
Network Investigation Methodology for BitTorrent Sync:
A Peer-to-Peer Based File Synchronisation Service

Mark Scanlon, Jason Farina, M-Tahar Kechadi
School of Computer Science and Informatics,

University College Dublin, Belfield, Dublin 4, Ireland
Email: mark.scanlon@ucd.ie, jason.farina@ucdconnect.ie, tahar.kechadi@ucd.ie

Final accepted version available: http: // dx. doi. org/ 10. 1016/ j. cose. 2015. 05. 003

Abstract

High availability is no longer just a business continuity concern. Users are

increasingly dependant on devices that consume and produce data in ever in-

creasing volumes. A popular solution is to have a central repository which each

device accesses after centrally managed authentication. This model of use is fa-

cilitated by cloud based file synchronisation services such as Dropbox, OneDrive,

Google Drive and Apple iCloud. Cloud architecture allows the provisioning of

storage space with “always-on” access. Recent concerns over unauthorised access

to third party systems and large scale exposure of private data have made an al-

ternative solution desirable. These events have caused users to assess their own

security practices and the level of trust placed in third party storage services.

One option is BitTorrent Sync, a cloudless synchronisation utility provides data

availability and redundancy. This utility replicates files stored in shares to re-

mote peers with access controlled by keys and permissions. While lacking the

economies brought about by scale, complete control over data access has made

this a popular solution. The ability to replicate data without oversight intro-

duces risk of abuse by users as well as difficulties for forensic investigators. This

paper suggests a methodology for investigation and analysis of the protocol to

assist in the control of data flow across security perimeters.

Keywords: BitTorrent Sync, Distributed Storage, Peer-to-Peer, Network

Traffic Analysis, Remote Evidence Acquisition

Preprint submitted to Computers and Security September 17, 2018

ar
X

iv
:1

50
6.

01
41

4v
1

 [
cs

.C
R

]
 3

 J
un

 2
01

5

http://dx.doi.org/10.1016/j.cose.2015.05.003

1. Introduction

Applications such as Evernote and Dropbox leverage the decreasing cost of

hard disk storage seen in Infrastructure as a Service providers, e.g., Amazon S3,

to provide data storage on the cloud to home users and businesses alike. The

main advantage of services such as Dropbox, Google Drive, Microsoft OneDrive

(formally SkyDrive) and Apple iCloud to the end user is that their data is stored

in a virtual extension of their local machine with no direct user interaction

required after installation. It is also backed up by a fully distributed data-

centre architecture that would be completely outside the financial reach of the

average consumer. Their data is available anywhere with Internet access and is

usually machine agnostic so the same data can be accessed on multiple devices

without any need to re-format partitions or wasting space by creating multiple

copies of the same file for each device. Some services such as Dropbox, also have

offline client applications that allow for synchronisation of data to a local folder

for offline access.

As Internet accessibility continues to become more commonplace and allows

for increasingly faster access, it is not unexpected that many utilities that are in-

tended for general use will aid in the perpetration of some variety of cybercrime.

One attribute that is highly desirable by those contemplating illegal activities

is the notion of anonymity and data security – especially the ability to keep

data secure transfer secure from inspection while in transit. BitTorrent Sync

(also referred to as BTSync, BitSync and bsync) is a file replication utility that

would seem to serve exactly this function for the user. Designed to be server

agnostic, the protocol is built on already popular and widespread technologies

that would not seem out of place in any network activity log.

Each of the aforementioned consumer focused services can be categorised as

cloud synchronisation services. This means that while the data is synchronised

between user machines, a copy of the data is also stored remotely in the cloud.

In recent headline news, much of this data is easily available to governmental

2

agencies without the need of a warrant or just cause. BTSync provides the same

synchronisation functionality (without the cloud storage aspect) and provides a

similar level of data availability. The service has numerous desirable attributes

for any Internet user [1]:

• Compatibility and Availability – Clients are built for most common desk-

top and mobile operating systems, e.g., Windows, Mac OS, Linux, BSD,

Android and iOS.

• Synchronisation Options – Users can choose whether to sync their content

over a local network or over the Internet to remote machines with no re-

quirement for scripting or schedule management making this an accessible

technology compared to existing options such as RSYNC.

• No Limitations or Cost – Most cloud synchronisation services provide a

free tier offering a small amount of storage and subsequently charge when

the user outgrows the available space. BTSync eliminates these limitations

and costs. The only limitation to the volume of storage and speed of the

service is down to the limitations of the synchronised users machines.

• Automated Backup – Like most competing products, once the initial in-

stall and configuration is complete, the data contained within specified

folders is automatically synchronised between machines.

• Decentralised Technology – All data transmission and synchronisation

takes place solely in a Peer-to-Peer (P2P) fashion, based on the BitTorrent

file sharing protocol.

• Encrypted Data Transmission – While synchronising data between com-

puters, the data is encrypted using RSA encryption. Under the BTSync

API, developers can also enable remote file storage encryption [2]. – This

could result in users storing their data on untrusted remote locations for

the purposes of data redundancy and secure off site backup.

3

• Proprietary Technology The precise protocol and operation of the tech-

nology is not documented by the developer. There is debate over whether

security through obscurity or peer code evaluation, i.e., open source, is

better. Some enterprise security policies prohibit the use of open source

applications as a result of the source code being open to inspection by

those looking for flaws in the implementation. From the point of view of

the consumer, BitTorrent Inc. have stated that they will not give access

to traffic to any LEA without due process and the bespoke protocol makes

casual eavesdropping or crawling less likely.

As a result of these attributes, BTSync has grown to become a popular al-

ternative to cloud based synchronisation services. Less than a year after its

release, the active user base had grown to over one million by November 2013,

doubling to two million by December 2013 [3], and to over ten million users

by August 2014 [4]. Due to this rapid growth and popularity the service will

undoubtedly be of interest to both law enforcement officers and digital forensics

investigators in future investigations. Like many other file distribution tech-

nologies, this interest may be centred around recovery of the data itself, proof

of the modification of data or evidence of data distribution and enumeration of

the recipients.

While BTSync is based on the same technology as BitTorrent for the transfer

of files, the intention of the application is quite different. This results in a

change of users’ behaviours, as well as a necessary change in the assumptions

an investigator should make. BitTorrent is designed to be a one-to-many data

dissemination utility. The uploader usually does not care about the identity

of the downloader and a single seeder can deliver data to a large number of

unique peers over the life of the torrent file. Data integrity and transfer speed

take precedence over privacy of data in transit. BTSync on the other hand, is

designed to be a secure data replication protocol for making a faithful replica

of a data set on a remote machine. Data integrity is still highly prised but

data privacy is now the top priority and speed-through-dispersion is sacrificed

4

as a result. The files can only be read by users specifically given access to

the repository. The advertisement of data availability is completely scalable by

the owner with options ranging from restricting access to known IP addresses

through to registration with a centralised tracker. Given the nature of the

application, users are much more likely to know the operator of the remote site

(this does not apply to secrets advertised online though that could be a point

of commonality that would not necessarily have existed for pure BitTorrent

clients).

1.1. Aim and Contribution of this Work

The aim of this work is to provide a reference for digital investigators dis-

covering the use of BitTorrent Sync in an active investigation. However, it is

hoped that the analysis presented may be of use to security personnel looking

to detect and control the use of this protocol within their perimeter.

To accommodate these goals this work presents an analysis of the protocol

and its network interaction. Activities undertaken to perform a synchronisation

are presented and described at the packet level in order to facilitate both post

mortem traffic analysis and to enable the development of feature based detec-

tion rules and deep packet inspection for Network Intrusion Detection Systems

(NIDS) or firewall appliances.

The contribution of this work presents a suggested a network investigation

methodology for BitTorrent Sync, outlined in Section 5. This methodology

includes recommendations for the investigation of a number of hypothetical

scenarios where BTSync could be used to aid in criminal or illicit activities.

Legitimate usage of the system, e.g., backup and synchronisation, group mod-

ification, data transfer between systems, etc., may itself be of interest to an

investigation. However, the technology may also be suitable in the aid of a

number of potential scenarios of interest such as industrial espionage, copyright

infringement, sharing of illicit images of children, etc., outlined in greater detail

in Section 2.3. This work also documents each of the observed packets sent and

received during regular operation of BTSync. Finally, the results from two dig-

5

ital forensic investigations of the service are outlined in Section 6 and Section 7

respectively.

2. Background

In order to gain an understanding of how BTSync functions, one must first

understand the technologies upon which it is built. The application is a prod-

uct built by BitTorrent Inc. (the creators and maintainers of the eponymous

file-sharing protocol). As a result, the technologies used by the regular BitTor-

rent protocol and BTSync are developed using a similar premise. This section

provides a brief overview of the required background information and outlined

the key differences between the two applications.

2.1. BitTorrent File Sharing Protocol

The BitTorrent protocol is designed to easily facilitate the distribution of

files to a large number of downloaders with minimal load on the original file

source [5]. This is achieved through the downloaders uploading their completed

parts of the entire file to other downloaders. A BitTorrent swarm is made up of

both seeders (peers with complete copies of the content shared in the swarm),

and leechers (peers who are downloading the content and may have none or

some of the content). Due to BitTorrent’s ease of use and minimal bandwidth

requirements, it lends itself as an ideal platform for the unauthorised distribution

of copyrighted material. The unauthorised distribution of copyrighted material

typically commences with a single original source sharing large sized files to

many downloaders.

2.1.1. Bencoding

Bencoding is a method of notation for storing data in an array list. The

main advantage of bencoding is that it avoids the pitfalls of system-byte order

requirements (such as big-endian or little-endian), which can cause issues for

cross platform communication between applications. The datagram packet can

6

Table 1: BTSync Packet Bencoding Fields

Key Explanation

d: Marks the start of a dictionary

l: List start, the start of a list of field:value pairs

in an array. Lists are terminated with an “e”

la: local Address IP:Port in Network-Byte Order

ea: External Address IP:Port in Network-Byte Or-

der

m: Message Type Header, e.g., ping

peer: [Peer ID]

share: [Share ID]

nonce: 16-byte nonce for key exchange between peers

negotiating data exchange

e: Marks the end of a dictionary or list

easily be converted to a human readable UTF-8 encoded sequence of key:value

pairs. Indicative key:value pairings are presented in Table 1.

The value for any pair is stored as a sequence of-bytes with the exception of

integer values. Associated with the integer indicating keys, bencoding uses the

lowercase “i” to indicate the start of an integer value, which is also terminated

with a lowercase “e”.

2.1.2. Active Peer Discovery

Each BitTorrent client must be able to identify a list of active peers in the

same swarm who have at least one piece of the content and is willing to share it,

i.e., identify a peer that has an available open connection and has the bandwidth

available to upload. By the nature of the implementation of the protocol, any

peer that wishes to partake in a swarm must be able to communicate and share

files with other active peers. BitTorrent provides a number of methods available

for peer discovery. There are a number of methods that a BitTorrent client can

use in an attempt to discover new peers who are in the swarm outlined below

7

1. Tracker Communication – BitTorrent trackers maintain a list of seeders

and leechers for each BitTorrent swarm they are currently supporting [6].

Each BitTorrent client will contact the tracker intermittently throughout

the download of a particular piece of content to report that they are still

alive on the network and to download a short list of new peers on the

network.

2. Peer Exchange (PEX) – As set out in the standard BitTorrent specifica-

tion, there is no intercommunication between peers of different BitTorrent

swarms besides data transmission. Peer Exchange is a BitTorrent En-

hancement Proposal (BEP) whereby when two peers are communicating

(sharing the data referenced by a torrent file), a subset of their respective

peer lists are shared during the communication.

3. Distributed Hash Tables (DHT) – Many BitTorrent clients, such as Vuze

and µTorrent contain implementations of a common distributed hash ta-

ble as part of the standard client features. The common DHT maintains a

list of each active peer using the corresponding clients and enables cross-

swarm communication between peers. Each known peer active in swarms

with DHT contributors is added to the DHT. The mainline BitTorrent

DHT protocol (also used by BTSync), is based on the Kademlia proto-

col. Regular BitTorrent file-sharing users and BTSync users contribute to

the update and maintenance of the DHT. The DHT provides an entirely

decentralised approach aiding in the discovery of new peers sharing par-

ticular pieces of content. The Kademlia DHT structures its ID space as a

tree [7]. The distance between two keys in the ID space is their “exclusive

or” (xor). Each user in the DHT generates a unique key that is used for

identification when connecting to the DHT. The piece of the DHT that

each peer stores is related to this xor calculation. Those peer IDs that

are closest to the key, e.g., a torrent’s info_hash, are responsible for fa-

cilitating lookups for those keys. The same DHT responsible for regular

BitTorrent file-sharing is also responsible for maintaining a lookup for BT-

Sync shared content. In this scenario, the key used is based on the public

8

read-only key generated for each shared folder in BTSync.

While a DHTs decentralised nature results in a much more resilient service

compared to server based tracker, it also results in it be vulnerable to

certain attacks, as outlined in greater details in Sit et. al’s 2002 paper [8].

4. Local Peer Discovery (LPD) – This is enabled by checking the “Search

LAN” option in most BitTorrent client’s application preferences. When

enabled the application will announce its availability to potential local

peers using multicast packets. Once a client on the network receives a

multicast packet, that client will check its current list of shares to see if a

match is found. Is a match it found, that peer will respond to the origin

of the request offering to synchronise the content.

2.1.3. Downloading of Content through BitTorrent

To commence the download of the content in a particular BitTorrent swarm,

a metadata .torrent file or a corresponding magnet universal resource identi-

fier (URI) must be acquired from a BitTorrent indexing website. This file/URI

is then opened using a BitTorrent client, which proceeds to identify other active

peers sharing the specific content required. The client application then attempts

to connect to several active members and downloads the content piece by piece.

Each BitTorrent swarm is built around a single piece of content which is deter-

mined through a unique identifier based on a SHA-1 hash of the file information

contained in this UTF-8 encoded metadata file/URI, e.g., name, piece length,

piece hash values, length and path.

2.2. BitTorrent Sync

BTSync is a file replication utility created by BitTorrent Inc. and released

as a private alpha in April 2013 [1]. It is not a cloud backup solution, nor

necessarily intended as any form of off-site storage. Any data transferred using

BTSync resides in whole files on at least one of the synchronised devices. This

makes the detection of data much simpler for digital forensic purposes as there

is no distributed file system, redundant data block algorithms or need to contact

9

Figure 1: Keys (formerly secrets) are generated at share provision. The ability to view the

keys is not available in v2.0

a cloud storage provider to get a list of all traffic to or from a container using

discovered credentials. The investigation remains an examination of the local

suspect machine. However, because BTSync uses DHT to transfer data there is

also no central authority to manage authentication or log data access attempts.

A suspect file found on a system may have been downloaded from one or many

sources and may have been uploaded to one or more recipients. Additionally

while the paid services offer up to 1TB of storage (Amazon S3 paid storage

plan), the free versions which are much more popular with home users cap at

approximately 10GB. BTSync is limited only by the size of the folder being

set as a share. Another concern for any investigation into BTSync folders is

that unless the system being examined is the owner/originator of the folder

being shared, it is quite possible that any files present were downloaded without

prior knowledge of their content or nature. Before v2.0, BTSync had no built

in content preview facility in its protocol, it merely blindly synchronises from

host to target without any selection process available to the user. In v2.0, an

option was added to the preferences for each folder that allows the user to only

synchronise file titles as a zero byte place holder file. If the file is selected the

content of the file is downloaded. An update to the link descriptor in v1.4 allows

users to get an approximation of the share size at the time of joining.

2.2.1. Keys

The “secrets” used as part of the original release of BTSync were renamed

as “keys” in v1.4. The structure has not been changed however and still con-

10

sists of a 33 character human readable string consisting of a Base32 encoded

string generated when the folder was first provisioned. This Base32 pattern is

then prepended with a single letter indicating its nature. Keys are the unique

identifiers used by the BTSync service to differentiate between shared folders.

In order for the 20-byte keys to be human readable, they are displayed using

Base32 encoding [1]. BTSync facilitates the generation of three categories of

secrets for the sharing of data contained within specific folders, as can be seen

in Figure 1.

The initial Read & Write (RW) key is still generated using CryptoApi on

Windows based systems (this is downloaded as part of the installation process

if it is not installed already). This RW key is the equivalent of the original

“master secret” in that, if it is shared then the receiving party has an equal

level of access to the share as the original owner including the ability to delete

content and add new content that will be replicated to any synchronising peer

whether downstream or of equal rank.

From this initial RW key, a Read Only Key (RO) is generated automatically

for sharing. As can be seen in Figure 1, these are the only two keys readily

available to the user. However, these are not the only keys available for use.

BTSync defines six standard keys of which three can be generated using the

default installation of the desktop client. These keys are identified by their

prepended letter as follows:

• [A] This is the RW key generated at the time the share is provisioned.

This key gives the user full control over the share contents.

• [B] This identifies the Read Only key and can be used to create a child, or

downstream, peer that can only replicate share contents from another peer.

Any changes made to share contents, including deletion, will invalidate the

file changed and prevent any further replication actions for that particular

file in the future, or until the share is re-provisioned on that client (or the

share’s *.db file is altered but this may cause the entire share to be deemed

invalid).

11

• [C] The C type key is a read only one-use key that is discarded after its

first use. This key can be generated from either type A or type B keys

and is used primarily in the distribution of other keys.

• [D] Generated through the use of the Sync API, this type of key allows

read & write access to encrypted shares.

• [E] A read only key capable of replicating data from type D encrypted

shares and decrypting the contents. This key is calculated form the type

D key and so is not possible using that standard BTSync v1.4 or v2.0

installation.

• [F] Encrypted Read Only key capable of replicating data from an en-

crypted share but unable to decrypt the share contents. This type of key

can be used to store data in an encrypted state on a remote, untrusted,

system and still provide authenticity and availability.

Older versions of these, such as the ‘R’ prepended read only key of v0.x

are still usable but are no longer generated by the application. As with the

earlier BTSync versions, a user may also generate his or her own key that has

been Base64 encoded. As a result, these default prepended identification letters

cannot always be taken as an definite indicator of the access level granted by a

key before it has been applied.

The Keys outlined above need never necessarily be shared publicly, i.e.,

any user can create a number of keys solely for his personal use across his

different machines. Depending on the level of access the user wishes to give

to a third-party, he can give the corresponding key to any other user through

regular one-to-one communication methods (e-mail, instant messaging, social

networking, SMS, etc.). If public distribution is desirable, there are a number

of public online avenues for BTSync users to share secrets with each other (e.g.

www.btsynckeys.com, http://www.reddit.com/r/btsecrets, among others).

Version 1.4 presents a change to the method of sharing a link with a peer that

has been modified further in v2.0. In v1.4, a user can still view the RW and RO

12

Figure 2: Key Sharing is NowManaged from within the Application with Optional Restrictions

key of a share and can copy this key and send it via any medium to the remote

device. Using this method, the remote device user adds a new share and inputs

the key causing the share to automatically query a tracker (if this option is left

enabled) for the location of remote peers hosting a share matching the applied

key. An alternative to this method was added to the client and works as follows:

In the application the user that currently has access to the share (the owner)

can select the option to provision the share to another user (a peer which can

be a different person or a remote system under the control of the owner), as

depicted in Figure 2, and is presented with a choice of restrictions and methods

presented as options.

Permissions

• Read Only (default)

• Read & Write

Security Options

• Invited participants must be approved – the owner will receive notification

in the application that a peer wishes to share the resource. The Device ID

13

of the remote peer will be presented and the owner can accept or reject

their membership. This option is enabled by default.

• Expiration date – the link to the share will only remain active for a set

number of days from the time it is generated. This option is enabled by

default and the time limit is set to three days, but can be changed to any

number of days the owner inputs.

• Number of uses – this option allows the owner to limit the number of times

a link can be used to join a share. This is set to off by default.

The link generated by this process is presented as https://link.getsync.com/[URLoptions],

where the URL options are each separated by an ampersand. For example a

link shared from v1.4 for a folder called winhex with no expiry or usage lim-

itation would present as https://link.getsync.com/#f=winhex&sz=35E5&s=

XIQSFD2MCDPS2QKITWKJROJ2VUSV2YNA&i=CKKR3V2BBM7MXIOTPU3XWK55JBUFWG3EY&p=

CALSNMDGCZZAUQXBXEIR6Q57UMTVOSFI&e=1431277452 where:

• #f=(folder name of the share in plain text)

• sz=(approximate size of the share contents)

• s=(the shareID of the folder encoded in Base32)

• i=(a one time key used to provide access to the real key, this changes every

time the link for the folder is generated)

• p=(PeerID of the peer performing the server role in the upcoming key

exchange)

• e=(the expiry timestamp of the link if it is set, if it is not set this item

will not be present in the link)

• v=(the version of the client. This is only present in the v2.0 client and is

not optional)

14

https://link.getsync.com/#f=winhex&sz=35E5&s=XIQSFD2MCDPS2QKITWKJROJ2VUSV2YNA&i=CKKR3V2BBM7MXIOTPU3XWK55JBUFWG3EY&p=CALSNMDGCZZAUQXBXEIR6Q57UMTVOSFI&e=1431277452
https://link.getsync.com/#f=winhex&sz=35E5&s=XIQSFD2MCDPS2QKITWKJROJ2VUSV2YNA&i=CKKR3V2BBM7MXIOTPU3XWK55JBUFWG3EY&p=CALSNMDGCZZAUQXBXEIR6Q57UMTVOSFI&e=1431277452
https://link.getsync.com/#f=winhex&sz=35E5&s=XIQSFD2MCDPS2QKITWKJROJ2VUSV2YNA&i=CKKR3V2BBM7MXIOTPU3XWK55JBUFWG3EY&p=CALSNMDGCZZAUQXBXEIR6Q57UMTVOSFI&e=1431277452

Figure 3: A received link can be shortened and still be resolved to a share by the server

This URL can be copied to the system clipboard, sent via email (the email

option will open the default mail application on the system) or converted to a

QR code for scanning by a mobile device.

At a minimum the link must contain the folder, shareID and one time key

fields to resolve to a share if entered directly into a browser however removing

the version may cause the actual replication to fail if the remote version is

incompatible with the version adding the share. An example how this stripped

down link resolves is shown in Figure 3. Once an option is selected, the share

link is converted into a URL that can be opened by the locally installed client

if the client satisfies all of the requirements such as version number.

An alternative to opening the link in a web browser is to enter the link in

the client itself as if it was a share key, as shown in Figure 4. However, if the

version is not correct the replication will fail and, if authorisation is required,

the request will never be sent to the owner.

The process of joining a share has also been changed in v1.4 and v2.0. Us-

ing the x.509 security certificates and public private key pairs stored in the

15

Figure 4: A received link can also be added in the section to manually add a share

Figure 5: Requests for access can be verified (redacted) and share members can be reviewed

16

sync.dat file in the BitTorrent Sync folder. Once a host address is retrieved

a connection is made and a request for the RO or RW key is sent using the One-

Time-Key (i in the optional data) along with the peer’s public key generated

the first time a link is received or generated. The user and device name set at

this time will be the user and device name that the owner will see if they check

the identity of the peer requesting access. The device name will also be present

in the device list available for each share as can be seen in Figure 5. Once

authorised, the requesting peer receives a copy of the required key encrypted

with their public key which they then decrypt and apply to the share on their

end of the connection. Once complete the process of synchronisation can begin

and the new peer will be registered on the tracker if that option is left enabled.

2.3. Potential Scenarios Pertinent to Digital Forensic Investigation

2.3.1. Industrial Espionage

Many companies are aware of the dangers of allowing BitTorrent traffic on

their networks. However, quite often corporate IT departments enforce a block-

ing of the technology through protocol blocking rules on their perimeter fire-

walls. This has the effect of cutting off any BitTorrent clients installed on the

LAN from the outside world. In addition to Deep Packet Inspection (DPI) to

investigate the data portion of a network packet passing the inspection point,

basic blocking of known torrent tracker sites using firewall rule sets can be

used. BTSync does use BitTorrent as the protocol for file transfer but once the

transfer session is established using the BTSync protocol all traffic is encrypted

using AES and may not be open to inspection by a firewall. It also does not

follow the current known patterns that would identify an encrypted BitTorrent

stream as the target-source profile is different. Blocking t.usyncapp.com and

r.usyncapp.com will stop the tracker and relay options from being used but

BTSync can operate quite well without those services. Local peer discovery

can use multicast or direct “known peer" configuration where a known IP:Port

combination is used to identify a specific machine allowed to participate in the

share. This specificity would negate the issue of multicast packets usually not

17

being routed beyond the current network segment. A scenario where BTSync

can be used to transfer files within a LAN would be to transfer data to a machine

with lower security protocols in place such as the capability to write to a USB

device or perhaps even unmonitored access to the Internet (and the BitTorrent

protocol) through a designated guest LAN.

2.3.2. Cloudless Backup

By synchronising between two or more machines accessible to the user, data

can be stored in multiple locations as a form of backup. The secondary copies of

a file would be stored using a read only key so that only changes on the primary

system will ever replicated. A feature of BTSync that is enabled by default but

can be disabled in the configuration file, is the use of the .SyncArchive folder

that stores a copy of any file deleted or changed for a preset period of time

allowing for a form of file recovery or versioning.

2.3.3. Encrypted Remote P2P Backup

The BitTorrent Sync API [2] adds the functionality to generate an “encryp-

tion secret”. Through the use of encryption secrets, a BTSync user has the

ability to remotely store encrypted data, e.g., personal, sensitive or illegal, on

one or more remote machines. These remote machines do not have the ability

to decrypt the information stored. The data could then be securely wiped off

the original machine and easily recovered at a later stage.

2.3.4. Dead Drop

Due to BTSync’s intended use as a file replication utility, it is assumed that

a person receiving a copy of a shared directory is aware of the contents of the

folder. As a result, no method was included to gather details of the contents of

a share before synchronisation. The API [2] introduced this function but only

a node configured correctly with an API key will return a folder or file listing

when queried.

18

2.3.5. Secure P2P Messaging

For example, the proof of concept found at http://missiv.es/. The ap-

plication currently operates by saving messages to an “outbox” folder that has

a read only key shared to the person you want to receive the message. They in

turn send you a read only key to their outbox. One to many can be achieved by

sharing the read only key with more than one person but no testing has been

done with synchronisation timing issues yet and key management may become

an issue as a new outbox would be needed for each private conversation required.

2.3.6. Piracy

– BitTorrent, like any other P2P technology, was designed for one-to-many

distribution of large content and has become almost synonymous with piracy.

BTSync was not necessarily intended to be a one-to-many distribution utility.

However, it does allow for a group of users to set one another as “known peers”

so that they can communicate directly through encrypted channels. Websites

such as http://btsynckeys.com/ have examples of users posting keys publicly

and advertising the content as being copyrighted material.

2.3.7. Serverless Website Hosting

– This involves the creation of static websites served through a BTSync

shared folder. These websites could be directly viewed on each user’s local ma-

chine. The local copies of the website could receive updates from the webmaster

automatically through the synchronisation of the content associated with a read

only secret.

2.3.8. Malicious Software Distribution

– Due to the lack of any trust level being associated with any publicly shared

secret, the synchronised files may contain infected executables.

For each of the above scenarios, an added dimension can be created by the

BTSync user: time. Due to the ability to create “throw away” or temporary

secrets for any piece of content, the timeframe where evidence may be recovered

from remote sharing peers might be very short.

19

3. Related Work

This paper is focused on the network communication protocol employed by

BTSync and the investigation thereof. The work presented as part of this paper

builds upon the work of Farina et al. [9], which outlines the forensic analysis

of the BTSync client application on a host machine. This paper outlines the

procedures for identifying a current or previous install of the BTSync application

and the extraction of secrets from gain physical access to a machines hard drive

and performing a regular digital forensic investigation on its image. At the time

of publication, there are no other academic publications focusing on BTSync.

However, seeing as BTSync shares a number of attributes and functionalities

with cloud synchronisation services, e.g., Dropbox, Google Drive, etc., and is

largely based on the BitTorrent protocol, this section outlines a number of

related case studies and investigative techniques for these technologies.

3.1. BitTorrent Forensics

Numerous investigations have been made into identifying the peer informa-

tion of those involved in BitTorrent swarms. Most of these publications focus

on the investigation of the unauthorised distributed of copyrighted material

[10], [11] and [12]. Depending on the focus of the investigation, peer informa-

tion may be recorded for a particular piece of material under investigation or a

larger landscape view of the peer activity across numerous pieces of content.

3.2. Client-side Synchronisation Tool Forensics

Forensics of cloud storage utilities can prove challenging, as presented by

Chung et al. in their 2012 paper [13]. The difficulty arises because, unless com-

plete local synchronisation has been performed, the data can be stored across

various distributed locations. For example, it may only reside in temporary local

files, volatile storage (such as the system’s RAM) or dispersed across multiple

datacentres of the service provider’s cloud storage facility. Any digital forensic

examination of these systems must pay particular attention to the method of

access, usually the Internet browser connecting to the service provider’s storage

20

access page (https://www.dropbox.com/login for Dropbox for example). This

temporary access serves to highlight the importance of live forensic techniques

when investigating a suspect machine as a “pull out the plug” anti-forensic tech-

nique would not only lose access to any currently opened documents but may

also lose any currently stored sessions or other authentication tokens that are

stored in RAM.

In 2013, Martini and Choo published the results of a cloud storage forensics

investigation on the ownCloud service from both the perspective of the client

and the server elements of the service [14]. They found that artefacts were found

on both the client machine and on the server facilitating the identification of

files stored by different users. The module client application was found to store

authentication and file metadata relating to files stored on the device itself and

on files only stored on the server. Using the client artefacts, the authors were

able to decrypt the associated files stored on the server instance.

3.3. Extension of the Digital Evidence Acquisition Window

In 2014, Scanlon et al., outlined a case study on BTSync whereby the remote

recovery of evidence from a BTSync shared folder can enable the recovery of

evidence that is no longer accessible on the local machine [15]. This evidence

may have been securely deleted, corrupted or overwritten on the local device

or viewed (not stored) on a mobile device using the BitTorrent Sync app. The

paper outlines a number of entry points from the local machine into the inves-

tigation and the remote recovery of such evidence including local and network

sources.

4. BitTorrent Sync Network Protocol Analysis

Starting with the beta release of v1.4, BTSync changed its protocol to

more closely resemble that of the underlying BitTorrent protocol. In addition

to changes to the directory structure and the introduction of public/private

key storage for shares, the network traffic profile of the protocol changed dra-

matically by utilising the Micro Transmission Protocol (µTP) as outlined in

21

the BitTorrent Extension to Protocol (BEP) 29, which is officially specified

here: http://www.bittorrent.org/beps/bep_0029.html. This protocol was

already used by BitTorrent once actual file transfer was initiated but now BT-

Sync has adapted its communications to use µTP signalling resulting in a

smaller overall usage of bandwidth but a more noticeable footprint.

Where the initial release of BTSync used custom packets that all started with

the header BSYNC[00] or BSync[80], this purely cosmetic identifying header was

replaced with the µTP DATA version 1 (01) header for all request and transfer

packets and STATE (21) was used to perform the same functionality of the

original PING used to update peer availability and provide connection details

and data.

As with the original µTP protocol the connection management packets and

headers used by BTSync v1.4 and onwards are:

SYN : initiates the two-way µTP handshake to establish a connection with

the remote peer. This packet has its type indicator set to 4.

STATE : the most common packet in µTP , this “ACK” replaces the BTSync

response to PING and serves as both the keep-alive and the response to

the handshake initiation. This packet is identified by the type value of 2.

DATA : This packet is used to carry messages such as the peer request message

sent to the tracker or the peer list sent in response. This packet has a type

value of 0.

RST : as with TCP the RST packet is used to reset the connection in the event

of an error in transmission. This has a type identifier set to 3

FIN : Indicates the end of a connection and is denoted by the type value of 1.

The µTP message headers have a similar layout that is formatted as follows:

Header Type:[0/1/2/3/4]

Version:[1]

Extension[00]

22

http://www.bittorrent.org/beps/bep_0029.html

Figure 6: A newly created share will have some preferences set by default that can be toggled

by the user

ConnectionID:[AB CD]

Timestamp:[AB CD EF GH]

Timestamp Difference[AB CD EF GH]

Window Size:[AB CD EF GH]

sequence number:[AB CD]

Ack Number:[AB CD]

On provision of a new share several options are enabled automatically by

the application as shown in Figure 6. These options can be disabled or re-

enabled by the user at any time to customise the network behaviour of the local

repository being edited. These changes can also be managed through direct

editing of the application configuration files. The default behaviour for BTSync

is to utilise the tracker server at t.usyncapp.com. The DNS request resolves to

three IP addresses: 54.225.100.8, 54.225.92.50 and 54.225.196.38. These

three IP addresses are servers hosted on Amazon’s EC2 cloud service. This is

the BTSync tracker server, which facilitates peer discovery for clients looking

to synchronise data. One peer request message is sent for each share stored on

the local machine and the act of requesting a peer lookup also serves to register

the requesting client as a source for that share.

23

Packets sent from the client to the tracker server contain registration details

and get_peers message requests (when a new share is created it registers the

share with the tracker using a get_peers packet). A get_peers packet takes

the form of:

Version 1.4:

Header type: 0

d2:la

6:[6 byte local IP:port]

2:lp[port integer]

1:m

9:get_peers

4:peer

20:[20 byte peer ID]

5:share

20:[20 byte ShareID]

e

Version 2.0:

Header type: 0

d2:la

6:[6 byte local IP:Port]

2:lp [local port integer]

1:m

9:get_peers

4:peer

20: [20 byte peer ID]

5:share

32:[32 byte ShareID]

e

(where the observed keys are defined in Table 2).

This packet is initially sent to the tracker server via TCP and UDP to

test connectivity. If both protocols succeed, UDP is the preferred method of

communication. Tracker updates are performed at a rate of once every 600

seconds or if a change is made to the share data, in which case the timer is

reset. A separate packet is sent for each share present on the local machine. It is

noteworthy that, even when a new share is created, the first packet advertising

that share to the server uses a message type of get_peers. Depending on

the bandwidth usage it is entirely possible for a single peer to simultaneously

contact and register with multiple tracker server addresses. Each share will have

its own Connection ID value in the µTP header for that get_peers packet and

each request will prompt a separate type 2 (ACK) response from the tracker

server followed by a separate response to the request itself.

24

Table 2: Sample Tracker Packet

µTP The µTP data header that signifies

0x00 Null

d Start of the dictionary of key:value pairs

2:la Local address label identifier which consists of

6-bytes, the first 4 are IP, the last two are port

2:lp local port in integer form

1:m Message label identifier

9:get_peers message type value

4:peer Local peer label

20: Local PeerID

5:share Local ShareID label

20: The 20 character ShareID a transform of the se-

cret used and can be found in the .SyncID file.

32: A share ID based on some transform of the 20

byte ShareID, the local IP address and local

port.

25

The receiving tracker will respond to the requesting client with the same

protocol used in the get_peers message. This has the consequence that if TCP

and UDP are successful on the first request, the first response will be a set of

duplicate TCP and UDP packet in the form:

Version 1.4 and 2.0:

Header type: 0

d2:ea

6:[requester external IP:port]

1:m

5:peers

5:peers

l[peer list starts]

e[peer list ends]

5:share

20:[20 byte ShareID]

4:time[timestamp]

e

Peer Entry in peer list

d

1:a[address key]

6:[external IP:Port value]

2:la[local address key]

6:[internal IP:Port]

1:p

20:[Peer ID]

e[end of Peer dictionary]

where the observed keys are defined in Table 2 The peer list returns an

entry for each peer currently in contact with the tracker through get_peer

requests. The current requesting peer will be included in this list so the peers

message will always have at least one entry in the peers list.

One unusual feature of the peers response is the inclusion of a peer’s local,

non-routable, IP address and Port. This is so that, if the local IP matches

the local subnet of the requesting peer, the requesting peer can attempt to

communicate directly over the LAN using the local address provided. If the

tracker server option is disabled then the local client will have to use a different

method to find peers local to it.

26

Table 3: Multicast Ping Packet

BSYNC The BTSync Header

0x00 Null

d Start of the dictionary of key:value pairs

1:m Message label identifier

4:PING The message type

4:peer Local peer label

20: PeerID of the multicasting Peer

5:share Local ShareID label

32: The Share32 ID that matches that used in the

v2.0 get_peers

4.1. Local Peer Discovery

When the option to search LAN is enabled (the default behaviour) the ap-

plication will start sending out multicast packets to port 3838 across the LAN.

The multicast packets are BTSync bencoded packets with the following format

and the keys are further explained in Table 3.

BSYNC[00]

d1:m4:ping4:peer20:[20-byte Peer ID]

4:port[i Integer e]

5:share32:[32-byte content ShareID] e

The format of these packets has not changed since the original pre v1.4 BT-

Sync. Once LAN discovery is enabled the local neighbouring peers will respond

to the multicast broadcast with the “BSYNC[00]” TCP packet detailed below.

Once a peer receives a multicast message that contains a ShareID that it

possesses the peer responds with the content:

BSYNC[00]

d1:m4:ping4:peer20:[20-byte PeerID]

27

4:port[i Integer e]

5:share20:[20-byte ShareID] e

The keys have the same definitions as those shown in Table 3 with the exception

of the ShareID being the more familiar 20 byte version.

Once the Ping has been sent the peers perform a BTSync session negotiation

involving the generation of a nonce value as laid out in Table 1. The rest of

the synchronisation takes place over TCP IP and the µTP traffic runs alongside

over UDP. The synchronisation process is signed off with a µTP Type 1 (FIN)

packet. After this there are regular µTP type 2 (STATE) messages to check for

changes.

4.2. BTSync Relay Server

When BTSync finds that it needs to communicate directly between two

firewalled peers, the application may make use of a relay server. The “Use

Relay Server if required” option is enabled by default on share creation. The

relay server is contacted by a DNS request sent out for r.usyncapp.com, which

resolves to the following IP addresses: 67.215.229.106 and 67.215.231.242.

These are the IP addresses of the relay servers contactable on remote port

3000. Each peer contacts the relay server using an outbound connection that

should bypass any firewall rule preventing unauthorised inbound connections.

Once the server handshake has taken place, the negotiation to set up a secure

connection between the two peers begins. The following sequence of events is

observable:

1. Peer contacts the relay server to initiate contact with the remote peer.

0022 | CounterA | BSYNC 0x000000 [20 byte remote peerID]

CounterB | peer20 | 20 byte local peerID

2. The relay server responds to the peer using a standard TCP ACK packet

3. The peer contacts the server to arrange transfer of the data and to supply

the nonce for encrypted traffic and provide a status ID.

28

0066 | CounterA | BSYNC 0x00(4) :d5:nonce16:[nonce value for key

share]5:share20:[20 byte shareID]e

4. The relay contacts the peer to initiate the session counters

0022 | CounterA | [20 byte remote peerID]

remote Peer IP:Port | Counter B

5. The relay server Confirms the SID status and supplies the remote nonce

to complete the bridge for encrypted data transfer

0022 | CounterB | remote peerID | 0066 | remote Peer ID | CounterA

BSYNC 00x4 | :d5:Nonce16:[nonce value]5:share20:[20 byte ShareID]e

6. The Relay server contacts the local peer to deliver the remote public key

7. the local peer delivers its public key to the relay server

8. Encrypted bidirectional traffic transfer commences with the relay server

acting as the router delivering packets to each peer.

4.3. BTSync Data Transfer

The transfer of data during a BTSync synchronisation operates in a similar

fashion as a regular BitTorrent download as described in Section 2.1.3 above.

A unique magnet URI is created for each file contained within the shared folder

and this is used for requesting chunks of the entire file from known peers sharing

this content.

4.4. Differentiation from Regular BitTorrent Traffic

While much of the network topology of BTSync is shared with regular Bit-

Torrent, the request and response packets differ from those employed by regular

BitTorrent file-sharing traffic. The most obvious addition is the BSYNC header

attached to each datagram transmitted on the network. In addition, the intro-

duction of µTP causes increased volume of traffic recognisable even though µTP

results in lower overall bandwidth usage. Besides that addition, the active peer

29

list that is returned also contains additional information over the regular Bit-

Torrent file-sharing protocol: namely the inclusion of the local IP:port address

pairs for each peer. From an investigative perspective, this extra information

could prove useful in identifying the particular machine involved in the BTSync

network as opposed to merely resolving the WAN IP address back to a router

with potentially hundreds of LAN users. The local DHCP records could be used

to resolve the MAC address (and often the hostname) of the individual machine

identified during the network investigation.

In addition to the regular BitTorrent peer discovery methods outline in Sec-

tion 2.1.2 above, BTSync also allows the user to manually add known IP ad-

dresses to the local cache of peers. BTSync facilitates this through the option

to add “Predefined Hosts” to the configuration or application options. These

are hardcoded IP address and port entries that are saved in order of prefer-

ence. BTSync will contact these peers directly, without any requirement for a

multicast (LPD) or sending a get_peers request to an online tracker.

5. Investigation Methodology

This section outlines a reproducible methodology for the network investi-

gation methodology. Depending on which of the scenarios outlined above, the

methodology may branch according to what the desired outcome will be. Fig-

ure 7 outlines the five steps involved in the investigative process (each of these

steps are described in greater detail below).

5.1. Identification of Content

Depending on the scenario that motivates the BTSync network investigation,

there are a number of avenues that the forensic investigator may find secrets

(and corresponding hash values) needed for investigation:

5.1.1. Web Discovery

– As soon as BTSync was released as a public alpha, publicly accessible shar-

ing secrets started to appear online. Two “subreddits” appeared on Reddit [16]

30

Figure 7: Steps Involved in Performing a BTSync Network Investigation

and numerous websites and blogs were created to set up an online “dead drop” se-

cret share, for example http://www.12char.com and http://www.btsynckeys.com.

It is also feasible that an investigator could come across an online community

that shares secrets in a private forum for the purposes of trading data and ma-

terial without 3rd party involvement. Keys to shares discovered in this manner

that possess a timestamp component will need to be checked to determine if the

link has expired or not.

5.1.2. Local Discovery

– An investigator could, in the course of an investigation find evidence of

BTSync having been used to transfer material to the suspect machine. This

could be that BTSync installed and the folder listed in the list of shares stored

in the configuration file, webUI or the BTSync hidden .Sync folder. BTSync

log files (/.sync/sync.log), or, if BTSync is not present (uninstalled) there could

still be .SyncID files remaining in folders that were synchronised from remote

peers. A hexdump of the .SyncID file or, more conveniently, the names of the

*.db files found in the .Sync folder will give the SHA1 encoded share ID that

the investigator needs to find other peers actively sharing that content

31

5.1.3. LAN traffic

– Many companies configure their edge firewalls to block torrent traffic for

the general users. If the company uses torrent for some other business purpose

it will usually be accounted for and allowed from or to a particular server or

subnet. However, BTSync allows for all external communicate beyond the LAN

to be turned off (in the configuration file or in the settings dialogue the options

for “Use DHT”, “Use Tracker” and “Use Relay Server” can be disabled) leaving

only the settings for LAN discovery or known peers. A security review of the

router logs may find active torrent traffic within the LAN or system admins

may discover evidence of torrent applications run.

5.2. Identification of Lookup Hash

Requesting a list of peers through any of the peer discovery methods outlined

above requires a unique lookup hash. This hash is used by the tracker, DHT,

PEX and LPD in the association of know peers to a particular piece of content.

5.3. Crawl the Network to Identify Peer Information

Each of the peer discovery methods outlined above should be queried for a

list of known active nodes sharing that content. Due to the user configurable

nature over which services are enabled in the BTSync client, to ensure complete

node enumeration/identification, the results from each of the peer discovery

methods should be combined to form the final result of collected information.

5.4. Downloading and Verification of Content

Depending on the scenario being investigated, it may be necessary to down-

load a copy of the content stored remotely for investigation or verification. In

order to accomplish this, a regular BitTorrent download can be started for each

of the files contained within the shared folder. If the investigation’s goal is

to attempt to recreate content deliberately deleted off a suspect’s machine, the

data can only be entirely recovered if there is a complete copy of the data stored

remotely. However, this does not mean that any single node needs to have 100%

32

of the content. The original data can be recombined so long as a complete copy

exists split among the distributed nodes actively sharing the content. An obsta-

cle to this stage of the investigation would be the use of limited use keys. The

link descriptor for a key has no component to indicate a restricted number of

uses. A further obstacle would be the option to require authorisation before a

peer can access a share. This is unlikely to be the case for links discovered on

a public platform.

6. Proof of Concept

In order to begin proof of concept testing for the investigation methodology,

a bespoke BTSync crawling application was first designed and developed. This

application was built to emulate regular BTSync client usage, as outlined above,

and recorded the necessary results for analysis.

6.1. Overview

To demonstrate the functionality of the application, an investigation was

conducted on a known publicly accessible BTSync secret. One of the public BT-

Sync online secret sharing sites was used (http://www.btsynckeys.com/) to ac-

quire a secret likely to have active peers sharing the corresponding content. The

secret selected was advertised with the description “45 GB Movie Collection

[Movies] [R]” and the read-only secret BKV273YUFMWILMESLRDVLI5NHMWO3OCS7

was supplied. It is important to note that there is no certainty that the descrip-

tion accurately advertises the content within the share. There is no method of

verifying any of the containing shared content until the syncing process begins

and temporary files are created in the shared folder. Even at that point, the user

can merely see the file names of the content once the download/synchronisation

process has begun.

6.2. Results

As part of the peer identification process a number of active peers were

returned to the investigative application. These peers were recorded for later

33

Figure 8: Daily Snapshot Comparison for Investigated Secret (Public IP Addresses Partially

Redacted)

analysis. During the first snapshot taken for this investigation, 21 peers were

identified as sharing the specific content and 20 were identified on the second.

A snapshot accounts for all of the peers identified sharing the specific content

at the same instance in time.

Two peers (differentiated by PeerID) of particular interest are listed as the

second and third last peers in both tables in Figure 8 (highlighted in red).

Comparing their peer ID and local IP:Port address pairing, it is clear that these

two peers are referring to the same individual node. Between the two snapshots

taken of this shared content, their IP address changed from one IP address range

34

to another. However, both of these IP address ranges are associated with the ISP

“Telefonica” in the same postal zip code in Berlin, Germany (data gathered from

Maxmind [17]). This information indicates an ISP level IP address reallocation

sometime between the two snapshots as opposed to the use of a VPN or other IP

address masking system. The two peers share the same external IP address but

have different external ports and local IP:port pairs indicating that the BTSync

install on these nodes are accessing the Internet through a router employing

Network Address Translation (NAT).

6.3. Churn Rate

While the example investigation outlined as part of this paper focuses on a

single secret over a 24 hour window, the low churn rate of just 7% remains inter-

esting. Most P2P networks experience a high turnover of peers [18]; following

the assumption that most users are active on the network while downloading

some content and disconnect upon completion. BTSync is designed to be a tool

that functions in a similar manner to cloud file synchronisation services like

Dropbox or Google Drive. These tools largely operate on an “install and forget”

approach whereby synchronisation and updating between the cloud and poten-

tially multiple client machines does not require any direct user input. BTSync

uses a similar approach and as a result, low churn rates would be expected.

6.4. Geolocation

Figure 9 shows the geographic distribution of the peers identified as part of

the investigation. While the total number of peers identified with this proof

of concept investigation is quite low, the data remains consistent with regular

BitTorrent investigative results [11] with North America and Europe being the

most popular continents involved.

7. Example Investigation

In late August 2014, the iCloud accounts of numerous celebrities were hacked

and compromising photos and videos were posted online without their con-

35

Figure 9: Geolocation of Discovered IP Addresses

sent in what has gained notoriety in the media and among Internet users as

"The Fappening" [19] or "Celebgate" [20]. The comprised photos spread across

the globe with the help of Internet forums, such as htpp://4chan.org and

http://reddit.com. At the time, there was concerns that iCloud itself had

been hacked and these leaks were merely a subset of the information stolen of

Apple’s servers, however an investigation into the attack found that the pass-

words were cracked for specific accounts [19].

7.1. Entry Point

The entry point to this investigation first involved verifying that this con-

tent was being shared using BTSync. On the public BTSync secret sharing

“subreddit” http://reddit.com/r/btsecrets, a number of public read-only

secrets were shared containing collections of the leaked content. For the pur-

poses of this investigation, one shared leaked content was investigated using the

aforementioned BTSync investigative application. The secret investigated was

bb63eb5b61969956e71273026f00a1deca464413. The investigation took place

one week after the leak occurred.

36

Figure 10: Network-based Entry Point into Investigation (ShareID Highlighted in Blue

A BTSync dissector for Wireshark was developed1 to expedite the network

analysis process. This dissector can identify the various packets pertinent to

the decentralised service in the Wireshark traffic capture, as can be seen in Fig-

ure 10. Using the gathered ShareID from the network traffic, the investigative

application was launched and the ShareID supplied.

7.2. Peer Discovery

Figure 11: IP Addresses Discovered Sharing the Content

1Wireshark Dissector is downloadable from http://www.markscanlon.co/bittorrent-sync

37

http://www.markscanlon.co/bittorrent-sync

Using the gathered ShareID, the application was able to gather information

about each of the peers sharing the content, as can be seen in Figure 11 using

each of the peer discovery methods outlined above.

7.3. Geolocation

Figure 12: Geolocation of Discovered Peers

The IP addresses detected during the investigation were geolocated and

found to be located in North America and Europe, as can be seen in Figure 12.

7.4. Data Recoverable from Remote Peers

Figure 13: Evidence Recovery from Remote Peers

38

Some of the evidence recoverable from remote peers in this particular BT-

Sync share can be seen in Figure 13. The version of the BTSync available at

the time of the investigation (v1.4), did not have selective sync functionality.

As a result, each member of the secret must download all of the shared content.

This limitation of a lack of selective syncing means that each peer identified

will eventually have all of the content in the share. This feature makes evidence

recovery from such popular shares more performant for digital investigators as

each node is a potential source of the pertinent evidence. With the advent of

v2.0 of the application, selective sync means that each peer must be commu-

nicated with individually to identify which active machines identified has what

data.

8. Conclusion

This paper documented the protocol used in BitTorrent Sync during the

discovery of peers and the synchronisation of data. While BTSync is not neces-

sarily intended to replace BitTorrent as a file dissemination utility, it will likely

be used for this purpose. This is already facilitated though websites providing

shared secrets, e.g., Reddit [16], etc., as a form of dead-drop. The develop-

ers describe the tool as an end-to-end encrypted method of transferring files

without the use of a third party staging area, which ensures that the content

and personal details remain hidden from unauthorised access. Analysis of the

network communication procedure produced unique identifiable information on

peers including their unique PeerID, their external and local IP addresses and

port numbers. In combination with traditional digital forensic methods, once a

secret is identified, it is possible to discover other nodes on the network who are

also sharing this data. Deleted data from a local shared folder could be down-

loaded from the network and recombined for forensic investigation. From an

investigative perspective, the decentralised nature of BTSync will always leave

an avenue of gathering information and identifying nodes sharing particular

content open to the forensic investigator.

39

References

References

[1] BitTorrent Inc., Bittorrent sync user manual (2013).

URL http://www.bittorrent.com/help/manual/

[2] BitTorrent Inc., BitTorrent Sync Developer API (2013).

URL http://www.bittorrent.com/sync/developers/api

[3] BitTorrent Inc., BitTorrent Sync Article (2013).

URL http://blog.bittorrent.com/2013/12/05/bittorrent-sync-

hits-2-million-user-mark/

[4] BitTorrent Inc., Introducing BitTorrent Sync 1.4: An Easier Way to Share

Large Files (2014).

URL http://blog.bittorrent.com/2014/08/26/introducing-

bittorrent-sync-1-4-an-easier-way-to-share-large-files/

[5] B. Cohen, The BitTorrent Protocol Specification (2008).

URL http://bittorrent.org/beps/bep_0003.html/

[6] B. Cohen, Incentives build robustness in bittorrent, in: Proceedings of the

Workshop on Economics of Peer-to-Peer systems, Vol. 6, 2003, pp. 68–72.

[7] J. Li, J. Stribling, T. M. Gil, R. Morris, M. F. Kaashoek, Comparing the

Performance of Distributed Hash Tables under Churn, in: Peer-to-Peer

Systems III, Springer, 2005, pp. 87–99.

[8] E. Sit, R. Morris, Security Considerations for Peer-to-Peer Distributed

Hash Tables, in: Peer-to-Peer Systems, Springer, 2002, pp. 261–269.

[9] J. Farina, M. Scanlon, M.-T. Kechadi, BitTorrent Sync: First Impressions

and Forensic Implications, in: Digital Forensic Research Workshop EU

(DFRWS EU 2014), 2014.

40

http://www.bittorrent.com/help/manual/
http://www.bittorrent.com/help/manual/
http://www.bittorrent.com/sync/developers/api
http://www.bittorrent.com/sync/developers/api
http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/
http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/
http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/
http://blog.bittorrent.com/2014/08/26/introducing-bittorrent-sync-1-4-an-easier-way-to-share-large-files/
http://blog.bittorrent.com/2014/08/26/introducing-bittorrent-sync-1-4-an-easier-way-to-share-large-files/
http://blog.bittorrent.com/2014/08/26/introducing-bittorrent-sync-1-4-an-easier-way-to-share-large-files/
http://blog.bittorrent.com/2014/08/26/introducing-bittorrent-sync-1-4-an-easier-way-to-share-large-files/
http://bittorrent.org/beps/bep_0003.html/
http://bittorrent.org/beps/bep_0003.html/

[10] R. Layton, P. Watters, Investigation into the extent of infringing content

on BitTorrent networks, Internet Commerce Security Laboratory.

[11] M. Scanlon, A. Hannaway, M.-T. Kechadi, A Week in the Life of the Most

Popular BitTorrent Swarms, 5th Annual Symposium on Information As-

surance (ASIA’10).

[12] S. Le Blond, A. Legout, F. Lefessant, W. Dabbous, M. A. Kaafar, Spying

the World from your Laptop: Identifying and Profiling Content Providers

and Big Downloaders in BitTorrent, in: Proceedings of the 3rd USENIX

conference on Large-scale exploits and emergent threats: botnets, spyware,

worms, and more, USENIX Association, 2010, pp. 4–4.

[13] H. Chung, J. Park, S. Lee, C. Kang, Digital Forensic Investigation of Cloud

Storage Services, Digital Investigation 9 (2) (2012) 81 – 95.

[14] B. Martini, K.-K. R. Choo, Cloud storage forensics: ownCloud as a case

study, Digital Investigation 10 (4) (2013) 287 – 299.

[15] M. Scanlon, J. Farina, T. Kechadi, Leveraging Decentralization to Extend

the Digital Evidence Acquisition Window: Case Study on BitTorrent Sync,

Journal of Digital Forensics, Security and Law 9 (2) (2014) 85–100.

[16] Reddit, Btsecrets, http://www.reddit.com/r/btsecrets (2014).

[17] Maxmind Inc., Geolite country database (Jul. 2014).

URL http://www.maxmind.com

[18] O. Herrera, T. Znati, Modeling churn in P2P networks, in: Simulation

Symposium, 2007. ANSS’07. 40th Annual, IEEE, 2007, pp. 33–40.

[19] K. Bora, Apple Knew About iCloud Flaw 6 Months Before ’The Fappen-

ing’ Hit Celebrity Photos, Report Claims (Sep. 2014).

URL http://www.ibtimes.com/apple-knew-about-icloud-flaw-6-

months-fappening-hit-celebrity-photos-report-claims-1694792

41

http://www.maxmind.com
http://www.maxmind.com
http://www.ibtimes.com/apple-knew-about-icloud-flaw-6-months-fappening-hit-celebrity-photos-report-claims-1694792
http://www.ibtimes.com/apple-knew-about-icloud-flaw-6-months-fappening-hit-celebrity-photos-report-claims-1694792
http://www.ibtimes.com/apple-knew-about-icloud-flaw-6-months-fappening-hit-celebrity-photos-report-claims-1694792
http://www.ibtimes.com/apple-knew-about-icloud-flaw-6-months-fappening-hit-celebrity-photos-report-claims-1694792

[20] K. T. Muth, Googlestroika: Five years later, NCJL & Tech. 16 (2015)

487–527.

42

	1 Introduction
	1.1 Aim and Contribution of this Work

	2 Background
	2.1 BitTorrent File Sharing Protocol
	2.1.1 Bencoding
	2.1.2 Active Peer Discovery
	2.1.3 Downloading of Content through BitTorrent

	2.2 BitTorrent Sync
	2.2.1 Keys

	2.3 Potential Scenarios Pertinent to Digital Forensic Investigation
	2.3.1 Industrial Espionage
	2.3.2 Cloudless Backup
	2.3.3 Encrypted Remote P2P Backup
	2.3.4 Dead Drop
	2.3.5 Secure P2P Messaging
	2.3.6 Piracy
	2.3.7 Serverless Website Hosting
	2.3.8 Malicious Software Distribution

	3 Related Work
	3.1 BitTorrent Forensics
	3.2 Client-side Synchronisation Tool Forensics
	3.3 Extension of the Digital Evidence Acquisition Window

	4 BitTorrent Sync Network Protocol Analysis
	4.1 Local Peer Discovery
	4.2 BTSync Relay Server
	4.3 BTSync Data Transfer
	4.4 Differentiation from Regular BitTorrent Traffic

	5 Investigation Methodology
	5.1 Identification of Content
	5.1.1 Web Discovery
	5.1.2 Local Discovery
	5.1.3 LAN traffic

	5.2 Identification of Lookup Hash
	5.3 Crawl the Network to Identify Peer Information
	5.4 Downloading and Verification of Content

	6 Proof of Concept
	6.1 Overview
	6.2 Results
	6.3 Churn Rate
	6.4 Geolocation

	7 Example Investigation
	7.1 Entry Point
	7.2 Peer Discovery
	7.3 Geolocation
	7.4 Data Recoverable from Remote Peers

	8 Conclusion

