
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1
Available online at w
journal homepage: www.elsevier .com/locate/cose
EVIV: An end-to-end verifiable Internet voting system
Rui Joaquim a,b,*, Paulo Ferreira b,c, Carlos Ribeiro b,c

a Instituto Politécnico de Lisboa, Instituto Superior de Engenharia de Lisboa - ISEL, ADEETC, R. Conselheiro Emı́dio Navarro,

1, 1959-007 Lisboa, Portugal
b INESC-ID, GSD, R. Alves Redol, 9, 1000-029 Lisboa, Portugal
cUniversidade Técnica de Lisboa, Instituto Superior Técnico, DEI, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
a r t i c l e i n f o

Article history:

Received 2 June 2012

Received in revised form

20 September 2012

Accepted 19 October 2012

Keywords:

E-voting

Internet voting

Remote voting

Integrity

Privacy
* Corresponding author. Instituto Politécnico
Navarro, 1, 1959-007 Lisboa, Portugal. Tel.: þ

E-mail addresses: rjoaquim@deetc.isel.ipl
0167-4048/$ e see front matter ª 2012 Elsev
http://dx.doi.org/10.1016/j.cose.2012.10.001
a b s t r a c t

Traditionally, a country’s electoral system requires the voter to vote at a specific day and

place, which conflicts with the mobility usually seen in modern live styles. Thus, the

widespread of Internet (mobile) broadband access can be seen as an opportunity to deal

with this mobility problem, i.e. the adoption of an Internet voting system can make the live

of voter’s much more convenient; however, a widespread Internet voting systems adoption

relies on the ability to develop trustworthy systems, i.e. systems that are verifiable and

preserve the voter’s privacy. Building such a system is still an open research problem.

Our contribution is a new Internet voting system: EVIV, a highly sound End-to-end Veri-

fiable Internet Voting system, which offers full voter’s mobility and preserves the voter’s

privacy from the vote casting PC even if the voter votes from a public PC, such as a PC at

acybercafé or atapublic library.Additionally, EVIVhasprivatevoteverificationmechanisms,

inwhich thevoter just has toperformasimplematchof two small strings (4e5 alphanumeric

characters), that detect and protect against vote manipulations both at the insecure vote

client platform and at the election server side.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction The biggest challenges of Internet voting are the voter’s
In spite of the fact that Internet voting presents risks to the

voter’s privacy and the election’s integrity, evidence seems to

point out that Internet voting has come to stay. According to

the Krimmer et al. (2007) study, numerous Internet elections

(w140) had already occurred worldwide, and many of them

(w40%) were actual real binding elections. These numbers

have been increasing as more countries perform trials or

adopt the Internet voting channel. Notable examples are the

Switzerland and Estonia cases which are moving to/already

have national binding Internet elections. A more recent

example is Norway which had a trial on an Internet voting

system in the 2011 local government elections (Ministry of

Local Government and Regional Development, 2012).
de Lisboa, Instituto Su
351 939457621.
.pt (R. Joaquim), paulo.fer
ier Ltd. All rights reserve
privacy and coercion issues at the uncontrolled voting envi-

ronment and the (in)secure platform problem, i.e. the (in)

security of the vote casting PC that can be the home or office

computer of even a computer at a cybercafé or at a public

library (Jefferson et al., 2004; Kiayias et al., 2006; Dagstuhl

Accord, 2007). Usually, Internet voting systems require trust

on the vote client platform (the vote casting PC) to give some

guarantees of voter’s privacy and election’s integrity;

however, this is not easily achievable given that vote casting

PCs are in uncontrolled environments and often vulnerable to

a number of attacks (e.g. virus, worms, phishing).

EVIV addresses the voter’s privacy at the vote casting PC in

addition to the insecure platform problem. EVIV allows for re-

voting (cast multiple votes) which may address weak forms of
perior de Engenharia de Lisboa, ADEETC, R. Conselheiro Emı́dio

reira@inesc-id.pt (P. Ferreira), carlos.ribeiro@ist.utl.pt (C. Ribeiro).
d.

mailto:rjoaquim@deetc.isel.ipl.pt
mailto:paulo.ferreira@inesc-id.pt
mailto:carlos.ribeiro@ist.utl.pt
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 171
coercion and also prevent, to some extent, vote buying

attacks.

The design of EVIV is driven by the following goal: create

a fully mobile End-to-End (E2E) verifiable Internet voting

system that protects the voter’s privacy from the vote casting

PC. From this goal we have derived the following requisites:

1. EVIV must enable the voter to vote privately even from

public PCs on election day, e.g. a PC at a cybercafé or at

a public library.

2. EVIV must have privacy preserving voter recorded-as-

intended verification, i.e. it must allow the voter to verify

that her recorded vote accurately represents her choices

without revealing her vote intention nor relying on any

trusted hardware/software, e.g. the hardware/software

that creates the electronic vote.

3. EVIV must provide privacy preserving universal counted-

as-recorded verification1 i.e. e allows anyone to verify

that the final tally is the accurate sum of all the valid

recorded votes while preserving the voters’ privacy.

4. EVIV must not impose mobility restrictions to the voters.

These requisites define the high level characteristics that

differentiate EVIV from other E2E verifiable Internet voting

systems: EVIV, to our knowledge, is the first E2E verifiable

Internet voting system that offers full mobility to the voter

and preserves the voter’s privacy from the vote casting PC (cf.

Section 7).

To achieve the above described goal/requisites, the EVIV

vote protocol combines a code voting protocol (Chaum, 2001;

Oppliger, 2002) with the MarkPledge cryptographic voter’s

verifiable vote encryption technique (Neff, 2004; Adida and

Neff, 2009; Joaquim and Ribeiro, 2012). The code voting

protocol preserves the vote’s privacy from the vote casting PC

because thevoteruses secret vote codes to select thecandidate;

on the other hand, the MarkPledge vote encryption technique

allows the voter to verify, with a very high soundness, that her

vote is cast and recorded-as-intended, performing just a simple

match of two small strings (4e5 alphanumeric characters).

Additionally, the vote encryption used in EVIV also supports

well known universal counted-as-recorded verification tech-

niques, e.g. verifiable homomorphic vote tally, cf. Section 3.1.3.

One important, and also differentiating, aspect of EVIV is

that its code voting protocol does not rely on a centralized vote

codes distribution. In EVIV the vote codes are not used to

communicate the voter’s choice to a remote election server;

instead, in EVIV every voter has a voter security token (VST),

which is responsible for the vote encryption, and to which the

voter communicates her candidate selection. With the help of

the VST, each voter generates the vote codes at home, which

facilitates the logistics of the election and allows for a full

online and mobile voting process.

The use of the VST to perform the vote encryption has the

additional advantage of protecting the voter’s privacy from the

election server(s), which is a common problem of code voting

systems (cf. Section 7). On the other hand, the limited

computational capabilities of theVST are an extra challenge to
1 A system with both recorded-as-intended and counted-as-
recorded, verifications is said to by E2E verifiable.
the system implementation. To address this challenge we

have developed MarkPledge 3 (Joaquim and Ribeiro, 2012), cf.

Section 3.1, which is the less computational demanding

specification of the MarkPledge technique and therefore suit-

able for computational constrained devices, such as the VST.

For simplicity we assume that the VST is a smart card or

a USB security token; however, the VST may also be a secure

element inside a smartphone, e.g. a specific security domain

within a UICC (Universal Integrated Security Card); in this case

the PC role is performed by the smartphone, whichmeans that

the voter may vote anywhere using her smartphone.

Summarizing, this paper contribution is a new voting

system (EVIV) that gives the voter full mobility and allow her

to vote privately in public computers without compromising

the integrity of her vote.

Thenext section gives anoverviewof the EVIV vote protocol

and the privacy and integrity trust models. Section 3 describes

the main EVIV protocol building blocks. Then, Section 4

describes in detail the EVIV system architecture and vote

protocol. The EVIV vote protocol is evaluated in Section 5.

Section 6describes theEVIVprototype implementation results.

An overview of the related work is given in Section 7. Finally,

Section 8 gives the conclusions and future work directions.
2. EVIV overview and trust models

In the design of EVIV we assume that each voter has a unique

VST. It is assumed that once a person reaches the legal age to

vote she goes to the local authorities and enrolls in official

voters list. After the enrollment, the person (now also a voter)

gets a digital voter identification token, i.e. the VST, that

contains a unique cryptographic key pair (e.g. RSA key pair)

which is used to authenticate the voter in subsequent elec-

tions, until the key pair expires.

After becoming a registered voter the EVIV electoral

process for every election is the following:

1. A fewweeksbefore theelectionday, thevoter insertsherVST

intoaPCandconnects to theElectionRegistrar service; there,

thevoter registers tovoteonlineonthe forthcomingelection.

After a successful registration the voter’s VST creates a code

card, containing one vote code for each candidate and

a single vote confirmation code, which is printed using

a printer connected to the PC. Each vote code and the

confirmation code is a small (4e5 characters) text string.

2. On election day, cf. Fig. 1, the voter inserts her VST into a PC

and enters her chosen candidate vote code in the PC that

sends it to the VST (step ⓐ), which then prepares the vote

encryption and a vote receipt; both are sent to the Ballot

Box service through the PC (step ⓑ). The PC shows the vote

receipt, containing one verification code for each candidate,

to the voter that checks it by verifying that the verification

code of the selected candidate matches the confirmation

code in her code card (step ⓒ).

3. After the end of the Internet election period, all vote

encryptions and vote receipts are made public on a public

Bulletin Board. Every voter can then confirm that her vote

was cast and recorded-as-intended by checking that her

vote receipt is published on the Bulletin Board.

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

Fig. 1 e Candidate selection and receipt verification overview. In this example the voter selects the candidate Dharma with

the vote code RCP3. Then, the VST creates the vote encryption and receipt and sends them to the Ballot Box through the PC.

The voter gets and verifies the vote receipt by checking that the confirmation code on her code card (PZ8R) is the verification

code of the candidate Dharma in the vote receipt.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1172
4. Finally, the election tally is computed, in a privacy

preserving and verifiable way, from the data published in

the Bulletin Board. The tally and corresponding correctness

proofs are also published in the Bulletin Board, allowing

anyone to verify the correctness of the election tally (e.g.

independent election observer organizations).

2.1. Properties and trust models

The EVIV vote protocol demands some changes in the usual

voter’s electoral process interaction; namely, it requires a pre-

election registration and a simple visual vote receipt verifi-

cation. These changes and the cryptographic techniques used

in the EVIV vote protocol, cf. Section 4.3, gives EVIV the

following four properties, which are proven in Appendix B:

P1EVIV e No votes can be added, deleted or modified without

detection.

P2EVIV e Every vote is counted-as-recorded.

P3EVIV e Every voter can verify that her vote is recorded-as-

intended with a soundness of ð1� 2�aÞr$ðk�1Þ.2

P4EVIV e No one but the voter and her VST knows the voter’s

chosen candidate.

EVIV guarantees election integrity, i.e. properties P1EVIV,

P2EVIV and P3EVIV, against a single malicious entity (system

component or system player) or a collusion of malicious

entities under the following Integrity Assumptions (AI):

AI1_EVIV: There is at least one honest trustee among a set of

chosen trustees.3

AI2_EVIV: At least one honest organization or entity with

cryptographic capabilities will verify the correctness of all the

data used in the tally.
2 The protocol security parameters r and a are discussed in
Sections 4.3.3 and 3.1.2 respectively. k is the number of running
candidates.

3 The Trustees are defined in Section 4.1.
The privacy of the voter (P4EVIV) is protected against

a single malicious entity or a collusion of malicious entities,

even if the voter votes in a public computer, under the

following Privacy Assumptions (AP):

AP1_EVIV: There is no collusion of more than t out of n trustees,

where t and n are configurable security parameters.

AP2_EVIV: The VST (which performs the vote encryption) does

not disclose the voters’ vote choices.

AP3_EVIV: Only the VST and the voter have knowledge of the

vote codes. This assumption implies that the PC used to create

the vote codes does not store or disclose them. Note, however,

that the vote codes generation may be performed at any

chosen time by the voter, long before the election day, and

even using an offline PC, cf. Section 4.4.
3. Building blocks

This Section describes two building blocks used in the EVIV

protocol, namely the MarkPledge 3 vote encryption technique

and the shared random number generation protocol.

3.1. MarkPledge 3

Due to its complexity, the details of the MarkPledge technique

are left outside of the EVIV protocol description. Any of the

MarkPledge specifications (Neff, 2004; Adida and Neff, 2009;

JoaquimandRibeiro,2012)canbeusedwithEVIV;however,EVIV

requires the execution of the main cryptographic functions of

the MarkPledge technique in a computational constrained

device (i.e. the VST). Consequently, this section describes the

MarkPledge 3 (MP3) specification which is the only viable solu-

tion to implement MarkPledge, and therefore EVIV, in

a computational constraineddevice (JoaquimandRibeiro, 2012).

We start by providing an overview of the MarkPledge

technique before entering in the details of MP3. Every vote

protocol that uses the MarkPledge technique must follow the

following steps (possibly in a different order):

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 173
1. Create the vote encryption with one encryption of a YESvote

for the selected candidate and independent NOvote

encryptions for each of the not selected candidates. Both

the YESvote and theNOvotes are created using the candidate

Vote Encryption function VEpk, which also inserts a random

confirmation code in each of the candidate encryptions.4

2. Pledge/commit the YESvote confirmation code to the voter.

3. Create a random vote encryption challenge value after the

vote encryption.

4. Create a vote receipt comprised by one verification code for

each candidate (cf. Fig. 1), based on the vote encryption and

on the random challenge, using the candidate Receipt

Creation function RCpk.
5. Voter visual verification that the pledged/committed YES-

vote confirmation code is the verification code of the

selected candidate on the vote receipt.

6. Verify thevalidityofboth thevoteencryptionandvotereceipt

using, respectively, the candidate VoteValidity functionVVpk

and the candidate Receipt Validity functionRVpk.

7. Perform a vote canonicalization of the vote encryption,

using the candidate Vote Canonicalization function Cpk, and
count the votes.

The creation of the challenge value, in step 3, depends of

the vote protocol. In the EVIV case we use the shared random

number generation protocol described in Section 3.2. The

functions referred in 1, 4, 6, and 7 for MP3 are described in

detail in Joaquim and Ribeiro (2012). For completeness, the

following section provides a brief insight into each of the

functions internals as well as their main properties. The

length of the confirmation code, verification codes and vote

encryption challenge is defined by the MarkPledge security

parameter a, usually to a value between 20 and 30 bits (4e5

characters string).

3.1.1. MarkPledge 3 functions details
In the description below all encryptions are performed using

the exponential variant of the ElGamal cryptosystem with the

public cryptographic key parameters p, q and g and the elec-

tion public key pk, cf. Appendix A.

3.1.1.1. Candidate vote encryption function VEpk.

VEpkðb;q;rÞ¼hcvote¼hu;vi;voteValidityi
¼
��
u¼Epkðb;sÞ;v¼Epkðq;dÞ

�
;voteValidity

�
An MP3 candidate vote encryption cvote¼hu;vi is composed

by two independent encryptions: u is the encryption of either

b ¼ 1 for a YESvote or b ¼ �1 for a NOvote; v is the encryption of

a random confirmation (commit) code ðq˛RZqÞ, which in the

case of a YESvote is pledged to the voter.5

Both encryptions use exponential ElGamal with the

randomization factors s and d derived from the input value

r ¼ s k d. The voteValidity data proves that u is an ElGamal

exponential encryption of a value b˛f�1; 1g. In MP3, the
4 The specific way in which this code is encoded in the candi-
date encryption is different on each MP.

5 For usability reasons, only a bits of the confirmation code (q)
value is pledged to the voter, cf. Section 3.1.2.
voteValidity data is the output of the ballot validity proof

protocol of Cramer et al. (1997).

3.1.1.2. Candidate receipt creation function RCpk.

RCpkðb; q; s; d; cÞ ¼ hw;ui

w ¼
�
q if b ¼ 1 ðYESvoteÞ
2$c� qmod q if b ¼ 0 ðNOvoteÞ

u ¼ s$ðc� wÞ þ dmod q

TheRCpkfunction generates a receipt, i.e. a verification code

w. It outputs the confirmation code q, if the cvote is a YESvote, or

outputs the q symmetric value, taking c as the symmetry axis,

if the cvote is a NOvote. The u data is the combination of the

randomization factors used in the (cvote) u and v encryptions,

which is needed to verify that the verification equation results

in an encryption of the challenge value c, as described by the

RVpkfunction below. In order to work in accordance with the

ElGamal homomorphic properties, both the w and u values are

computed mod q.

The output of the RCpkfunction acts as a window into the

encrypted vote, ensuring the voter that the vote machine

encrypted the vote correctly, i.e. it encrypted hers intents.

Provided that the vote is encrypted and the voter is informed

of the chosen q before c is disclosed, it is not possible to the

entity using the function (the VST) to produce anything but

the q for the chosen candidate and some unpredictable value

(before knowing c) to the remaining candidates.

3.1.1.3. Candidate vote validity function VVpk. The candidate

vote validity function corresponds to the ballot validity proof in

Cramer et al. (1997), VVpkðcvote ¼ hu;vi; voteValidityÞ ¼
fTrue; Falseg. It isusedtoensure that theucomponentof the cvote

is in fact theencryptionofb¼ 1orb¼�1, i.e. it isavalid cvote. The

functionoutputsTrue if the cvote isvalidandFalseotherwise.This

function can be used in the middle of the voting process, to

ensure the correctness of the vote as soon as possible, or at the

end of the election, before the vote counting process.

3.1.1.4. Candidate receipt validity function RVpk.

RVpkðcvote ¼ hu;vi; c;w;uÞ ¼ RVpk

��
Epkðb; sÞ; Epkðq; dÞ

�
; c;w;u

�
¼ Epkðc;uÞ¼

?
uc�w$v

The receipt validity function corresponds to the zero

knowledge validation of the verification code w, which can be

conducted by any trusted third party by verifying that uc�w$v is

the encryption of c, without any special knowledge but the

public values. This is possible by a reconstruction of the

encryption of c using the u encryption factor, revealed by the

RCpk function. Formore details on themath behind the receipt

verification please refer to Joaquim and Ribeiro (2012).

3.1.1.5. Candidate vote canonicalization function Cpk.

Cpkðcvote ¼ hu;vi; c;wÞ ¼ u ¼ Epkðb; sÞ ¼ canonicalVote

The MP3 candidate vote canonicalization goal is to strip the

vote from any identifying marks before it is count. The n part

contains the confirmation code q, which is a number with

traceability features once decrypted, but u is just the encryp-

tion of b˛f�1; 1g that depends only on the vote type and

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1174
nothing more. Therefore, in MP3, the canonicalization func-

tion consists only in striping the vote from everything except

the encrypted vote type (Yes or No vote).

3.1.2. Adjusting the voter’s view of MP3 output to the
a parameter
The MarkPledge technique has the security parameter a that

defines the length of the verification and confirmation codes.

Usually, a is set to a value between 20 and 30,whichmeans that

the votermust compare 4e5 character strings. However, inMP3

the challenge (c), the verification code (w) and the confirmation

code (q) domains, are defined by the cryptosystem parameter q

and not by a. Since the size of q is in the hundreds of bits range

weclearlyhaveausability issue.Tosolve thisusability issue it is

proposed a change in the voter’s view of the MP3 functions

output, namely the voter’s view of both the verification code w

and the confirmation code q should be truncated to a bits by

applying the mod 2a operation to the referred values.

Assuming a uniform and random distribution of w and q

over Zq, the voter verification has a statistical soundness of

1 � 2�a, just because q\2a, i.e. the voter still performs the

verification of a random value uniformly distributed over Z2a ,

cf. (Joaquim and Ribeiro, 2012).

Note that in EVIV the size of the challenge is not a problem

because it is generated without the voter’s collaboration, cf.

Section 4.3.

3.1.3. Homomorphic vote tally
MP3 allows the use of an efficient homomorphic vote tally

process, using and independent homomorphic vote aggrega-

tion for each candidate. Thus, instead of decrypting each vote

before counting it, it is performed the homomorphic addition

of every encrypted vote votej ¼ cvotej1 k cvotej2 k . k cvoteðbÞjk,
where cvoteji ¼ huj

i; v
j
ii; j ¼ 1.n, n is the number of valid votes

and k is the number of candidates in each vote.

Given that the vote validity function VVpk ensures that each

uj
i ¼ Epkð1Þ or uj

i ¼ Epkð�1Þ, then the vote counting for candidate

i will be counti ¼ n þ di/2, where di is the decryption of the

homomorphic addition 4n
j¼1u

j
i. However, to ensure democ-

racy, the protocol must also guarantee that each vote is

counted for only one candidate, which means that the system

must ensure that there is only one uj
i ¼ Epkð1Þ in each vote (the

sumValidity proof in the EVIV protocol, cf. Section 4.3). Once

again, given that each uj
i is the encryption of the value 1 or �1,

it is only necessary to prove that 4k
i¼1u

j
i ¼ Epkð2� kÞ, e.g. using

the Chaum and Pedersen (1992) protocol for proving the

equality of discrete logarithms, or by revealing the sum of the

encryption factors of the uj
i elements, as suggested for the

validation of the c encryption in the RCpk and RVpk functions.

3.2. Shared random number generation protocol

To ensure the randomness and freshness of the challenge

used in EVIV protocol, we use a simple two round random

number generation protocol conducted by a set of trustees T .

The protocol steps are as follows:

1. In the first step each trustee ti˛T secretly generates

a random number ri and commits to it by publishing

a signed hash of ri on a public bulletin board.
2. After the commitment of all trustees, each trustee reveals

its random number. Then, all trustees verify the correct-

ness of the commitments published in the first step. If all

commitments are correct, the shared random number is

computed by applying a bitwise exclusive or to all the

random numbers ri generated by the trustees.

The random generation process is monitored by the elec-

toral commission that validates the process by signing the

final generated number and all messages that originated it. It

is obvious that if one trustee is honest the random number

generated will be fresh and random.
4. EVIV system description

The description of EVIV starts by presenting the system

players and their responsibilities (Section 4.1); it continues

with the description of the system components and their

functionality within the system architecture (Section 4.2);

finally Section 4.3 outlines the vote protocol phases. For all

these sections please refer to Fig. 2.
4.1. EVIV system players

The EVIV system has four system players: the electoral

commission, the voter, the trustees and independent

organizations.

Electoral Commission (not represented in Fig. 2) is the

entity responsible for the entire electoral process; namely, the

Electoral Commission is responsible for the voters enrollment

system, the actual voting system and the authentication of all

election public data.

Voter is any citizen with the right to vote. The voter must

enroll once with the Electoral Commission, and for every

election perform an online registration to be able to vote

online on election day. Besides voting, the voter may also

verify if her vote is cast and recorded-as-intended by per-

forming a simple string match.

Trustees exist in order to share the control over the voter’s

privacy and the election’s integrity among several entities.

The trustees can be the political parties and/or any other

authorized entity (e.g. an election observer non governmental

organization).

Independent Organizations are responsible for indepen-

dently validate the correctness of the election public data. The

immediate candidates for these organizations are the entities

directly interested in the election outcome, e.g. political

parties; however, any person/organization can perform the

role of an Independent Organization and verify the validity

and correctness of the election, provided that it has the

computational means to do it.
4.2. EVIV architecture

The EVIV architecture is constituted by the Enrollment

Service, the Election Registrar, the Ballot Box, the Bulletin

Board, the Verification Service, the VST and the vote client

platform (PC).

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

Fig. 2 e Overview of the EVIV vote protocol phases. The phases are presented clockwise starting at the left upper corner with

the voter enrollment phase.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 175
Enrollment Service is responsible for the enrollment

process of every voter. The enrollment process is the process

by which each voter is assigned a security token (VST). After

enrollment the voter may participate in several elections until

the assigned VST expires.

Election Registrar provides the election registration service

that allows voters to register for voting online on a particular

election.

Ballot Box provides the vote casting service on election day.

The Ballot Box service performs the voter authentication and

a vote encryption correctness verification before accepting the

vote.

Bulletin Board is the service responsible for the publication

of all election public data. The data published cannot be

deleted and is always authenticated, i.e. digitally signed.

Verification Service is a service that verifies the correction

and validity of votes and receipts. Each independent organi-

zation should run an instance of the verification service.

Voter Security Token (VST) is the entity responsible for the

vote encryption and the voter’s authentication by means of

digital signature (the voter’s private key is inside the VST).

Client Platform (PC) is the PC(s) or any other kind of

interaction machine with a VST reader (e.g. mobile phone,

pda) together with the corresponding operating system and

programs used by the voter during the vote protocol.

EVIV supports several instances (possibly on different

entities/servers) of all services. In EVIV this is easy because, cf.

Section 4.3, all data used to setup the election and compute

the election tally is public and authenticated (even the

encrypted votes) which facilitates the application of load
balancing and fault tolerance techniques. Note also that, the

first four services (Enrollment, Election Registrar, Ballot Box

and Bulletin Board) may even be run by the same entity/server

given that the system is immune to their collusion. This

ensures that EVIV may be used from very small elections with

just one server, to very large elections with every service

replicated many times ensuring both scalability and immu-

nity to lock out problems.

Under the trust models assumptions described in Section

2.1, in EVIV, and with respect to the voter’s privacy, we

assume that the VST and a configurable threshold of trustees

(that share the election private key) are honest. On the other

hand, regarding the election integrity, we only assume that

there is one honest Trustee and one honest Verification

Service accessible to the voter.

4.3. EVIV protocol

The EVIV’s vote protocol builds on top of a shared threshold

ElGamal election key pair, cf. Appendix A. The private election

key is shared by a set of trustees T in such a way that only the

cooperation of a (configurable) set of t trustees is able to decrypt

amessage encryptedwith the election public key. The votes are

encrypted, under the election public key, using the MarkPledge

technique.

EVIV’s vote protocol is divided in four phases (cf. Fig. 2): 1 e

the voter enrollment phase; 2 e the election registration

phase; 3 e the vote casting phase; and 4 e the public verifi-

cation and vote counting phase. The following sections detail

these four phases.

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1176
4.3.1. Voter enrollment phase
The voter enrollment phase consists of an off-line enrollment

process where the voter, through the Enrollment Service,

identifies herself to the Electoral Commission and receives her

VSTwith the voter’s private key and a certificate signed by the

Electoral Commission. The voter can then use her VST to vote

in all subsequent elections. The public output of the vote

enrollment phase is the publication of a list of all voters’

certificates in the Bulletin Board.

1. V/Enrollment Service : voterCredentials

To be able to vote the voter ðVÞ must be registered in the

electoral roll. This registration is usually performed in

person at the local authorities offices using the Enrollment

Service provided by the Electoral Commission. The voter

starts the enrollment process by going into a local authority

office and presenting her credentials, i.e. an identity proof.

2. Enrollment Service/V : VST

After verifying the voter’s identity, the Enrollment

Service assigns a VST to the voter, e.g. a smart card. The

VST contains a private key, and the corresponding public

key certificate issued by the Electoral Commission. The

VST key pair is generated inside the VST, thus is only

known to it. The VST key pair now becomes the voter’s key

pair.

3. EC / BB: {electoralRoll}EC
At some predetermined time before the election, the

Electoral Commission (EC) uses the Enrollment Service to

create the electoral roll, containing the list of voters and

corresponding public keys. The electoral roll is signed and

published on the public Bulletin Board (BB).

4.3.2. Election registration phase
The election registration phase is done sometime before the

election (e.g. a month), and is divided into two stages. First,

there is a setup stage (performed by the Electoral Commission

and by the Trustees) to setup election public information/

parameters (e.g. candidate list and election key pair). Then,

there is a ballot registration stage, where each voter registers

her ballot.

4.3.2.1. Election setup stage

1. EC / BB: {electionParameters}EC, {candidateList}EC
The election registration phase starts with the Electoral

Commission publishing in the Bulletin Board the election

candidate list and the public election parameters, such as:

the election date and the election security parameters (e.g.

election key pair parameters, cf. Appendix A).

2. T /BB : fkeyGenerationData;pkgT
The second step in the election registration phase is the

creation of a shared threshold ElGamal election key pair by

the set of Trustees T , cf. Appendix A.1. The inputs (crypto-

graphic key parameters)messages, the public outputs of the

key generation protocol and the election public key (pk) are

published in the public Bulletin Board. Each trustee signs

her messages before sending them to the Bulletin Board.

3. EC / BB: {pk}EC
The Electoral Commission verifies the election public key

generation data, published by the Trustees, and validates
the election public key by signing and publishing it on the

Bulletin Board.

The voters can now start registering to participate in the

election.

4.3.2.2. Ballot registration stage. The voter registers herself to

participate in the election by creating and registering a ballot.

The process starts with the voter connecting her VST to an

Internet connected PC and establishing a secure connection to

the Election Registrar (SSL/TLS connection). In this connec-

tion, the voter is authenticated by digital signature means

using her private key inside the VST, which may require

the introduction of a PIN. Then, the following takes place

(cf. Fig. 3).

1. ER / PC / VST: {candidateList}EC, {pk}EC
First, the Election Registrar (ER) sends the candidate

list and the election public key to the VST.

2. VST/PC/ER : fballotgV
The VST creates the voter’s ballot, signs it with the

voter’s private key (which is inside the VST), and sends

it to the Election Registrar using the PC Internet

connection.

An EVIV ballot is comprised of k candidate vote

encryptions (cvotei, i ¼ 1.k), in a random order, and the

corresponding voteValidity proofs, where k is the number

of candidates. Each cvotei and corresponding voteValidityi
proof are created by the MarkPledge vote encryption

ðVEpkÞ function, cf. Section 3.1.

VEpkðbi; qi; riÞ ¼
�
cvotei; voteValidityi

�

where bi, qi and ri are input parameters defining the

candidate vote type (bi ¼ �1 / NOvote;

bi ¼ 1 / YESvote) and the secret values needed to verify

the vote (qi and ri).

In the ballot there are k � 1 independent NOvotes

(bisj ¼ �1) and one YESvote (bj ¼ 1). Additionally, the

ballot has a sumValidity data proving that there is only

one YESvote entry in the ballot, cf. Section 3.1.3.

ballot ¼ kki cvoteik
k
i voteValidityi k sumValidity

Notice that, in order to transform the ballot into the vote it

is only necessary to rotate the ballot entries such that the

cvotej (theYESvote) entrybecomesalignedwith theselected

candidate, cf. Fig. 4, althoughat this time in theprotocolno

one but the VST knows the position of the YESvote in the

ballot, because none of the cvotes reveals its type.

3.
ER/BB : ffballotgVgER
ER/PC/VST : ffballotgVgER

Upon the ballot reception, the Election Registrar

verifies the ballot correctness by using the VVpkðcvotei;
voteValidityiÞ ¼ fTrue; Falseg function on each candidate

encryption to verify that they actually encrypt a value

bi˛f�1;1g; and using the sumValidity data to verify that

there is only one which encrypts a value bj ¼ 1

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

Fig. 3 e Ballot registration stage interaction in the election registration phase.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 177
Yk
i VVpk

�
cvotei; voteValidityi

�
¼? True (1)
One Yes Voteðballot; sum ValidityÞ¼? True (2)

If both verifications succeed, the Election Registrar vali-

dates the ballot by signing and publishing it on the Bulletin

Board. The Election Registrar signature is also sent to the

VST as a proof of registration.

After this step the ballot is registered and the connection

to the Election Registrar is closed.

4. VST/PC/V : codeCard

Once the ballot registration is confirmed, theVST creates

a code card for the election. The code card is composed

of a vote code for each candidate (selected randomly) and

one confirmation code. The confirmation code must

correspond to the ballot’s YESvote secret value (qj). The

voter then prints the code card or writes it down on

a paper and removes the VST from the PC.

Note that the code card generation step does not require

a connection to any entity, i.e. it is performed offline. Thus,

as explained in Section 4.4, it could be performed in

another PC without an Internet connection (e.g. to better

protect the voter’s privacy).
Fig. 4 e This figure illustrates the vote and receipt creation from

to apply to the ballot entries to align the YESvote to the selected

ballot/vote entries by the MP RCpk function.
5. EC / BB: {ballotList}EC
Finally, the Electoral Commission verifies all ballots

published in the Bulletin Board and validates them by

issuing a signature on the list of all published valid

ballots.

The Electoral Commission verifies the correctness of

each ballot the same way the Election Registrar verifies it

in the third step of the ballot registration stage.

4.3.3. Vote casting phase
The actual vote casting process can be performed anywhere,

including public places such as cybercafés and public libraries,

without compromising the voter’s privacy. The PC used to cast

a vote will not be able to know or change the voter’s choice;

however, the voter must still protect her privacy from other

people at the public place. Essentially, the votermust keep her

code card secret.

4.3.3.1. Vote casting initialization stage. Similarly to the elec-

tion registration phase, the vote casting phase is also divided

in two stages: the initialization stage and the actual vote

casting stage (cf. Fig. 5). The goal of the initialization stage is to

provide a fresh random election challenge, which is essential

to the correct use of the MarkPledge technique, and conse-

quently to the end-to-end verifiability of EVIV.
the ballot entries. The vote is simply the rotation necessary

candidate. The receipt is the values computed from the

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

Fig. 5 e Vote casting phase interaction.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1178
1. T /BB : fgenerationData; randomNumbergT
The vote casting phase is initialized with an election

random number generated by the set of Trustees T (using

the distributed random number generation protocol

described in Section 3.2) which ensures a random and fresh

number provided that at least one trustee is honest.

The election randomnumber, and thedata thatoriginate it,

aresignedby theTrusteesandpublished intheBulletinBoard.

2. EC / BB: {electionChallenge}EC
The Electoral Commission verifies the election random

number generation data and validates it by signing and

publishing the election challenge value:

electionChallenge ¼ HðrandomNumberkelectoral rollkballot listÞ

where H is a cryptographic hash function.

After the electionChallenge publication the voters can start

casting their votes.

4.3.3.2. Vote casting stage. The actual vote procedure starts

when the voter opens the vote client application, on an

Internet connected PC, and establishes a secure and authen-

ticated connection to the Ballot Box (SSL/TLS connection).

Then, the following takes place:

1. Ballot Box / PC: {candidateList}EC, {electionChallenge}EC
The Ballot Box starts by sending the electionChallenge and

the list of candidates to the PC.

2. V/PC : voteCodej
The PC asks the voter to vote, which she does by typing

the vote code of her chosen candidate (voteCodej) that is
found in her code card next to her chosen candidate (can-

didatej) (step ⓐ in Fig. 6).

3. PC / VST: voteCodej, {electionChallenge}EC
The PC then forwards the vote code and the election

challenge to the VST (step ⓑ in Fig. 6).

4. VST/PC/V : fvote;voteReceipt; receiptValiditygV
After receiving the vote code, and if the voteCodej is part of

the valid vote codes on the voter’s code card, the VST

prepares the voter’s vote and receipt from the corre-

sponding ballot and the electionChallenge value. This process

is illustrated in Fig. 4 and described next:

(a) First, theVST creates the vote by computing the rotation

necessary (l times) to apply to the ballot entries to align

the YESvote entry with the selected candidate. The

encrypted vote is simply the ballot entries rotation.

vote ¼
������k
i
cvoteðiþlÞmod k

(b) Then, the VST computes the ballot challenge value c by

selecting a random number 0 � z < r, and then

computing c ¼ FðelectionChallenge; zÞ:

FðelectionChallenge;zÞ ¼
�
electionChallenge if z¼ 0
HðFðelectionChallenge;z� 1ÞÞ if z> 0

where H is a cryptographic hash function.

(c) The VST computes a set of verification codes wi by

applying the MarkPledge receipt creation

RCpkðbi; qi; si; di; cÞ ¼ hwi;uii function to the encrypted

vote entries (rotated ballot entries) cf. Section 3.1.

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

7

Vote Receipt

Candidate Verification code

Alice 46R9

Bob QE41

Charles KNSY

Dharma PZ8R

Code Card

Confirmation Code

PZ8R

Candidate Vote code

Alice KPLE

Bob 49UI

Charles ZXA8

Dharma RCP3

VST
Encrypted

vote

Vote receipt
verification

d

RCP3a

Voter

c

RCP3 and
election challenge

bPC

Fig. 6 e Candidate selection and receipt verification overview. In this example the voter selects the candidate Dharma with

the vote code RCP3. Then, the VST creates the vote encryption and receipt and sends it to the PC, which displays the vote

receipt to the voter. The voter verifies the vote receipt by checking that the confirmation code on her code card (PZ8R) is the

verification code of the candidate Dharma in the vote receipt.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 179
The RCpk function takes the random ri secret value,

known only to the VST, and the challenge generated

in the previous step to generate a verification code

for each candidate encryption and a proof of correct

generation (ui). The concatenation of the verification

codes and the corresponding proofs create the vote

receipt ðvoteReceipt ¼ jjki wiÞ and receipt validity

ðreceiptValidity ¼ jjki uiÞ data.
In order to ensure voter recorded-as-cast verifica-

tion, the challenge must not have been known at the

time of the ballot creation; however, because of this

requisite, the existence of two equal verification

codes in the receipt is a possibility. If this happens

the vote receipt is considered invalid and the VST

goes back to step (b). The probability of having an

invalid receipt after r attempts can be set as small as

desired (cf. Appendix B).

After creating thevote out of theballot and generating

the vote receipt and the respective validity data, theVST

signs the triplet (vote, voteReceipt, receiptValidity) and

sends it to the PC (stepⓒ in Fig. 6) that displays it to the

voter for confirmation (step ⓓ in Fig. 6).

5. PC/Ballot Box : fvote;voteReceipt; receiptValiditygV
If the voter confirms the correction of the receipt, by

checking that the confirmation code on her code card

matches the receipt’s verification code for the selected

candidate, the signed triplet is sent to the Ballot Box using

the PC Internet connection.

6. Ballot Box/BB : ffvote;vote Receipt; receipt ValiditygVgBallot Box
Ballot Box/PC/VST :

ffvote;vote Receipt; receipt ValiditygVgBallot Box
Upon the reception of the signed triplet the Ballot Box

verifies thevoteandcorresponding receiptcorrectness, using

the MarkPledge receipt validity ðRVpkÞ function (cf. Section

3.1) andverifies that theballot rotation that “creates” thevote

is in accordance with the vote receipt entries.
Yk
i RVpkðcvotei; c;wi;uiÞ¼

?
True (3)
If everything is OK, the Ballot Box signs the verified data

and publishes it in the public Bulletin Board. A copy is sent

back to the VST.

In order to simplify a second and independent receipt veri-

fication, thevotercanprint thereceiptandaskanIndependent

Organization to verify it. This verificationmaybe conductedat

any time, during or after the vote casting phase. In fact, every

vote and receipt pair are verified by Independent Organiza-

tions at the “public verification and vote counting phase”.

. EC / BB: {electoralRoll, ballotList, voteList, receiptList}EC
Immediately after the vote casting period, the Electoral

Commission verifies all receipts validity data using the Mark-

PledgeRVpk function,similarlyto theBallotBoxverification (cf.

Eq. (3)). Then, the Electoral Commissionvalidates all votes and

receipts by publishing a signature over the list of all the voter-

ballot-vote-receipt associations.

Note that the Electoral Commission verification can be per-

formed in real time as the vote-receipt pairs get published in

the Bulletin Board, thus the message corresponding to this

step can be published without any further delay at the end of

the vote casting period.
4.3.4. Public verification and vote counting phase
Finally, there is a public verification and vote counting phase

where the Trustees perform an anonymous homomorphic

vote tally computation. In this phase, anyone can verify all the

election public data, such as the ballots, the receipts validity

proofs and the election tally computation, without compro-

mising the voters privacy. Independent Organizations provide

Verification Services to allow the voter to perform an inde-

pendent verification of her vote receipt.

The public verification and vote counting phase has three

stages: i) election data verification, ii) vote tally, and iii) vote

tally verification.

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1180
4.3.4.1. Election data verification

1. IOi/BB : felectoralRoll; ballotList;voteList; receiptListgIOi

Thisphase startswithafirst verificationofallpublicdataby

the various Independent Organizations. Each Independent

Organization (IOi) verifies the ballots validity and the corre-

sponding published votes and receipts, using the MP verifi-

cation functionsVVpk andRVpk (cf. Eq. (1) in the 3rd stepof the

ballot registration stage in the election registration phase and

Eq. (3) in the 6th step of the vote casting stage in the vote

casting phase). The Independent Organizations also verify

that there is only one YESvote in each ballot similarly to the

verificationperformedbytheElectionRegistrar instep3of the

ballot registration stage in the election registration phase (cf.

Eq. (2)).

Each Independent Organization publicly commits to the

election data verification by publishing a signature on the

Bulletin Board over all the voter-ballot-vote-receipt

associations.

2.
V/Verification Servicei : voterID
Verification Servicei/V : fverifiedReceiptgIOi

The voter can verify independently her vote receipt by

asking the Verification Service of any Independent Orga-

nization for a verified copy of her vote receipt. Then, the

voter should again check if the confirmation code on her

code card matches the verification value corresponding to

her chosen candidate on the vote receipt.

If any error is detected in this verification phase the

voter should be able to cast another vote. This solution is

already used in real world elections, e.g. the Estonian

electoral process (Estonian National Electoral Commitee,

2012) allows the voter to vote on a polling station at the

election day and override the electronic vote casted online.

Note also that any correction to the encrypted vote occurs

before the vote counting process and without revealing the

content of the encrypted vote, therefore preserving the

voter’s privacy.

4.3.4.2. Vote tally

1. EC / BB: {homomorphicVotesAggregation}EC
The vote tally starts with the publication of the homo-

morphic aggregation, by the Electoral Commission, of all

the votes that were not protested by the voters. The

homomorphic vote aggregation is as described in Section

3.1.3 and aims to protect the voter’s individual privacy, i.e.

no individual vote is decrypted, only the votes aggregation

that is homomorphically computed.

2. T t/BB : fvoteTally;decryptionProofgT t

Then, a subset T t of at least t Trustees decrypts the

homomorphic votes aggregation in a verifiable way, cf.

Appendix A.1. The vote tally and the decryption proof are

then signed by the Trustees and published in the Bulletin

Board.

3. EC / BB: {homomorphicVotesAggregation, voteTally, decryp-

tionProof}EC
The Electoral Commission verifies the vote tally decryp-

tion proofs and validates it by publishing a signature link-

ing the homomorphic votes aggregation to the final vote

tally and decryption proof.
4.3.4.3. Vote tally verification

1. IOi/BB :

fhomomorphicVotesAggregation; voteTally;decryptionProofgIOi

Each Independent Organization verifies the homomorphic

vote aggregation and vote tally decryption proofs, signs

everything and publishes the signature on the Bulletin Board.

The homomorphic vote tally aggregation can be verified just

by redoing the homomorphic sum (cf. Section 3.1.3). The

decryption proof is verified according to the threshold

decryption algorithm used (cf. Appendix A.1). Note that

anyone with sufficient knowledge and computational power

can verify all the election data as Independent Organizations

do. This is true because the verification is based only on public

information published in the Bulletin Board.

4.4. A note on the code card generation

Printing the code card while registering the ballot in the

election registration phase is convenient for the voter;

however, this means that, besides the voter and the VST, also

the PC used in the registration has access to the code card.

Thus, the registration PC can compromise the voter’s privacy

because it knows the confirmation code; therefore, it must be

trusted in the EVIV privacy trust model cf. Section 2.1.

Nevertheless, because the voter verifies her vote receipt using

a trusted independent organization, not even a collusion

between the registration PC and the vote casting PC is able to

compromise the vote-receipt verification soundness.

To better protect the voter’s privacy, the code card can be

generated using an independent (and offline) PC any time after

the voter’s ballot registration and before the beginning of the

vote casting phase.
5. Protocol evaluation

This section discusses the EVIV properties introduced in

Section 2.1, for which we provide detailed proofs in Appendix

B. Additionally, we also discuss the coercion resistance limi-

tations of EVIV and, briefly, the EVIV properties that simplifies

the design of defenses against common network infrastruc-

ture attacks.

P1EVIV e No votes can be added, deleted or modified without

detection.

In EVIV an attacker (insider or not) cannot modify votes nor

add votes for abstaining voter’s because the votes and the

receipts are validated by the voter’s digital signature, i.e. it is

not possible to create a valid vote or receiptwithout the voter’s

VST. Given that the votes and the receipt are published in the

BB every voter can easily verify that her vote enters the tally

process, i.e. it is not deleted.

P2EVIV e Every vote is counted-as-recorded.

In EVIV every vote is counted-as-cast because it uses

a public verifiable homomorphic vote tally process.

P3EVIV e Every voter can verify that her vote is recorded-as-

intended with a soundness of ð1� 2�aÞr$ðk�1Þ.

The vote and receipt are created and signed by the voter’s

VST; thus, only the VST and the PC (to which the VST is

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 181
connected) can try to manipulate the voter’s vote.

Assuming that thevoterhasaccess toacertified/verifiedvote

receipt, thecorrectuseof theMarkPledge technique in theEVIV

vote protocol allows the voter to identify any vote manipula-

tion by theVSTwith a soundness of ð1� 2�aÞr$ðk�1Þ, cf. the proof

in Appendix B. The PC can also try tomodify the voter’s vote by

guessing a valid candidate vote code; however, given that it

cannot create a fake vote receipt (i.e. it cannot forge the voter’s

signature on a fake receipt) the voter easily detects the attack

by visually verifying the vote receipt.

P4EVIV e No one but the voter and her VST knows the voter’s

chosen candidate.

The encrypted vote, the vote receipt and the homomorphic

tally process data are all available in the BB and do not reveal

the voter’s vote intention. Assuming that the VST is honest,

there is an honest threshold of the election key holders and

that the code card is only known to the voter and herVST, then

we can say that no one but the voter and her VST knows the

voter’s chosen candidate.

Note that the VST is only considered honest to preserve the

voter’s privacy. As explained above, the EVIV integrity evalu-

ation considers the VST one not trusted system component.

5.1. Coercion and receipt freeness

EvenconsideringtheVSThonest for theprivacyevaluation,EVIV

is not coercion resistant nor receipt free because the voter can

provide a proof of her vote to a coercer/person. The proof is

simply thevoter’s codecard,namely theverificationcodeonher

code card. However, in EVIV the code card is not authenticated,

i.e. it is written on a paper by the voter or printed on demand by

thevoterusinga regularprinter andpaper; thus,aftervoting, the

code card is not a proof anymore, i.e. the voter can create a fake

code cardwith any verification code that appears on the receipt.

Moreover, althoughnot specified inSection 4.3, the EVIVsystem

canbeeasily extended to support vote recasting, given that both

the encrypted vote and receipt are public and authenticated by

the voter’s digital signature. In the EVIV case, and because the

vote receipt is public and authenticated, the vote recasting only

defeats weak forms of coercion and vote buying attacks.

5.2. Network infrastructure attacks

EVIV, as any other network protocol, may be subjected to

network infrastructure attacks. Although, EVIV does not

specify any security measures to counteract this type of

security attack, it possesses properties that may simplify the

design of such security measures.

DoS attacks against the election infrastructure with the

intent to lock-out one or several electors can be mitigated by

replicating the Election-Registrar and Ballot-Box services.

Given that these services are stateless and that every ballot or

vote submission is authenticated and, therefore allowing

revoting, most of the problems associated with replication

(Dini, 2003) do not exist and replication is easy.

Phishing for credentials or vote codes are ineffective in

EVIV and therefore do not require special defense mecha-

nisms. In fact, authentication credentials never leave the VST

and code votes can only be used by someone with the VST.

Spoofing the identity (DNS, IP, etc.) of election services is also
ineffective provided that at least one verification organization

is not spoofed (cf. integrity assumption AI2_EVIV).

6. Implementation results

This section discusses the implementation results regarding

the technical viability of EVIV, i.e. the performance of its

critical components. It starts by identifying the time-critical

operations in EVIV and then presents the results of a proto-

type implementation of such time-critical operations.

6.1. Time-critical operations

Given the cryptographic nature of EVIV, the time/computational

critical operations are those directly related to the vote encryp-

tion, receiptcreationandverification,andvotetallycomputation:

� Vote encryption and verification: VEpk and VVpk

� Receipt creation and verification: RCpk and RVpk

� Tally computation: Cpk and homomorphic tally computation

Fig. 7 shows a schematic view of the EVIV protocol, where it

is possible to identify the entity responsible for each crypto-

graphic operation and the dependencies between the crypto-

graphic operations.

The trustees are in charge of creating the election key pair

and deciphering the homomorphic vote aggregation. These

two operations are easily performed within a few seconds/

minutes (cf. Section 6.2).

Independent Organizations verify all the election’s public

data, namely: the election key pair creation, each vote’s

encryption, receipt and canonicalization, the homomorphic

tally aggregation and the homomorphic vote aggregation

decryption. These operations can be spanned across the entire

election period after the publication of the related data by the

Electoral Commission; therefore, provided that they can be

performed in a single day, usual minimum election period, we

consider the costs acceptable.

The Electoral Commission/election servers also verify all

the election’s public data; however, these verifications are

critical because thedatamust beverifiedbeforebeingaccepted

and published. The two most time critical operations are the

vote receipt verification and the election tally computation

(vote canonicalization, homomorphic aggregation and tally

decryption verification). The vote receipt verification time is

critical because the voter’s vote is only accepted after the

receipt verification, and the election tally time computation is

critical because everyone demands a fast tally output.

In EVIV each voter’sVST only has to create one vote/receipt

pair (VEpk andRCpk) however, we assume that theVST has very

limited computational capabilities and must do its computa-

tions in a human acceptable time. Our prototype implements

the VST as a smart card, cf. Section 6.2.1.

6.2. Prototype results

After the identification of the critical operations we have

implemented a prototype to evaluate the viability of EVIV,

using the MP3 ballot/receipt verification technique (cf. Section

3.1). The implementation uses the “standard” ElGamal setup

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

Fig. 7 e Schematic view of the EVIV protocol illustrating the time dependencies between the main cryptographic operations.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1182
over the Z�
p subgroup Gq of order q, where p and q are large

primes such that qjp� 1 (cf. Appendix A) more specifically, we

performed tests with the following (p, q) setups: (1024, 160)

bits and (2048, 256) bits.

The machine we used to evaluate the performance of the

operations performed by Election Servers/Electoral Commis-

sion, Trustees and Independent Organizations has the

following setup: dual Nehalem chipset 5500 LE computer, with

two Quad Core Xeon at 2.0 GHz 4 MB Cache processors and

16 GB of RAM, running Linux 64 bits Ubuntu 2.6.32. The test

program is coded in Java, compiled to run in native code using

the GCJ 4.4.3 ahead-of-time compiler for the Java Language,

and run 8 threads. The tests were performed with a 10

candidates and 10,000 voters election setup. The VST, which

performs the vote encryption and creates the vote receipt is

implemented using smart cards (cf. Section 6.2.1).

Our implementation has only one trustee and therefore the

election key pair is a “regular” ElGamal key pair. Regarding the

vote counting phase, our tests show that the vote encryption
aggregation and the aggregation decryption takes just a few

seconds: the vote aggregation of 1million votes is performed in

less than 20 s and the decryption of the aggregation is per-

formed in less than 20 ms. The aggregation and decryption

times obtained allow us to estimate that the election results

can be computedwithin a few seconds orminutes, even taking

into account that the distributed decryption process time is

proportional to the number of trustees sharing the private key.

The other relevant cryptographic operations of the EVIV

protocol are the MarkPledge functions, which were imple-

mented accordingly to the MP3 specification (Joaquim and

Ribeiro, 2012). The vote verification ðVVpkÞ and receipt verifi-

cation ðRVpkÞ functions, which are performed by both the

Electoral Commission/election servers and the Independent

Organizations, are analyzed below. The vote encryption ðVEpkÞ
and receipt creation ðRCpkÞ functions, which are performed by

the VST, are analyzed separately in Section 6.2.1.

Table 1 and Figs. 8 and 9 show the server ðVVpkÞ and ðRVpkÞ
times per candidate and the total number of vote validations

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

Table 1e Server vote and receipt verification times for the
ElGamal (p-q) parameters configurations of (1024-160)
bits and (2048-256) bits. Columns 2 and 3 show the per
candidate verification times, while columns 4e6 show
how many (million) votes and receipts verifications can
be performed in 24 h (with our server setup) in an election
with 10 candidates.

Parameters
(p-q) bits

1 candidate 10 candidates votes in 24 h

VVpk RVpk VVpk RVpk VVpk þRVpk

1024-160 292 ms 141 ms 29.59 M 61.28 M 19.95 M

2048-256 1346 ms 647 ms 6.42 M 13.35 M 4.34 M

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 183
that can be performed, in 24 h, with our test setup. Note that,

due to the MarkPledge technique, the total time per vote/

receipt is proportional to the number of candidates running in

the election. From the data shown it is possible to infer that in

the (2048-256) bits configuration, a server like ours, in an

election with 10 candidates, can perform about 70 vote vali-

dations or 150 receipt validations per second, which we

consider acceptable for the Electoral Commission/election

servers real time constrains. Using the same configuration,

Independent Organizations can perform a total of 4.34 million

validations in 24 h of both vote and receipts.

The times for weaker and outdated (1024-160) bits config-

uration are given to show the performance relation between

the two configurations. This data is important to the VST

performance analysis, given that there was no available off-

the-shelf developer smart cards supporting the (2048-256)
0

50

100

150

200

250

300

0 5 10 15 20

M
i
l
l
i
o
n
s

Number

Vote Verifications (VV) Rece

Fig. 8 e Vote and receipt verifications at the server over a 24 h pe

on the data presented in Table 1.
bits configuration (cf. Section 6.2.1). On average the (2048-256)

bits configuration results are 4.6 times greater than the (1024-

160) bits configuration results.

6.2.1. VST prototype implementation results
The VST is a personal security token that, for convenience,

should be familiar to the voters. In our prototype the VST is

implemented as a smart card, similar to today bank cardswith

chip, electronic national id cards or electronic passports.

We have considered two smart card technologies for our

VST implementation, namely JavaCard (Oracle, 2012) and

MULTOS (MULTOS, 2012). Both JavaCard and MULTOS define

secure multi-application smart-card virtual machines with

a well defined application programing interface (API);

however, the JavaCard API is much more restricted and limits

the access to the smart card crypto-coprocessor functions. On

the other hand, the MULTOS offers a “lower” level API which

gives a broader access to the crypto-coprocessor capabilities,

including access to large integer modular arithmetic. Thus,

when it is necessary to prototype protocols with non standard

cryptographic operations (e.g. the MarkPledge candidate

encryptions) theMULTOS platform is the best choice (Joaquim

and Ribeiro, 2012; Mostowski and Vullers, 2011).

Our VST prototype is implemented in a MULTOS MC1-36K-

61 smart card with an Infineon SLE66 chip, in which we have

tested the vote creation VEpk and receipt creation RCpk func-

tions. Table 2 and Figs. 10 and 11 show the VEpk and RCpk
times. Although MULTOS smart cards are more flexible than

JavaCards, we were unable to get access to development cards

with 2048 bits “free” exponent modular exponentiation; the
25 30 35 40 45 50
of Candidates

ipt Verifications (RV) VV + RV

riod with a 1024-160 bits configuration. This graph is based

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

M
i
l
l
i
o
n
s

Number of Candidates

Vote Verifications (VV) Receipt Verifications (RV) VV + RV

Fig. 9 e Vote and receipt verifications at the server over a 24 h period with a 2048-256 bits configuration. This graph is based

on the data presented in Table 1.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1184
available cards only supported 2048 bits “free” modular

exponentiation with a 32 bits exponent. Thus, the times

shown in Table 2 are real times for the (1024-160) bits config-

uration and estimated for the (2048-256) bits configuration in

a similar hardware (more details below).

As expected, the receipt creation is much faster than the

vote encryption. In our development cards the receipt creation

function, which is necessary to perform during the usually

short vote casting period, takes only 0.065 s in the (1024-160)

bits configuration and is estimated to take about 0.267 s in the

(2048-256) bits configuration, which allows to create a vote

receipt in less than 3 s for an election with 10 running candi-

dates. The vote encryption, which is performed in the election
Table 2e Per candidate vote encryption ðVEpkÞ and receipt
creationRCpk times in aMULTOSMC1-36K-61 smart card,
for the ElGamal (p-q) parameters configurations of (1024-
160) bits and (2048-256) bits. The (2048-456) bits
configuration times are estimated to be about 4.13 the
times of the (1024-160) bits configuration.

Parameters (p-q) 1 candidate

VEpk RCpk

cvote voteValidity Total

1024-160 1.2 s 1.6 s 2.8 s 0.065 s

2048-256a 4.9 s 6.6 s 11.5 s 0.267 s

a The (2048-256) bits configuration times are an estimative.
registration phase, prior to the election day, takes 2.8 s in the

(1024-160) bits configuration and is estimated to take about

11.5 s in the (2048-256) bits configuration; thus, it would take

about 2 min to encrypt a vote for an election with 10 running

candidates. In addition, it is important to note that the time

constrains in the election registrationphaseare looser because

this phase can span over a larger period of time (a few weeks).

Given that therewas no availableMULTOSdeveloper smart

card able to support the (2048-256) bits configuration we did

some tests to confirm the around 4� factor between configu-

rations observed in the server times, cf. Section 6.2. Our tests

consisted in implementing the modular exponentiation, for

both configurations, using a mix of direct hardware functions

and software. It was implemented the “exponentiation by

squaring” algorithm given its simplicity and the availability of

a direct modular multiplication function up to 2048 bits. Table

3 shows the times obtained and the estimative for the hard-

ware only modular exponentiation times. The times obtained

show a factor of 4.1� between the two configurations, which is

in line with the 4.6� factor observed in our server times.

Although not available as a developer card, there are

MULTOS cards with more powerful hardware, which,

accordingly to the analysis in Mostowski and Vullers (2011),

could cut the times by 30% in the 1024 bits configuration and

present a factor of 2� to 2.5� when going from 1024 bits to

2048 bits (RSA) exponentiations. Considering the study pre-

sented in Mostowski and Vullers (2011) and our times for the

(1024-160) bits configuration we expect that, with the (2048-

256) bits configuration, a single candidate vote encryption can

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

S
e
c
o
n
d
s

Number of Candidates

Vote Encryption (VE) Receipt Creation (RC) VE + RC

Fig. 11 e Vote and receipt creation times at the VST with a 2048-256 bits configuration. This graph is based on the data

presented in Table 2.

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20

S
e
c
o
n
d
s

Number of Candidates

Vote Encryption (VE) Receipt Creation (RC) VE + RC

Fig. 10 e Vote and receipt creation times at the VST with a 1024-160 bits configuration. This graph is based on the data

presented in Table 2.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 185

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

Table 3 e Modular exponentiation times in a MULTOS
MC1-36K-61 smart card. The hardware times use the API
modular exponentiation function. The hardware &
software times reflect our implementation of themodular
multiplication algorithm “exponentiation by squaring”
using the hardware assisted modular multiplication
function.

Modular multiplication

Parameters (p-q) Hardware Hardware & software

1024-160 72 ms 1940 ms

2048-256 296 msa 7970 ms

a Time estimative.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1186
be done in about 5 s in a state-of-the-art smart card, thus

taking about 50 s to encrypt a full 10 candidates vote.
7. Related work

Private, correct and verifiable elections were always the goal

of the electronic voting research efforts which started about

30 years ago. The resulting voting protocols can be roughly

categorized into three main categories accordingly to the vote

anonymization technique used: mix-nets (Chaum, 1981; Juels

et al., 2005; Furukawa et al., 2010), blind signatures (Chaum,

1988; Ohkubo et al., 1999; Joaquim et al., 2003) and homo-

morphic voting systems (Cohen and Fischer, 1985; Cramer

et al., 1997; Juels et al., 2005; Kiayias et al., 2006).

Usually vote protocols assume a “cryptographic capable”

voter, however the incapacity of a common voter to perform

cryptographic operations means that the voter must trust the

vote client machine to perform the voter’s side cryptography,

e.g. the vote encryption. This fact and the vulnerability of

current Internet “architecture/infrastructure”, which exposes

the voter’s computer to many threats, e.g. a computer virus

aiming to undetectably change the voter’s vote, is one of the

main arguments against the adoption of Internet voting

(Jefferson et al., 2004; Dagstuhl Accord, 2007).

In 2004, with the work of Chaum (2004) and Neff (2004),

a newparadigm in electronic voting researchhas emerged: E2E

voting systems. The goal of an E2E voting system is to incor-

porate both voter cast-as-intended verification and universal

counted-as-recorded verification mechanisms to allow the
Table 4 e Comparison between EVIV characteristics and other

Highly sound voter cast-as-intended verification

Cast-as-intended verification resistant to the collusion of all system

components

Protects voter’s privacy from a compromised voting PC

Voters’ privacy is not broken by a simple collusion of system component

Universal tally verification

Full voter’s mobility

Strong voter’s authentication
election’s integrity verification based only on publicly pub-

lished data. The E2E voting systems were initially proposed to

the poll station voting environment (Chaum, 2004; Popoveniuc

and Hosp, 2010; Chaum et al., 2005; Neff, 2004; Adida and Neff,

2006; Moran and Naor, 2006; Benaloh, 2006; Rivest and Smith,

2007; Chaum et al., 2008a,b). Later, some of the ideas were

used to develop E2E Internet voting systems.

The Helios voting system was the first E2E Internet voting

system (Adida, 2008). Helios borrows the cast-as-intended

verification mechanism of Benaloh (2006), where the voter is

allowed to create n votes and verify n � 1, achieving a sound-

ness of 1 � 1/n. Although the Helios cast-as-intended verifi-

cation mechanism resists to the collusion of all system

components, it is easy to explore a mix of social engineering

and vote client PC vulnerabilities to bypass it (Estehghari and

Desmedt, 2010; Heiderich et al., 2012).

Another E2E voting system proposed for the Internet is the

Scratch, Click and Vote (SCV) system (Kutyłowski and

Zagórski, 2010). SCV provides a mix-net universal vote count

and uses the voter cast-as-intended verification ideas of

Popoveniuc and Hosp (2010), Chaum et al. (2005) and Rivest

and Smith (2007) with a “blind signature glue”. The SCV

cast-as-intended mechanism has a soundness of 1 � 1/4k,

where k is the number of candidates. The cast-as-intended

verification mechanism and the privacy of the voter can be

broken if the two election servers of SCV collude.

The remaining three Internet E2E voting systems we are

aware of (Ryan and Teague, 2009; Joaquim et al., 2009; Heiberg

et al., 2010) use a code voting (Chaum, 2001; Oppliger, 2002)

style voter interaction, combined with some cryptographic

techniques to provide privacy and voter recorded-as-intended

verification.

The Pretty Good Democracy (PGD) achieves E2E verifiability

byenhancing a codevotingprotocolwith some ideasused in the

Chaum et al. (2008a) and Chaum et al. (2005) systems. PGD have

some coercion resistance (receipt-freeness) at the cost of a vote

verification mechanism that can be bypassed by a collusion of

two election servers. The PGD system was later enhanced to

support expressive voting schemes in which the voter lists the

candidates in order of preference (Heather et al., 2010).

The VeryVote system (Joaquim et al., 2009) combines the

code voting approach with the highly sound Neff (2004) cast-

as-intended verification mechanism (MarkPledge). The cast-

as-intended verification mechanism used in VeryVote offers

a soundness of 1 � k!/2a, where a is a configurable security
Internet E2E voting systems.

Internet E2E

Helios (v3) PGD VeryVote SCV Heiberg et al. EVIV

� � U � U U

U � U � � U

� U U U � U

s U U � � � U

U U U U U U

U � � � � U

� � � � U U

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 187
parameter usually set to a value from 20 to 30 and k is the

number of candidates. In VeryVote all vote encryptions are

prepared by the election server which, consequently, must be

trusted to ensure the voter’s privacy.

In the Heiberg et al. (2010) system, which uses only verifi-

cation/confirmation codes, each verification code is generated

by a cooperation of two servers in order to protect the privacy

of the voters. The soundness of the cast-as-intended verifi-

cation mechanism depends on the size of verification code

and can be as high as desired. In this system the privacy of the

voter is broken if the two election servers collude, and the

cast-as-intended verification mechanism can be broken if

both the two elections servers and the vote casting PC collude.

Norway (Gjsteen, 2012) uses a similar system, although due to

privacy/coercion concerns not enough data is made public,

which makes it not E2E verifiable.

With the exception of Helios, all other E2E Internet voting

systems require the delivery of a code card to the voter prior to

the election, e.g. by postal. As can be seen in Table 4, none of

the described E2E voting protocols has all the properties

of EVIV.
8. Conclusions and future work

EVIV gives the voter full mobility and offers strong integrity

guarantees allied with privacy measures that allow the voter

to vote privately in public PCs, such as a PC at a cybercafé or at

a public library. Moreover, the EVIV protocol does not requires

auditing computer systems, only the data produced by them,

i.e. the correction of the code executed by each service can be

verified by checking the output of the election, given that

every result has a correspondent public proof of correctness.

In the distributed voter’s privacymodel of EVIV no entity is

able to break the voters privacy since each encrypted vote is

created by each voter’sVST (voter security token). Therefore, if

an attacker wants to know who voted for who, the attacker

must perform a large scale attack to the PCs used to create the

vote codes. This attack can be made virtually impossible by

allowing the voter to create her vote codes from an off-line PC;

although, this does not provide protection against coercion/

vote buying attacks, in which the voter gives/sells her code

card to the coercer/vote buyer. A very important futurework is

to consider the integration of strong anti coercion mecha-

nisms in EVIV.

The voter cast-as-intended verification in EVIV is highly

sound and requires the voter to performonly thematch of two

small 4e5 alphanumeric strings. More precisely, the sound-

ness of the voter cast-as-intended verification is

ð1� 2�aÞr$ðk�1Þ, where k is the number of running candidates

and a and r are configurable security parameters usually set to

values between 20 and 30, and 1 and 5, respectively.

Our prototype implementation shows that there should

not be any problem with the computational demands of the

vote protocol at the servers side. However, the assumed VST

limited computational capabilities limits the use of EVIV to

elections with a small number of candidates. This problem

should be addressed in the future, e.g. using elliptic curve

cryptography.
Another important future work is to test the usability of

EVIV and extend its application range by enhancing the voter

cast-as-intended verification mechanism in order to support

multiple candidate selection and candidate ranking with the

same high soundness.

Acknowledgments

This work was partially supported by national funds through

FCT e Fundação para a Ciência e a Tecnologia, under projects

PTDC/EIA-EIA/113993/2009, PTDC/EIA-CCO/122542/2010 and

PEst-OE/EEI/LA0021/2011. Rui Joaquimwas partially supported

by Ministério da Ciência, Tecnologia e Ensino Superior grant

PROTEC SFRH/BD/50135/2009.

Appendix A. The ElGamal cryptosystem

For completeness, this appendix describes the well known

ElGamal cryptosystem that is used in the MarkPledge specifi-

cations and consequently in EVIV. The ElGamal cryptosystem

works in the Z�
p subgroup Gq of order q, where p and q are large

primes such that qjp� 1. Both primes p, q and a generator g of

Gq are public parameters of the system. The ElGamal key pair

consists of a private key s and the corresponding public key

h ¼ pk ¼ gs mod p. The private key s is a randomly chosen

integer such that 0 < s < q. Algorithms to generate secure

ElGamal parameters can be found in (NIST, 2009).

In the ElGamal cryptosystem, amessagem˛Gq is encrypted

by selecting a random integer value r˛Zq, and constructing the

following pair EGhðm; rÞ ¼ hx; yi ¼ hgr mod p;hr$mmod pi. To

recover the message m one computes m ¼ y/xs.

The EVIV protocol uses an ElGamal variant known as

exponential ElGamal (Cramer et al., 1997). In exponential

ElGamal the message to encrypt m is chosen from Zq and it is

encrypted as gm, instead of m, in order to respect the ElGamal

message space, i.e. Ehðm; rÞ ¼ EGhðgm; rÞ. The exponential

ElGamal has the following homomorphisms (we have omitted

the mod p notation from the equations):

Additive homomorphism between two encryptions

Ehðm1; r1Þ4Ehðm2; r2Þ ¼ hgr1 ;hr1$gm1 i$hgr2 ;hr2$gm2 i
¼ hgr1$gr2 ;hr1$gm1$hr2$gm2 i
¼

�
gr1þr2 ;hr1þr2$gm1þm2

�
¼ Ehððm1 þm2Þmod q; ðr1 þ r2Þmod qÞ (4)

Multiplicative homomorphism between an encryption and

a value n

Ehðm; rÞ5n ¼ hgr;hr$gmin¼
�
ðgrÞn; ðhrÞn$ðgmÞn

�
¼ hgr,n;hr,n$gm,ni

¼ Ehððm$nÞmod q; ðr$nÞmod qÞ
(5)
A.1. Threshold ElGamal

Cryptographic vote protocols in general, and EVIV in partic-

ular, share the private key of the election among a set of

trustees to protect the voter’s privacy. In EVIV, the election

private key is shared, among a set of n trustees, in such a way

that to decrypt a message it is necessary the collaboration of

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1188
t � n trustees. In Cramer et al. (1997) the reader can find more

details on how to create a (t, n)-threshold election key pair, for

the ElGamal cryptosystem, and how to decrypt a message

using the shared private key.
Appendix B. EVIV integrity and privacy proofs

This section presents the sketch proofs for the following four

EVIV properties, early described in Section 2:

P1EVIV e No votes can be added, deleted or modified without

detection.

P2EVIV e Every vote is counted-as-recorded.

P3EVIV e Every voter can verify that her vote is recorded-as-

intended with a soundness of ð1� 2�aÞr$ðk�1Þ.

P4EVIV e No one but the voter and her VST knows the voter’s

chosen candidate.

where a is the security parameter that defines the domain Z2a

of several important protocol parameters: the challenge c, the

confirmation (commit) code q and the verification code w.6 r is

the number of challenges that the VST can use; and, k is the

number of candidates running in the election.

The EVIV proofs use the privacy and integrity trust models

defined in Section 2.1 and the following vote and receipt val-

idity definitions:

Definition 1. A vote is valid if it is the concatenation of k cvotes, one

of type YESvote and k � 1 of type NOvote, corresponding to the

voter’s registered and published ballot.

Definition 2. A receipt is correct, with respect to a specific

vote ¼ cvote1k.kcvotek, if it is the concatenation of the corre-

sponding k verification codes, i.e. w1k.kwk.

Definition 3. A receipt is valid if it is correct and every verification

code in it is unique.

B.1. EVIV integrity proofs

Theorem 1. (P1EVIV) No votes can be added, deleted or modified

without detection.

Proof Sketch. In EVIV only the voter can cast a vote because

the vote is only considered for the election tally if it has the

voter’s signature on it, which is performed by the voter’s VST.

For the same reason no vote can be modified, as it would

invalidate the voter’s signature on it.

The Electoral Commission signs, and publishes in the

Bulletin Board, the vote-receipt list at the end of the vote

casting phase, which locks the valid votes accepted for the

election tally. Additionally, Independent Organizations also

verify the contents of the Bulletin Board and provide a verifi-

cation service to the voters.
6 This assumption makes the proof valid for every MarkPledge
specification; although, as explained in Section 3.1.2 when using
MP3 the a parameter only defines the voter’s view on those
values, which does not affect the soundness of the voter
recorded-as-intended verification.
Thus, in EVIV no votes can be added, deleted or modified

without detection, in any phase of the protocol.

Theorem 2. Every publicly recorded vote is valid.

Proof Sketch. Provided that MarkPledge is not flawed the

VVpk function attests that a cvote is either a YESvote or aNOvote,

to anyone knowing the correspondent voteValidity data.

After the election registration phase, every cvotei and

voteValidityi comprising a ballot are public, thus, anyone may

use the VVpk to verify that every cvotei in the ballot is either

a YESvote or a NOvote. Given that the sumValidity data also

becomes public after the election registration phase, every

one may attest that only one of the cvotes, in the ballot is

a YESvote.

In EVIV the final vote is a simple rotation of the ballot

entries, i.e. one of its entries is a YESvote and all other entries

are NOvotes. Thus, if a ballot is valid the vote is also valid.

Lemma 1. Every published vote is valid and suitable for homo-

morphic aggregation.

Proof Sketch. Given that every public vote is valid (Theorem

2) and that by definition every valid vote contains one well

formed YESvote and k � 1 well formed NOvotes, the vote is

suitable for homomorphic tally if the output of the canon-

icalization function Cpk is, which is the case for all MarkPledge

specifications (Joaquim and Ribeiro, 2012).

Theorem 3. (P2EVIV) Every vote is counted-as-recorded.

Proof Sketch. EVIV uses a homomorphic vote count

process. Since the homomorphic aggregation of the encrypted

votes is a public operation everyone can perform/verify it. The

decryption process of the homomorphic aggregation result is

also public verifiable, because it produces public proofs of

correct decryption.

Given that no vote can be deleted after being published

(Theorem 1), there is at least one honest Independent Orga-

nization verifying the election public data (AI2_EVIV), and the

votes are suitable for the homomorphic aggregation (Lemma

1) every vote is counted-as-recorded.

Lemma 2. Every publicly recorded receipt is correct with respect to

a valid vote.

Proof Sketch. Provided that MP is not flawed the RVpk

function attests the correct computation of every verification

code wi from the corresponding pair hcvotei; ci.
Given that, after the vote casting phase, the challenge c and

every verification code wi, receipt validity ui and cvotei are

public data, anyone can verify that each verification code wi in

the receipt was correctly computed from the reordered ballot

entries that compose the vote.

Lemma 3. The challenge used by RCpk function is uniformly

distributed and could not be predicted before being generated by the

trustees.

Proof Sketch. Given that there is at least one honest trustee

(AI1_EVIV), the protocol (cf. Section 3.2) used to generate the

challenge ensures that the challenge is fresh and cannot be

predicted.

Lemma 4. The challenge is generated after the commitment of the

confirmation code and vote encryption entries.

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 189
Proof Sketch. In EVIV both the YESvote verification code and

vote encryption entries are committed in the election regis-

tration phase. The YESvote verification code is printed as the

confirmation code on the voter’s code card and the vote

encryption entries (cvotes) are the ballot entries which are

published at the end of election registration phase. Under

assumptionAI1_EVIV, only when the election registration phase

ends, at the vote casting phase initialization, the elec-

tionChallenge is created by the trustees. Consequently, the

challenge is generated after the commitment of the confir-

mation codes and vote encryption entries.

Lemma 5. Every verification code computed with RCpk function in

EVIV is a randomly uniform distributed variable.

Proof Sketch. There are two “types” of verification codes, the

ones created from YESvotes and the ones created from NOvotes.

The verification codes ðwiÞ computed from YESvotes are equal to

the embedded confirmation codes ðwi ¼ qiÞ that, by definition,

are uniformly distributed random numbers. The verification

codes computed from NOvotes are uniform distributed random

numbersaccordingwiththeMarkPledgeRCpk function,provided
that the challenge c is a uniformrandomnumber (Lemma3) and

not known at the time of theNOvotes creation (Lemma 4).

Theorem 4. Every vote and challenge combination has a, public

verifiable, probabilistic valid receipt.

Proof Sketch. A receipt is valid if it is correct and every

verification code wi in it is unique. Under Definition 2 a receipt

computed with the RVpk function is correct and can be

publicly proven under Lemma 2. However, because the chal-

lenge value is not know at the time of the ballot entries and

confirmation code commitment (Lemma 4) it is possible the

existence of two equal verification codes in the receipt.

Given that in MarkPledge 3, every verification code is

a uniform random variable (Lemma 5) distributed over the

MarkPledge code space ([0, 2a[), the probability of having two

colliding verification codes (i.e. an invalid receipt) is given by

the birthday paradox probability piz1� e�k,ðk�1Þ=2aþ1
.

In MarkPledge 1 and 2 it is not possible to have two

colliding NOvotes verification codes, thus the probability that

none of the k � 1 NOvotes verification codes in a receipt

matches the YESvote verification code is ð1� 2�aÞðk�1Þ, and the

probability of having an invalid receipt is given by

pi ¼ 1� ð1� 2�aÞðk�1Þ.

Because the VST may extract the verification codes several

times the probability that it finds a valid receipt, after

a maximum of r attempts, is pv ¼ 1 � (pi)
r. From pv it is clear

that the probability of success can bemade as high as required

by increasing the maximum number of attempts r.

Given that the receipt is public anyone may verify that

every verification code in it is unique.

Theorem 5. For a valid hvote; receipti pair the EVIV verification

process, of the voter intention, is sound with probability

p ¼ ð1� 2�aÞr$ðk�1Þ, where k is the number of candidates, a the

security parameter of MarkPledge and, r the maximum number of

attempts to generate a valid receipt.

Proof Sketch. Just prove the opposite. The verification

process is not sound,with probability q¼ 1� p, if the votermay

be fooled into believe that she voted in one candidate and the
YESvote entry is in another candidate. Given that the receipt is

valid, i.e. every verification code wi is different and was

computed fromthecorresponding cvotei, the onlyway that that

can happen is if the VST guesses the verification code of one of

theNOvotes in thevote.However, byMarkPledgeRCpk function,
before knowing the value of the challenge c (Lemma 4), the

verification codesof theNOvotesareuniformlydistributed over

the MarkPledge code space ([0,2a[). Therefore the probability

that a dishonest VST is able to guess at least one of the k � 1

verification codes of NOvotes is given by q0 ¼ 1� ð1� 2�aÞk�1,

and theprobability that it isable toguessat leastoneof thek�1

verification codes of NOvotes in one of the r attempts of the

receipt generation is q ¼ 1� ð1� 2�aÞr$ðk�1Þ.

Theorem 6. (P3EVIV) Every voter can verify that her vote is

recorded-as-intended with a soundness of ð1� 2�aÞr$ðk�1Þ.

Proof Sketch. Given that votes cannot be removed or

altered after publication (Theorem 1) and there is at least one

honest Independent Organization (AI2_EVIV), which is able to

perform the public validation of votes and receipts, then every

voter has access to her vote and vote receipt and is assured of

their validity (Theorems 2 and 4, respectively). Finally, under

Theorem 5, the voter is able to identify the YESvote entry in the

vote receipt with a soundness ð1� 2�aÞr$ðk�1Þ.

B.2. EVIV privacy proofs

Lemma 6. The ballot creation process preserves the voter’s privacy.

Proof Sketch. Provided that MarkPledge is not flawed, and

under assumptions AP2_EVIV, neither the MarkPledge technique

nor theVST create implicit channels; therefore, theonlyoutputs

of theballot creationprocessare theballotandtheballotvalidity

data, which do not reveal the position of the YESvote.

Lemma 7. The vote casting process preserves the voter’s privacy.

Proof Sketch. Provided that MarkPledge is not flawed, and

under assumptions AP2_EVIV, neither the MarkPledge technique

nor the VST create implicit channels, therefore the only infor-

mation disclosed in the vote casting process is the vote code of

the selected candidate to the PC and to the VST, and the vote

and vote receipt to the public. Assuming again thatMarkPledge

is not flawedneither the vote nor the receipt reveal theposition

of the YESvote without being decrypted. Under assumption

AP3_EVIV only the voter and her VST know the association

between each candidate and the vote code on the voter’s code

card. Therefore, revealing the vote code of the selected candi-

date does not reveal the identity of the selected candidate.

Lemma 8. The vote and receipt validity verifications preserve the

voter’s privacy.

Proof Sketch. The only output of the vote and receipt val-

idity verifications is a true or false value indicating if the vote

and receipt are valid.

Lemma 9. The voter cast-as-intended verification process preserves

the voter’s privacy.

Proof Sketch. The voter verifies her vote by visually

checking that the confirmation code is the verification code

associated to the chosen candidate in the vote receipt. Since

no data is generated by the cast-as-intended verification

http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1190
process and the confirmation code is not given to anyone

(assumption AP3_EVIV) the voter cast-as-intended verification

process preserves the voter’s privacy.

Lemma 10. The vote tabulation process preserves the voter’s

privacy.

Proof Sketch. The security of the ElGamal cryptosystem

and AP1_EVIV guarantees that no individual vote is decrypted.

Only the homomorphically aggregated sum of the encrypted

votes gets decrypted by the trustees. Therefore, the privacy of

the individual voter is preserved by the vote counting process.

All tabulation data concerning the homomorphic aggregation

and election tally decryption is already public.

Theorem 7. (P4EVIV) No one but the voter and her VST knows the

voter’s chosen candidate.

Proof Sketch. Lemmas 6e10 prove that, with the exception

of the vote code used to communicate the voter’s choice to the

VST, all data generated by the voting process is already public

and preserves the voter’s privacy. Lemma 7 attest that even

the vote code, used to choose the candidate, can be made

public without compromising the voter’s privacy. Addition-

ally, Lemmas 6e10 under the EVIV privacy trust model prove

that there is no privacy risk in any election phase:

� By privacy assumption AP3_EVIV and Lemma 6 there is no

privacy risk in the election registration phase.

� By Lemma 7 there is no risk in the vote casting phase.

� By Lemmas 8e10 there in no privacy risk in the public

verification and vote counting phase.

Therefore it is possible to conclude that, under the EVIV

privacy trust model, the EVIV protocol guarantees that no one

but the voter and her VST (which creates the vote encryption)

knows the voter’s vote choice.
r e f e r e n c e s

Adida B. Helios: web-based open-audit voting. In: SS’08:
Proceedings of the 17th USENIX Security symposium.
Berkeley, CA, USA: USENIX Association; 2008. p. 335e48.

Adida B, Neff A. Efficient receipt-free ballot casting resistant to
covert channels. In: USENIX EVT/WOTE; 2009.

Adida B, Neff CA. Ballot casting assurance. In: EVT 2006. Berkeley,
CA, USA: USENIX Association; 2006.

Benaloh J. Simple verifiable elections. In: EVT 2006. Berkeley, CA,
USA: USENIX Association; 2006.

Chaum D. Elections with unconditionally secret ballots and
disruption equivalent to breaking rsa. In: EUROCRYPT 88. vol.
330 of LNCS. Springer; 1988. p. 177e82.

Chaum D. Surevote. International patent WO 01/55940 A1. http://
www.surevote.com; August 2001.

Chaum D. Secret-ballot receipts: true voter-verifiable elections.
IEEE Security and Privacy 2004;2:38e47.

Chaum D, Carback R, Clark J, Essex A, Popoveniuc S, Rivest RL,
et al. Scantegrity ii: end-to-end verifiability for optical scan
election systems using invisible ink confirmation codes. In:
USENIX/Accurate EVT 08; 2008a.

Chaum D, Essex A, Carback R, Clark J, Popoveniuc S, Sherman AT,
et al. Scantegrity: end-to-end voter verifiable optical-scan
voting. IEEE Security & Privacy May/June; 2008b.
Chaum D, Pedersen T. Wallet databases with observers. In:
CRYPTO ’92. vol. 740 of LNCS. Springer; 1992. p. 89e105.

Chaum D, Ryan PY, Schneider S. A practical voter-verifiable
election scheme. In: ESORICS 2005. vol. 3679 of LNCS. Berlin/
Heidelberg: Springer; 2005. p. 118e39.

Chaum DL. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM 1981;24(2):
84e90.

Cohen JD, Fischer MJ. A robust and verifiable cryptographically
secure election scheme. In: SFCS ’85: Proceedings of the 26th
annual symposium on foundations of Computer Science. IEEE
Computer Society; 1985. p. 372e82.

Cramer R, Gennaro R, Schoenmakers B. A secure and optimally
efficient multi-authority election scheme. In: EUROCRYPT 97.
vol. 1233 of LNCS. Berlin/Heidelberg: Springer; 1997. p. 103e18.

Dagstuhl Accord, http://www.dagstuhlaccord.org/; 2007.
Dini G. A secure and available electronic voting service for a large-

scale distributed system. Future Generation Computer
Systems 2003;19(1):69e85.

Estehghari S, Desmedt Y. Exploiting the client vulnerabilities in
internet e-voting systems: hacking helios 2.0 as an example.
In: Proceedings of the 2010 conference on Electronic voting
technology/workshop on trustworthy elections. EVT/
WOTE’10. USENIX Association; 2010.

Estonian National Electoral Commitee. Internet voting in Estonia,
http://www.vvk.ee/voting-methods-in-estonia/engindex/; April
2012.

Furukawa J, Mori K, Sako K. An implementation of a mix-net
based network voting scheme and its use in a private
organization. In: Chaum D, Jakobsson M, Rivest R, Ryan P,
Benaloh J, Kutylowski M, et al., editors. Towards trustworthy
elections. vol. 6000 of LNCS. Berlin/Heidelberg: Springer; 2010.
p. 141e54.

Gjsteen K. The Norwegian internet voting protocol. In: Kiayias A,
Lipmaa H, editors. E-voting and identity. vol. 7187 of Lecture
notes in Computer Science. Berlin/Heidelberg: Springer; 2012.
p. 1e18.

Heather J, Ryan P, Teague V. Pretty good democracy for more
expressive voting schemes. In: Gritzalis D, Preneel B,
Theoharidou M, editors. Computer security ESORICS 2010. vol.
6345 of Lecture notes in Computer Science. Berlin/Heidelberg:
Springer; 2010. p. 405e23.

Heiberg S, LipmaaH,VanLaenenF.One-vote integrity in the case of
malicious voter computers. In: Proceedings of the15th European
conference on Research in computer security. ESORICS’10.
Berlin, Heidelberg: Springer-Verlag; 2010. p. 373e88.

Heiderich M, Frosch T, Niemietz M. The bug that made me
president: a browser- and web-security case study on helios
voting. In: Kiayias A, Lipmaa H, editors. E-voting and identity.
vol. 7187 of Lecture notes in Computer Science. Berlin/
Heidelberg: Springer; 2012. p. 89e103.

Jefferson D, Rubin AD, Simons B, Wagner D. A security analysis of
the secure electronic registration and voting experiment
(serve), http://www.servesecurityreport.org/paper.pdf;
January 2004.

JoaquimR,RibeiroC.Anefficient andhighly soundvoterverification
technique and its implementation. In: Kiayias A, Lipmaa H,
editors. E-voting and identity. vol. 7187 of Lecture notes in
Computer Science. Berlin/Heidelberg: Springer; 2012. p. 104e21.

Joaquim R, Ribeiro C, Ferreira P. Veryvote: a voter verifiable code
voting system. In: E-voting and identity. vol. 5767 of LNCS.
Springer; 2009. p. 106e21.

Joaquim R, Zúquete A, Ferreira P. Revs: a robust electronic voting
system. IADISe International Journal ofWWW/Internet, http://
www.servesecurityreport.org/paper.pdf; December 2003.

Juels A, Catalano D, Jakobsson M. Coercion-resistant electronic
elections. In: Proceedings of the 2005 ACM workshop on
Privacy in the electronic society; 2005. p. 61e70.

http://www.surevote.com
http://www.surevote.com
http://www.dagstuhlaccord.org/
http://www.vvk.ee/voting-methods-in-estonia/engindex/
http://www.servesecurityreport.org/paper.pdf
http://www.servesecurityreport.org/paper.pdf
http://www.servesecurityreport.org/paper.pdf
http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 7 0e1 9 1 191
Kiayias A, Korman M, Walluck D. An internet voting system
supporting user privacy. In: ACSAC ’06: Proceedings of the
22nd annual Computer Security Applications conference. IEEE
Computer Society; 2006. p. 165e74.

Krimmer R, Triessnig S, Volkamer M. The development of remote
e-voting around the world: a review of roads and directions.
In: E-voting and identity. Vol. 4896 of LNCS. Berlin/Heidelberg:
Springer; 2007. p. 1e15.

Kutyłowski M, Zagórski F. Scratch, click and vote: E2e voting over
the internet. In: Towards trustworthy elections. vol. 6000 of
LNCS. Springer; 2010. p. 343e56.

Ministry of Local Government and Regional Development. e-vote
2011-project web site, http://www.regjeringen.no/en/dep/krd/
prosjekter/e-vote-2011-project.html?id¼597658; September
2012.

Moran T, Naor M. Receipt-free universally-verifiable voting with
everlasting privacy. In: CRYPTO 2006. vol. 4117 of LNCS.
Springer; September 2006. p. 373e92.

Mostowski W, Vullers P. Efficient U-prove implementation for
anonymous credentials on smart cards. In: Kesidis G, Wang H,
editors. Proceedings of the 7th international ICST conference
on security and privacy in Communication networks,
SecureComm 2011. vol. 96 of Lecture notes of the Institute for
Computer Sciences, Social-informatics and Tele-
communications Engineering (LNICST). Springer-Verlag; 2011.
p. 243e60.

MULTOS. Multos, http://www.multos.com/; September 2012.
Neff CA. Practical high certainty intent verification for encrypted

votes, http://citeseerx.ist.psu.edu/viewdoc/summary?doi¼10.
1.1.134.1006; 2004.

NIST. Digital signature standard (dss); June 2009. FIPS 186-3.
Ohkubo M, Miura F, Abe M, Fujioka A, Okamoto T. An

improvement on a practical secret voting scheme. In: ISW ’99:
Proceedings of the second international workshop on
Information Security. Springer-Verlag; 1999. p. 225e34.

Oppliger R.How to address the secure platformproblem for remote
internet voting. In: Erasim E, Karagiannis D, editors. 5th
conference on “Sicherheit in Informationssystemen” (SIS 2002).
Vienna, Austria: vdf Hochschulverlag; October 2002. p. 153e73.

Oracle. Javacard, http://www.oracle.com/technetwork/java/
javacard/overview/index.html; September 2012.

Popoveniuc S, Hosp B. An introduction to punchscan. In:
Chaum D, Jakobsson M, Rivest R, Ryan P, Benaloh J,
Kutylowski M, et al., editors. Towards trustworthy elections.
vol. 6000 of Lecture notes in Computer Science. Berlin/
Heidelberg: Springer; 2010. p. 242e59.

Rivest RL, Smith WD. Three voting protocols: threeballot, vav, and
twin. In: EVT 2007. Berkeley, CA, USA: USENIX Association;
2007. p. 16.

Ryan PYA, Teague V. Pretty good democracy. In: 17th
international workshop on Security Protocols; 2009.

Rui Joaquim graduated and obtained his Ms.C. and Ph.D. in
Systems and Computer Science in 2002, 2005 and 2012, respec-
tively, from the Universidade Técnica de Lisboa (Instituto Superior
Técnico - IST/UTL). Since 2003, he is a Professor at Instituto
Superior de Engenharia de Lisboa (ISEL).

He joined the distributed systems group of INESC-ID in 2001,
where is he has been doing research on security with a focus on
electronic voting systems. He is author or co-author of several
peer-reviewed scientific communications.

Carlos Ribeiro graduated in Electrical Engineering at IST in 1989
and on that school obtained his MSc in 1993 and Ph.D. in
Computer Engineering in 2002. Since 1993 engaged in teaching at
the IST, where was responsible for the creation of several Master
and PhD courses in the area of computer security. He has pub-
lished two technical books in computer architecture and oper-
ating systems.

From 1987 he does research on Information Security in the
distributed systems group of INESC, Lisbon. He was coordinator of
several national and European research projects. He is currently
prorector at the technical university of Lisbon.
Paulo Ferreira is Associate Professor with Habilitation at the
Computer and Information Systems Department at the Uni-
versidade Técnica de Lisboa (Instituto Superior Técnico e IST/
UTL), where he has been teaching classes in the areas of Distrib-
uted Systems, Operating Systems, Mobile Computing, and
Middleware.

In 1996, he received his Ph.D. degree in Computer Science from
Université Pierre et Marie Curie (Paris-VI). His M.Sc. (1992) and
Bs.E.E. (1988) are both from IST.

He is a researcher at INESC-ID since 1986 and author of more
than 80 peer-reviewed scientific communications. He is amember
of IEEE, ACM and of the EuroSyS and Midleware steering
committees.

http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html%3fid%3d597658
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html%3fid%3d597658
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html%3fid%3d597658
http://www.multos.com/
http://citeseerx.ist.psu.edu/viewdoc/summary%3fdoi%3d10.1.1.134.1006
http://citeseerx.ist.psu.edu/viewdoc/summary%3fdoi%3d10.1.1.134.1006
http://citeseerx.ist.psu.edu/viewdoc/summary%3fdoi%3d10.1.1.134.1006
http://www.oracle.com/technetwork/java/javacard/overview/index.html
http://www.oracle.com/technetwork/java/javacard/overview/index.html
http://dx.doi.org/10.1016/j.cose.2012.10.001
http://dx.doi.org/10.1016/j.cose.2012.10.001

	EVIV: An end-to-end verifiable Internet voting system
	1. Introduction
	2. EVIV overview and trust models
	2.1. Properties and trust models

	3. Building blocks
	3.1. MarkPledge 3
	3.1.1. MarkPledge 3 functions details
	3.1.1.1. Candidate vote encryption function VEpk
	3.1.1.2. Candidate receipt creation function RCpk
	3.1.1.3. Candidate vote validity function VVpk
	3.1.1.4. Candidate receipt validity function RVpk
	3.1.1.5. Candidate vote canonicalization function Cpk

	3.1.2. Adjusting the voter's view of MP3 output to the α parameter
	3.1.3. Homomorphic vote tally

	3.2. Shared random number generation protocol

	4. EVIV system description
	4.1. EVIV system players
	4.2. EVIV architecture
	4.3. EVIV protocol
	4.3.1. Voter enrollment phase
	4.3.2. Election registration phase
	4.3.2.1. Election setup stage
	4.3.2.2. Ballot registration stage

	4.3.3. Vote casting phase
	4.3.3.1. Vote casting initialization stage
	4.3.3.2. Vote casting stage

	4.3.4. Public verification and vote counting phase
	4.3.4.1. Election data verification
	4.3.4.2. Vote tally
	4.3.4.3. Vote tally verification

	4.4. A note on the code card generation

	5. Protocol evaluation
	5.1. Coercion and receipt freeness
	5.2. Network infrastructure attacks

	6. Implementation results
	6.1. Time-critical operations
	6.2. Prototype results
	6.2.1. VST prototype implementation results

	7. Related work
	8. Conclusions and future work
	Acknowledgments
	Appendix A. The ElGamal cryptosystem
	A.1. Threshold ElGamal

	Appendix B. EVIV integrity and privacy proofs
	B.1. EVIV integrity proofs
	B.2. EVIV privacy proofs

	References

