Compliance by Design —
Bridging the Chasm between Auditors
and IT Architects

Klaus Julisch?’, Christophe Suté?, Thomas Woitall&, and Olaf Zimmermarfh

4|BM Research GmbH, Saumerstrasse 4, 8803 RiischBwitzerland
®) PricewaterhouseCoopers AG, Birchstrasse 160, 85, Switzerland

Abstract: System and process auditors assure — from an iat@m processing
perspective — the correctness and integrity ofd#s& that is aggregated in a com-
pany’s financial statements. To do so, they assdmther a company’s business
processes and information systems process finadatal correctly. The audit proc-
ess is a complex endeavor that in practice haslyoon simplifying assumptions.
These simplifying assumptions mainly result frone theed to restrict the audit
scope and to focus it on the major risks. Thisclrtdescribes a generalized audit
process. According to our experience with this pesg there is a risk that material
deficiencies remain undiscovered when said simplifyassumptions are not satis-
fied. To address this risk of deficiencies, thecltcompiles thirteen control pat-
terns, which — according to our experience — aréquéarly suited to help informa-
tion systems satisfy the simplifying assumptions guch, use of these proven
control patterns makes information systems easiautlit and IT architects can use
them to build systems that meet audit requireméstglesign. Additionally, the
practices and advice offered in this interdiscigtinarticle help bridge the gap be-
tween the architects and auditors of informatiostesyps and show either role how
to benefit from an understanding of the other wl&rminology, techniques, and
general work approach.

Keywords. Information systems audit, CAVR, compliance, sdéguarchitecture,
patterns, service-oriented architecture, businemsegses, enterprise applications.

NOTICE: This is the author’s version of a work that was ac-
cepted for publication in Conputers & Security. Changes re-
sulting from the publishing process, such as peer r eview, ed-
iting, corrections, structural formatting, and othe r quality
control mechanisms may not be reflected in this doc ument.
Changes may have been made to this work since it wa s submitted
for publication. A definitive version was subsequen tly pub-
lished in Conputers & Security (2011), doi:10.1016/j.cose.

2011.03.005 (http://dx.doi.org/10.1016/j.cose.2011. 03.005).

1 Introduction

Accounting standards such as the International r€ieh Reporting Standards
(IFRS), United States Generally Accepted Accountminciples (US-GAAP), and
the German “Handelsgesetzbuch” provide guidelinestfe transparent and compa-
rable reporting of financial information. Moreoveuyblicly traded companies have
to follow additional regulations that are prescdl®y regulatory bodies such as the
Security and Exchange Commission (SEC) in the US#yuably, the best-known
of these additional regulations is the SarbanegYAtt of 2002 (Congress, 2002).

Financial auditorsverify that a company’s financial statements apengliant
with the applicable accounting standards and cbimeall material respectsFinan-
cial auditors definenaterial correctnesss errors that are negligibly small in rela-
tion to the monetary amounts reported in the firgrstatements (for example, not
more than 5% of earnings before interest and taxéspncial auditors are con-
cerned with how financial information is capturedigregated, contextualized, and
disclosed to the public. As a prerequisite, theexiness and integrity of the finan-
cial information has to be verified. This verificat is the responsibility o®ystems
and Process (S&P) auditafsS&P auditors examine thieusiness processedhat
handle financial data (in the widest sense) andrntfeemation systemthat support
these business processes: They investigate whibihes business processes and in-
formation systems assure the correctness and iiytegfr the financial data they
process. We will later define what we mean by “eotness” and “integrity”; at this
point, it is sufficient to intuitively understantat correctness and integrity refer to
the completeness, accuracy, validity of, and resttli access to financial data.

The S&P auditor’s role is often taken by Certifiafiormation Systems Auditors
(CISA) (ISACA, 2010). This certification is awardéy the Information Systems
Audit and Controls Association (ISACA). The respbilgies of the S&P auditor
are, however, broader than those of the CISA becthes S&P auditor also has to
identify (and in many cases reverse engineer)ittaially relevant business proc-
esses. This requires business skills and experience

In this interdisciplinary article, we examine infieation systems both from the
perspectives ouditing and ofdesigningthem. More specifically, we first discuss
how we review information systems in the S&P auditme, and we show how
commonly made assumptions can undermine the quliydits if they turn out to
be unfounded. We then focus enterprise applicationgFowler, 2003) as the core
component of many information systems and ideritifiteen control patterns that,
according to our experience, lead to enterprisdicgijons that are easier to audit
and less prone to negative audit findings. By da@agthis experience report shows
(a) how proven control patterns can be applieduitdbenterprise applications that

1 When this article mentiorfinancial auditorsand S&P auditors we mean two differenles that are
defined by theactivitiesthey perform. In practice, a single individual gday both roles on a particu-
lar audit.

satisfy S&P audit requirements by design; (b) #riscle further bridges the gap be-
tween the designers and auditors of informatiotesygs and gives professionals in
either community practical advice on how they canddit from a better understand-
ing of the terminology, techniques, and work apploaf the other community; (c)
the article finally includes references that guige reader to detailed material on the
implementation of the control patterns.

The remainder of this article is structured asofeli: Section 2 introduces our
terminology and related work; Section 3 describegeneric S&P audit approach
and critically appraises it using an example; $ectl identifies the control patterns
(to be) applied bynformation_echnology (IT) architects when developing applica-
tions that are subject to audiSection 5 concludes the article and summarizes its
main points.

2 Background and Related Work

2.1 Terminology in S&P Auditor and IT Architect Com munities

S&P auditors and IT architects use different teotugies. Even a simple concept
such as “transaction” can be the source of confuamit is interpreted differently
by either community. This section therefore introgfsia common terminology that
is understandable to auditors and IT architects.

Figure 1 summarizes the terminology introducedasofinancial auditorsaudit
financial statementsas directed by the applicabtéenerally Accepted Auditing
Standards (GAASe.g., (AICPA, 2001))The financial statements are produced by
accountantausingfinancial datawhich is collected, processed, and storedusi-
ness processe¥he business processes are supported and pastidtiynated byn-
formation systemswhich can informally be defined as integrated hanet and
software systems for collecting, storing, procegsand presenting datBnterprise
applicationsare a special type of software that forms an imtiegart of information
systems. More specifically, enterprise applicatians large, complex, physically
distributed, and generally mission-critical softeiaapplications that process busi-
ness data (Zimmermann, 2009). Examples of enterfgplications include soft-
ware for payment processing, human resources mar@agecustomer relationship
management, and business intelligence.

It is important to understand that the activitiéste financial auditor focus on
the financial data appearing above the dasheditifféigure 1. To assure the cor-
rectness and integrity of this data, the finanaialitor commissions an auditor in
the S&P auditor role. It is an S&P auditor’s resgibility to audit the business proc-
esses and information systems with the objectivasture the correctness and integ-
rity of the financial data that these processessystiems produce. As indicated in
the introduction (Section 1), this article focusesthe S&P auditor’s role that as-
sesses husiness processes and information systems.

Accounting roduces
Q | Standard %
a directs uses
w Y Y Y
‘5 Financial [|audits| Financial Financial
— Auditor Statements Data
= i i Y
O commissions
D processes
(3]
S . & stores
t S&P audits Business
E Auditor Processes
o ry
(]
2 supports
Q
g Entt.arprlise includes Information
Applications System

Figure 1: Roles and Relationshipsin Financial Audits

A business process — shown as an atomic box inréigju- is a workflow that
connectsactivities according to their order of execution (Leymann dvaller,
1999). Activities are units of work such as “bodigtit”, “review travel expense”, or
“credit account”. The flow of activities does naave to be sequentiaGateways
fork the flow of activities into multiple parallstrands, or they merge multiple par-
allel strands into a single one. The flow of adids is also affected bgvents.
Events are external stimuli such as customer orderging. Figure 2 shows how
activities, gateways, and events are representddeirBusiness Process Modeling
Notation (BPMN). Business processes frequently atstain more granular struc-
tures, which can also be expressed in BPMN. Weddaliscuss these BPMN struc-
tures as they are not needed to follow the article.

/AC‘ Mté\‘
Discard Inform
Order Customer

Financial

A Gafeway
Event

invalid

Verify
Order

Crder arrives

Fill
Order

Bill
Customer

Figure 2: Description of a Business Processin BPMN

In this article, we are exclusively concerned witisiness processes that process
financial data. An event that triggers such a bessnprocess is calledfiaancial
event Financial events are known &ansactionsin the audit community, but we
will avoid this term as it has a very different mesy in the field of software engi-
neering (Fowler, 2003). A financial event alwayeates a data record, which is
subsequently processed by business processes. IWeesa data recordiancial
Business Objectdin-BOs)throughout this document. In summafipancial events
createfin-BOs which are processed by thetivities of business processeSate-
waysfork and merge the flow of activities within a imesss process.

When processing fin-BOs, enterprises have the basinbjective of providing a
fair and accurate representation of financial infation. To ensure that this objec-
tive is achieved in the presence of adverse cirtamgges such as accidents, frauds
or cyber-attacks, enterprises deployntrols In general, controls are the mecha-
nisms (including processes, structures, culturd,tasks) that an enterprise deploys
in its processes and systems to ensure that basgigsctives are met (Bradshaw
and Willis, 1998). In line with Figure 1, the Sanlea-Oxley Act of 2002 (Congress,
2002) and the Public Company Accounting Oversigharid (PCAOB) Audit Stan-
dard No. 5 (PCAOB, 2007pcus on controls over financial reporting and idist
guish between audits over controls and audits émancial statements, which are
then integrated

Examples of controls are firewalls, the four-eyengple, or the cross-checking
of documents. A control iadequate and effectivie the extent that it provides rea-
sonable assurance (a.k.a. “evidence”) that theniggton will achieve its objec-
tives reliably. Compensating controlsomplement weak or deficient controls and
reduce the risk of such control weaknesses reguitirerrors or omissions. Further
aspects of compensating controls, such as theHattthey generally operate on a
higher level than the controls they complement,ayond the scope of this article.
Manual controlsare controls that are performed “manually”, itez,people, while
automated controlgre implemented by machines (systems). For exampt®m-
puter program that matches invoices against ondeptements an automated con-
trol, while the four-eye principle is a classic mahcontrol.Semi manual controls
or IT dependant controlsombine manual activities (e.g., the verificatidnirdor-
mation) with automated procedures and informatimtessing (e.g., report genera-
tion). Therefore the review of a report is suchoatml as it relies on the informa-
tion in the report and does not challenge the ctritself.

2.2 Related Work

In this section, we position our work relative teetISO 27K (ISO/IEC 2005a,
2005b), COBIT (IT Governance Institute, 2005), &Rt (OGC, 2007) standards.
All three standards are used heavily in security @mpliance projects. It is there-
fore important to understand how they are diffeffemitn the practices presented in
this article. We also relate our work to the clasSlA (Confidentiality, Integrity,
and Availability) and AAA (Authentication, Aithorization, and Aditing) security
models.

ISO 27001 standardizes tlaetivities in an Information Security Management
System (ISMS). The activities defined in the stadd#escribe a continuous cycle of
planning, implementing, monitoring, and improvingdarmation security. In terms
of ISO 27001, this article focuses on the planrimgl implementation activities.
Moreover, the article investigates these activitiegards the goal of building enter-
prise applications (rather than generic IT systetha) meet the specific require-
ments of S&P auditors (rather than generic secuetyuirements). Section 4.4
elaborates on this point by placing our work in tioatext of a management lifecy-
cle that is similar to the one defined in ISO 27001

ISO 27002 is a catalogue primarily consisting ofgdneral controls whereas our
article focuses on application controls and expldiow to use such controls effec-
tively to meet the requirements of S&P auditors.rébwer, it is common in S&P
audits to assume that IT general controls had posly been verified (see Section
3.2). ISO 27002 with its focus on IT general colstris therefore largely comple-
mentary to our work.

COBIT (Control Ohjectives for_hformation and relatedechnology) is the inter-
nationally recognized framework for IT governanice,, for assuring that informa-
tion technology is aligned with business requiretsemd that IT risks are mitigated
by controls. COBIT covers all aspects of IT govews security is only a part of it.
Out of the 34 COBIT control objectives, only POOQ® Al2, DS5, DS7-9, DS11,
and DS12 are related to IT security. The remairdeOBIT focuses on other as-
pects of IT governance. Our paper, by contradgdased on compliance (not gov-
ernance), enterprise applications (not entire I§teays), and architecting and audit-
ing of such applications (not their entire lifeagicl

ITIL (IT Infrastructure ibrary) provides best practices for delivering Bnsces
that are fit for purpose, stable, and reliable.LI'Mersion 3 defines 25 processes
that, to varying degrees, are required in the lifeezycle stages of a servickfor-
mation security managemeistone such ITIL process, which has the largeatibg
on the design and operation stages of a serviifety/tle. The information security
management process of ITIL Version 3 treats IT sgcaomprehensively — includ-
ing people, processes, infrastructure, and apitat While being broader in
scope, ITIL is less detailed than this articletsdpecifics. This is particularly so as
this article relates to achieving compliance wi8PSaudit requirements.

In summary, this article focuses on applicationtaaa for enterprise applica-
tions that process financial data and it shows ttmse applications can be built to
meet the S&P auditors’ requirements by design. Bingl so, the article adds the
next level of domain-specific detail to broademsi@rds such as 1SO 27K, COBIT,
and ITIL. Most closely related to our work is ISAGA2009) guide on COBIT and
application controls; this article complements #8ACA guide with domain-
specific technical recommendations.

Among IT security professionals, the CIA and AAArfieworks are widely used
(Crosset al, 2002). CIA stands for @hfidentiality, Integrity, and_Aailability,
which are key objectives of information securityAA stands for_Aithentication,
Authorization, and Aditing; they are three important mechanisms fdrieadng
CIA. With respect to CIA, Section 3 will show thategrity is particularly impor-
tant in S&P audits, while confidentiality violatisrpose a lesser risk; availability is

addressed by IT general controls (e.g., backujispfar mechanisms, etc.), which
is out of the scope of S&P audits. With respeddAd\, Section 4 of this article will
extend the AAA framework with additional controltfgns and it will show how to
apply these patterns effectively during the degpigase.

3 S&P Auditor Examination of Business Processes and
Information Systems

3.1 Audit Types, Scope, and Objectives

An audit is an assessment of an entity’s abilitynteet its objectives. There are
many potential entities (e.g., products, peoplganizations, projects) and objec-
tives (e.g., reliability, policy compliance, strgie alignment, security) that can be
postulated. Accordingly, there are many differgmpies of audits, and any given au-
dit is defined by itscopeandobjective(Senft and Gallegos, 2009). Thedit scope
defines the entity to be reviewed, including it®gephic or functional area, time
periods, documents, systems, and other specifics.alidit objectiveis a formal
statement that describes the purpose of the akdit.example, a pharmaceutical
company may audit its chemical plant (the scopél Wwie objective of assessing
compliance with the applicable manufacturing qyabktandards such as Good
Manufacturing Principles (EC, 2010).

The audit scope in this article is the businessgsses and information systems
that are involved in the collection, storing, pregsieg, and presentation of financial
data. The audit objective is to verify that theibass processes and information sys-
tems satisfy the following control objectives fartling fin-BOs:

« Completeness (CWhen a financial event occurs, one and only ame f
BO is entered and accepted for processing.

e Accuracy (A) Fin-BOs are recorded at the correct monetary amon
the appropriate account, and for the proper period.

« Validity (V) Only authorized fin-BOs that represent finaneaénts that
actually occurred and that affect the organizatidimancial statements
are recorded.

« Restricted access (RJin-BOs are protected against unauthorized access
and amendments.

The properties of completeness, accuracy, validityd restricted access have
jointly become known as the acronym ©AVR (Killmeyer, 2000). Assessing the
CAVR properties defines the objective of the S&@iau

The scope of S&P audits can be defined even maeigaly, recalling that an
S&P audit is generally commissioned by a finanaiadlitor. The financial auditor
seeks to assure external stakeholders of the toesrand integrity of financial ac-
counts. Towards this goal, it is sufficient to pugle material accounting errors
(with materiality being defined as “significant’elative to the total monetary

amounts reported). The S&P audit is therefore stdpeocus only on those busi-
ness processes and information systems that hawaterial impacton the com-
pany’s financial statements (Cascarino, 2007). &ytmast, if aninternal auditfunc-
tion commissions the S&P audit, then the scopebeadefined to be any arbitrarily
chosen business process. In a sense, internakauedittall errors as “material”,
even when they result in no or only in tiny losdaseither case, the objective of the
S&P audit is to assess compliance with the CAVRbprbes.

As an aside, the financial auditor’'s objectives amalogous to the S&P auditor’s
objectives of assessing CAVR (see Figure 1 forrdtationship between financial
and S&P auditors). In fact, the CAVR properties ronirthe so calledinancial
statement assertionsvhich consist of completeness, accuracy, existarcoccur-
rence, cut-off, valuation or allocation, rights amloligations, presentation and dis-
closure (PCAOB, 2007). The purpose of financiatesteent assertions is to assert
the existence of controls that assure a fair amdirate representation of financial
information; the exact definition depends on thecamting standard. For example,
the financial statement assertion of “completenesates that controls have been
put in place to assure the completeness of infoaomatccording to the used stan-
dard (e.g., all qualified write-offs are accounfed. Additionally, the completeness
assertion assures that CAVR-type controls are impidged so that, for instance, no
fin-BOs representing write-offs are lost for tedalireasons. A single control can,
but does not have to fulfill completeness in bahses. We will not consider finan-
cial statement assertions any further in this lgrtic

3.2 Audit Approach and Assumptions

S&P auditors use the following five-step examinatimethod (or variants thereof)
to assess business processes and information sy¢@amscarino, 2007; Senft and
Gallegos, 2009):

Step 1 (Scope definition): The auditor identifies the material accounts i finan-
cial statements. The auditor then identifies timeBOs that have a material impact
on these accounts. The business processes anthation systems that create and
manipulate these “material fin-BOs” constitute sitepe of the S&P audit.

Step 2 (Risk assessment): Once the material fin-BOs have been identifiedyadk-
throughis performed for each of them. This walkthroughrtst with the financial
event that creates the fin-BO and follows it throtle business processes that ma-
nipulate it, all the way to the financial statenseirt which it becomes a line item.
During the walkthrough, the S&P auditor identiftbe risksthat threaten to destroy
the CAVR properties of a fin-BO. Risks are advessents that result in failures or
losses, e.g., the modification of a charge on aaige or the double-paying of a bill.

Step 3 (Control identification): Next, the S&P auditor identifies the controls asso
ciated with each risk. As previously explained stheontrols are the mechanisms an
organization has established to mitigate the r&gkshat the organization is able to
achieve its business objectives.

Step 4 (Control testing): The S&P auditor then evaluates the adequacyeéfied-
tiveness of the controls that Step 3 identified.oTquestions need to be answered
here: First, are the controls (theoretically) suéfint to mitigate the identified risks,
i.e., are they adequate? And second, do theseotopfrerate correctly, i.e., are they
effective? To answer these questions, S&P auditoitect evidence,i.e., docu-
ments, interviews, log files, test runs, physicaipiections and any other relevant in-
formation that can be used to form a conclusiveniopi on the adequacy and effec-
tiveness of controls (Bitterli et al., 2009).

Step 5 (Reporting): Finally, S&P auditors document their findings apksent
them to management and other stakeholders, egicaton and audit owners.

Note that S&P audits do not seek pmve CAVR-compliance with this method.
Rather, they seek to provideasonable assurandbereof. Reasonable assurance is
a high, but not absolute level of evidence thatvigies prudent officials with a
sound basis for concluding that the audit objestisee met (AICPA, 2006; SEC,
2007).

Assumptions: In conducting their work, S&P auditors make sevasdumptions:

1. In Steps 3 and 4, S&P auditors do not concern tetmas withIT general
controls but rather assume that these have been assess@uliply in an IT
audit. In practice, the IT audit and the S&P awdih be performed by the
sameperson but acting in thdifferent rolesof IT auditor and S&P auditor,
respectively.IT General Controls (ITGC)IT Governance Institute, 2005;
Bayuk, 2004) are application-independent contro& protect the IT envi-
ronment in which applications run. Examples of Bhgral controls are ade-
quate cooling and power supply, infrastructure sgguuser access man-
agement, and sound management policies. IT germmalrols can be
contrasted wittapplication controlg(IT Governance Institute, 2005; Bayuk,
2004), which are the unique controls that are embédn a specific business
process or information system. For example, a ograiphic signature that
prevents the unauthorized modification of fin-B@san information system
is an application control. It is noteworthy thaistfirst assumption is not in-
evitable. In fact, rather than relying on IT gehe@ntrols being tested, S&P
auditors may also use techniques such as extesampling to assure that IT
general controls effectively support the relevagl&ation controls.

2. When S&P auditors test controls (step 4), they alotest the software func-
tionality, but rather assume that the software wak specified by the soft-
ware vendor. Note that by testing application acmsfr S&P auditors also
implicitly test some aspects of software functigigahowever, this is not the
purpose of the S&P audit. An example of such anligitfgest occurs when
the testing of a debit operation also (implicitggnfirms that the software
correctly subtracts numbers as specified in théaswé manual. Such con-
firmation is welcome, but it is not the objectivitioe S&P auditor to collect
it. This second assumption may be further justifigadhe fact that the speci-
fied software functionality has beeerrtified by a third party. Such third-
party certification can be thought of as an autlthe software development

10

process. Successful certification means that tifievace development proc-
ess has adequate controls to assure that the medoéware implements its
specified functionality correctly. In certain casadditional audit procedures
might be needed, e.g., if the customization offense package represents a
significant deviation from its off-the-shelf configation.

3. It is assumed that processes cannot be bypassa@. dpecifically, during
the walkthrough in Step 2 of the audit method, 384> auditor follows indi-
vidual fin-BOs in order to identify the businesopesses that manipulate
them. In addition, the S&P auditor may utilize iviews, process maps that
depict the flow of fin-BOs, or other techniquestitdately, the S&P audi-
tor's time is finite and at some point it therefdras to be assumed that all
processes have been identified and that each amyg fw-BO follows one of
the identified processes. In particular, it is &assd that potential “shadow
processes” have been found and are known (i.eblevito application own-
ers and auditors). This assumption can be falsausec for example, fraudu-
lent insiders such as Jerome Kerviel of SociétééGde (Epstein, 2008) can
know loopholes that circumvent the official proassMore generally, at-
tackers and fraudsters always target the “wealekt in a system, while
sampling or walkthroughs are inherently limitedlieir ability to identify all
“weak links”.

4. S&P auditors assume that it is not necessary tonat the risk with
mathematical accuracy. Rather, auditors assess liaked on their profes-
sional judgment which is grounded in their formeleation, work experi-
ence, and contextual knowledge of past incidentstaa overall IT envi-
ronment.

5. It is assumed that best practices, personal anfitgsional judgment, and
experience are sufficient to select appropriatemgigating controls.

The first two assumptions are born out of the rteeldmit the scope of S&P audits.
In other words, S&P auditors have to assume thdaicethings (e.g., IT general
controls and software functionality) just “work” deuse testing every control com-
pletely would require an infinite amount of timedabudget. Nonetheless, it is im-
portant to be cognizant of these assumptions becthey can destroy the CAVR
properties when they are unjustified. For examalégiled IT general control may
cause computers to be unpatched, which opens thefor hackers to create fraudu-
lent fin-BOs — a clear violation of the CAVR prip&és.

The assumptions 3 to 5 affect the way in which @%Hitors perform their work,
rather than the scope of their work. Each of tfesseimptions can have far-reaching
consequences. For example, the existence of unkr{owisible) “shadow proc-
esses”, i.e., processes that remain invisible dutire S&P audit, can falsify as-
sumption 3 and destroy the CAVR properties fofiaHBOs that flow through these
processes.

Assumption 4 implies that the risk assessment igoasl as the S&P auditor’s
judgment. However, human judgment is fallible aht tmay be most apparent
when risks are correlated. For example, assum&é&hie auditor notices that an au-
dited enterprise has weak access restrictions (f&")its order fin-BOs. Will the

11

S&P auditor classify this risk as “low” because impact of disclosing order data is
small? Or will the S&P auditor ask what a maliciamployee could do if (s)he had
information about past orders? Would the S&P auditotice that, by having
knowledge of past orders, a malicious employeed@msiue second payments to fic-
titious suppliers whose names resemble the namekeoorder forms and thereby
pass the control ensuring that payments match g?d&fould the S&P auditor then
check whether there are controls that prevent docible-payments of the same or-
der? And how would the S&P auditor finally rank tteal risk of disclosing order
fin-BOs?

Assumption 5 is problematic on several levels.tFitee argument can be made
that we do not have enough actuarial-like dataformation security to know what
(truly) best practices are. Second, the actualiddals performing S&P audits are
typically entry-level associates, which may lacle tbxperience or knowledge to
choose appropriate controls. Thingulatory capture i.e., the situation where
regulators serve the interests of the institutithey regulate (Kidwelkt al., 2008),
threatens to undermine best practices. Lastly, jpesttices evolve at the speed of
consensus-driven committees (i.e., very slowly)jlevithreats evolve at Internet
speed (i.e., very fast). For example, while beatfices still approve of virus scan-
ners as a means to control malware, the hackingreomty has long known ways to
evade virus scanners and to render them less igffeittan desired (Baker et al.,
2009; Symantec, 2009). Similarly, to prevent frdadtior erroneous payments, best
practice has long recommended controls to chedketlizh supplier invoice matches
a purchase order and no order is paid twice. Thes&ols have been bypassed by
suppliers that did not ship what had been ordenedimvoiced, i.e., they sent either
fewer or inferior items. This fraud (and fraudsggeneral) work until they become so
common and prevalent that best practices are updateclude further controls that
prevent them (and, in fact, today’s three-way-miaighcontrol (Schaeffer, 2006)
prevents the particular fraud in this example). Pheblem is not that one cannot
provide controls mitigating all risks, but rathbat the use of best practices system-
atically introduces control gaps and weaknesseag;ehtalsifying Assumption 5.

Unfortunately, we have no silver bullet that makies above assumptions justi-
fied in all instances. However, in Section 4 wel wiltline proven control patterns
and methods that, according to our experience ceethe risks of these assumptions
being incorrect and, consequently, becoming thecsoof control failures.

3.3 Example S&P Audit of a Sales Process

We now describe the S&P audit of a sales procdss.s@les process and its under-
lying information system are depicted in FigureT®. simplify the description, we
do not consider any cost and price calculationgimods sold; we also exclude as-
pects such as sales order confirmations. The layasits are as follows:

1. A customer triggers an order (the financial everiba left-hand side of the
figure).

2. The producer receives the order and checks ifnitfaHill this order out of
its inventory.

12

Ship to
Customer
Invoice
Customer

Receive
Order

Customer
Triggers
Order

sufficient

Receive and
Process Payments

Monitor Accounts

Book Revenue
and Accounts
Receivable Receivable

Business Process

Information System

-
Sales Processing Customer Order and
Enterprise Application Master Data Financial Data

‘ Operating Systems + Middleware ‘

Production
Data

‘ Server and Network Infrastructure ‘

Figure 3: Business Process and Infor mation System for Sales Processing

3. If the inventory does not contain the products cedethen they are manu-
factured.

4. Once the ordered goods are available, they ar@stiifp the customer and
the customer is invoiced.

5. The revenues are booked on the income statemehtharmoney that the
customer owes to the producer is recorded undeuats receivable on the
balance sheet of the producer.

6. Two additional activities that the producer engaigeare the receiving and
processing of payments, as well as the monitoringcoounts receivable.
The first of these activities handles the book kegfor payments that cus-
tomers make to settle their invoices. The secorniigcchecks for cus-
tomers whose payments are overdue and sends thenmdess.

7. Below the dotted line, Figure 3 shows the inforimatsystem that supports
the sales process. The information system inclodesenterprise applica-
tion and three databases containing customer mdatar order and finan-
cial data, and production data.

With the audit scope being the process and sysfefigare 3 and the audit objec-
tive being to assess if the business process geaaAVR, the S&P auditor iden-
tifies the customer order as the material fin-B@ évilows it from the start to the
point where it gets recorded in the financial staats. Along the way, the S&P
auditor identifies various risks that threaten &stdoy CAVR. The auditor further
assesses if there are adequate and effective otarmitigate these risks, and (s)he
makes various assumptions about the informatiotesysBy way of illustration, we
now consider three examples.

13

Example 1. Erroneous customer order

Risk: The S&P auditor identifies the risk that the custoorder may be
erroneous, e.g., quoting the wrong product prioataining incorrect bill-
ing or shipment information, or being entirely fiictus to meet some sales
incentive (step 2 of the audit method from Sec8d).

Controls: The S&P auditor checks which controls exist toignaite these
risks (step 3 of audit method). Based on profesdienperience and the
evidence the auditor collects, (s)he further judgiéether these controls
are adequate and effective (step 4). For exampdeS&P auditor may be
satisfied to find a control that cross checks thierimation on the order
with the customer master data that the producentaias about its cus-
tomers. However, the auditor may notice that ordees submitted using
unencrypted email. The risk here is that anyonddcfake such orders.
This destroys the validity property of CAVR and stitutes an audit find-
ing.

AssumptionsThe S&P auditor learns that customer orders areived and
processed by an integrated Enterprise ResourcaniRtafERP) package,
which is protected by a firewall to fend off cylettacks. Firewalls are IT
general controls, and following Assumption 1, th&PSauditor therefore
assumes that the firewall is adequate and effeetivereventing cyber at-
tacks.

Example 2: Erroneousinvoices

Risk: The S&P auditor identifies the risk of erroneougoices, such as the
wrong invoice amount, incorrect Value Added Tax (MAamounts in
cross-border shipments, failure to invoice cergginds shipped, or the ex-
istence of invoices for goods that were not shipped

Controls: The S&P auditor identifies a control that verifiagoices against
orders to assure correct quantities, delivery aatdr® and prices. Further-
more, an evaluation of log files provides evidetiw this control operates
correctly. Sampling the control with test data Hert corroborates this
judgment. The S&P auditor therefore assesseshkatsk of erroneous in-
voices has been mitigated.

AssumptionsThe Value Added Tax (VAT) is calculated by an ERBtem
and — given the ERP system’s certification — ihssumed that the VAT is
always correct.

Example 3: Transfer of fin-BOs between integrated infor mation systems

Risk: The S&P auditor identifies a manually operated tiiasfer interface
between the sales processing application and anotf@mation system
not shown in Figure 3, the production system. Mgpecifically, the S&P
auditor observes that when inventory is insuffitienfulfill an order then
an operator manually transfers a file containirg ander information from
the sales processing application to the productystem.

14

« Controls: The S&P auditor identifies a control that restriatsess to the
file and thereby enforces the R-property (restdcéecess). The file con-
tains also a cryptographic signature which leadartcerror the file or its
signature is manipulated during the file transiéris signature secures va-
lidity according to CAVR.

« AssumptionsThe copying of files between the sales processstem and
the production system is standard software funatignand therefore as-
sumed to work correctly.

4 Architecting for CAVR Compliance

As explained in Section 3, Completeness, Accurgi@jidity, and Restricted access
(CAVR) are the four properties that S&P auditorseas when auditing business
processes and enterprise applications. The challesxgT architects therefore is to
design and implement enterprise applications tfaCa\VR-compliant; they can do
so by properly configuring the native controls ofranercial software packages or
by designing additional controls into their custdeveloped enterprise application
architectures. The latter is frequently done by glementing enterprise applications
with special-purpose, out-of-the-box GovernancekRasmd Compliance (GRC)
software, which (among other things) offers libearof automated controls (Trent,
2008). In this section, we present a systematicagmi for achieving CAVR com-
pliance during these activities.

Our approach to building CAVR-compliant applicatdmas three parts: First, we
compile acontrol pattern catalogrom the literature that highlights proven mecha-
nisms that, according to our experience, are masttde to control risks and pre-
vent violations of the CAVR properties (full pattedescriptions and implementa-
tion advice can then be found in the referencestdttire). Second, we present a
design methodor applying controls from the catalog to one’shitecture. Third,
we outline how to realize selected controlsaipered enterprise application and in-
tegration architecturesWe also discuss the importance of applicatioaciitle
management for CAVR compliance and describe sevesigy designs that archi-
tects should be aware of.

4.1 Control Pattern Catalog for CAVR Compliance

Controlsare the mechanisms that an enterprise deploys pracesses and systems
to assure that business objectives are met. Vadonsol catalogs have been sug-
gested, e.g., by the IT Governance Institute (20@)/IEC (2005b), and Ross et al.
(2007). Here, we focus on application controls imgjenterprise applications to sat-
isfy the CAVR properties. Other controls such asg@neral controls relating to
physical, network and server security are outdidescope of this article and can be
found in the previously mentioned standards. THeveoe engineering community
recommends architecturplatterns(Blakley and Heath, 2004; Schumacher et al.,

15

2006; Yoder and Barcalow, 1997) as a state-of-theray to sketch and share reus-
able designs. Hence, Table 1 collects thirteengoentrol patternghat IT archi-
tects can apply to assure compliance with eacheofdur CAVR properties.

We selected these thirteen patterns from the vady bf knowledge that can be
found in the literature. The rationale justifyifgs particular compilation is:

« All thirteen patterns address design problems ira@dsy one or more of
the CAVR properties.

e These patterns have been successfully appliedaictipe in multiple occa-
sions (according to our own industry project expece and the literature).

* Combining them into an end-to-end information sys&nd enterprise ap-
plication architecture is technically feasible amelds a complete response
to our goal (i.e., solution to our design probleogmpliance by design.

The remainder of this section and Section 4.3,cékd#lte control patterns in more
detail; for space reasons, full pattern descrigtiand implementation advice could
not be included in this article but can be founthia referenced literature.

STANDALONE OBJECTS To ensure that all fin-BOs are entered and accefued
processing once and only once (hamely when a fiahaeent occurs), they should
be represented explicitly in the architecture s they are easy to locate for archi-
tects, developers, application maintainers, antevears. This can be accomplished
a) by tagging them as fin-BOs in an analysis- aesigh-leveldomain mode(Ev-
ans, 2003; Fowler, 2003) and b) by adding fin-B@ponents to the functional ar-
chitecture. With respect to a),d@main modekpecifies the key concepts in a par-
ticular application domain (e.g., pharmaceuticaluistry or telecommunications) in
a standardized, often machine-readable way; it rsodlata structures and behavior
as well as the relations between the different epte Class diagrams from the Uni-
fied Modeling Language (UML) are often used to doeat domain models during
requirements engineering and architecture designnB development, the concepts
from the domain model become a source of comporiantise architecture, e.g.,
HTML forms displayed in a Web browser, server-didsiness objects and service
components coded in Java, PHP, or other programiaimguages, and tables in a
relational database. The usage of such componkatsdsbe controlled similarly to
the access to the entire system (e.g., using aceasagement middleware provid-
ing authentication and authorization services).

SINGLE ACCESSPOINT. An application is difficult to test and audit whé& has mul-
tiple “front doors”, “back doors”, and “side door&3r entering the application. It is
therefore recommended to set up only one way tesscan application (Yoder and
Barcalow, 1997). In our context, this means settipgonly one interface through
which fin-BOs can be created and modified. That walpecomes easier to assure
completeness because a single interface has testetitfor duplications and omis-
sions and correct treatment of relations to anthfodher fin-BOs.

16

Table 1: Application Controls Enforcing CAVR Compliance

CAVR Property

Eligible Control Patterns

Completeness (C):
Fin-BOs are entered an
processed once and on
once; each financial
event is represented by
exactly one fin-BO

STANDALONE OBJECTS Model fin-BOs explicitly and represen

them as dedicated components in the functionaitecture;
SINGLE ACCESSPOINT: Provide a single interface through whi
fin-BOs can be entered into the application;

RELIABLE MESSAGING Use messaging as integration style
message channels that guarantee delivery to préagng or du-
plicating fin-BOs that are passed among distribemaponents;
LOGGING: Maintain an audit log to document the operatipes
formed on fin-BOs as well as the subject that &igd these op
erations;

COMPLETEMEDIATION: Every time a fin-BO is accessed, intercq
and check the access attempt and deny it if ibisanthorized,

d

Accuracy (A):

The information in fin-
BOs is correct and pre-
cise

CONTROLLED INTERFACES Give fin-BO processing componen
narrow Application Programming Interfaces (APIs)3&m com-
munication interfaces that restrict the operatiansser (or othe|
component or other system) can perform on them;

LEAST PRIVILEGE: Grant subjects only the privileges they ab
lutely need to accomplish their tasks;

INPUT AND OUTPUT VALIDATION : Define pre- and post-condition
for each fin-BO and check all input and output agathese con
ditions; in particular, cross-check the data inBi@s against mas
ter data repositories;

IDENTITY GRANULARITY : Assign each subject (user or activity)
identity of its own and force it to operate undes tidentity; avoid
using group identities because such group idestifiestroy acA
countability of subjects;

CRYPTOGRAPHICSIGNATURES Have the creator and modifiers
a fin-BO cryptographically sign it to vouch for itsrrectness;

LOGGING: As above;
COMPLETEMEDIATION: As above

[2)

Validity (V):

Fin-BOs correspond to
real-word financial
events

SEPARATION OFDUTY: No single user has the power both to cre
fin-BOs and to review/approve these fin-BOs;

CROSSCHECKING: Cross-check related fin-BOs (e.g., orders, |i

voices, and shipment confirmations) to detect isiancies;
INPUT AND OUTPUT VALIDATION : As above; may help detect i
consistencies such as payments to parties thataarie the sup-|
plier database;

CRYPTOGRAPHICSIGNATURES Require creators and modifiers
fin-BOs to certify their validity by cryptographiltasigning them;
IDENTITY GRANULARITY : As above;

LOGGING: As above.

Restricted Access (R):

Fin-BOs are protected
against unauthorized ag
cess and modification

ENCRYPTION: Encrypt fin-BOs to prevent unauthorized access;
SEPARATION OFDUTY: As above;

COMPLETEMEDIATION: As above;

LEASTPRIVILEGE: As above;

IDENTITY GRANULARITY : As above;

LOGGING: As above.

17

RELIABLE MESSAGING The “once and only once” aspect of the completsmpgop-
erty suggestsnessagingo be the preferred integration style to conndutsjrally
distributed software components within a singleegmise application, but also dif-
ferent enterprise applications (Hohpe and Woolf00Message channelthen
transfer messages with exactly-ongearanteed deliverysemantics (Hohpe and
Woolf, 2004), even if the message receiver becouresailable temporarily. In
such a setting, the fin-BOs are treated as textoaliment messagésat are trans-
ferred from application (component) to applicati@emponent) over the message
channels (Hohpe and Woolf, 2004).

The accuracy property of CAVR requires that fin-B&e transported from one
processing component to another without modificatidence, the message chan-
nels are subject to audit control; all systems rganent patterns from (Hohpe and
Woolf, 2004) can be leveraged to facilitate suclitgu For instance, avire tap
component intercepts a message flow without afigct, thus allowing tools and
humans to inspect the message contennessage historgan be created for log-
ging purposes.

LOGGING. Logging allows documenting the lifecycle of firOB starting with the
creation of fin-BOs and ending with their inclusiaa line items in financial state-
ments. All major operations performed on fin-BOswl be logged along with the
user who triggered them. Major operations that khbe logged are sometimes re-
ferred to as CRUD operations, which stands forofperationreate, read, update,
anddelete.Themessage storpattern (Hohpe and Woolf, 2004) can be used te cen
tralize these logging capabilities in loosely catpintegration architectures.

CONTROLLED INTERFACES Fin-BOs should implement well-defined and restree
interfaces which allow subjects to do exactly wtrety have to do, but not more.
For example, consider a fin-BO that stores the remalh items ordered. In a good
design, theadd_item() = method is invoked when an additional item is oederA
poor design, by contrast, would offer a metked items(int no_of _items) ,
through which a subject can set the number of srdemany arbitrary number
Clearly, theset_items(int no_of items) method offers more flexibility, and
more opportunity to introduce inaccuracies. Tul@b08) elaborates on this control
pattern within the larger context of API design.

COMPLETE MEDIATION. Every access to every fin-BO must be checkechsum it

is allowed (Saltzer and Schroeder, 1975). Thisqgipla requires a sound method for
identifying the subjects that trigger operationsfiorBOs. Complete mediation fur-

ther restricts the use of caching: Rather than relbeeing the result of a prior au-

thority check, the system should check each tinaesifibject (e.g., end user or activ-
ity in a business process as introduced in Se@jas authorized to perform a given
operation on a fin-BO. While this design has a tiggampact on performance, it

leads to a simpler implementation that can be demstel audited more easily.

LEAST PRIVILEGE. Each subject should be given only those priviletest are
needed to complete its tasks. Again, subjects aeesuor activities. Howard and
LeBlanc (2003) discuss the least privilege patterdetail and offer many practical
examples.

18

INPUT AND OUTPUT VALIDATION . All fin-BO processing activities that involve algo-
rithms (e.g., customer segmentation, calculatioprafes and discounts, loan proc-
essing, etc.) should follow thaesign-by-contracprinciple and check at run-time

that inputs and outputs satisfy pre- and post-cadi (Meyer, 2000) that collec-

tively ensure accuracy and validity. Input validatishould pay particular attention
to verifying border values (lower and upper bourer invalid input, canonization

issues, and exceptional situations. Master Datadgament (MDM) repositories

should be used where available to check input ampub data against the authorita-
tive records. That way, inaccurate addresses auataata can be detected. How-
ard and LeBlanc (2003) offer more detailed advicé examples on performing in-

put and output validation in practice.

IDENTITY GRANULARITY. Each subject (user or activity) should be assigmneledi-
cated identity of its own; subjects should therfdreed to operate under these dif-
ferent identities (NIST, 1983). Having a uniquentiy allocated to each subject (be
it an individual or an activity in a business preggis a prerequisite for having fine-
grained access-control and accountability in aesgstAs a consequence, group
identities such as “sales department” and defaelhtities such as “guest” or “ad-
ministrator” should be avoided. Hansenal. (2008) discuss the privacy issues re-
lated to the use fine-grained identities.

CRYPTOGRAPHIC SIGNATURES. Require subjects to cryptographically sign fin-BOs
that they create or modify. By virtue of this sigm&, subjects vouch for the validity

and accuracy of the fin-BOs they create and maatpulThis principle enforces ac-
countability, as signatures are tied to subjects inon-repudiable manner. Key
management and storing secret information suchygsographic keys are generally
considered the weakest link of cryptographic appilims. Howard and LeBlanc

(2003) as well as Ferguson and Schneier (2003} pffactical solutions to these

problems.

SEPARATION OF DUTY (SoD). SoD (Benantar, 2006) is the principle of requiring
more than one person to complete an activity. TWeat, SoD helps prevent fraud
and accidental errors that jeopardize the validitpccuracy of fin-BOs.

CROSSCHECKING. Invalid fin-BOs can be detected and prevented byparing
them to other fin-BOs that should contain matchirfgrmation (Bragg, 2010). For
example, a payment fin-BO without an order fin-BOimvalid in most circum-
stances. Similarly, a “capital expenditure” fin-Bl@at is not matched by a “new as-
set” fin-BO should raise warning flags. Bragg (2Pa€iers further examples of how
the cross-checking control pattern can be apphigetactice. When designed into an
enterprise application, this control pattern cgsoresuch processing errors to users
and log files.

ENCRYPTION. Encryption “scrambles” data so that only authedizparties — who
have the key to descramble it — can read the ddts. restricts the access to the
data. Practical implementation specifics can bendoin (Howard and LeBlanc
2003) and (Ferguson and Schneier, 2003).

19

For space reasons, we could only outline the petter this section. Having se-
lected one or more of them, many subsequent degisions have to be made — by
definition, patterns are “soft around the edgesf anly sketch a solution to a recur-
ring design problem (Fowler 2003, Hohpe and Wo2f04). Section 4.3 adds an-
other level of detail by describing how the confpaltterns should be applied in a
Service-Oriented Architecture. Further details,.,ean implementation activities,
can be found in the referenced literature.

4.2 Design Method for Achieving CAVR Compliance

We now present a design method for selecting tleeifip controls that are best
suited for achieving CAVR compliance. When applythg proposed method, we
recommend that the following design principlesas® applied:

« Defense in depth.e., never rely on one control alone;

e Automationi.e., seek to automate controls as much as gessib

e Fail-safe,i.e., controls that break should default to aesthat protects as-
sets even though this may reduce usability or pexdnce.

In other words, solely relying on a single contam, manual controls, or on controls
that expose assets in the event of their failurtsadvisable. With this in mind, the
IT architect can use the following five-step methioduild CAVR-compliance into
new enterprise applications:

Step 1 (Define Control Objectives): This step determines which of the four CAVR
properties have to be assured for which fin-BOsnbst cases, the control objective
is to enforce all CAVR properties for all fin-BO&/e have, however, also encoun-
tered situations where not all four CAVR propertiesre required, and the control
objectives could be relaxed. According to the stdtéhe art in the related field of
security engineering, control objectives are detifrem the need to defend against
attack threats, such as the threats given by thRI3E model (Howard and
LeBlanc, 2003). CAVR can therefore be seen asaagaie of threats that are spe-
cific to S&P audits and largely complementary toRSDE or other conventional
threat modeling frameworks.

On our own development and integration projectsfaumad it important to per-
form Step 1 of our method during the requirememialysis phase. To do so, we
successfully extended object-oriented analysisdexign (Rumbaugh et al., 1999)
with techniques to solicit and prioritize non-fuiectal requirements (including the
CAVR properties). One such technique is AttributévBn Design (ADD) (Bass et
al., 2003). More recently, we added agile practsssh as user story telling (Cohn,
2004) to our requirements engineering portfolio.

Step 2 (Create Architecture Overview): The architect identifies the business proc-
esses that process fin-BOs. Specifically, it isontignt to identify the subjects (users
or activities) that interact with fin-BOs and thpevations that these subjects invoke
on the fin-BOs.

20

If object-oriented analysis and design techniquesuaed, the actor information
found in UML use cases is an important sourceHeritlentification of subjects and
operations. In UML, actors represent the exteraaligs (i.e., human users or other
systems) that interact with the system under cootitm; these interactions are
CAVR audit relevant if fin-BOs are involved. Whegila practices are applied, the
personas in the user stories provide similar inpat.example, a user story that de-
scribes an end user interaction such as “as @ealer agent, | want to create orders
that are processed and invoiced at a later stageeveéals important information
about subjects and how they manipulate fin-BOs.

In our industry projects, we customized both obm@m@étnted analysis and user
agile development methods so that audit-relevaothimation on subjects, fin-BOs,
and their interactions is captured explicitly. Atitahally, we found value in model-
ing misuse casethat capture problematic situations such as tbadéned in the ex-
amples from Section 3.

Step 3 (Assess Risk): For each fin-BO, subject, and operation, the Idh#dect as-
sesses if and how the fin-BOs’ pertinent CAVR pitips (according to Step 1)
may be destroyed. In practice, such risk assessnseffer from a lack of hard data
on the probabilities and impact of most threats. fdtend the DREAD approach to
be helpful (Howard and LeBlanc, 2003), which weggtite amage potential, &
producibility, Exploitability, Affected users, and iBcoverability of threats. When
assessing the damage potential it is importantotoonly work with the financial
amounts represented by the fin-BOs, but to alssiden the reputational and legal
risks of CAVR violations. The purpose of Step 3dgank the threats to CAVR by
decreasing risk, so as to prioritize the work ie4.

Step 4 (Select Mitigating Controls): The architect selects suitable control patterns,
e.g., those introduced in Section 4.1, to mitighte(major) identified risks. Accord-
ing to our overarching design principles, automatedtrols are preferable, and at
least two controls should be implemented to miggadch risk (defense-in-depth).
Controls should be configured in such a way thaytto not leave any assets ex-
posed in the event of their failure.

This step represents a non-trivial design taskaaich typically no optimal solu-
tion can be found under real-world constraints sagtbudget limitations and other
forces. For instance, non-functional requirementhss performance, usability and
security conflict with each other, and project sgans are not always willing to pay
for all security measures that would be usefuhigotry. One would think that multi-
ple control patterns from Section 4.2 should alwagsapplied to ensure defense in
depth; however, this is not always feasible fohtecal and/or economic reasons.
To give an example, if an existing legacy systemigipates in a business process
whose source code can not be modified (e.g., bedhesrequired skills and experi-
ence are not available at a reasonable cost)nibeaather expensive to add a proxy
that performsNPUT AND OUTPUT VALIDATION .

Dealing with such conflicts and making appropriaéeleoffs is an important part
of the expertise of application and security amttd; it can be supported by meth-

21

ods and techniques such as ADD and the Architecfuaeleoff Analysis Method
(ATAM) (Bass et al., 2003). Concepts, methods, toals for these activities are
developed in the architectural patterns commursgh(macher et al., 2006) and in
the architectural knowledge management communitypifzermann, 2009).

Step 5 (Realize Controls): Finally, the architect enforces the selected cdsior-
ing the realization of the enterprise applicatiochitecture.

According to our experience, this step is best supd by design-time methods
such as developer coaching and providing architactiemplates (i.e., working
sample solutions), code generation in model-dridevelopment, and explicit archi-
tectural decision identification, making, and esfament (Zimmermann, 2009).

As the following section shows, controls becomeeza® select and realize in
architectures that follow the service-oriented decture style.

4.3 Realizing Control Patterns in Service-Oriented Architectures

In Step 5, “Realize Controls”, architects must iempent the selected risk-mitigating
controls in the enterprise application. Not suipgly, the ease of implementation
depends on the architecture of the enterprise @, and it is easier to add con-
trols when applications are well-engineered. Iis #@ction, we focus on layered en-
terprise applications that follow tt&ervice-Oriented Architecture (SOstyle, and
we show how this style facilitates the implemewtatdbf controls. For space reasons,
we cannot consider the “reverse” problem of auditontrols in SOAs.

An architectural styleis a set of architectural principles, constraiaty] patterns
that share a common design intent and are aligrigdeach other to make architec-
tures recognizable and their construction repeatéimmermann, 2009). SOK
an architectural style that builds enterprise aapions according to the following
principles and patterns (Josuttis, 2007; Zimmermann9):

« Layering Applications should be organized into logicaldes/to separate
concerns. The access to components in a given imyestricted to compo-
nents in the same and in higher layers. Layeredicappn architectures
with well-defined layer boundaries benefit the CA@Rperties.

e Service, service contrgcervice providemndservice consumeApplica-
tions are structured into mutually invoking sergic8ervicesare software
components that provide distinctive business fomnetiities via network-
accessible interfaces. These interfaces are speécifid exposed Iservice
contracts A service provideimplements an interface, andsarvice con-
sumerinvokes it. Services can either be atomic or bemwsed from others
via service compositiarBusiness processes are often realized as composed
services; as outlined in Section 2, the Businessdds Modeling Notation
(BPMN) allows specifying such composed processicesv

* Integration viaEnterprise Service Bus (ESBYI consumer-provider inter-
actions are brokered by an ESB that decouplescg&ecansumers from ser-
vice providers to promote loose coupling principteeh as protocol, for-

22

mat, and location transparency. Messaging middlevwsaoften used to im-
plement the ESB pattern.

e Service registry A service registry provides a facility to discoservice
providers so that service consumers are able toirgcgll information that
is required to invoke these providers.

Extending the layered architectures described hyléro(2003) and Zimmermann
(2008), Figure 4 presents a canonical referenceehfod CAVR-compliant enter-
prise applications that follow the SOA style. Thgufe shows that enterprise appli-
cations serve multiplend usersghumans or other IT systems) over one or more
channels(vertical lines); financial events may occur andBOs be created when
end users interact with the enterprise applicafidre software and hardware com-
ponents that the end user works with are knowmagdntend tierof the enterprise
application. Thamiddle tier serves these client components; it is logicalletad
into the presentation, business logic, and datasacé& application integration lay-
ers. The middle tier uses the services provideddigbases and other systems resid-
ing in thebackend tier The tiers may be physically distributed (e.gffedent serv-
ers, different network zones, and/or different gapbical locations).

End Users Web Clients Rich Clients Service and Middleware
rontend Tier in-BO Forms) | | (incl. fin- ata anagement Clients
F d Ti fin-BO F incl. fin-BO D M g Cli
Eresen:\jli_tcljog Authorization & Authentication Services SOA Middleware
ayer (Mid Tier) | 6| ‘key Management and User Registry) (incl. Process
Engine and

. . ’ Composed Services (Business Processes) ‘ Service Registry)
Business Logic

Layer (Mid Tier)

fin-BO Service | | Validation Logging

Components Services Service Systems
Management
Access & Integration Reliable Messaging incl. Services
Layer (Mid Tier) ESB Integration Services incl. Log Archive
Backend Systems I Database Management System Services l E?t(;er;r:iasle
(Backend Tier) I fin-BO Tables l I Control Procedures l Applications

Figure 4: Building CAVR-Compliant SOA with Control Patterns

Being service providers and/or service consumah éunctional component in the
application (represented as a box in Figure 4) sgpaertain compliance risks, but
also gives an opportunity to implement controlse ame holds true for the integra-
tion channels (represented as vertical lines). filedotted horizontal lines repre-
sent boundaries of physical tiers; therefore, tlkepose network access points
which have to be secured properly (e.g., accessatpn

23

The concrete architecture of an enterprise appdicats aninstanceof this ca-
nonical reference model, i.e., it follows the sapmaciples of componentization,
layering, and ESB integration, but applies thenatspecific architecture. For in-
stance, the information system supporting the gadesess in Figure 3 in Section 3
contains such an enterprise application; in thaitecture of this enterprise applica-
tion, the sales process may be realized as a causasvice which is supported by
fin-BO service components and database tablesrfterand financial data. Addi-
tional service components and fin-BO tables mayasgnt the customer master data
and production data from Figure 3 in the architextu

Logical layering and the SOA patterns facilitatdiaging CAVR-compliance.
This is because the control patterns from Sectidncdn be implemented with par-
ticular ease in layered architecture that follotes SOA style. Specifically, the con-
trol patterns can be realized as follows:

STANDALONE OBJECTS Fin-BOs should be stored as data objects in thabdae
management system in the backend tier (Figure @fagilitate the implementation

of other controls, it is further important that tthetabase management system stores
one and only one copy of each fin-BO (i.e., thex o duplicates). This copy is
then referenced and accessed throughout the aftice.g., from composed ser-
vices and service components that process fin-B@sa mid tier.

SINGLE ACCESSPOINT. The database management system becomes the gingksa
point for the backend tier through which fin-BOg areated, updated, queried, and
otherwise manipulated. It is important to supprasg access to the fin-BOs that
does not “pass through” the database managemeensyk is further important to
tightly control the number of components (i.e.,ibass processes and fin-BO ser-
vice components) that can access and manipulatdmin the database. Such tight
control is important because otherwise these commisnmay become “loopholes”
that enable indirect access to fin-BOs while cireaming the access control of the
database management system. Authentication andra#tion services therefore
constitute the &GLE ACCESSPOINT of the mid tier in our canonical reference model
(Figure 4).

RELIABLE MESSAGING Reliable messaging is represented as an aramisaom-
ponent in the mid tier of Figure Message channeland messaging endpoints
(Hohpe and Woolf, 2004) can be provided “out-of Hux” by messaging middle-
ware, which may also realize the ESB patterns. fEngaining design tasks for the
architect aremessage constructipmessage routing and transformatjanessage
consumptionandsystems managemeirtohpe and Woolf, 2004). Detailed architec-
ture and design patterns for these tasks have teelgeted and implemented for
each message endpoint and channel in the systearS@A, service consumers and
service providers are message endpoints; servi@e#tions translate into message
exchanges.

LOGGING. The logging control pattern can be realized bggging service compo-
nent in the mid tier in Figure 4 which feeds a &ghive (appearing in the systems
management services box). The remainder of theicapipin should then use this
logging service for all their logging needs. Thg &rchive applies thmessage store

24

pattern (Hohpe and Woolf, 2004) to create an aindit of all services and other
components that processed fin-BOs. Such an aadliigruseful for answering ques-
tions about data provenance such as “who creafieeB0?”, “where and when was
it created?”, “who modified it?”, and so on.

CONTROLLED INTERFACES COMPLETE MEDIATION, INPUT & OUTPUT VALIDATION,
CROSSCHECKING. These controls extend thenSLE ACCESSPOINT pattern. On the
backend tier (Figure 4), these controls shouldrfereed by implementing a well-
defined and restrictive interface to the fin-BOg, énforcing that only authorized
subjects have access to fin-BOs, and by validag@amgl cross-checking) inputs so
that invalid or potentially malicious data can kentiled safely. Using foreign key
relationships and stored control procedures thabdae management system can
help doing this (Davidsoet al.,2006).

It is recommended thadll mid-tier service components are protected with the
CONTROLLED INTERFACES COMPLETE MEDIATION, and INPUT & OUTPUT
VALIDATION controls. This is particularly important for sex@i components that
manipulate fin-BOs. RosSsCHECKING is required for all service components work-
ing with multiple related fin-BOs; the relationskipetween these fin-BOs should be
specified in adomain modelas introduced in Section 4.1 in the context of the
STANDALONE OBJECTS pattern. The SOA style facilitates such compreivengro-
tection because it composes software out of sesvce., self-contained compo-
nents). Each of these service components can endd) be protected by the above
four controls. In this context, it is important treach service implements its own
controls and does not rely on other services toreefthe necessary controls. In par-
ticular, the lower architectural layers of Figurshbuld implement their own input
validation services rather than “trusting” that hreg layers check the input data.
While such trust assumptions are not uncommon actfme, they bear risks and
should be taken with caution.

For CoMPLETE MEDIATION (and, to a lesser degree, the other control pester
one has to decidetherein Figure 4 access control is implemented. Onéoops
that each service component implements its ownssccentrol. A second option is
that middleware enforces all access control acogrth a user-defined security pol-
icy (Buecker, 2007). Within the middleware, accesstrol can be provided either
by the container (e.g., Java Enterprise Editiomniog the services or by stand-
alone authentication and authorization serviceg@as gateways (Ebbers et al.,
2008). Today’s best practice advocates the middiewation because it makes ac-
cess rights explicit and centralizes them in alsipdace. Access control rights be-
come easier to verify, audit, and revise this way.

LEAST PRIVILEGE and SEPARATION OF DUTY (SoD). The controls of minimizing
user privileges and of not giving one subject “bkéys to the bomb” are related to
the GOMPLETE MEDIATION control pattern. More precisely, they are enfortsd
configuring the ©MPLETEMEDIATION control in a manner that prohibits any access
to a service if such access violates tiEadT PRIVILEGE or SEPARATION OF DUTY
patterns. This can be achieved by configuring tiithentication and authorization
services adequately. Such configurations of tb&®LETE MEDIATION controls can

be derived from the end user information in theunemments specification, e.g.,

25

from the actors in UML use case models. If the nexpents specification turns out

to be incomplete or in conflict with the audit canitrequirements solicited in steps

1 to 4 of our design method (see Section 4.2)jghirbe necessary to revise the re-
quirements specification at this point.

IDENTITY GRANULARITY . Intuitively, the identity of a user is the uniqueame” un-
der which an information system knows the userrgffhe logged in. Managing
and controlling identities is a particularly difit challenge because identities tend
to proliferate as most applications introduce tlosin user registries and identities.
The complex design decisions involved in managhg proliferation of identities
go beyond the scope of this article; they have lsstribed in the literature (Ber-
tocci, Serack and Baker, 2008). However, we wihtight certain practices that are
advisable from a controls point of view: First, eommend adopting%ingle Sign
On (SSO¥olution (Bertocci, Serack and Baker, 2008), incha single authentica-
tion service (a.k.aidentity provideJ, maintains all user accounts. Users then “log
into” the authentication service, and the authatibn service subsequently vouches
for the users’ identities to other services. Amantiger benefits, the authentication
service can centrally enforce authentication pediqisuch as password aging) and it
can reduce the risk of users adopting multiple tities.

A second recommendation concerns the common peatttat a user logs into a
service A, which then accesses further servicesdBGunder its own identityather
than the identity of the user. A preferable solutio this is to useelegationwhere
the user authorizes service A to interact with B &non its behalf (Cantor, 2005;
OAuth, 2009). All activities can be tied back teethser who initiated them. As
delegation is not widely implemented, we recommprmpagatingthe identity of
request originators and to diligently log when avee component uses its own
identity to act on behalf of somebody else. Thesplémentation options and the
associated trade-offs are further discussed byrRetsal. (2008) as well as Meieat
al. (2003).

CRYPTOGRAPHICSIGNATURES and ENCRYPTION. Cryptographic operations are typi-
cally provided in operating system libraries. Aslsuthe SOA style offers no ad-
vantages here. However, SOA can help with the memagt of the secret keys that
much of today’s cryptography is based on. This ated key managemerdom-
prises the generation, recording, distributiontaltation, storage, change, disposi-
tion, and control of cryptographic keys (Murray00Z). In a SOA, the functionality
of the key management system should be embeddedérvice (see Figure 4).

4.4 Impact of Application Lifecycle Managementon C ~ AVR
Compliance

An architecture based on strong controls is an iapb prerequisite for attaining
CAVR compliance, but it is not sufficient. The otlstages in the lifecycle of an ap-
plication play an equally important role towardsiaging CAVR compliance. Con-
sistent with COBIT (IT Governance Institute, 200&)d ISO 27001 (ISO/IEC,

26

2005a), we distinguish four application lifecycleages which we caplan, build,
deploy and operat@ndmonitor:

Phase 1 (Plan): The plan step identifies the control objectivésks, and mitigating
controls as per Steps 1 to 4 of our method fronti@eel.2. The plan step also de-
fines the roles and responsibilities for the tatsleg are to be performed in the sub-
sequent lifecycle phases 2 to 4.

Phase 2 (Build): In the build step, the application architecture is desigas de-
scribed in Step 5 of our method (Section 4.3). Aiddally, application and security
architects derive the security policies that camfigthe controls. Defining appropri-
ate security polices is essential because conlit@sCOMPLETE MITIGATION and
INPUT AND OUTPUT VALIDATION are of limited value unless they are configured co
rectly and consistently. In the build step, theegmtise application is also imple-
mented and tested using representative sample Riatantially, formal correctness
proofs for key algorithms may be used to achiedesred level of quality and con-
fidence or to pass software certification for custoode. As discussed in Section
3.2, S&P auditors may assume such software cettiific to exist.

Phase 3 (Deploy and operate): System administrators install the application and
work with security experts to configure the appiica and its associated controls.
Further deployment activities are to change defpafiswords, to deactivate all in-
frastructure resources that are not required (pegwork ports) and to take precau-
tions to protect test data and program source frode accidental disclosure (these
activities are often summarized under the termieatbn and infrastructurbard-
ening. Once deployment has completed, the applicatiecoimes operational in a
production environment.

Phase 4 (M onitor): System administrators continuously monitor the igggibn to
detect compliance violations, control failures,security threats. They further re-
spond to such problems by refining security pofice by adding further controls. It
is important that all changes to enterprise apfiioa are controlled, including im-
pact assessment, formal approval, testing, andrdectation.

4.5 Anti-Patterns and Risks of New Technologies

As the last part of our experience report, thigisadoriefly highlights some “risky
designs” that we encountered in practice. As tliesigns may be forced upon ar-
chitects by circumstances (e.g., legacy systemtdiions or other environmental
constraints) they are not “bad” per se. They aoaydver, more risky in terms of
CAVR compliance, and should be used cautiously:

» If the file transferpattern (Hohpe and Woolf, 2004) is chosen asrite i
gration style (e.g., as described in Example 3aatign 3.3), architects and
auditors may lose control over who accesses antkepses fin-BOs that are
stored in and exchanged as files. Shared hardgnivparticular pose sig-
nificant audit risks; although operating systemnisvalsystem administra-

27

tors to restrict and log access to files, the pbilia that shared drives are
not configured properly is, in practice, ratherthig

« Introspection(i.e., self reflective, adaptive, dynamic prograthat make
use of runtime meta-information about the programe} is a popular pro-
gramming paradigm in certain developer communifidss paradigm al-
lows the creation of generic and therefore flexiplegrams that can work
with many different types of input data; however,such a setting it is
rather difficult to identify and tag fin-BOs, botturing design and audit.
As a consequence, our five-step design methodS@ftion 4.2) can no
longer be followed; it is also unclear how to apgiye control patterns
(Section 4.1) in such a setting.

e Scheduled batch joltbat are invoked automatically rather than blyige
gering user activity run the risk of bypassing tatrol patterns without
notice. An example is a home grown Perl script thatonfigured to run
every day and directly accesses the fin-BO datafmge as a crontab job
on UNIX systems). Such a script might violate theGEE ACCESSPOINT
control if the access management procedures areonfigured properly.

e Similar risks arise ihomegrown ad-hoc workflowexist (e.g., realized in
spreadsheets, structured emails with textual atteaks, or groupware ap-
plications). If such ad hoc workflows are part aflaed business processes
then special care has to be taken to implemerdlgaitontrols. Otherwise,
the uncontrolled nature of ad-hoc workflows may@sefin-BOs to threats
that destroy their CAVR properties. For exampleadrhoc workflow may
stipulate the use of the operating system clipbtaiit-and-paste fin-BOs
between activities. Clearly, such an approach expdm-BO data and
threatens to destroy CAVR compliance. As a consacgiethe auditor’'s
assumptions about the existence of general IT asnand correct func-
tioning of certified software (these assumptionseangiscussed in Section
3.2) may no longer be valid.

* Via openly accessibldata martsanddata warehousegin-BOs can be ex-
ported as reports and then modified in personadysrtivity tools such as
spreadsheet editors. This may violate the restriatzess property, in par-
ticular if the exported reports are further digttdd by email or other un-
controlled means. If the modified data is re-impdrinto the operational
fin-BO database, the other CAVR properties may bksoiolated.

It is worth noting that the risks introduced bydbdad designs cannot be mitigated
by adding GRC systems as such systems typicallggirproperly engineered, pos-
sibly certified software packages such as ERP systnd not the proprietary (cus-
tom) use of the technologies listed above.

Risks of new technologies. While the SOA style facilitates the achievement of
CAVR-compliance in many ways, it is also afflictedth certain problems. These
problems arise when applications are built by ngxamd matching services in dif-
ferent combinations as required by the business.ldg a consequence, any given
service may be shared among multiple enterpriséicapipns. The crux with this
setup is that each enterprise application comek itst own compliance require-

28

ments, which in turn translate into compliance meaents for constituent services.
Consequently, each service is subject to multimlengliance requirements from
multiple enterprise applications, and it is not @ clear how services can accom-
modate all of them. The situation is further comgied when services are com-
posed dynamically at runtime (i.e., during phases® 4 of the application lifecycle
from Section 4.4). Such problems did not exist esly when monolithic enter-
prise applications “owned” all their parts and @babnsequently control these parts
entirely.

Virtualization is another new technology that posesy challenges to auditors.
Virtualization is the practice of simulating mulgpcomputers (so-calledrtual ma-
chineg on a single physical machine. Virtual machined #re programs they exe-
cute can be moved dynamically between physical mashwith the objective to
balance load, to become more tolerant to failu@speed up deployment, and to
cut cost. The drawback of such flexibility is tliatomplicates the control of enter-
prise applications. For example, fin-BOs may dyreaity be relocated to different
physical machines; services or entire businessege®s may no longer execute
within fixed system boundaries. Hence, these mogenmadigms pose important
challenges from an S&P audit’s point of view, whiete hotly debated in research
and development communities at present.

5 Summary and Conclusions

In this article, we disclosed our experience withisk-based systems and process
audit method. This method is based owadkthrough where the auditor identifies
major classes of financial business objects anldvisl them through the business
processes that manipulate them. In doing so, tH&auests each financial business
object for compliance with four properties — Conmpleess, Accuracy, Validity, and
Restricted acces@CAVR). We illustrated the audit method with an exde and
identified five major assumptions that the mettobased on:

1. The IT infrastructure of an information system thapports enterprise ap-
plications and business processes is assumed torttimlled and audited
separately (e.g., by auditors specializing in ITiayal controls).

2. All software, particularly ERP packages and custieueloped enterprise
applications, works as specified by their createrg., a software vendor).

3. Due to the automated nature of IT systems, it ssum&d that a small sam-
ple of walkthroughs is sufficient to identify alufiness processes and test
all controls.

4. The auditor’s professional judgment is considergelqaate to assess risks;
mathematical models are not employed.

5. Itis assumed that best practices and professjodgment are sufficient to
select appropriate risk-mitigating controls.

Having described the audit method and its undeglyassumptions, we discussed
how IT architects can build enterprise applicatitimest are easier to audit and that

29

more justifiably fulfill the auditor’s assumptionghis led us to the identification of

a set of thirteen proven control patterns thatndhaects apply when designing en-
terprise applications that are subject to systenaspocess audits. We further de-
scribed a five-step architecture design methoctéonpliance, and we showed how
control patterns and design method fit into thgéadifecycle of enterprise applica-

tions. We also presented how the control pattendsdesign method can be applied
to layered, service-oriented enterprise applicatiorhitectures and highlighted sev-
eral risky designs that he have encountered irtipgac

While not directly applicable to off-the-shelf sefire packages that come with
predefined architectures, our control patternsa@aglgn method are still useful dur-
ing package customization, e.g., when integratiagkpges with other systems or
when modifying the meta-model and database schémaspackage. Moreover,
package architects should consider our patternswlesigning additional package
capabilities or outlining the architectures for ngackages.

Our patterns and methods are applicable in mosbrsedncluding pharmaceuti-
cals, finance, and government. Eventually, our weardld reduce audit time in these
sectors, e.g., by reducing the need to test cantitoiight be possible to thoroughly
audit a reference implementation of the controtgras and to build anchor points
into enterprise application architectures wheresgheference implementations can
be “plugged in”. The audit process could then lokiced to testing whether the ref-
erence implementations have been integrated ctyrietd the anchor points. Ap-
plying this approach consequently strengthens ithelgying assumption that one
sample is sufficient. Detailed sector-specific dasguidance exceeds the scope of
this article.

The interdisciplinary work leading to this articl&s in many ways insightful and
instructive. In particular, we highlight three kpgints:

* We realized that auditors and IT architects us&eift vocabularies, as-
sumptions, and methods when discussing and anglyistems. For ex-
ample, S&P auditors and IT architects use the t&ramsaction” in very
different ways, as explained in Section 2.1. MoaVT architects do not
always fully understand the differences betweerGEAneral Controls au-
dits, S&P audits (this paper’s focus), and finaheiadits; furthermore,
they cannot be expected to be aware of the emgrefsunique require-
ments imposed by each audit type. Auditors, ornother hand, are not al-
ways familiar with Business Process Modeling Notat{BPMN), domain
models, architectural patterns, Uniform Modelinghgaage (UML), user
stories and other design artifacts that can suppatits. As such, we con-
sider it an important contribution of this artithet it presents a joint busi-
ness process-oriented view on enterprise applitgtiocluding a shared
notion of fin-BOs, control objectives that are asated with fin-BOs, a
consistent risk-based approach to design and aadd, a catalogue of
proven control patterns. A common language as ksitald by our control
patterns catalog and our canonical SOA referenagefrincreases the effi-
ciency in joint meetings and avoids misunderstagglizvhen reviewing
each other’s work (e.g., design specificationsumtitareports).

30

« Understanding architectural methods and artifan&bkes auditors to ask
for more specific documentation to inform the aymdiicess. Moreover, we
found that understanding how CAVR can be enginesystematically into
enterprise applications makes it easier for auslitoridentify ad-hoc or
improvised controls, which are more likely to bdident in practice.

» For IT architects, it is important to appreciatattcompliance is not just
another non-functional requirement, but has themdl to delay software
development projects significantly or even preuwéetdeveloped solutions
from being deployed. As such, it is important taerstand S&P audits and
how software can be built that satisfies them. Woek leading to this pa-
per also reinforced the importance of secure saéveangineering princi-
ples (Howard and LeBlanc, 2003). What was intemgstthough, was the
realization thatompletenesandvalidity (the C and V in CAVR) are par-
ticularly difficult to assure using the known softse security methods.
This difficulty originates from the fact that corapgness and validity re-
quire (electronic) fin-BOs to correctly represergalrworld financial
events. This is a difficult task because IT comtrale confined to thelec-
tronic world and can only partially control what, in effect, paped in the
real world.

Both enterprise application design and systems @ndess audits remain de-
manding tasks, even in the light of the methodsatterns presented in this article.
Dealing with the intricacies of large and complgstems is never easy. This is par-
ticularly true when requirements change as thegueatly do in practice. For ex-
ample, it is not uncommon for business executigesetjuest new application fea-
tures that unwittingly break compliance; laws aegulations constantly change,
which generally imposes new requirements on eriga@pplications; IT architects
and their development teams may have been unawanedd requirements so that
the corresponding functionality has to be addetimisight. The methods, princi-
ples, and patterns we reported on in this arti@arty help in dealing with these and
other realities; however, they do not render thesetmanical or easy.

Acknowledgements

The authors would like to thank the anonymous reeis for their thoughtful com-
ments on this work.

In conducting the research leading to these reskleus Julisch has received
funding from the European Community’'s Seventh Fraork Program (FP7/2007-
2013) under grant agreement No. FP7-216917.

31

References

AICPA. American Institute of Certified Public Accotants. Generally Accepted
Auditing Standards. SAS 95, 2001. URittp://www.aicpa.org/
download/members/div/auditstd/AU-00150.PDF

AICPA, American Institute of Certified Public Accotants. Statements on Auditing
Standards (SAS) No. 104. Amendment to Statemedtudliting Standards No.
1 Codification of Auditing Standards and Proced(tBsie Professional Care
in the Performance of Work”). 2006.

Baker WH, Hutton A, Hylender CD, Novak C, PorterSartin B, Tippett P. 2009
Data Breach Investigations Report, Verizon Busin2eg9.

Bass L, Clements P, Kazman R. Software Architedtuiéractice, Second Edition.
Addison Wesley, 2003.

Bayuk JL. Stepping Through the IS Audit: What tqpEgt, How to Prepare. Second
Edition. ISACA, 2004.

Benantar M. Access Control Systems: Security, ileManagement and Trust
Models. Springer; 2006.

Bertocci V, Serack G, Baker C. Understanding Wins@vardSpaceAddison-
Wesley, 2008.

Bitterli PR, Brun J, Bucher T, Christ B, Hamber@emHuissoud M, Kiing D,
Toggwhyler A, Wyniger D. Guide to the Audit of ITpflications. ISACA,
20009.

Blakley B, Heath C. Security Design Patterns. TédirReport G031, ISBN
1931624275, Open Group, 2004.

Bradshaw W, Willis A. Learning about Risk: Choic€gnnections and Competen-
cies. Toronto: Canadian Institute for ChartereddAotants, 1998.

Bragg SM. The Ultimate Accountants' Reference:uditlg GAAP, IRS and SEC
Regulations, Leases, and More. 3rd Edition. JohleyA& Sons; 2010.

Buecker A. Understanding SOA Security Design anplémentation. IBM Red-
books, 2007.

Cantor S. SAML 2.0 Single Sign-On with Constraii@legation Working Dratft,
Oct. 2005. URLttp://shibboleth.internet2.edu/docs/draft-cantmksso-

delegation-01.pdf

Cascarino RE. Auditor's Guide to Information Systehuditing. John Wiley &
Sons; 2007.

Cohn D. User Stories Applied. Addison Wesley, 2004.

32

Congress of the United States of America. Sarb&ndsy Act of 2002, H.R. 3763.

Cross M, Norris LJ, Piltzecker T. Security+ Studyi@. Syngress Publishing,
2002.

Davidson L, Kline K, and Windisch K. Pro SQL Ser2805 Database Design and
Optimization. Apress; 2006.

Ebbers M, Barrus B, Bonazebi S, Daly P, Lee C. Patger Architectural Design
Patterns. IBM Redbook, 2008.

EC, European Commission. EudralLex - Volume 4 Goathiiacturing Practice
(GMP) Guidelines. 2010. URLhttp://ec.europa.eu/enterprise/sectors/
pharmaceuticals/documents/eudralex/vol-4/index tem.h

Epstein J. Security Lessons Learned from Sociétéfaée. IEEE Security & Pri-
vacy, 6(3), 2008.

Evans E. Domain-Driven Design: Tackling Complexitythe Heart of Software.
Addison Wesley; 2003.

Ferguson N, Schneier B. Practical CryptographyEt#ion. Wiley; 2003.
Fowler M. Patterns of Enterprise Application Areuture. Addison Wesley; 2003.

Hansen M, Schwartz A, and Cooper A. Privacy anatileManagement. IEEE Se-
curity & Privacy; March/April 2008.

Hohpe G, Woolf B. Enterprise Integration Pattesddison Wesley, 2004.

Howard M and LeBlanc D. Writing Secure Code. 2ndiBad. Microsoft Press;
2003.

ISACA. COBIT and Application Controls: A Manageméatide. ISBN
9781933284859; 2009.

ISACA. Certified Information Systems Auditor, ClS2ertification Overview
2010. URL:
http://www.isaca.org/Template.cfm?Section=CISA_{ieation&Template=/
TaggedPage/TaggedPageDisplay.cfm&TPLID=16&ConterdiEb58 .

ISO/IEC. Information Technology — Security Techrequ- Information Security
Management Systems — Requiremel89/IEC 27001:2005.

ISO/IEC. Information Technology — Security Techréqu- Information Security
Management Systems — Guidelines. ISO/IEC 27002:2005

IT Governance Institute. Control Objectives fordmhation and related Technology
4.0 (COBIT). ISBN 1-933284-37-4; 2005.

Josuttis NM. SOA in Practice. O'Reilly; 2007.

33

Kidwell DS, Blackwell DW, Whidbee DA, and Peterdgh. Financial Institutions,
Markets, and Money. Tenth Edition. John Wiley & SpR008.

Killmeyer J. Information Security Architecture. Albach Publications; 2000.

Leymann F, Roller D. Production Workflow: Conceptsl Techniques. Prentice
Hall; 1999.

Meier JD, Mackman A, Dunner M, and Vasireddy S.l@ing Secure Microsoft
ASP.NET Applications: Authentication, Authorizaticand Secure Communi-
cation. Microsoft Press; 2003.

Meyer B. Object-Oriented Software Constructignd Edition. Prentice Hall; 2000.

Murray WH. Principles and Applications of Cryptoghéc Key Managementn:
Tipton HF, Krause M, editors. Information Secufifgnagement Handbook,
6" Edition. Auerbach; 2007.

NIST, National Security Institute. Trusted Compusgistem Evaluation Criteria.
Department of Defense; 1983.

OGC, Office of Government Commerce. The Officidtdaluction to the ITIL Ser-
vice Lifecycle; 2007.

OAuth Core Workgoup. OAuth Core 1.0 RevisionJdne 2009. URL:
http://oauth.net/core/1.0a .

PCAOB, Public Company Accounting Oversight Boarddaing Standard No. 5:
An Audit of Internal Control Over Financial Repadi That Is Integrated with
An Audit of Financial StatementBCAOB Release No. 2007-005A, Nov.
2007. URL:
http://pcacbus.org/Standards/Auditing/Pages/AuditBtandard _5.aspx

Rosen M., Lublinsky B., Smith KY, and Balcer MJ.#iled SOA: Service-Oriented
Architecture and Design Strategies. John Wiley &8&®008.

Ross R, Katzke S, Johnson A, Swanson M, Stoneb@nand Rogers G. Recom-
mended Security Controls for Federal Informatiost&gms. National Institute
of Standards and Technology. Special Publicatidh®® Rev. 2. Dec. 2007.

Rumbaugh, J., Jacobson, I., Booch, G., The UnNedeling Language Reference
Manual. Addison-Wesley, 1999.

Saltzer JH, Schroeder MD. The Protection of Infararain Computer Systems. pp.
1278-1308. Proceedings of the IEEE, 63(9), 1975.

Schaeffer, MS. Accounts Payable and Sarbanes-ORtegngthening Your Internal
Controls. John Wiley & Sons, 2006.

Schumacher M, Fernandez EB, Hybertson D, BuschrRa@ommerlad P. Security
Patterns: Integrating Security and Systems EngingeWiley; 2006.

34

SEC, Securities and Exchange Commission. Commisaiodance Regarding
Management’s Report on Internal Control Over FimariReporting Under Sec-
tion 13(a) or 15(d) of the Securities Exchange @fct934. RELEASE NOS.
33-8810; 34-55929; FR-77; File No. S7-24-06. 2007.

Senft S, Gallegos F. Information Technology Conamrad Audit.
Auerbach Publications; 2009.

SymantecWeb Based AttackSymantec Corp., Technical Report. Feb 2009.

Trent H. Products for Managing Governance, Risk, @ompliance: Market Fluff
or Relevant Stuff? Burton Group. Mar.18, 2008.

Tulach J. Practical API Design: Confessions ofiaaJeramework Architect.
Apress; 2008.

Yoder J, Barcalow J. Architectural Patterns for lidimy Application Security. In
Proceedings of the Fourth Conference on Patterguages and Programs;
1997.

Zimmermann O. An Architectural Decision ModelingaRrework for Service-
Oriented Architecture Design. PhD Thesis. Univgrsit Stuttgart, 2009.

