
Review of Security Policy Implementations

Richard Macfarlane, Prof William Buchanan, Dr Elias Ekonomou, Omair
Uthmani, Dr Lu Fan and Owen Lo

Centre for Distributed Computing and Security,
Edinburgh Napier University

{r.macfarlane,w.buchanan,e.ekonomou,o.uthmani,l.fan,o.lo}@napier.ac.uk

http://cdcs.napier.ac.uk

Abstract. Network security should be based around security policies.
From high-level natural language, non-technical, policies created by man-
agement, down to device and vendor specific policies, or configurations,
written by network system administrators. There exists a multitude of
research into policy-based network systems which has been undertaken.
This paper provides an overview of the different type of policies relating
to security in networks, and a taxonomy of the research into systems
which have been proposed to support the network administrators in dif-
ficult tasks of creating, managing and deploying these policies.

1 Security Policies

High-level security policy documents should be written by upper management
and should be the ‘what’ of security in the organisation. Without this definition
of the security goals, it is difficult to use security mechanisms effectively [1]. The
implementation, or technical policies, are then created from the overall high-level
policy. This is the ‘how’ and it is used to enforce the security policy. The term
policy is used in the literature to describe both the high-level policies, as well as
the low-level implemented rules. The processes of security policy creation and
implementation are shown in figure 1, and a good definition of an overall security
policy is taken from The Site Security handbook - RFC2196 [1]:

“A security policy is a formal statement of the rules by which people
who are given access to an organization’s technology and information
assets must abide.” [1].

RFC2196 [1] provides an excellent reference for network system adminis-
trators and management-level decision makers, when creating network security
policies. At its core is a five-step iterative process detailing the Security Policy
creation and maintenance process. A key element of this is that the definition of
a security policy is an ongoing process, with regular reviews and auditing of se-
curity policies and mechanisms, providing feedback to improve it. This matches
two fundamental concepts: security being an integral part of the design and
systems being an ongoing process - rather than simply the implementation of

2 Review of Security Policy Implementations

Fig. 1. Network Security Policy

security products - which are both common throughout security literature [2, 3].
The Site Security Handbook does not put forward a formal method of specifying
the policies, but defines:

1. Identify what you are trying to protect.
2. Determine what you are trying to protect it from.
3. Determine how likely the threats are.
4. Implement measures which will protect your assets in a cost effective manner.
5. Review the process continuously and make improvements each time a weak-

ness is found.

Industry recognised standards frameworks can be used to help create the se-
curity policy, based on industry best practices (as shown in Figure 1). Currently,
the two best known frameworks are COBIT and the ISO27002 Code of Practice
for Information Security Management (previously ISO 17799). These provide
detailed industry standards in IT security management and audit compliance
[4].

It is important to involve users in the implementation of a security policy and
the understanding of security problems by users, and giving them clear and easy
to follow rules, can be a key factor in the successful implementation of the policy
[5]. Danchev calls this the “Security Awareness program” and emphasises that
the latest technical security measures, such as firewalls and IDPSs (Intrusion
Detection/Prevention), can be rendered useless by careless, or badly informed,
end-users. The User’s Security Handbook [6], the companion guide to the Site
Security Handbook [1], can be used as a guide on how to educate users about
the dangers of networked systems and how to keep data and communications
safe.

Although management should have a good deal of input into the high-level
security policies, they may also need technical input due to the nature of the

Computers and Security 3

services they describe. Ideally they should be created by staff with the executive
power of the CEO of the organisation, and the technical ability of a system
administrator. Typically administrators will help create the policies and the
management will make the final decisions, but sometimes business plans will
trump security policy decisions [2].

2 Enforcing Policies

Security policies protect the confidentiality, integrity, and availability of the as-
sets of an organisation. To enforce this security services should to be deployed,
such as authentication, encryption, antivirus software, and firewalls. To do this
the security policy documents are often used to create technical security pro-
cedures, and guidelines, which can then be implemented in the network. Types
of procedures include: identification or authentication; access control or autho-
rization; and accountability or auditing procedures. Procedures and guidelines
could be created for each of the different type of security mechanisms to be
used to enforce the policy. These technical mechanisms include authentication
systems, firewalls, proxy servers, IDPSs, VPNs, and access control systems [7].
The guidelines are best practice suggestions for each, and the procedures are
specifications for implementation of the specific security measures. This process
is shown in Figure 2.

Fig. 2. Enforcing Security Policy

Security Policies can be split into several components, which combine to
achieve the security goals of the organisation. These components are enforced
by various security mechanisms or procedures. The authentication policy could
be enforced using user names and passwords, software tokens, and/or VPNs. The
accountability policy may use IDPs and firewalls to enforce auditing and incident
response capabilities. The Access Control Policy, which this work focuses on,
would typically use firewalls, VPNs and authorization systems to enforce access
to resources [1].

The access control part of the security policy deals with making sure that
authorized individuals can perform the tasks they are authorized to, and that

4 Review of Security Policy Implementations

others cannot. It is typically referred to as the ‘access control policy’ [7]. Access
control makes sure that requests to access a specific resource are only granted
if the request agrees with the security policy definition. In terms of networks,
the most commonly used access control mechanisms are firewalls and filtering
routers [8]. Firewalls control access to resources by filtering network traffic, only
allowing access that is specified by the security policy.

The network access control policies, defining which traffic can cross network
boundaries, are implemented as policies on network devices which have access
control functionality, such as traffic filtering capabilities. The system admin-
istrator is typically tasked with manually creating these low-level policies, or
configurations. In order to determine whether to grant an access request, access
control mechanisms uses a number of criteria. The primary criterion being the
network address of the machine from which the traffic originates. Other criteria,
which can decide whether access is granted or not, would include network ser-
vice and destination of the traffic [8]. The most common technique used to by
firewalls to filter traffic is known as Packet Filtering.

Implementation of security mechanisms can be based on best practices, and
several sets of guidelines exist. The NSA and NIST publish configuration guide-
lines for implementing security controls. The Cisco SAFE framework provides
detailed guidelines for the implementation of network security mechanisms for
various different sizes of networks and different site specific setups [9]. A com-
pilation of the most common policy errors are detailed by Wool in his review
of firewall configuration problems [10], and provide guidelines on what to avoid
when implementing firewall policies.

2.1 Policy Enforcement Problems

If the high-level policies are not defined correctly, the implementation cannot
provide the security protection need by the organisation. As described by Wool
in his review of firewall configuration problems [10], and as a major motivation
for the firewall auditing and testing system described in the latest research by
Mayer, Wool, and Ziskind [11]:

“the protection that these firewalls provide, is only as good as the policy
they are configured to implement” – [11]

The policy should be clear, concise, and easy for the administrator to follow.
If a policy is not well designed, then it will not be enforced properly and the
security goals will not be met [12].

Conversely, polices are only as good as the configurations which enforce
them [13, 14]. The enforcement of policies is not always an easy task. Policy
management can be difficult as policies grow and become increasingly complex
[15, 16, 10]. Blakley makes the following statement in [15].

“Policies do not scale well and their complexity quickly increases as sys-
tems grow and diverge, which makes them unmanageable” – [15]

Computers and Security 5

Madigan et al. categorises violations of security policies, and shows that vio-
lations from network issues were by far the largest type reported [12]. The author
also states that the network violations were among the most time consuming to
correct. This work was based on real security policy violations, on two univer-
sity campuses, over a two year period. This could be a direct result of policy
enforcement problems, such as policy configuration errors and anomalies. This is
not surprising, as it is generally accepted by security experts that firewalls and
other traffic filtering devices are poorly configured [10].

The configuration of a firewall is probably the most important factor in terms
of the security a firewall provides [17], but are often configured incorrectly [10].
Firewall policies are made up of rule sets, and these rule sets are ever expanding
due to new rules continually being added and very few removed, so device access
policies tend to be large and always increasing in size [10, 18]. It follows that the
management of these policies at the network device level can be extremely com-
plex, error-prone and expensive as the policies expand [19]. The configurations
are typically hand crafted and bespoke for each individual system by network
administrators, which can be error prone work [20]. This is a serious problem as
errors in the firewall policies mean that the intended security policy will not be
enforced.

Mapping the high-level security policies to the lower level implementation
can be extremely difficult [7]. High-level policies are written in a natural lan-
guage, and describe security aims in terms of entities of an organisation, such as
networks, users and resources. Enforcement policies are in terms of the points
of enforcement, or devices. Firewalls and other devices have their own vendor
specific languages and tools, which tend to be very low-level. Many researchers
have used the simile that these configuration languages are ‘like programming in
assembly languages’ [19]. A conceptual gap exists between the two, and adminis-
trators can find it very difficult to map from one to the other correctly (to bridge
the gap) [21, 20, 22]. GUIs are provided by some vendors, but most require the
administrator to click through several windows, simple to understand a single
rule fully [11].

Administrators are typically tasked with the creation of the low-level device
policies, which implement the security policy of the organization. In terms of
firewalls, these are the firewall rule sets. The administrators will add, delete,
and change the rules to match changes to the high-level security requirements.
For example, when new web servers are added to the organisation’s network,
new rules would be added to the perimeter firewalls to allow appropriate access
to them from outside and inside the organisation’s network. The complexity
of the rule sets increase as they increase in size, but also the complexity can
change depending on the rules used within them. For example, OSI layer 3
packet filtering is not as challenging to understand as OSI layer 4 or layer 7
filtering due to less filtering fields in each filtering rule. The filtering rules can
be based on source address only or source and destination, as well as various
other traffic attributes within a rule. Wool created a classification system for
complexity of rule sets, based on the number of rules, the objects (traffic filtering

6 Review of Security Policy Implementations

parameters) and the interfaces rules could be applied to. In [10] the following
rule set complexity measure is defined:

Rule Complexity = Number of Rules + Network Objects + Number of
Interfaces(Number of Interfaces -1) / 2 – [10]

For most firewalls the ordering of the rules in a rule set are important, as in
the common ‘first match’ filtering mechanism, the position of the rules in the
rule set dictate if they are matched against traffic or not. The earlier in the rule
set the higher the priority the rule has when matching against traffic [23]. Thus
filtering rule sets, that use first match semantics, are complicated to create and
amend due to this dependency on the rule ordering. As the size and complexity of
the rule set increases it becomes more difficult for the administrator to predict
the impact of a rule on the overall rule set. This makes rule sets extremely
difficult to manage [10].

Effectiveness of security policies can be compromised due to poor policy man-
agement, especially when enforcing a security policy across a range of devices
around a network [24]. Security policies can be spread over a range of different
security devices [25]. Packets can take multiple paths through a network, with
multiple filtering devices on each different path. An administrator needs to un-
derstand the interaction of combinations of these devices for each traffic path
[11]. The low-level configurations, which implement the security policy, can span
heterogeneous networks, and may be spread over many network devices. Different
vendors implement different algorithms and low-level languages for configuring
their devices. Thus, the scope of the deployment in terms of devices, can also
increase the difficulty of the task of policy enforcement for the system admin-
istrators [20]. If hundreds of network devices have to be coordinated to enforce
a network security policy, manual translation of the policy into device config-
urations, can become extremely complex and error prone. If multiple devices
such as firewalls, from different vendors, have to be used to create overlapping
enforcement policies, in order to enforce a single global security policy, this adds
even more complexity.

2.2 Policy Enforcement Solutions

Abrams [26] describes a layered approach which can be taken with security poli-
cies. This can help the management, administrators, and users understand the
policy and its implementation, as the mapping between the high-level policy
and the low-level deployment is more clearly defined. Different individuals in an
organisation will have a different view of the security policy. At a management
level, an enterprise wide view concerning overall security objectives, such as pro-
tect the company’s assets, will be taken. This is the highest level of abstraction
of the policy, and it should be easy to understand, but does not contain guid-
ance in how to carry out the security requirements. To do this policies at a lower
level of abstraction need to be introduced. At the users level of abstraction, the
policy is seen as rules relating to access to resources and data, such as systems

Computers and Security 7

and applications [26]. The high-level policy is translated into this level of pol-
icy abstraction, providing guidance for users [6]. This level might be defined in
terms of finite-state machines, or as access matrixes [27, 7]. The lowest level of
abstraction is the network implementation level, were the security mechanisms
are deployed to satisfy the higher level specifications.

The policy can be shown in three different ways: first as a high-level pol-
icy described in a natural language, secondly as formal statements to describe
a model of the policy, or thirdly as a technical implementation [7, 26]. Natu-
ral language is prone to ambiguities, thus the high-level policy may also have
ambiguities in terms of the security requirements. If the policy is modeled in a
formal language, the ambiguities can be reduced, or even removed completely.
The formal model can also be used to audit the security procedures for compli-
ance with the requirements, and it provides a specification free of any specific
implementation methods, such as vendor specific tools and languages. The down-
side is that specialists are needed to work with such models, especially if they
are mathematical models. Otherwise administrators, who implement the secu-
rity mechanisms, would have to learn such modeling techniques. A formal model
which is non mathematical, such as a more formal natural language, can be a
good compromise. The ambiguities from the high-level language can be reduced,
and the modeling language would be understood by a wider range of individuals.
Tasking specialised individuals with such work, such as firewall administrators,
is preferable to asking general system administrators to carry out such tasks [3].

Samarati [7] outline how the different levels of abstraction provide the ben-
efits of separating the requirements and design, from the implementation. The
security requirements can be dealt with, regardless of how are they are to be im-
plemented, and different methods of implementation can be compared against
each other for the same requirements. The formal model could also be used to
prove the security proposed is sound, and possibly even to automate the imple-
mentation of the security mechanisms, by creating device configurations from
the model definition [28].

Various policy management systems have been proposed to help the network
administrators with the creation, management, analysis, and auditing of these
complex policies. The next section presents a taxonomy of research into these
systems and tools, along with comparisons between the different approaches.
Packet filtering firewalls are one of the most important mechanisms used by
organisations to implement their security policies, and in the past 10 years, there
has been a great deal of research into the areas of firewall policy management.
The taxonomy and review of the literature is therefore focused on research into
firewall policy-based systems.

3 Firewall Policy Management Systems

3.1 Introduction

Systems which can assist administrators in the creation and management of net-
work access policies, can be used in the various stages of security development

8 Review of Security Policy Implementations

and operations. Network security should be a continual process, built around
the network security policy, and it should be integrated into all stages of the
SDLC [2]. Many definitions exist for the SDLC, with possibly the best known
being the Waterfall Model, in which the development process is described by
several phases in a downward flow. The phases for general development are typ-
ically Requirements Analysis, Design, Implementation, and Maintenance. More
specifically, for security system development, the NIST process definition is de-
fined in special publications 800-14 [29] and 800-64 [30]. This includes security
system Initiation, Development, Implementation, Operation and Maintenance,
and Disposal.

Fig. 3. System Life Cycle

In the NIST definition the initiation phase is concerned with security plan-
ning, including documenting the need and high-level requirements for the sys-
tem. The Development phase includes the design, purchasing and creation of
the system. Implementation involves the testing, and subsequent installation of
the system. The Operation phase takes place once the system is in production,
and includes the monitoring and auditing of the security mechanisms, and any
configuration management.

The policy management systems, discussed in this section, can be categorised
by which phase of the development life cycle they operate in. A simplified secu-
rity development life cycle, showing the stages which contain the most relevant
literature, is shown in Figure 3.

Computers and Security 9

3.2 Factors used to Compare Systems

The main factors which are used to compare systems include:

– Modeling Technique high-level, abstract, languages can be used to de-
scribe the policy model. Some systems introduce new high-level languages
to describe firewall policies. These can be graphical languages, or abstract
textual languages similar to high-level programming languages. These high-
level languages can then be translated into the vendor specific configuration
language and be implemented on firewalls or routers. Some systems are based
around the low-level vendor specific languages, which the system administra-
tors are already familiar with. Another method is to keep the language tech-
nically similar to the low-level vendor languages, but abstract just enough
to be used across a heterogeneous network, such as a XML based language.
Systems can also be based around formal models, such as BDDs, bipartite
graphs, or relational databases.

– Top-Down or Bottom-Up - Systems can be regarded as having a bottom-
up approach if the starting point, or input to the system, is from device
policy. These systems may create an abstract policy model, analyse, or ag-
gregate the policy into a higher level policy, but always start with a concrete
policy from a network device. Top-down systems start from high-level de-
scriptions, possibly a security policy. They typically create an abstract model
of a policy, which then can be compiled into the low-level technical policies
and then deployed on devices.

– Scope Some of the systems describe a single network device policy, and
some allow the description of entire network security policy which maps to
policies for multiple firewalls.

– User Interface - The systems, which have been implemented as tools, are
typically split between having either a CLI, or a GUI, which is an important
consideration, depending on which tasks the system performs and which type
of user the system is aimed at [31].

– Administration tool design issues Issues raised on the subject of ad-
ministration and security tool design highlight factors such as flexibility,
customisability, usability, and error reporting techniques [32].

3.3 SDLC Development Phase

In this phase of the development life cycle, a risk assessment is carried out,
which specifies the security requirements necessary to protect an organisation’s
network-based assets. Security requirements analysis are then carried out to de-
fine what is required to secure the network. This typically includes the creation of
the high-level security policy documents. Which security mechanisms are needed
can then be planned for, and specific security controls - such as firewalls and fil-
tering routers - can be developed and implemented [30].

Tsoumas and Tryfonas suggests a system to automate some of the develop-
ment phase of the development life cycle [33]. Their system is top-down, and

10 Review of Security Policy Implementations

takes a natural language description of a policy, such as the recommendations
from a risk analysis, and creates a formal model of a security policy. This is an
attempt to fill the gap between high-level policy statements, risk analysis output
and standards - shown in Figure 1 - and the network security policy definition.
The typical approach is to task experienced administrators, along with man-
agement input, to translate the high-level security requirements into a network
security policy. Their research did not produce a prototype system and is left
as theory, but it is an interesting idea, as potentially the system could relieve
the administrators of the time consuming and error prone policy creation task
[11, 19]. The authors suggest that their system, in conjunction with the output
from a Risk Analysis tool, could produce a security policy and recommendations
for administrators concerning deployment issues. They also suggest that a for-
mal model could be created using a high-level policy language such as Ponder
[34] or FLIP [35]. This would assist the administrators, as they would not have
to learn the high-level policy language used to describe the formal policy model.
The output from this system could be generated in the syntax of an existing
formal policy language. The system, would in this way, interface with high-level
policy language based systems described next.

High-level Policy Languages Currently, there is no generally accepted high-
level model, which is commonly used for policy configuration [36]. The following
quotes back this up:

“The thing to note here is that there is no fixed terminology for the
description of firewalls.” – [1]

“generic data models and high-level languages for router configuration
do not exist and are likely to remain elusive for some time” – [18]

Research by Guttman, which was funded by the NSA, led to a system called
NPT. The system can define an overall access policy in a high-level policy lan-
guage, and verify that packet filtering specifications, which it generates, enforce
the policy [37]. They suggest a high-level access policy language to describe
which packets can get where in an organisation’s network. This is an abstract
language, above and independent of, device configuration languages. The system
deals with a global policy, covering the entire network access policy, not just the
filtering at a single network boundary. Logical ‘filtering postures’, which define
packet filtering at each device, are generated by the system. The motivation for
the system was this creation of multiple filters to enforce the global access pol-
icy. The filters do not define the configuration of firewalls, but only the logical
access policy. This assists the network administrators in delegating the filtering
to various devices around the network, to enforce the overall policy, but the
administrators would have to then manually create the device configurations.

As the system describes the relationship between devices, it needs a descrip-
tion of the networks topology. This is modelled using a bipartite graph, and

Computers and Security 11

specified using a policy specification language. The areas of the network are rep-
resented by nodes, as are the filtering devices which route traffic between the
areas. The (undirected) edges between the nodes represent the interfaces of the
devices connected to the different areas. Each interface can have an associated
‘filtering posture’ created, in both an inbound and outbound directions. These
postures are abstract representation of the bi-directional packet filtering that is
enforced by routing and firewall devices.

A Lisp type language is used to describe the access policy and the network
topology, and the filtering posture NPT generates. An example of the language
is shown in Listing 1.1. This consists of source and destination hosts and ar-
eas, and the traffic which is allowed to flow between them. This system can be
categorised as top-down, as the network administrator would have to manually
create the abstract access policies in the modeling language, as well as the net-
work topology information. The interface to the system is text based, and the
administrator would have to learn the lisp type policy specification language
and become familiar with this way of modeling the access policy. This is not the
most complex of the high-level policy languages encountered in the review of
this literature, but it would still be a challenge for administrators to learn and
use.

Listing 1.1. NPT Language Code Snippet [37]

(de f ined−host−s e t s ; d e f i n e some host s e t s
(i n t e r n a l ; new name
((areas eng ine e r i ng ; two areas

f i n a n c i a l)))

Guttmans NPT system also can also audit the filters it generates, by compar-
ing them to the global policy specification. This verifies that the filters created,
correctly implement the overall policy. This conformance checking could be use-
ful if the administrator makes changes to the filters, and wants to validate them
against the overall access control policy. However, this auditing facility could
only be used in the design stage of the SDLC, as once the filters have been
implemented on devices, the validation would no longer provide any assurance
of the implemented security measures. To use this in the operations phase, a
mechanism would have to be added to reverse engineer the high-level language
policy from the configured devices, before running the auditing facility.

Later research by Guttman documents an evaluation of the NPT system, by
generating filtering postures from a realistic sized network. They use a dozen
filtering devices connecting sixteen network areas and their evaluation metric
consisted of timings of the system runs. Their performance evaluation produced
results which seem usable, with runs only taking seconds. Some problems were
encountered with their system. These were mainly concerning the usability of
the system. Specifically, administrators had difficulty when creating the network
and policy definitions in the abstract language, and also when trying to translate
the filtering postures into concrete device configurations, such as Cisco router
ACLs [38]. The administrators found it hard to work with the abstract policy

12 Review of Security Policy Implementations

representations, particularly when trying to create a representation of an exist-
ing network policy [38]. Another tool, the Atomizer, was created to assist the
administrators in this task [39]. It can take Cisco ACL configurations (Cisco
filtering language used on routers and firewalls) as input and generates abstract
NPT policy specifications, combining common traffic filtering behaviors. The
tool uses BDDs to model the traffic filtering policy generated from the device
configurations, and ‘atomizes’ the sets of traffic within the filters together. The
output of the NPT system, however, is still in the difficult to use and does not
provide automatic generation of firewall rule sets.

The work of Bartal, Mayer, Nissim, and Wool started with the Firmato Fire-
wall Management Toolkit [40] in 1999, which is another top-down, configuration
generation system. A high-level policy language is used to create a, vendor in-
dependent global policy, which can be compiled into individual vendor specific
device configurations. The high-level policy definition language is used to manu-
ally specify the network topology and the high-level security policy. This is then
translated into an entity-relationship model which is a role based model of the
access policy and its relationship to the network topology.

One of the aims of the Firmato system was to separate the network topol-
ogy and the high-level policy definitions, which is an improvement on the work
of Guttman, as changes to the topology does not mean that the policy has to
be reworked. Other motivations behind the system were to abstract the pol-
icy away from low-level languages, enabling vendor independent management
of firewall configurations, and to automatically generate configurations, across
multiple filtering devices, from the abstract global policy.

The high-level policy language used to describe the abstract policy is called
MDL and is used to specify both the policy, and the network topology. An exam-
ple of the MDL language is shown in Listing 1.2. Again, like the first generation
system from [38], the administrator has to manually create these definitions.

Listing 1.2. MDL Code Snippet [40]

corp gw =
{

I dmz corp : { addr=ether0 , INVIS ,
f i l e = ‘ ‘RULES I dmz corp ’ ’ }

I c o r p i n : { addr=ether1 , INVIS ,
f i l e = ‘ ‘ RULES I corp in ’ ’ }

I admin : { addr=ether2 ,
ip = 111 . 2 2 2 . 3 . 1 , f i l e = ‘ ‘RULES I admin ’ ’}

} : LMF

The language is very different from the configuration languages of firewalls,
and administrators generally find this type of language problematic to use [38].
In the testing of the Firmato system, existing firewall rules were converted into
MDL manually, but rule sets with under 50 rules were used. The authors recog-
nised that any more rules would have necessitated an automated mechanism
for translating the rules into MDL. The system does improve on the work by

Computers and Security 13

[38], solving one of their systems main problems, in that the administrator does
not now have to translate abstract filter definitions into the low-level device
configurations, as this can performed automatically. A limitation of both this
system and Guttman’s is that it models a closed firewall with only pass rules,
and a single drop ‘all other traffic’ rule at the end of the rule set. This means
the rule set is conflict free, but may have more rules than necessary, and may
be more difficult to understand for the administrator. The interface provided to
the administrator is textual, using text files, and no GUI was provided. This
was regarded as a surprise success of the system, and an important feature for
end-users [40]. However, as a survey carried out by [31] shows, this is not so
surprising. The survey found that a majority of system administrators preferred
a text based CLI, due to CLIs being more reliable, faster, and more robust.

Around the same time, research at Cisco Systems by [21] produced a policy-
based management system. This can model abstract filtering device polices, and
automatically create the low-level device configurations, in the form of Cisco
ACLs. The system can create filtering device policies, for multiple devices, from
global policy rules, as well as performing some basic rule set analysis. The moti-
vation for the system is summarised in the title of their research paper ‘Policy-
Based Management: Bridging the Gap’ [21]. The gap between device configura-
tions and the high-level, natural language, security policy is difficult to bridge
for system administrators, and the research introduces a functional language to
express the high-level policy. This is done in a precise way, using nested sets of
conditional statements. An example of the language, taken from [21], is shown
in Listing 3.3. This language has to be manually created by the system admin-
istrator, which is a drawback of the system, as the administrator would have to
learn this abstract high-level language as well as the low-level device languages.

Listing 1.3. Code Snippet of an HTTP Policy [21]

corp gw =
{

I f S e rv i c e i s HTTP
I f Des t inat i on i s S

I f Source i s H
Se rv i c e l e v e l i s premium
Permit

Else I f Source i s N1 or N4
I f Source i s N4

Use encrypt ing tunne l
Permit

The system was implemented as part of the CSPM tool [41], and its func-
tionality has since been incorporated into the Cisco’s latest security management
tool, Cisco Security Manager [42]. The CSPM interface is a GUI which provides
the administrator with a tree view to implement both the policy and the net-
work topology information. The topology tree represents the enforcement devices
(firewalls and filtering routers) and the network areas between the devices. The

14 Review of Security Policy Implementations

policy tree contains a policy structure with the individual policies, defined in the
abstract policy language. These can then be applied to the enforcement devices in
the topology tree to enforce policies between the network zones. Figure 4, taken
from [42],shows the interface to the CSPM tool. Note for the two trees, the top
represents the policy, and the bottom the network topology. Note also that the
inner security policy has been applied to the PIX2 firewall device, which seems
to be segmenting a specific internal network from the general internal network.

Fig. 4. Cisco Security Policy Manager GUI [42]

The generation of the filtering device configurations consists of four steps.
Firstly, the high-level policy is applied to device and the policy is distilled into
rules which are applicable to the individual devices. The authors call this process
pruning and involves a mechanism to detect if policy rules specify traffic which
could pass through each device. In this way, devices only receive rules which are
needed on the device. This is an improvement on, and in contrast with, the sys-
tems discussed previously which either apply all rules to all devices, or perform
very minimal pruning. The second step in the process is some simple rule set
analysis. This checks that the device has resources to carry out the policy, such
as the memory available for filtering rules. It also performs some rule set anomaly
analysis, checking for conflicting, or overlapping, filtering rules. An example of

Computers and Security 15

conflicting rules would be if the filter has the same source and destination ad-
dress and the same service, but different actions. The administrator is warned
about any analysis problems and the administrator would have to decide on the
solution, such as which of the two conflicting rules would be used in the rule
set. The next step is to generate the device filters. The tool creates an inter-
mediate, abstract, filter rule set for each device and stores them in a database.
This stores the semantics of the device configurations to be created, but leaves
the creation to an agent which reads the generic filter rules and creates low-level
rules in the device configuration language. This means filtering devices could be
interchanged and the fourth stage repeated to create configurations for the new
devices. Although this is a Cisco specific closed system, it could in theory be
used to create other vendor device configurations, if agents were added to do
this.

The system is MS Windows-based, and provides only a GUI for the network
administrator. There is no support for the CLI and this means the tool, even
in its latest form, cannot be scripted. This is something that is sought after
by administrators, so the tool can be combined with other tools, and provides
customisation in their work practices [32]. Small configuration changes could
be time consuming to perform in this type of system, as the high-level policies
would have to be studied and amended, and the fourth stage process run again.
This type of all or nothing configuration generation may not be very useable for
the system administrator [43].

Several other similar approaches, using high-level policy languages and cre-
ating low-level device configurations from them, appear in the literature. [44]
describes a similar system to Guttman’s, with the addition of modeling and
configuring NIDS as well as firewalls. PRESTO is a configuration management
system for routers [45]. It is interesting, in the way it extends the low-level con-
figuration language, creating a hybrid scripting language rather than introducing
an entirely new language. Templates, or configlets, are used with information em-
bedded into the low-level configuration language. These are then used at runtime
to generate the low-level configurations, with a database providing the content
of the templates.

The Ponder policy specification language can be used to specify the entire
high-level security policy, including access control policies, user authorisation
policies, and traffic filtering policies [34]. Ponder seems more complex than is
needed to specify device filtering policies. The high-level firewall policy modeling
language, FLIP [35], can also be compiled into low-level device configurations.
The scope of the FLIP system is global and can manage firewalls across an entire
network. FLIP generates conflict free rules automatically, by performing conflict
analysis as it generates the low-level device configurations. This improves on
most of the systems described, which would need to be analysed separately for
rule conflicts, although tying the functionality together like this means less flexi-
bility [32]. Another high-level policy language, AFPL [46, 47], resulted from work
at the University of Seville. This, again, intends to fill the gap between high-level
network security policies and low-level firewall languages. It has been designed to

16 Review of Security Policy Implementations

be simpler than some of the preceding high-level languages while still retaining
the functionality needed to describe filtering policies and can also be automati-
cally compiled into leading vendor firewall filtering languages. A similar proposal
by Hinrichs et al. in [48] is the Flow-based Management Language (FML). FML
is a formal, high-level network policy specification language designed to replace
the low-level policy rules by controlling the ‘flows’ of data within the network,
regardless of the physical devices that they flow through. After specifying a pol-
icy, FML can be translated to low-level network hardware configuration rule
sets automatically, using tools provided by the authors. This work contributes
a novel, extensible, adaptable and efficient mechanism for controlling network
access. High-level policy languages, nevertheless, face a common hurdle in accep-
tance from administrators, who generally do not welcome the overheads involved
with learning and using them [19].

3.4 SDLC Implementation Phase

Policy Testing Systems Testing of packet filtering rule sets was explored
by Hazelhurst et al. in the late 1990’s [49]. One of their main motivations for
their system was the analysis of low-level rule sets to understand the policy
they implement. This ended up being the main focus of research, with a query-
based system being developed to analyse rule sets. BDDs were used to represent
firewall and router access policies. Each rule in the rule set can be converted into
a Boolean expression, and the Boolean expressions combined in a BDD. Queries
are used to pose questions about the rules, which can then be answered using
the BDDs. An example of these ‘what if?’ queries might be ‘which destination
addresses can packets reach from a source address and a certain port?’. The user
can analyse, and so test, a policy by querying the rule set in various ways. This
can be used to validate and explore the policy before deploying the rule set onto
filtering devices. The language used to specify the queries is a functional language
‘FL’, and the output is a textual representation of the query answer. The FL
query language is low-level and is difficult to use, for the system administrator
when creating queries. This was recognised, and the system was improved to
include a GUI for easier querying of the policy [50]. The authors also recognised
that the best interface was a GUI for visualising important information about
the rule set, and for basic querying, but a textual interface was better suited
for an advanced user to develop more powerful queries [50]. The scope of the
system only extends to a single rule set, but later research expanded query-
based systems to cover entire networks, some of which are covered later in this
paper. The primary analysis mechanism is the manual query and answer system,
but a basic rule set conflict analysis process was also developed. This automated
the task of detecting redundant rules in the rules set prior to deployment. This
seems to be one of the first systems to perform conflict analysis within rule sets
and is cited by most research in the area.

The research of Mayer, Wool, and Ziskind continued with the creation of the
FANG system [51]. This was built from earlier research into the Firmato system
[40], and FANG is actually an analysis engine which runs on top of the same

Computers and Security 17

Firmato policy model. It can be used in the Implementation phase, to test a
policy before it is deployed, and could also be use in the Operations phase to
audit a deployed policy. It has functionality to build the model from existing
filtering configurations, so it is classed as a bottom-up system. It can take Cisco
Router configuration files or Lucent Firewall files as input to create the policy
model. It uses a separate parser module for each filtering device it supports.
This is a good system as it support extensibility. The system works on multiple
filtering devices, and so a global policy can be tested. A network topology has
to be entered, and this is still done manually using the MDL language, the same
way as described for the Firmato system. The queries which can be performed
on the FANG system are based around a triple of source host group (source
network address range), a destination host group (destination network address
range) and a network service. Queries can be created such as (*, web servers,
http services) to find the answers to questions, such as ‘which systems have
access to the organisations web servers’. A GUI was created to perform queries,
and drop down menus implement the query triples. An example, taken from [40],
showing the result of a query asking ‘which services can get from the internal
network to the DMZ network’, is shown in figure 5.

Fig. 5. The FANG systems GUI showing results of a query [40]

A similar query-based system, which was created for the Linux iptables fire-
wall, is ITVal [52]. It uses MDDs rather then BDDs, but operates in much the
same way. Their main motivation was to provide a simple query tool to aid
in firewall configuration, so an administrator could test a firewall configuration
before deploying it. The query language is designed to be simple and natural lan-
guage based. A single iptables rule set can be read in by the tool and a MDDs
model built. The queries are created in the English-based query language and
return a simple textual answer, in a similar way as the FANG system does.

18 Review of Security Policy Implementations

The main problem with analysis systems using queries, is that they have to
be created by the administrator. The system administrator has to learn another
query language, as well as knowing which queries to perform. The onus is on the
administrator to work out what, and when, to query.

These off-line passive testing systems have advantages over active testing
systems, such as vulnerability testing or penetration testing, as they can be
performed before policies are deployed. With active testing the policy has to be
deployed before testing, and if problems are found, the production network is
vulnerable until a solution can be deployed [51].

Policy Deployment The SNMP protocol [53] was developed by the IETF in
the 1980’s as a comprehensive network management system. It was intended to
be a standard way of managing increasing numbers of devices, across hetero-
geneous networks. Its functionality includes the ability to configure managed
devices remotely. It is implemented as ‘agents’ on network devices, and the con-
figuration is modeled using MIBs which store information on each specific device.
In a workshop held by the IETF in 2002, attended by protocol developers and
network administrators, it was found that SNMP was not being used to con-
figure network devices as much as they originally intended. One of the main
issues raised was device manufacturers have not implemented all the parts of
the protocol needed to read and write configurations to and from devices. As
the following, from the 2003 workshop [54] on the subject, states:

“There is too little deployment of writable MIB modules. While there are
some notable exceptions in areas, such as cable modems where writable
MIB modules are essential, it appears that router equipment is usually
not fully configurable via SNMP” – [54]

“It is usually not possible to retrieve complete device configurations via
SNMP so that they can be compared with previous configurations or
checked for consistency across devices. There is usually only incomplete
coverage of device features via the SNMP interface, and there is a lack
of differentiation between configuration data and operational state data
for many features.” – [54]

It seems network device vendors are reluctant to fully implement the SNMP
agents on their devices, thus their own proprietary languages are needed to
manage the device configurations. SNMP is widely supported by vendors, but
mostly the monitoring part of the protocol is implemented, rather than the
configuration part [55]. This could be a good business decision for vendors, as
rather than the administrator using the same IETF protocol on any device, they
have to become familiar with that vendor’s low-level device specific language,
and perhaps have to take some training courses from that vendor. For example,
Cisco OSs have subtle differences across their range of network products, and
different certifications are needed to manage the different devices. Investment
in training administrators in a vendor’s products can make it difficult to justify

Computers and Security 19

using any other vendor’s products [18]. Vendors typically provide GUI-based
products to perform some management of the devices, but these are normally
aimed at simple initial setups and inexperiences users performing basic tasks
[54]. Network administrators invariably have to use the CLI to perform more
complicated management work. In the workshop reported in [54] the CLI was
found to be the administrator’s favorite way of configuring devices.

Apart from SNMP, several other systems were also discussed at the workshop
including the CIM [56], the COPS [57], and using the device CLI and SSH, for
configuration management. It was decided that neither CIM or COPS addressed
the needs of the users, and that a new vendor independent configuration man-
agement protocol was needed. The XML based Netconf protocol [58] was born
out of the recommendations from this workshop. Netconf was designed to be a
simple mechanism through which device configurations can be managed, using
an XML-based system [59]. The entire, or partial, XML encoded configurations,
of a Netconf enabled device can be retrieved, updated, and deployed back to the
device by remote management applications. The protocols control messages are
encoded in XML, as well as the data being sent. Major network device vendors,
such as Cisco and Juniper Networks, now have XML-based agents in their latest
products and are participating in Netconf standardisation [60]. Cisco Netconf
configuration is detailed in [61], and Juniper in [62]. XML has many advantages
over SNMP, such as XML is human readable, there are many standard tools
and libraries for parsing and processing XML, and XML-based languages are
extensible by the user [63].

3.5 SDLC Operation and Maintenance Phase

The operations phase of the SDLC includes configuration management of de-
ployed security systems. This could range from small changes to a single de-
vice, to implementation of an new security policy over the entire network. This
phase also includes monitoring and auditing of deployed systems, checking for
compliance with policies and procedures. This can be done by comparing the
implemented mechanisms with the higher level policy definitions. System Ad-
ministrators can also use these auditing systems to help with their understanding
of deployed policy implementations. For example to create high-level policies for
management where none currently exist, or during the process of making changes
to device configurations. Understanding deployed policies can be extremely chal-
lenging [64], especially if the policy is being enforced across many devices over
an entire network. Periodic testing of security mechanisms is also recommended
in this phase of the life cycle, to check the systems for, and alert administrators
to, the latest security vulnerabilities. The auditing and testing processes can be
carried out in parallel, and both aim to highlight any weaknesses in the current
security solution, and possibly to suggest improvements. This would then feed
back into the development phase of the SDLC, as part of a continual process, to
improve the security policies and implementation [65, 4]. This continual security
process is shown in Figure 3, and summarised nicely by the following quote from
[1].

20 Review of Security Policy Implementations

“Implement measures which will protect your assets in a cost effective man-
ner. Review the process continuously and make improvements each time a weak-
ness is found.” Fraser et al. [1]

Policy Auditing Systems Some of the systems discussed previously can also
be used for testing or auditing of deployed access control policies. Such as the
FANG system [51]. It can reverse engineer a model of a policy from firewall
configurations. The administrator can then query the policy, to become familiar
with it before changes are made, or to check it matches the overall security
requirements. This auditing system has been improved on, by the creation of
the Lumeta Firewall Analyser [64, 11]. This improved on the Fang system by
automatically creating the queries needed to analyse the firewall policy model.
Lumeta generates what the authors describe as the most interesting queries, and
then displays the answers to these queries. This tries to highlight possible risks in
the firewall policy, and to limit the need for user input to the system. The authors
recognised the fact that one of the problems with their earlier system was that
the administrator had to decide which queries to ask the system, and then create
the queries manually. This is described as a major usability problem with FANG
[64]. In the FANG system, the administrator has to enter the network topology
description manually using the Firmato MDL language. Using this language
was raised as a problem by beta testers and in the new Lumeta system, the
routing table is used to create this automatically. The GUI to FANG, shown in
Figure 5, was also replaced as it was deemed difficult to use by testers. This has
been replaced by a batch process which performs a comprehensive simulation of
traffic through the firewall policy and reports on this. This is interesting as the
administrator users found the original Firmato CLI interface easy to use, and
yet it was replaced with a GUI. This shows the design was perhaps not tailored
to the type of user correctly [32]. The output from the system is now a report in
the form of web pages, with the ability to drill down into more detail if the users
needs to. Using HTML to provide this type of flexible reporting is described as
an ideal mechanism for security analysis tools [32]. The FANG system can only
translate Lucent Managed Firewall, which does not have a large market share.
The Lumeta system added parser modules for CheckPoint firewall and Cisco
ACL configurations, so heterogeneous networks could be modeled, and therefore
the product would be useful to a wider audience. The low-level configurations are
abstracted to the Lucent Managed Firewall based language used by Firmato and
FANG, and the analysis query engine uses this as input. The Lucent Managed
Firewall language was used as it is contains high-level constructs and is easy to
parse. The Lumeta architecture, taken from [11], is shown in 6.

The Lumeta system has since been developed into a commercial product, the
Algosec Firewall Analyser from Algorithmic Security Inc. [66], which provides
multi-vendor firewall analysis, monitoring and auditing. The Firewall Analyser
system supports the major enterprise firewall platforms: CheckPoint Firewall-1
software firewall (which runs on various hardware platforms), Cisco PIX, ASA
and Router firewalls, and Juniper Netscreen.

Computers and Security 21

Fig. 6. The Lumeta system architecture [11]

DePaul University in Chicago has contributed greatly to research in the ar-
eas of firewall policy modeling and analysis. Al-Shaer and Hamed have been
the main contributors, with over a dozen publications between them. Their first
research into firewall policy analysis was concerned with auditing legacy firewall
policies to automatically discover conflicts and anomalies in firewall policies.
This anomaly checking can also assist administrators when editing the deployed
policies [16, 67]. The rule set conflict detection aims to highlight possible prob-
lems in a rule set based on the order of the rules, and the dependencies between
rules due to the ordering. For example a more general rule before a more specific
rule in a rule set, would mean the more specific rule would never be reached.
The more specific rule is classified as ‘shadowed’ by the first rule if the filtering
actions taken are different (pass and drop), or ‘redundant’ if the actions are
the same (for example, both rules pass the packet). These are classed, by the
authors, as rule set ‘anomalies’ [67]. The FPA tool was created, based around a
formal model of the firewall rules and the relationships between them. Modeling
of the filtering policies is done using BDDs and algorithms to detect anomalies
in the rule set model, have been created. To prove the concept they demonstrate
a five tuple filtering syntax, which is used to describe the filtering rules used
as input to the system. This maps directly from current low-level filtering lan-
guages, such as Cisco ACLs. The format of the five tuple filtering rule is shown
in Listing 1.4. The literature only shows examples of these commonly used fil-
tering fields, but the authors state this could easily be extended to include any
other filtering fields from low-level languages [16]. This could be extended to in-
clude the filtering options available in modern low-level filtering languages, such
as Cisco ACLs or Linux IP Tables. Note that the filters used in the examples
only use classful ranges of IP addresses, and classless ranges would need a more
sophisticated wildcard specification. Al-Shaer and Hamed define all the possible
relationships between rules, which are then proved mathematically to be the
union of all possible relations [16].

Listing 1.4. Format of filtering rules, used as input to the FPA tool [16]

<order> <protoco l><s r c i p><s r c po r t><ds t ip><dst por t> <act ion>

The firewall rule set, and the relations within, are then modeled as a BDD.
This is then represented as a policy tree, with nodes on the tree representing

22 Review of Security Policy Implementations

filtering fields, and branches being the values. Each path through the tree rep-
resents a rule in the input rule set. This model was chosen, as the rule set and
the anomalies can be visualised by the users. An example of this type of tree,
taken from [68], is shown in Figure 7.

Fig. 7. FPA tool BDD Tree model of a filtering rule set [68]

Algorithms to detect any anomalies within the rule set are then run, and can
be displayed to the user in the FPA tool interface. The interface provided by the
system is a GUI, which can show the policy tree, and any rule set anomalies.
The interface is shown in Figure 8, which is taken from [16]. The policy tree
is shown in the left hand pane, and the discovered anomalies in the right hand
pane. The rule set is shown in the bottom pane, with the conflicts highlighted.
The FPA tool also allows the user to maintain the rule set, inserting, modifying
and deleting rules. As the user edits the rules, the tool provides feedback on any
conflicts that may be introduced by these actions.

Although the use of system is described as analysis of legacy firewall policies,
by the authors, no automatic importing of these policies is described. The system
seems to need an administrator to manually translate the low-level rule set into
the five tuple syntax. This would classify the systems top-down, however, the
translation of deployed policies is not difficult as it is a direct mapping from
most firewall configuration languages. Fixed format configurations from devices
can be easily parsed using a scripting language, such as Perl [64].

The authors regarded this system as a step forward from the query-based
analysis systems such as FANG [51] and Lumeta [64]. The main reason for this
is that it takes much more effort to redefine deployed rules sets into the high-

Computers and Security 23

Fig. 8. FPA tool GUI [16]

level policy specification languages used by these systems, rather than analysing
the rule sets directly with the FPA system [68].

The scope of the FPA system was a single device and rule set, but this was
extended to anomaly detection across multiple firewalls [24, 69]. Further research
extended the system to include other filtering devices, including IDS, and VPN
gateways, and the inter-device anomaly analysis, across the global policy [70].

The FIREMAN Firewall Analysis system [71] can perform analysis of firewall
filtering, detecting redundant and conflicting rules, which may point to miscon-
figurations. Again, BDDs are used to model one or more firewalls. The analysis
can discover mis-configurations, similar to anomalies defined in the FPA system,
as well as detecting policy violations in the policy. The policy violations are
based on a blacklist or whitelist input by the user, as well as a general policy for
all rule sets based on the twelve common firewall configuration errors identified
by [10]. The model is created with a bottom-up approach, by parsing device
configuration files. An evaluation of the system was carried out, by creating ar-
tificial rule sets of up to 800 rules. Performance evaluation was carried out based
on timing metrics. The experimental conditions used, were rule sets increasing
size. The system can analyse up to 800 rules in less than three seconds.

Research at AT&T labs produced a configuration auditing and management
system called EDGE [18]. It creates an abstract model of the networks routing
information by reading in and processing entire device configuration files. The
network is modeled using an entity relationship model stored in a database of
network services described in the configuration files. Off-line analysis of the net-
work configuration is then provided, and reports are generated. These can be

24 Review of Security Policy Implementations

used to identify problems such as inconsistent routing configurations on devices.
The administrator can decide whether to correct these highlighted problems,
before the system rewrites the configurations back out to the devices. This is
an example of a pragmatic, bottom-up, approach to modeling from network
configurations. The motivation for the system is similar to many of the fire-
wall management systems. The configuration languages used to configure these
complex routing systems are difficult for the administrator to get right. Automa-
tion provisioning of configurations is proposed as a solution in this case, with
the database model of the current network being used to facilitate this. The
interface to the system is via the EDGE web site. EDGE users have access to
their own networks data. Various network visualisations are available to help the
administrator understand the policies, such as network topology and routing in-
formation. Various web-based reports are also available on request. This system
has been successfully commercialised, and runs daily on thousands of enterprise
networks, helping administrators manage complex networks [18].

One of the main problem with systems which convert to and from vendor
specific configurations, such as the systems discussed in this section, is that the
configuration languages tend to change rapidly. For example, Cisco’s ACL filter-
ing language has had many additional features added to it since the first version
in the mid 1990s. This means that the parser modules have to be continually
reviewed, to keep them up to date with the latest language changes [18].

“Command line interfaces often lack proper version control for the syntax
and the semantics. It is therefore time consuming and error prone to maintain
programs or scripts that interface with different versions of a command line
interface.” – [54]

As part of another configuration management system being developed by
Caldwell et al., some interesting research into Cisco Router IOS parsing and
modeling was carried out at AT&T Labs. In [72], a learning system and adap-
tive parser are described. The overall system will be able to process and extract
information from existing network configurations, much as described in their pre-
vious work with the EDGE system [18], but the parser can adapt to changes in
the configuration language being parsed. The parser is automatically generated
from valid configurations, which are fed into the learning system. The system, if
perfected, would not need manual changes to be made whenever the configura-
tion language version had new features introduced. This would overcome one of
the major problems with the bottom-up approach to any type of policy model-
ing, especially when dealing with rapidly changing configuration languages such
as Cisco device operating systems.

Reverse Engineering Security Policies Al-Shaer and Hamed, at DePaul
University seem to have produced the first research into reverse engineering
of natural language, high-level policies from existing device configurations in
2002 [16, 73]. They aggregate network services together, using their FPA system
model as a base, and produce a basic text based abstract policy description
from a filtering rule set. They take their BDD model of the filtering rule set, and

Computers and Security 25

create another BDD based on network services from that. Services can then be
aggregated together, changing it into a form which can be presented to the user
in a natural language. The interface for the tool was a GUI showing the network
services based tree and the textual representation of the policy. Figure 9, taken
from [16], shows the network service-based tree and the high-level policy which
has been inferred.

Fig. 9. Policy Inference Tool GUI [16]

The creation of an abstract high-level policy from low-level device config-
urations is a fairly new subject for research. The 2007 paper by Tongaonkar,
Inamdar, and Sekar describes a technique to extract the high-level security pol-
icy from analysis of the low-level representation of a rule set [74]. Their system
attempts to flatten the rule set, by aggregating overlapping rules together, thus
eliminating the dependency on the order of the rules. This also reduces the size
and complexity of the rule set, hopefully giving the administrator a better un-
derstanding of the policy it represents. This is a similar technique to the [16]
system.

In [22], Bishop and Peisert developed a system of reverse engineering access
control policies from Linux file system access control configurations. This doesn’t
involve firewall policies however, only user access policies from Linux password
files. Around the same time Golnabi et al. have also worked on the problem of
inferring high-level policies [75], but their approach is based around an active
system, and the data mining of the device logs, and not by static analysis of
the device configurations. Similarly, Abedin et al. in [76] describe techniques
used to mine firewall log files to regenerate effective firewall rules. Their method
uses algorithms to reduce the data set through mining of firewall network traffic
logs using packet frequencies. These are then used to calculate the occurrence
of each attribute of a log record in a firewall log file, thus generating primitive
rules. Firewall rules are then regenerated from these primitive rules using ag-
gregation and a set of heuristics. Anomalies in the original rule set and defects

26 Review of Security Policy Implementations

in the firewall implementation are then identified through a comparison of the
regenerated rules with the original, manually-defined rules.

Policy Visualisation Another way to analyse or validate a policy is to graphi-
cally represent the rule set in some form. This technique has been used in several
tools to some extent, for example the FPA system Al-Shaer and Hamed uses vi-
sualisation of BDDs tree to represent the firewall policy. This was regarded as an
important design feature. The choice of a BDD as a model was used over, faster
modeling techniques for simplicity and ease of visualisation to the user [67].

[77] describes a firewall packet filter visualisation tool, PolicyVis. A GUI
provides the administrator with a visualisation of packets passed or blocked by
the firewall, based on a set of specified query parameters. The administrator can
enter queries, much like the Firmato or FANG systems, and instead of textual
answers, a visualisation of the filtered traffic is generated. Like the query-based
systems reviewed earlier in this paper, this leaves the administrator to create
the queries.

[19] discusses a system, to compliment the CLI, visualising the most complex
parts of the policy. Their system was based around improving the usability of
network administrators current systems, by complimenting them with visualisa-
tions, but not replacing them. Their approach is different from the clean-slate
approaches taken in some of the systems reviewed in this section, such as with
new high-level policy specification languages. They assume that the administra-
tor prefers the low-level CLI based tools, they are familiar with, and attempt
to give additional usablility through visaulisation rather than replacing the CLI
tools. This assumption is made, based on research into the network administra-
tion community and the context of the work administrators perform [31, 78].

4 Conclusions

This paper explored literature in the areas of network security, security policies,
policy enforcement, and firewall policy management systems. A taxonomy of
systems which aid the administrator in the management of firewall policies, was
also carried out. It has been shown that security policies play a central and im-
portant role in network security. High-level policies are created with input from
management, and are typically written in a natural language. These policies then
have to be mapped to the technical policies which network devices enforce. The
process of mapping these high-level policies to low-level device configurations is
normally performed manually by network administrators. This task is difficult
and error prone as there is a large conceptual gap between the high-level policies
and the configurations. The low-level firewall policies themselves are difficult
to understand, reverse engineer, and maintain due to the complexity in large
rule sets, and the fact that overall policies are sometime enforced over multi-
ple firewalls and filtering devices. Many systems to help with the understanding
and management of these policies have been proposed in the literature. Much

Computers and Security 27

research into policy-based systems has been carried out, including high-level ab-
stract policy languages, query-based rule set testing systems, and firewall rule
set auditing systems. High-level languages, used to bridge the gap between high-
level policies and low-level firewall configurations have been developed, but have
some problems. A common problem with abstract policy languages is that they
require configuration by specialists. The administrator typically does not want
to, or have the time to learn these new languages. Some of the languages also
have limitations with the features they support. Query-based analysis systems
have been produced specifically for firewall auditing, and analyse the firewall rule
set by simulating network traffic passing through the firewall, based on queries
input by the user. Some have overcome the problem of abstract language based
systems, as they use models hidden from the user, which can be created from de-
vice configurations automatically. Some query-based systems have problems also,
as they put the onus on the administrator to create the queries, and sometimes
to learn a new query language which leads to the same problems as high-level
modeling languages. Other off-line auditing systems were reviewed, including
rule set anomaly detection systems, visualisation systems, and high-level policy
reverse engineering systems - which are still in their infancy. From the review, it
was highlighted that off-line configuration analysis is the area were some of these
systems have become commercialised, such as automated firewall configuration
analysis, and routing configuration analysis. These off-line passive systems have
advantages over active testing systems, such as vulnerability testing, as they can
be performed before policies are deployed. Another issue raised in the research
more than once, was that of which interface systems had. Network and security
administrators prefer a low-level, textual based CLI interface over an abstract
interface, such as a GUI for most tasks.

Bibliography

[1] B. Fraser, J. P. Aronson, N. Brownlee, and F. Byrum, “Site
security handbook (rfc 2196),” Sep 1997. [Online]. Available: http:
//www.ietf.org/rfc/rfc2196.txt?number=2196

[2] B. Schneier, Secrets and Lies - Digital Security in a Networked World. Wi-
ley, 2000.

[3] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin, Firewalls and Internet
Security: Repelling the Wiley Hacker, 2nd Edition. Addison-Wesley, Feb
2003.

[4] Y. Bhaiji, CCIE Professional Development - Network Security Technologies
and Solutions. Cisco Press, 2008.

[5] D. Danchev, “Building and implementing a successful information security
policy,” online at www.windowsecurity.com, 2003.

[6] E. Guttman, L. Leong, and G. Malkin, “Users’ security handbook (rfc
2504),” Feb 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2504.txt?
number=2504

[7] P. Samarati and S. C. de Vimercati, “Access control: Policies, models, and
mechanisms,” Lecture Notes in Computer Science, vol. 2171, pp. 137–196,
2000.

[8] T. Corbitt, “Protect your computer system with a security pol-
icy,” Management Services, vol. 46(5), pp. 20–21, 2002. [On-
line]. Available: http://findarticles.com/p/articles/mi qa5428/is 200205/
ai n21313131/pg 2?tag=artBody;col1

[9] Cisco Systems, “Cisco safe,” 2009. [Online]. Available: http://www.cisco.
com/en/US/netsol/ns954/index.html

[10] A. Wool, “A quantitative study of firewall configuration errors,” Computer,
vol. 37, no. 6, pp. 62–67, 2004.

[11] A. Mayer, A. Wool, and E. Ziskind, “Offline firewall analysis,” International
Journal of Information Security, vol. 5, no. 3, pp. 125–144, 2006.

[12] E. M. Madigan, C. Petrulich, and K. Motuk, “The cost of non-compliance:
when policies fail,” in SIGUCCS ’04: Proceedings of the 32nd annual ACM
SIGUCCS conference on User services. New York, NY, USA: ACM, 2004,
pp. 47–51.

[13] S. Bellovin and W. Cheswick, “Network firewalls,” IEEE Communications
Magazine, vol. 32, no. 9, pp. 50–57, 1994.

[14] F. B. Schneider, “Enforceable security policies,” ACM Transactions on In-
formation and System Security (TISSEC), vol. 3, no. 1, pp. 30–50, 2000.

[15] B. Blakley, “The emperor’s old armor,” in Proceedings of the 1996 workshop
on New security paradigms. ACM Press New York, NY, USA, 1996, pp.
2–16.

[16] E. Al-Shaer and H. Hamed, “Design and implementation of firewall policy
advisor tools,” DePaul University, CTI, Tech. Rep., 2002.

Computers and Security 29

[17] A. D. Rubin, D. Geer, and M. J. Ranum, Web Security Sourcebook. Wiley,
1997.

[18] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and
J. Rexford, “The cutting edge of ip router configuration,” in Proceedings of
2nd ACM Workshop on Hot Topics in Networks (Hotnets-II), 2003.

[19] T. Wong, “On the usability of firewall configuration,” in Symposium on
Usable Privacy and Security, 2008.

[20] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miege, “A formal ap-
proach to specify and deploy a network security policy,” in Formal Aspects
in Security and Trust, ser. IFIP International Federation for Information
Processing, vol. 173/2005. Springer Boston, 2004, p. 203218.

[21] S. Hinrichs, “Policy-based management: Bridging the gap,” in Computer
Security Applications Conference, Annual, vol. 0. Los Alamitos, CA, USA:
IEEE Computer Society, 1999, pp. 209–218.

[22] M. Bishop and S. Peisert, “Your security policy is what,” University of
California at Davis, Tech. Rep., 2006.

[23] A. Wool, Packet Filtering and Stateful Firewalls. Wiley, 2006, ch. Firewall
Architectures, p. 526.

[24] E. Al-Shaer and H. Hamed, “Discovery of policy anomalies in distributed
firewalls,” in Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, vol. 4, 2004.

[25] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith, “Implementing a
distributed firewall,” in Proceedings of the 7th ACM conference on Com-
puter and communications security. ACM New York, NY, USA, 2000, pp.
190–199.

[26] M. Abrams and D. Bailey, “Abstraction and refinement of layered security
policy,” in Information Security: An Integrated Collection of Essays. IEEE
Computer Society Press, 1995, pp. 126–136.

[27] R. Sandhu, “The typed access matrix model,” in 1992 IEEE Computer So-
ciety Symposium on Research in Security and Privacy, 1992. Proceedings.,
1992, pp. 122–136.

[28] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin, C. Pham, and S. Li,
“An automated framework for validating firewall policy enforcement,” in
POLICY ’07: Proceedings of the Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 151–160.

[29] NIST, “Generally accepted principles and practices for securing information
technology systems,” NIST, Tech. Rep., 1996.

[30] ——, “Special publication 900-64 - security considerations in the system
development life cycle,” NIST, Tech. Rep., 2008.

[31] E. M. Haber and J. Bailey, “Design guidelines for system administration
tools developed through ethnographic field studies,” in CHIMIT ’07: Pro-
ceedings of the 2007 symposium on Computer human interaction for the
management of information technology. New York, NY, USA: ACM, 2007,
p. 1.

30 Review of Security Policy Implementations

[32] P. Jaferian, D. Botta, F. Raja, K. Hawkey, and K. Beznosov, “Guidelines for
designing it security management tools,” in CHiMiT ’08: Proceedings of the
2nd ACM Symposium on Computer Human Interaction for Management of
Information Technology. New York, NY, USA: ACM, 2008, pp. 1–10.

[33] V. Tsoumas and T. Tryfonas, “From risk analysis to effective security man-
agement: towards an automated approach,” Information Management &
Computer Security, vol. 12, pp. 91–101, 2004.

[34] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” in Workshop on Policies for Distributed Systems
and Networks, 2001.

[35] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher, “Specifica-
tions of a high-level conflict-free firewall policy language for multi-domain
networks,” in SACMAT ’07: Proceedings of the 12th ACM symposium on
Access control models and technologies. New York, NY, USA: ACM, 2007,
pp. 185–194.

[36] V. Zaliva, “Firewall policy modeling, analysis and simulation: a survey,”
SourceForge, Tech. Rep., 2008.

[37] J. D. Guttman, “Filtering postures: local enforcement for global policies,”
vol. 0. Los Alamitos, CA, USA: IEEE Computer Society, 1997, p. 0120.

[38] ——, “Rigorous automated network security management,” International
Journal of Information Security, vol. 4, pp. 29–48, 2005.

[39] ——, “Security goals: Packet trajectories and strand spaces,” Lecture Notes
in Computer Science, pp. 197–261, 2001.

[40] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” IEEE Symposium on Security and Privacy, vol. 0,
pp. 17–31, 1999.

[41] Cisco Systems, “Cisco secure policy manager.” [Online]. Avail-
able: http://www.cisco.com/en/US/products/sw/secursw/ps2133/prod
technical reference09186a00800a9ebc.html

[42] ——, “Cisco security manager.” [Online]. Available: http://www.cisco.
com/en/US/products/ps6498/index.html

[43] S. Lee, T. Wong, and Kim, “To automate or not to automate: On the
complexity of network configuration,” in IEEE International Conference
on Communications (ICC), 2008, pp. 5726 – 5731.

[44] T. Uribe and S. Cheung, “Automatic analysis of firewall and network in-
trusion detection system configurations,” Journal of Computer Security,
vol. 15, no. 6, pp. 691–715, 2007.

[45] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg, S. Rao,
and W. Aiello, “Configuration management at massive scale: system design
and experience,” in 2007 USENIX Annual Technical Conference. Berkeley,
CA, USA: USENIX Association, 2007, pp. 1–14.

[46] S. Pozo, R. Ceballos, and R. M. Gasca, “Afpl, an abstract language model
for firewall acls,” in ICCSA ’08: Proceedings of the international conference
on Computational Science and Its Applications, Part II. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 468–483.

Computers and Security 31

[47] S. Pozo, A. J. Varela-Vaca, and R. M. Gasca, “Afpl2, an abstract language
for firewall acls with nat support,” International Conference on Dependabil-
ity, pp. 52–59, 2009.

[48] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proceedings of the 1st ACM
workshop on Research on enterprise networking, ser. WREN ’09. New York,
NY, USA: ACM, 2009, pp. 1–10.

[49] S. Hazelhurst, A. Fatti, and A. Henwood, “Binary decision diagram rep-
resentations of firewall and router access lists,” Department of Computer
Science, University of the Witwatersrand, Tech. Rep., 1998.

[50] S. Hazelhurst, “Algorithms for analysing firewall and router access lists,”
University of theWitwatersrand, Tech. Rep., July 1999.

[51] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis engine,”
Security and Privacy, IEEE Symposium on, vol. 0, p. 0177, 2000.

[52] R. Marmorstein and P. Kearns, “A tool for automated iptables firewall anal-
ysis,” in Proceedings of the annual conference on USENIX Annual Technical
Conference (ATEC). Berkeley, CA, USA: USENIX Association, 2005, pp.
44–44.

[53] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (snmp) (rfc 1157),” May 1990. [Online]. Available:
http://tools.ietf.org/html/rfc1157

[54] J. Schoenwaelder, “2002 iab network management workshop (rfc 3535),”
2003.

[55] C. Ehret, “From snmp deception to verinecs cisco service,” Master’s thesis,
University of Fribourg, Switzerland, 2005.

[56] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy core
information model - version 1 specification (rfc 3460),” 2001. [Online].
Available: http://tools.ietf.org/html/rfc3460

[57] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, “The
cops (common open policy service) protocol (rfc2748),” Jan 2000. [Online].
Available: http://tools.ietf.org/html/rfc2748

[58] A. Bierman, K. Crozier, R. Enns, T. Goddard, E. Lear, P. Shafer,
S. Waldbusser, and M. Wasserman, “Netconf configuration protocol (rfc
4741),” Dec 2006. [Online]. Available: http://tools.ietf.org/html/rfc4741

[59] S. Halle, R. Deca, O. Cherkaoui, R. Villemaire, and D. Puche, “A formal
validation model for the netconf protocol,” 15th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management (DSOM
2004), pp. 147–158, 2004.

[60] M. Choi, H. Choi, J. Hong, H. Ju, and S. POSTECH, “Xml-based config-
uration management for ip network devices,” Communications Magazine,
IEEE, vol. 42, no. 7, pp. 84–91, 2004.

[61] Cisco Systems, “Network configuration protocol,” Jun 2009.
[Online]. Available: http://www.cisco.com/en/US/docs/ios/netmgmt/
configuration/guide/nm cns netconf.pdf

[62] Juniper Networks, “Netconf api guide,” 2008. [On-
line]. Available: http://www.juniper.net/techpubs/software/junos/
junos91/netconf-guide/netconf-guide.pdf

32 Review of Security Policy Implementations

[63] G. Munz, A. Antony, F. Dressler, and G. Carle, “Using netconf for config-
uring monitoring probes,” in IEEE/IFIP Network Operations & Manage-
ment Symposium (IEEE/IFIP NOMS 2006), Poster Session, Vancouver,
Canada, Apr, 2006.

[64] A. Wool, “Architecting the lumeta firewall analyzer,” in Proceedings of
the 10th conference on USENIX Security Symposium, USENIX Association
Berkeley, CA, USA. USENIX Association, 2001, pp. 7–7.

[65] L. W. Wai, “Sans security life cycle,” 2001. [On-
line]. Available: http://www.sans.org/reading room/whitepapers/testing/
security life cycle 1 diy assessment 260?show=260.php&cat=testing

[66] Algosec, “Algosec firewall analyser,” 2009. [Online]. Available: http:
//www.algosec.com/en/products/firewall analyzer.php

[67] E. Al-Shaer and H. Hamed, “Firewall policy advisor for anomaly discovery
and rule editing,” in Integrated Network Management, 2003, p. 1730.

[68] ——, “Modeling and management of firewall policies,” IEEE Transactions
on Network and Service Management, vol. 1-1, pp. 2–10, 2004.

[69] ——, “Taxonomy of conflicts in network security policies,” IEEE Commu-
nications Magazine, vol. 44, no. 3, pp. 134– 141, 2006.

[70] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, “Towards global
verification and analysis of network access control configuration,” DePaul
University, Chicago, IL, USA, Tech. Rep., 2008.

[71] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra, “Fireman:
A toolkit for firewall modeling and analysis,” Security and Privacy, IEEE
Symposium on, vol. 0, pp. 199–213, 2006.

[72] D. Caldwell, S. Lee, and Y. Mandelbaum, “Learning to talk cisco ios: In-
ferring the ios command language from router configuration data,” AT&T,
Tech. Rep., 2007.

[73] E. Al-Shaer and H. Hamed, “Management and translation of filtering secu-
rity policies,” in 2003 IEEE International Conference on Communications.
IEEE Press, 2003.

[74] A. Tongaonkar, N. Inamdar, and R. Sekar, “Inferring higher level poli-
cies from firewall rules,” in LISA’07: Proceedings of the 21st conference
on Large Installation System Administration Conference. Berkeley, CA,
USA: USENIX Association, 2007, pp. 1–10.

[75] K. Golnabi, R. Min, L. Khan, and E. Al-Shaer, “Analysis of firewall policy
rules using data mining techniques,” in 10th IEEE/IFIP Network Opera-
tions and Management Symposium (NOMS 2006), 2006.

[76] M. Abedin, S. Nessa, L. Khan, E. Al-Shaer, and M. Awad, “Analysis of
firewall policy rules using traffic mining techniques,” International Journal
of Internet Protocol Technology, vol. 5, pp. 3–22, April 2010.

[77] T. Tran, E. Al-Shaer, and R. Boutaba, “Policyvis: firewall security policy
visualization and inspection,” in LISA’07: Proceedings of the 21st conference
on Large Installation System Administration Conference. Berkeley, CA,
USA: USENIX Association, 2007, pp. 1–16.

[78] D. Botta, R. Werlinger, A. Gagné, K. Beznosov, L. Iverson, S. Fels, and
B. Fisher, “Towards understanding it security professionals and their tools,”

Computers and Security 33

in SOUPS ’07: Proceedings of the 3rd symposium on Usable privacy and
security. New York, NY, USA: ACM, 2007, pp. 100–111.

