton A, Hylender CD, Novak C, Porter C, Sartin B, Tippett P. 2009
Data Breach Investigations Report, Verizon Business, 2009.

Bass L, Clements P, Kazman R. Software Architecture in Practice, Second Edition.
Addison Wesley, 2003.

Bayuk JL. Stepping Through the IS Audit: What to Expect, How to Prepare. Second
Edition. ISACA, 2004.

Benantar M. Access Control Systems: Security, Identity Management and Trust
Models. Springer; 2006.

Bertocci V, Serack G, Baker C. Understanding Windows CardSpace. Addison-
Wesley, 2008.

Bitterli PR, Brun J, Bucher T, Christ B, Hamberger B, Huissoud M, Küng D,
Toggwhyler A, Wyniger D. Guide to the Audit of IT Applications. ISACA;
2009.

Blakley B, Heath C. Security Design Patterns. Technical Report G031, ISBN
1931624275, Open Group, 2004.

Bradshaw W, Willis A. Learning about Risk: Choices, Connections and Competen-
cies. Toronto: Canadian Institute for Chartered Accountants, 1998.

Bragg SM. The Ultimate Accountants' Reference: Including GAAP, IRS and SEC
Regulations, Leases, and More. 3rd Edition. John Wiley & Sons; 2010.

Buecker A. Understanding SOA Security Design and Implementation. IBM Red-
books, 2007.

Cantor S. SAML 2.0 Single Sign-On with Constrained Delegation. Working Draft,
Oct. 2005. URL: http://shibboleth.internet2.edu/docs/draft-cantor-saml-sso-
delegation-01.pdf .

Cascarino RE. Auditor's Guide to Information Systems Auditing. John Wiley &
Sons; 2007.

Cohn D. User Stories Applied. Addison Wesley, 2004.

32

Congress of the United States of America. Sarbanes-Oxley Act of 2002, H.R. 3763.

Cross M, Norris LJ, Piltzecker T. Security+ Study Guide. Syngress Publishing,
2002.

Davidson L, Kline K, and Windisch K. Pro SQL Server 2005 Database Design and
Optimization. Apress; 2006.

Ebbers M, Barrus B, Bonazebi S, Daly P, Lee C. DataPower Architectural Design
Patterns. IBM Redbook, 2008.

EC, European Commission. EudraLex - Volume 4 Good Manufacturing Practice
(GMP) Guidelines. 2010. URL: http://ec.europa.eu/enterprise/sectors/
pharmaceuticals/documents/eudralex/vol-4/index_en.htm .

Epstein J. Security Lessons Learned from Société Générale. IEEE Security & Pri-
vacy, 6(3), 2008.

Evans E. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison Wesley; 2003.

Ferguson N, Schneier B. Practical Cryptography. 1st Edition. Wiley; 2003.

Fowler M. Patterns of Enterprise Application Architecture. Addison Wesley; 2003.

Hansen M, Schwartz A, and Cooper A. Privacy and Identity Management. IEEE Se-
curity & Privacy; March/April 2008.

Hohpe G, Woolf B. Enterprise Integration Patterns. Addison Wesley, 2004.

Howard M and LeBlanc D. Writing Secure Code. 2nd Edition. Microsoft Press;
2003.

ISACA. COBIT and Application Controls: A Management Guide. ISBN
9781933284859; 2009.

ISACA. Certified Information Systems Auditor, CISA Certification Overview.
2010. URL:
http://www.isaca.org/Template.cfm?Section=CISA_Certification&Template=/
TaggedPage/TaggedPageDisplay.cfm&TPLID=16&ContentID=43558 .

ISO/IEC. Information Technology – Security Techniques – Information Security
Management Systems – Requirements. ISO/IEC 27001:2005.

ISO/IEC. Information Technology – Security Techniques – Information Security
Management Systems – Guidelines. ISO/IEC 27002:2005.

IT Governance Institute. Control Objectives for Information and related Technology
4.0 (COBIT). ISBN 1-933284-37-4; 2005.

Josuttis NM. SOA in Practice. O’Reilly; 2007.

 33

Kidwell DS, Blackwell DW, Whidbee DA, and Peterson RL. Financial Institutions,
Markets, and Money. Tenth Edition. John Wiley & Sons; 2008.

Killmeyer J. Information Security Architecture. Auerbach Publications; 2000.

Leymann F, Roller D. Production Workflow: Concepts and Techniques. Prentice
Hall; 1999.

Meier JD, Mackman A, Dunner M, and Vasireddy S. Building Secure Microsoft
ASP.NET Applications: Authentication, Authorization, and Secure Communi-
cation. Microsoft Press; 2003.

Meyer B. Object-Oriented Software Construction. 2nd Edition. Prentice Hall; 2000.

Murray WH. Principles and Applications of Cryptographic Key Management. In:
Tipton HF, Krause M, editors. Information Security Management Handbook,
6th Edition. Auerbach; 2007.

NIST, National Security Institute. Trusted Computer System Evaluation Criteria.
Department of Defense; 1983.

OGC, Office of Government Commerce. The Official Introduction to the ITIL Ser-
vice Lifecycle; 2007.

OAuth Core Workgoup. OAuth Core 1.0 Revision A. June 2009. URL:
http://oauth.net/core/1.0a .

PCAOB, Public Company Accounting Oversight Board. Auditing Standard No. 5:
An Audit of Internal Control Over Financial Reporting That Is Integrated with
An Audit of Financial Statements. PCAOB Release No. 2007-005A, Nov.
2007. URL:
http://pcaobus.org/Standards/Auditing/Pages/Auditing_Standard_5.aspx .

Rosen M., Lublinsky B., Smith KY, and Balcer MJ. Applied SOA: Service-Oriented
Architecture and Design Strategies. John Wiley & Sons; 2008.

Ross R, Katzke S, Johnson A, Swanson M, Stoneburner G, and Rogers G. Recom-
mended Security Controls for Federal Information Systems. National Institute
of Standards and Technology. Special Publication 800-53, Rev. 2. Dec. 2007.

Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

Saltzer JH, Schroeder MD. The Protection of Information in Computer Systems. pp.
1278-1308. Proceedings of the IEEE, 63(9), 1975.

Schaeffer, MS. Accounts Payable and Sarbanes-Oxley: Strengthening Your Internal
Controls. John Wiley & Sons, 2006.

Schumacher M, Fernandez EB, Hybertson D, Buschmann F, Sommerlad P. Security
Patterns: Integrating Security and Systems Engineering. Wiley; 2006.

34

SEC, Securities and Exchange Commission. Commission Guidance Regarding
Management’s Report on Internal Control Over Financial Reporting Under Sec-
tion 13(a) or 15(d) of the Securities Exchange Act of 1934. RELEASE NOS.
33-8810; 34-55929; FR-77; File No. S7-24-06. 2007.

Senft S, Gallegos F. Information Technology Control and Audit.
Auerbach Publications; 2009.

Symantec. Web Based Attacks. Symantec Corp., Technical Report. Feb 2009.

Trent H. Products for Managing Governance, Risk, and Compliance: Market Fluff
or Relevant Stuff? Burton Group. Mar.18, 2008.

Tulach J. Practical API Design: Confessions of a Java Framework Architect.
Apress; 2008.

Yoder J, Barcalow J. Architectural Patterns for Enabling Application Security. In
Proceedings of the Fourth Conference on Pattern Languages and Programs;
1997.

Zimmermann O. An Architectural Decision Modeling Framework for Service-
Oriented Architecture Design. PhD Thesis. University of Stuttgart, 2009.

